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Simon Kristensen

2000 Mathematics Subject Classification 11J83 - 28A80

Introduction

How does one prove the existence of a real number with certain desired Diophantine
properties without knowing a procedure to construct it? And if one also requires the
digits in the decimal expansion, say, of this number to be special in some way, is
the task then completely impossible? The present notes aim at introducing a number
of methods for accomplishing this. Our main tools will be methods from classical
Diophantine approximation, from dynamical systems and not least from measure
theory. We will assume an acquaintance with basic measure and probability theory
and some elementary number theory, but otherwise the notes aim at being self-
contained.

The notes are structured as followed. We begin in Sect.1 with some first and
elementary observations on Diophantine approximation and recall some results on
continued fractions. Here, we set the scene for the following sections and deduce
some first metrical results. In Sect. 2, we relate the machinery of continued fractions
to that of ergodic theory. We will use this machinery to deduce Khintchine’s the-
orem in metric Diophantine approximation, which can be seen as a starting point
for the metric theory of Diophantine approximation. In Sect. 3, we introduce several
notions from fractal geometry. We will discuss Hausdorff measures and Hausdorff
dimension, box counting dimension and Fourier dimension. We relate these to sets
of arithmetical interest arising both from Diophantine approximation and from rep-
resentations of real numbers in some integer base. In Sect.4, we turn our attention
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to higher dimensional problems. The underlying reason for this is two-fold. In a
first instance, approximation of real numbers by real algebraic numbers is a higher
dimensional problem. A full description of this is unfortunately beyond the scope
of these notes, but we briefly outline some results and dwell a little on a conjecture
on digit distribution for algebraic irrational numbers. We then turn to our second
objective. Here, we study simultaneous and dual approximation of vectors of real
numbers and their relation. We will also outline a proof of a higher dimensional
variant of Khintchine’s theorem. This will be used as a stepping stone for discussing
some famous open problems in Diophantine approximation: the Duffin—Schaeffer
conjecture and the Littlewood conjecture.

Several null sets of interest arise from the Khintchine type results described. One
is the set of elements for which the simple approximation properties which may
be derived from variants of the pigeon hole principle cannot be improved beyond
a constant. In Sect.5, we will give a general framework for studying the fractal
structure of sets of such elements. In Sect. 6, we discuss the other interesting null
sets arising from the Khintchine type theorems. We will outline methods for getting
the Hausdorff dimension of these null sets, we will discuss approximation of elements
in the ternary Cantor set by algebraic numbers, and finally we will give some results
on Littlewood’s conjecture. In this final part, ideas from continued fractions, uniform
distribution theory, Hausdorff dimension and Fourier analysis come together in a nice
blend.

1 Beginnings

Any course on Diophantine approximation should begin with the celebrated result
of Dirichlet [18]:

Theorem 1.1 Let x € R and let N be a positive integer. There exist numbers p € 7
and g € N with g < N such that

Proof Let [x] denote the integer part of x and {x} its fractional part, so that x =
[x] + {x}. Divide the interval [0, 1) into N subintervals [k/N, (k + 1)/N), where
k=0,1,...,N — 1, of length 1/N. The N + 1 numbers {rx}, r =0, 1,..., N, fall
into the interval [0,1) and so two, {rx} and {r'x} say, must fall into the same subinterval,
[k/N, (k 4+ 1)/N) say. Suppose without loss of generality that r > r’. Then

1
|{rx} — {r’x}| = |rx —[rx] — ¥'x + [r’x]| =|gx—p| < N

where g =r —r',p = [rx] — [r'x] € Z and 1 < g < N. Dividing by ¢ finishes the
proof.
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As an immediate corollary of Dirichlet’s theorem, we obtain a non-uniform esti-
mate.

Corollary 1.2 Let x € R. For infinitely many pairs (p, q) withp € Z and q € N,

< —. (1.1)

Proof 1f x € Q, the result is trivial, as we do not require the rationals p/q to be on
lowest terms. Suppose now that x € R \ Q. Fix some N; € N and choose (p1, q1) as
in Dirichlet’s theorem. By this theorem,

1 1
<— =<

‘ P1
x—— <.
alN T qp

q1

As x is irrational, the left hand side must be non-zero. Consequently, it is possible to
choose an integer N, such that

1
—_ <<
N, q1

P1
x——.
q1

(1.2)

Taking this value for N in Dirichlet’s Theorem gives a pair of points (p», ¢») with the
desired approximation property. Furthermore, (pi, q1) # (p2, q2) since otherwise
(1.2) would contradict the choice of p,, g. Continuing in this way, we obtain a
sequence of pairs p,, g, satisfying (1.1).

A first natural question in view of the corollary of Dirichlet’s theorem is the
following: Can the rate of approximation on the right hand side be improved? In
general, the answer is negative due to a measure theoretical result. The following is
the easy half of Khintchine’s theorem, which is our first example of a metric result: it
gives a condition for a certain set to be a null-set, so that almost all numbers will lie
in its complement. Throughout these notes, for a Borel set £ C R”, we will denote
the Lebesgue measure of E by |E|. We will need the notion of a limsup-set. Recall
that given a sequence of sets E,, we define the associated limsup set,

limsupE, = m UE”'

k>1n>k

Theorem 1.3 Let ¢ : N — R. be some function with Z;il q(q) < oo. Then,

[xeR:

< (q) for infinitely many (p, q) € Z x N” =0,

p
x__
q

i.e. the set is a null-set with respect to the Lebesgue measure on the real line.
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Proof Note first that the set is invariant under translation by integers. Hence, it
suffices to prove that the set has Lebesgue measure 0 when intersected with the unit
interval [0, 1]. Now, note that this set may be expressed as a limsup-set as follows,

p
x—Z

< 1 (q) for infinitely many (p, q) € Z X N}

=N u U (— —h(q), —+¢(q)) N[0, 1].

N=>1g>N p=0

[xe [0,1]:

In other words, for each N € N, the set is covered by

U U (5 —1(g). = + wq))

g>N p=0

so using o-sub-additivity of the Lebesgue measure,

[x el0,1]: [x — g < 1(q) for infinitely many (p, q) € Z X N”
=|{U U(-—Wq) -+w<q>) 55> (——w@ —+w(q>)|
g=Np=0 N9 g>N p=0

=2 g+ (g <4 qu(@).

q=N q=N

The latter is the tail of a convergent series, and so will tend to zero as N tends to
infinity.

The connoisseur will recognise this as an application of the Borel-Cantelli lemma
from probability theory. Again, the result raises more questions. Are the null-sets in
fact empty? If not, what makes the elements of these sets so special? And how does
one generate the infinitely many good approximants?

The usual strategy is to go via continued fractions, see e.g. [49]. There are many
ways to get to these. We will go via an avenue inspired by dynamical systems (for
reasons which will become clearer as we progress).

Letx € R and define ay = [x] and ry = {x}. If ro = 0, we stop. Otherwise, we see
that 1/rg > 1. Letx; = 1/rp andleta; = [x;] and r; = {x;}. Continuing in this way,
we define a (possibly finite) sequence {a,}, where ay € Z and a; € N. We define a
sequence of rational numbers {p,/q,} by

Pn 1
_a0+—1=[a0;a1,...,an]. (13)

4n aj o

an
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We call the rationals p,, / g, the convergents to x and the integers a; the partial quotients
of x. We assume that the procedure and that the following elementary properties are
well-known. When gy = 0 so that x € [0, 1), we will omit this partial quotient and
the semi-colon from the latter notation and write x = [a;, da, ... ].

Proposition 1.4 The continued fraction algorithm has the following properties:

(i) The convergents may be calculated from the following recurrence formulae:
Letp_1=1,q9_1=0,pyo=apand gy = 1. Foranyn > 1,

Pn = QpPp—1 +Pp—2 and g, = apgn_1 + qu—2.

Consequently, g, > 2"=D/2,
(ii) Foranyn >0
GnPn—1 — gn—1Pn = (=1)",

and for any n > 1,
qnPn—2 — qn—2Pn = (_1)n_lan

(iii) For an irrational number x, x — p,/q, is positive if and only if n is even.

(iv) Any real irrational number x has an expansion as a continued fraction. The
sequence of convergents of x converges to x, with the even (resp. odd) order
convergents forming a strictly increasing (resp. decreasing) sequence. This
expansion is unique, and we write x = [ag; ay, . .. .

(v) Given a sequence {a,},>, with ay € Z and a; € N for i > 1, the sequence
[ao; a1, . .., a,] converges to a number having the sequence {a,} as its sequence
of partial quotients.

(vi) The convergents satisfy

1 1

< —.
qnqn+1 6]3

1 ’ Pn
—_— < |X
qn(qn + QtH-l)

From Proposition1.4 it is straightforward to construct numbers for which
Corollary 1.2 can be improved. Indeed, suppose that we have the a; for i < n given,
and let a,,1 = g, where g, is given by the recursion (i). By (vi), we get

1 1 1

qngn+1 Qn(QnCIn + ‘In—l) qn

'x _ D (1.4)

qn

By (v), the sequence {a,} defines an irrational number for which the exponent of
Corollary 1.2 can be improved to 3 by (1.4). It is easy to modify this construction to
produce an uncountable set numbers approximable with any given exponent on the
right hand side.

This gives a somewhat satisfactory answer to the questions posed about the null-
sets arising from Theorem 1.3. The null-sets are not empty, and the special feature of
the elements of the sets is the existence of large partial quotients. Of course, the term
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‘large partial quotients’ should now be quantified, which is where the metrical theory
and the use of dynamical systems kicks in. To quantify these notions, we should ask
whether there is a typical behaviour of the partial quotients, which is violated for the
exceptional numbers.

2 Dynamical Methods

We consider x € [0, 1) and formalise the continued fraction algorithm in the form of
a self-mapping of the unit interval.

Definition 2.1 The Gauss map T : [0, 1) — [0, 1) is defined by

[{l/x} for x # 0
Tx =
0 forx = 0.

In the notation of our description of the continued fraction algorithm, we note that
the Gauss map of anumber x € [0, 1) extracts exactly the number 1/r;. Applying the
Gauss map a second time, we get T2x = 1/r, and so on. It would seem that the Gauss
map is an appropriate dynamical description of the continued fractions expansion.
All we need is to get the partial quotients out of the r;. But this can easily be done
by defining the axillary function

a) [[l/x] forx £ 0 o
00 forx = 0.
We now see that
a,(x) = a(T" '), (2.2)

where a, (x) denotes the n’th partial quotient in the continued fraction expansion of
x, so iterates of the Gauss map are the natural object to study.

Having established that the Gauss map encodes the behaviour of the partial quo-
tients, it is natural to ask for the statistical behaviour of this map — especially as we
are interested in typical and a-typical behaviour of the sequence of partial quotients.
A tool for this is ergodic theory. We will say thatamap 7 : [0, 1) — [0, 1) preserves
the measure g if it is a measurable map such that for any measurable set B [0, 1),
1(T~'B) = u(B). The Birkhoff (or pointwise) ergodic theorem is the following result
(see e.g. [22]).

Theorem 2.2 (The pointwise ergodic theorem) Let (£2, 3, 1) be a probability space
and let T : 2 — Q2 be a measure preserving transformation. Let f € L'(2). Then

the limit
N—1

: 1 n 7
Jim ;m X)) =f)
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exists for almost every x € §2 as well as in Ll_(SZ). If the transformation is ergodic,
i.e. T7'B =B = n(B) € {0, 1}, the function f is constant and equal to ffdu.

We will not prove the theorem here, but we will apply it to the Gauss map. Our
approach is more or less that of [11]. The statement about the map T requires it to be
measure preserving, and it is more or less self-evident that the Gauss map does not
preserve the Lebesgue measure. However, there is a measure, which is absolutely
continuous with respect to Lebesgue measure and with which the Gauss map is
ergodic. There are good reasons why this is the correct measure, although it looks
slightly mysterious at first sight. For now, we will pull the measure out of a hat and
continue to work with it. Later on, we will give some indication of the origins of the
measure.

Definition 2.3 Let B be the Borel o-algebra in [0, 1). The Gauss measure is defined
to be the function p : B — [0, 1] defined by

A) = ! / 1a’t— ! /1 (1) ! dt
a Clog2 Ju 14+t log2 OXA 1+t

Theorem 2.4 The Gauss measure is preserved under the Gauss map, i.e. for any
measurable set A, we have ji(T~'A) = pu(A).

Proof We note that it is sufficient to prove that ;L(T’1 [0, y)) = u([0, y)), as we can
build any other set from basic set operations on these sets. If one considers the graph
of the Gauss map (try drawing it), it is easy to see that

B o 11
T71(0,y) ={x €[0,1): 0 < T(x) <y} :g [m %). (2.3)

Thus,

3'48

1 (7710, )

1 - 1/k 1
([ )) / i
 \Lk+y Tk ,;1 2ty 1+
L | —log {1+

(0] (0] —_—
log2 g g
l1 k+1 k+y
“log2 \Tk kwy+1)

This is completely incomprehensible, so we try to get to the same incomprehensible
expression from the other side. Cunningly, we make an appropriate partition and get

k

M2 T[Mz2
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1 Y1 1 y/k 1
0, = — dx = dx
(10, ) 10g2/0 1+x glogZ/y/(k+])l+x
— 1 y y

tog (1+2) —tog (14—
élogZ[Og Tk Og( +k+1)}
= 1 (k+1 k+y )
Z log . .
k:l]ogZ k k+y+1

Luckily, this is the same incomprehensible mess that we have before, so the proof is
complete.

Note that the density of the Gauss measure with respect to the Lebesgue mea-
sure is continuous, non-negative and in fact invertible. Hence, the two measures are
absolutely continuous with respect to each other, and the property of being null or
full with respect to one measure automatically implies the same for the other.

We have turned the study of the typical behaviour of continued fractions into a
matter of studying the measure preserving system ([0, 1), B, p, T), where B is the
Borel o-algebra, 1 is the Gauss measure and 7' is the Gauss map. We have also seen
that the pointwise ergodic theorem is a nice way of studying the almost everywhere
behaviour of such maps. It would be desirable if the measure preserving system we
have obtained turned out to be ergodic. It turns out that this is in fact the case. We
will prove this now.

First, let us see what the Gauss map does to a continued fraction.

Proposition 2.5 Let x = [ay,az,...] € [0, 1). Then

Tx:T[al,az,...] = [612,03,...].
Proof We see that
1
Tlai,az,...1=T I
a+—
@+ o
1 1
=1a + ; = — = laz, a3, ... ]
@+ or- @+ o=

This is of course obvious from the construction. But in the light of the measure
theoretic considerations, it does actually contain information. We define some sets
to make life easier.

Definition 2.6 Letay, ..., a, € N. Define the fundamental interval or fundamental
cylinder
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In((ll, ...,an) = {[611, ...,a,,,b,,+1,b,,+2, ] : bn+i e Nforalli e N}

Note that by Proposition 2.5, the n’th iterate under the Gauss map of any fundamental
cylinder 7, is in fact [0, 1) \ Q. This reflects the chaotic (or ergodic) nature of the
Gauss map. Also note that the cylinders do not include the rational points. This is
of little concern to us, as the rationals form a set of measure zero. It does however
mean that we have to be extra careful with our bookkeeping.

In the following, let n € N and ay, ..., a, € N be fixed. Denote by I, the funda-
mental interval I,,(ay, .. ., a,). We make a few preliminary observations.

Lemma 2.7 We have x € I, if and only if there exists 0,(x) € (0, 1) \ Q such that

1

a0, (x)

Proof By definition, x € [, if and only if x = [ay, ..., a,, by+1, - . . ]. Applying the
Gauss map n times, we get

on(x) =T"x = [bn+l’ bn+27 cee ]

But this is rational if and only if the sequence of partial quotients b,,; terminates.

The above lemma defines a function on the irrational points in the unit interval

0,10, DNQ — [0, D\ Q.

Lemma 2.8 Letu,v € [0,1)\ Q, u < v. Then
LN T "[u,v]| = |6, (v) — 0, (w)].
Proof We see that
LNTMu,vl={xe[0,D\Q:x=[ay,...,a, 0]}

where 0 € [u, v] and [ay, ..., a,; 0] denotes the continued fraction

1
2.4)

a,+0
That is, for any x € I, N T7"[u, v], 6,(x) € [u, v], so

LN T " [u, v] C 0, ' [u, v].
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Furthermore, any value of 6 in [u, v] inserted in (2.4) will give rise to an element in
I, N T7"[u, v], so the converse inclusion holds. Finally, it is an easy exercise left to
the reader to see that 0, ! is monotonic, so this proves the lemma.

It would seem a good idea to find a precise expression for 6! (x). This may be
done from the recursive formulae for the convergents of x.

Lemma 2.9 We have

Proof We prove this by induction in n. For n = 1, using Proposition 1.4

pr+xpo  aipo+p-1+xpp  O0+1+4+x-0 1
q1 +xq0 aiqo+gq-1+ xqo a+0+x a, +x

50 07 (¥) = (p1 +xp0)/ (g1 + xqo).
Now, we consider n + 1. We lety = 1/(a,+1 + x). We know that

- ! ! -
01 () = T = — =0,'0).
a+—— at—

.'-+ l1 '._+ 1

ayt——
S

By induction hypothesis and Proposition 1.4 again,

1

9”—1())) _ Pn + YPn—1 _ Pnt (m) Pn—1
4n +len—1 qn + (uwj-ﬂ) Gt

Gy iPpn FPoo1 +XP0 Pag Py

T GGt G FXGn Gup XG0

This completes the proof.

Note that 6, ' is continuous, so we may extend it to all of [0, 1] and still have
Lemma?2.8. We now introduce the so-called Vinogradov notation to make our nota-
tion less cumbersome.

Definition 2.10 For two real expressions x and y, we say that x < y if there exists
a constant ¢ > O such that x < cy. If x € yand y < x we write x < y.

Lemma 2.11 Letu,v € [0, 1) withu < v. Then

|T"[u, vIN1,|

= |[u, v]|,
1]

where the implied constants in < do not depend on the sequence (a,) defining the I,,.
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Proof We use Lemma?2.8 to obtain

_ _ — Pntpn— Pntupn—
[T, oI NG| 16, ) =6, w)| ‘ Gtvg ~ artuges
- —1 _ p—1 - DPntPn— Dn
7] 0,1(1) —6,1(0) s
_ (v _ I/l) Qn(Qn + qn—l)
(qn +vqu-1)(qn + ugn—1)

The last reduction requires substantial, but completely elementary calculations using
Proposition 1.4.

Now, the denominators of the convergents g, satisfy g,_1/q, < 1, so itis easy to
see by Proposition 1.4 (i) that

‘In(Qn + Qn—l) -
(Qn + Ufln—l)(% + MQn—l)

As |[u, v]| = v — u, the proof is completed.

Lemma 2.12 For every A € B,

T7"ANI,
i

Proof As the Borel o-algebra is generated by intervals, by Lemma2.11 for any
A e B,

LRCLT Y @.5)
L T ‘

Also, since 1/2 < 1/(1 +1t) < 1fort € [0, 1), we have for any A € B,

1 1 1
si= [t [ =
and 1
wA) = /A 1—+tdt < /A 1dt = |A].
Hence, 11(A) < |A|, so the Lemma follows from (2.5).
Theorem 2.13 The Gauss map is ergodic with respect to the Gauss measure.

Proof Suppose that T~'A = A and that ;1(A) > 0. It suffices to prove that u(A) = 1.
Any Borel set can be generated by the I, as these intervals are essentially disjoint
with lengths tending to zero. Hence, by generating a set B by I,,’s of the same level
(up to an arbitrarily small error), Lemma2.12 implies that

W(T~"ANB) = p(A)u(B)
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for any B € B. On the other hand, as T7'A = A,
W(T"ANB) = u(AN B)

Letting B = A°, we see that (A N B) = 0, so that u(B) < 0. This clearly implies
that u(B) = p(A€) = 0, so that u(A) = 1.

We specify the following corollary of the Pointwise Ergodic Theorem and
Theorem?2.13:

Corollary 2.14 Let f be an integrable function on [0, 1). Then

N-1 1

1 1 t
lim — > f(I"x) = RAGI
N—oo N = log2 Jo 1+t

for almost every x € [0, 1).

Many things follow from the ergodicity of the Gauss map. For instance, almost all
numbers have an unbounded sequence of partial quotients, and in fact the arithmetic
mean of the partial quotients is infinite almost surely. On the other hand, the geometric
mean does have a limiting value almost surely. Calculating the typical frequency of
any prescribed partial quotient is an easy exercise in integration, and combining these
results with the machinery of continued fractions give a unified way in which to prove
many of the classical metrical results in Diophantine approximation. An example is
Lévy’s theorem.

Theorem 2.15 For almost every x € [0, 1),

2

m
121og2’

1
lim —logg,(x) =
n—oo n

We will not derive this theorem here, although we will be appealing to it later.
Instead, let us derive a partial converse to Theorem 1.3 due to Khintchine [49].

Theorem 2.16 Let1) : N — R be some function with Z;OZI q(g) = oo and with
q(q) non-increasing. Then,

p
X—_

er [0,1]:

< Y (q) for infinitely many (p, q) € Z X NH =1.

This is the difficult half of Khintchine’s theorem, which in its totality consists
of Theorem 1.3 and Theorem2.16. It should be noted that there is an additional
assumption on the function . This is strictly needed. We will discuss this later in
these notes.

Lemma 2.17 Let (o,)nen be a sequence of positive numbers. Suppose that



Metric Diophantine Approximation ... 73

o0
2=
ay

n=1

Then,
Hx € [0, 1) : a,(x) > «y for infinitely many n € N}| = 1.

Proof We fix arbitrary ay, ..., a, € N and let I, denote the fundamental interval
corresponding to these partial quotients. We let E,, = {x € [0, 1) : a,(x) > «,}. We
first prove that

/'I’(E}1+1 N In) 1

M(In) Oyl + 1

(2.6)

In fact, all we need to do is to note that
Ey=T7" {x €[0,1):x = [@uy1,...] where a,, 1 > an+1}.
Thus, by Lemma2.12,

U(En+1 N In)
()

p({x €10, 1) : x = [ans1, ... ] Where @iy > Qi }) .

But since the Gauss measure and the Lebesgue measure are absolutely continuous
with respect to each other, the above quantity is

= |[{x €10, 1) : x = [@ys1, ... ] Where Qyp1 > vy ]

_21 1 S 1
B k k+1 A |

k>

Repeatedly using (2.6), we get for some universal C’ > 0,

ESN---NES < _—
#En ) = H( C’am+z+1)

This holds for any m, k € N. To see this, note that we can express the property of
being in E, as being in some union of disjoint fundamental intervals. We leave the
formalism as an exercise for the interested reader.

Finally,
= 1
(ﬂ m+l) — :!i!: (1 - C’Oler,' + 1) '

=m

As 1 —x < e * whenever 0 < x < 1, we have
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n

n 1
TT(:- H ¢ T = o 2 T
i1 C Oém_H + 1

But this tends to 0, as >_ 1/c; is assumed to diverge. Thus, the probability that
a, > a, only occurs finitely many times is zero, which proves the lemma.

We are now ready to prove Khintchine’s Theorem.

Proof (Part II (the divergence case)) We let N be a fixed integer such that logN >
72/121og 2 (N = 4 will do nicely). By Theorem 2.15, for all but finitely many values
of n,

1
—logg,(x) <logN 2.7
n

for almost all x € [0, 1).

Let f(g) = q¥(gq). Define a function ¢(n) = N"f(N"). Since f(q) = qi0(q) is
non-increasing,

N+

> fl@) < (N = NMFIN") = (N = Dg(n),

q=N"

so as Y f(q) diverges, this will also be the case for > ¢(n). Therefore, by
Lemma?2.17, for almost every x € [0, 1),

1
app1(X) > ——
T g
holds for infinitely many n.
Now, we apply our classical estimates:

1 1 o(n)
< < <
qn(X)Gny1(x) anJrICIn(x)2 Qn(x)z

Pn
an

X —

for infinitely many n for almost all x. But by (2.7), ¢g,(x) < N", and as ¢gf(q) is
non-increasing, we get

¢(n) = N"f(N") < g, (X)f (g (x)).
Hence, for infinitely many n,

_ (0)f (gn(x))

Pn
‘x - qn( )2 ’(/}(qn(x))

qn

This proves the theorem.
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We conclude the second section with an informal discussion of a different — and
somewhat more modern — view on the Gauss map. Let us ‘decompose’ the action of
the Gauss map into new maps. To apply the map x — {1/x}, we first apply the map
x > 1/x and continue to apply the map x +— x — 1 until we finally arrive in the unit
interval again. These maps are both Mobius maps given by the matrices

01 1 -1
(1 O) and (O 1).
Recall that the Mo6bius map associated to a matrix
ab
(&)

ax+b
ex+d’

is given by

X =

Composition of such maps corresponds to taking products of matrices.
For convenience, we make some sign changes here and there and consider instead

the matrices
0-—1 11
S:(1 0) andT:(Ol).

Together, these matrices generate the group SL;(Z).

It is tempting to look for a space on which this group acts naturally, and indeed
such a space exists. The hyperbolic plane is such an object. Consider the upper half
plane,

H={x+iyeC:y>0}

with the Riemannian metric
1 .
(v, w); = 5 (v-w)forz=x+iy.
y

The group SL, (R) /{=%!1} acts by isometries via Mobius maps on H. The group SL,(Z)
forms a lattice inside this group of isometries, and so we can consider the Riemann
surface M = H/ SL,(Z). This is a surface with three singularities: two points where
it is non-smooth and a cusp. Applying the above generators roughly corresponds to
crossing the sides of the fundamental domain of the group SL,(Z).

Considering the boundary of the hyperbolic plane, R U {oo}, we easily see that all
rational numbers are identified with the point at infinity under the action of SL,(Z).
This point in turn becomes the cusp of the surface M.

If one formalises the above discussion, one may prove that the continued fraction
of a number corresponds to a geodesic on the surface M. Formalising this is beyond
the scope of these notes, but the reader is referred to the paper [46] or the monograph
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[22]. The ergodicity of the Gauss map can be seen as an instance of the ergodicity
of the geodesic flow on M (or more generally on surfaces of constant negative
curvature). The geodesic flow on M is a flow in the unit tangent bundle of M, which
may be identified with SL,(R)/ SL,(Z). This can be seen as the starting point of the
use of homogeneous dynamics in Diophantine approximation, an approach which
has become tremendously important in recent years. It also gives an explanation for
the origins of the curious density of the Gauss measure, which can be induced on
the unit interval from the natural measure on M. In a sense, the hyperbolic measure
can be seen as an instance of the hat out of which we previously pulled the Gauss
measure.

3 Fractal Geometry — A Crash Course

As we saw in the last section, there is a nice zero—one dichotomy as far as the Lebesgue
measure of the set of real numbers with prescribed approximation properties is con-
cerned. However, the null sets obtained in the convergence case of Khintchine’s
theorem are not empty. One could easily use the machinery of continued fractions
to prove that a given set is uncountable, but in fact we may discriminate even more
precisely between the sizes of the null sets using the notion of Hausdorff dimension.

Hausdorff dimension was introduced by Felix Hausdorff [27], building on the
construction of the Lebesgue measure given by Carathéodory [15]. Carathéodory
constructed the Lebesgue measure by approximating a set £ by countable covers
of simple sets. The simple sets would have a volume, which could be calculated by
elementary means. On adding these countably many volumes, Carathéodory would
obtain an upper bound on the volume of the set E. To get the Lebesgue measure, one
takes the infimum over all such covers. This produces an outer measure for which
the Borel sets are measurable.

Hausdorff made the simple but far-reaching observation that if one replaces the
usual volume of the sets in the covers by an appropriate function of their diameter,
a different measure would be obtained. The usual volume of a hypercube in R” is a
constant multiple of its diameter raised to the power n, with the constant depending
only on 7, so this is an entirely natural thing to do. It turns out that an abundance of
sets supporting such a measure exist. In particular, with the added flexibility of using
different functions, one can discriminate between the sizes of Lebesgue null sets.

Let us be more concrete. For a given countable cover, C say, of E we consider the
following sum sometimes termed the s-length of the cover C, given by

oC) = Z(diam Uy,

veC

where diam U = sup{|x — y|: X,y € U} is the diameter of U and where s > 0 is
some real number. We will also consider yet another generalisation of the above,
also considered by Hausdorff. A dimension function f : R, — R, is a continuous,
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monotonic function withf(r) — 0asr — 0.Inthe above, we may replace (diam U)*
by f(diam U) for any such function to obtain the more general notion of f-length.

For clarity of exposition, in the following we consider the special case f(r) = r°
corresponding to the s-length as defined above. This is associated with what is now
usually called the Hausdorff dimension but also sometimes called the Hausdorff—
Besicovitch dimension. The possibly infinite number £*(C) gives an indication the
‘s-dimensional volume’ of the set E in much the same way Carathéodory would think
of it. Taking yet another hint from Carathéodory, the diameter of the sets U in the
cover is now restricted to be at most § > 0.

Let

H3(E) = igf UZC: (diam U)* = igf 2 (Co),
€Cs

where the infimum is taken over all covers Cs of E by sets U with diam U < §; such
covers are called d-covers. As d decreases, Hg can only increase as there are fewer
U’s available, i.e. if 0 < 6 < ¢/, then

Hy (E) < HY(E).

The set function 5 is an outer measure on R". The limit H* (which can be infinite)
as § — 0, given by

H(E) = lim H(E) = sup H3(E) € [0, ool 3.1)

is however nicer to work with, as itis aregular outer measure with respect to which the
Borel sets are measurable. It is usually called the Hausdorff s-dimensional measure.
Hausdorff 1-dimensional measure coincides with 1-dimensional Lebesgue measure
and in higher dimensions, Hausdorff n-dimensional measure is comparable to n-
dimensional Lebesgue measure, i.e.

H'(E) < |E],

where |E| is the Lebesgue measure of E and the implied constants depend only on
n and not on the set E. Thus a set of positive n-dimensional Lebesgue measure has
positive Hausdorff n-measure.

As the definition depends only on the diameter of the covering sets, there is no loss
of generality in restricting to considering only covers consisting of open, closed or
convex sets. Additionally, the resulting measure is clearly invariant under isometries,
and scaling affects the measure in a completely natural way: for any » > 0,

H(rE) = r*H*(E).
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As a function of s, the s-dimensional Hausdorff measure of a fixed set E exhibits
an interesting behaviour. For a set E, H*(E) is either O or oo, except for possibly one
value of s. To see this, the definition of }(E) implies that there is a §-cover Cs of E
such that

> (diam €)' < H3(E) + 1 < H'(E) + 1.
CeCs

Suppose that H* (E) is finite and s = 59 + €, € > 0. Then for each member C of the
cover Cg, (diam C)%* < §°(diam C)*, so that the sum

> (diam )"+ < 6° > (diam C)*.

CeCs CeCs

Hence

Hy P (E) = D (diam O)** < 6 > (diam €)" < 6°(H (E) + 1),
CEC(S CGC(;‘

and so
0 < H'(E) = K" (E) = lim Hy™(E) < lim 6"(H"(E) + 1) = 0.

On the other hand suppose H% (E) > 0. If for any € > 0, H% ~¢(E) were finite, then
by the above H% (E) = 0, a contradiction, whence H* ¢ (E) = oo.

To summarise, we have obtained a set function H* associating to each infinite set
E C R" an exponent sy > 0 for which

HY(E)Z[oov 0§S<50a

0, So < 8§ < 00.
The critical exponent
so = inf{s € [0, 00): H*(E) = 0} = sup{s € [0, 00): H*(E) = oo}, 3.2)

where the Hausdorff s-measure crashes is called the Hausdorff dimension of the set
E and is denoted by dimyE. It is clear that if H*(E) = 0 then dimgE < s; and if
‘H*(E) > 0 then dimgE > s. However, nothing is revealed from the definition about
the measure at the critical exponent, and indeed it can take any value in the interval
[0, co] with oo included.

The main properties of Hausdorff dimension for sets in R” are:

(i) If E C F then dimyE < dimygF.
(i) dimgE < n.
(iii) If |E| > 0, then dimyE = n.
(iv) The dimension of a point is 0.
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(v) If dimygE < n, then |E| = 0 (however dimgE = n does not imply |E| > 0).
(vi) dimg(E;, x E») > dimgE; + dimygE>.
(vii) dimy Uﬁl E; = sup{dimyE;: j € N}.

It easily follows from the above properties that the Hausdorff dimension of any
countable set is 0 and that of any open set in R” is n. The nature of the construction
of Hausdorff measure ensures that the Hausdorff dimension of a set is unchanged
by an invertible transformation which is bi-Lipschitz. This implies that for any set
S C R\ {0}, dimyS~! = dimyS, where S~! = {s~': s € S}. To see this, we split up
the positive real axis into intervals (%, n+1] for n > 2 together with the intervals
(m,m + 1] for m > 1. The negative real axis is similarly decomposed. On each
interval, the map s — s~ ! is bi-Lipschitz, and so the statement follows by appealing
to (vii) above.

Thus on the whole, Hausdorff dimension behaves as a dimension should, although
that the natural formula dimy (E; x E;) = dimyE| 4 dimyE; does not always hold
(it does hold for certain sets, e.g., cylinders, such as E x I, where I is an interval:
dimyg(E x I) = dimgE + dimyg/ = dimgE + 1 by (iii), see [24]).

It is often convenient to restrict the elements in the d-covers of a set to simpler
sets such as balls or cubes. For example, covers consisting of hypercubes

H={xeR" |x—aly <},

where |X|o, = max{|x;|: 1 <j < n} is the height of x € R", centred at a € R" and
with sides of length 2 are used extensively. While outer measures corresponding to
these more convenient restricted covers are not the same as Hausdorff measure, they
are comparable and so have the same critical exponent. Thus there is no loss as far
as dimension is concerned if the sets U are chosen to be balls or hypercubes.

Of course, the two measures are identical for sets with Hausdorff s-measure which
is either O or co. Such sets are said to obey a ‘0-00’ law, this being the appropriate
analogue of the more familiar ‘0 -1’ law in probability. Sets which do not satisfy a
0-00 law, i.e. sets which satisfy

0 < HYI™E(E) < 0o, (3.3)

are called s-sets; these occur surprisingly often and enjoy some nice properties. One
example is the Cantor set which has Hausdorff s-measure 1 when s = log 2/log 3.

However it seems that s-sets are of minor interest in Diophantine approximation
where the sets that arise naturally, such as the set of badly approximable numbers or
the set of numbers approximable to a given order (see next section), obey a 0-co law.
The first steps in this direction were taken by Jarnik, who proved that the Hausdorff
s-measure of the set of numbers rationally approximable to order v was 0 or co. This
result turns on an idea related to density of Hausdorff measure.

Lemma 3.1 Let E be a null set in R and let s € [0, 1]. Suppose that there exists a
constant K > 0 such that for any interval (a, b) and s € [0, 1],
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H(EN(a, b)) <Kb—aHE). (3.4)

Then H*(E) = 0 or oo.

Proof Suppose the contrary, i.e. suppose 0 < H*(E) < oo and let K be as in the
statement of the theorem. Since E is null, there exists a cover of E by open intervals
(aj, bj) such that

1
Z(bj —a) < .
J

By (3.4),

H(E) =H | | J@.b) NE | < KH'(E) D (b — aj) < H'(E).

J J

a contradiction.

The proof for a general outer measure is essentially the same. The sets we
encounter in Diophantine approximation are generally not s-sets and some satisfy
this ‘quasi-independence’ property. For instance, it was shown in [14], using a vari-
ant of the above lemma, that there is no dimension function such that the associated
Hausdorff measure of the set of Liouville numbers (defined below) in an interval is
positive and finite. Liouville numbers are those real numbers x for which we for any
v > 0 can find a rational p/g such that

p
X—_

q

0<

q

Note that in this case, the existence of a single rational p/q for each v > 0 implies the
existence of infinitly many. We prove below that this set has Hausdorff dimension
0. The result of [14] shows that even with a general Hausdorff measure H, we still
cannot get a positive and finite measure.

Unless some general result is available, the Hausdorff dimension dimyE of a
null set E is usually determined in two steps, with the correct upward inequality
dimygE < so and downward inequality dimyE > s being established separately.

For limsup sets, such as the one in Theorems 1.3 and 2.16, the Hausdorff measure
version of the Borel-Cantelli lemma is often useful.

Lemma 3.2 Let (E;) be some sequence of arbitrary sets in R" and let
E = {x € R": x € E} for infinitely many k£ € N}.

If for some s > 0,

> diam(Ey)* < oo, (3.5)
k=1
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then H*(E) = 0 and dimyE < s.

Proof From the definition, foreach N = 1,2, ...,

G

EC Ey,

k

Il
=

so that the family C™) = {E;: k > N} is a cover for E. By (3.5),
o0
li iam(Ey)* = 0.
Nymgdlam( %) 0

Hence lim_, o, diam(E;) = 0 and therefore given § > 0, C™) is a é-cover of E for
N sufficiently large. But

o0
s s : s sc (N . s
H(E) = 1gf Z (diam U)* < 2(C™)) = Zdlam(Ek) -0
UeC, k=N
as N — oo. Thus H§(E) = 0 and by (3.1), H*(E) = 0, whence dimyE < s.

This was essentially what we did in the last section to prove the easy half of
Khintchine’s theorem. It follows mutatis mutandis from that proof that the Hausdorff
dimension of the set

[xeR:

X — ld < 1(g) for infinitely many (p,q) € Z x Nt ,
q

is atmost s whenever Z;il q(q)* < oo,sothatif(q) = g7, the Hausdorff dimen-
sion would be at most 2/v. As with Khintchine’s theorem, this is sharp, but the
converse inequality is more difficult to prove. We return to it in the final section.

Various methods exist for establishing lower bounds on the Hausdorff dimension
of a set. Underlying most of these methods are variants of the so-called mass dis-
tribution principle. Of course, the key difficulty is the fact that to get lower bounds,
we need to consider all covers rather than just exhibiting a single cover. This is due
to the definition of the Hausdorff s-measure as the infimum over all covers of the
s-length. The mass distribution principle is the following simple result.

Lemma 3.3 Let i be a finite and positive measure supported on a bounded subset E
of R™. Suppose that for some s > 0, there are strictly positive constants c and § such
that j1(B) < ¢ (diam B)* for any ball B inR" withdiam B < §. Then H*(E) > u(E)/c.
In particular, dimgE > s.

Proof Let {B;} be a §-cover of E by balls B;. Then
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0 < u(E) < u(U Bk) <D uB) <c (diamB)'.
k k k

Taking infima over all such covers, we see that H5(E) > u(E)/c, whence on letting
6 — 0,

H(E) > HE .
C

Thus if E supports a probability measure p (u(E) = 1) with u(B) < (diam B)* for
all sufficiently small balls B, then dimyE > s.

We now briefly discuss two other notions of dimension, namely box counting
dimension and Fourier dimension. Box counting dimension (see e.g. [24]) is some-
what easier to calculate from the empirical side, although it has some serious draw-
backs. Given a set E C R" and a number § > 0, let Ns(E) denote the least number of
closed balls of radius ¢ needed to cover E. We then define the upper and lower box
counting dimensions of E as

dimg(E) = lim inf w, dimg(E) = lim sup w.
—~0 —logé 50 —logd
If the values agree, we call this the box counting dimension of E.

The definition is fairly flexible, and changing the counting function to any of a
number of related counting functions does not change the value. The above count-
ing function has been chosen as a similar quantity should be familiar to readers
experienced with the concept of entropy.

A major drawback of box counting dimension is that it is not associated with any
measure. As a consequence of this, it is easy to construct countable sets of positive
box counting dimension. In fact, one easily proves that the box counting dimension
is unchanged when taking the topological closure of the set in question. Hence, any
dense and countable subset of R has box counting dimension 1. This is problematic
if one would like to apply the notion to prove the existence of transcendental num-
bers with certain properties using metrical methods. Indeed, as the set of algebraic
numbers is countable and dense, the statement that a set has positive box counting
dimension does not imply that it must contain transcendental numbers. On the other
hand, proving that a set has box counting dimension zero is a much stronger statement
than the corresponding one for Hausdorff dimension.

We will define one more notion of dimension, namely the Fourier dimension of a
set (see [38]). For a measure p, denote by /i its Fourier transform, i.e.

At = / 2TER G E),

We are concerned with positive Radon probability measures, so we suppose that
is a positive, regular Borel measure with ;1 (R") = 1. A poor man’s version of the
uncertainty principle would state, that if the Fourier transform of p decays as |x|
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increases, the support of the measure would be ‘smeared out’, and so be somewhat
messy.

The technical definition of the Fourier dimension of a set is as follows: Let
dimg (E) be the unique number in [0, ] such that for any s € (0, dimp(E)), thereis a
non-zero Radon probability measure p with supp(u) € E and with |fi(x)| < |x] /2,
and such that for any s > dimg(E), no such measure exists.

The types of dimension mentioned here are related as follows for a set E C R™:

dimg(E) < dimy(E) < dimy(E) < dimg(E). (3.6)

Proving the last two inequalities is straightforward, but the first one is difficult,
and requires Frostman’s Lemma [25], a powerful converse to the mass distribution
principle of Lemma3.3.

We end this section by relating the fractal concepts discussed so far to arithmetical
issues. This will motivate the key problem considered when discussing Diophantine
approximation on fractal sets.

A classical theorem of Emile Borel [12] states that almost all real numbers with
respect to the Lebesgue measure are normal to any integer base b > 2 (or absolutely
normal). In other words, for almost all numbers x, any block of digits occurs in
the base b expansion of x with the expected frequency, independently of b. In fact,
with reference to the previous section, this can be deduced from the ergodicity of
the maps T} : [0, 1) — [0, 1) given by T (x) = {bx} with respect to the Lebesgue
measure. The ergodicity of these maps is much easier to prove than for the Gauss
map, and the deduction of Borel’s result is left as an exercise.

While almost all numbers are normal to any base, the only actual examples known
of such numbers are artificial and very technical to even write down (see e.g. [44]).
For well-known constants such at 7, log2 or even \/5, very little is known about
their distribution of digits. It is a long-standing conjecture that algebraic irrational
numbers should be absolutely normal. In view of this, it seems natural to study
which Diophantine properties a number which fails to be normal in some way can
enjoy. One could hope that this would shed light on the question of the normality (or
non-normality) of algebraic numbers.

With these remarks, let us consider a specific set of non-normal numbers which
is of interest. Any such set will have Lebesgue measure zero, but in order to get
anywhere with our analysis, we will take a particularly structured example. Let

C= [x €l0.1]:x=> a3 a; €0, 2}],

i=1

i.e. the set of numbers in [0, 1] which can be expressed in base 3 without using the
digit 1. Clearly, an element of C cannot be absolutely normal. Of course, this set is just
the well-known ternary Cantor set, and just looking at it would suggest approaching
the study of the set by using fractal geometry.

Proposition 3.4 The setC has dimy (C) = dimy(C) = log 2/log 3 and dimp (C) = 0.
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We will calculate the Hausdorff dimension and the box counting dimension here.
The result on the Fourier dimension is due to Kahane and Salem [31] and requires
more work. However, we will calculate the Fourier transform of a particular measure
on C and show that this does not decay.

For the upper bound on the upper box counting dimension, we will consider the
obvious coverings of C by intervals obtained by fixing the first n coordinates of
the elements in C. There are 2" such intervals, and each has length 37", Hence, for
37" < § < 37! we find that N5(C) < 2". It follows that

log N5 (©) _

_ log 2" log2
dimp(C) = lim sup ogs _log-

lim sup
0—0 - log 4

nooo log3n=1 " log3’

If we can get the same lower bound on the Hausdorff dimension, applying (3.6)
would give us the first two equalities immediately. For this, we will apply the mass
distribution principle, so we will need a probability measure.

Initially, we assign the mass 1 to the unit interval. We then divide the mass equally
between the two intervals [0, 1/3] and [2/3, 1], so that each has measure 1/2. We
continue in this way, at step k dividing the mass of each ‘parent’ interval equally
between the two ‘children’. The process converges to a measure supported on the
Cantor set (as a sequence of measures in the weak- topology, but we skip the details).
The resulting measure 4 is known as the Cantor measure.

To prove that the Cantor measure is good for applying the mass distribution
principle, we need an upper estimate on the measure of an interval. Let / be an interval
of length <1. Pick an integer n > 0 such that 3-"*+D < diam(I) < 37", In the n’th
step of the Cantor construction, the minimum gap size is 37". Hence, the interval
can intersect at most one of the level n intervals, and so, setting s = log 2/log 3,

) <27 =3"" <3 diam()* = 2 diam(/)*.

From the mass distribution principle of Lemma3.3, it immediately follows that
H*(C) > 1/2, whence dimy C > s = log2/log 3. This completes the proof of the
first part of the proposition.

To finish, we will calculate the Fourier transform of the specific Cantor measure
1 constructed above. Weak-# convergence of the auxiliary measures imply that for
any continuous function f on [0, 1],

1
/f(x)du(x):lim 2 > @3 a3,
0 n—o0

ap,...,a,€{0,2}

so in order to find the Fourier transform of the measure, we need to evaluate the
above expression for the function f;(x) = e~>™*_ On inserting, we find that

f(n) = lim 27" " grm@d et (3.7)

n—oo



Metric Diophantine Approximation ... 85

Recalling Euler’s formula for the cosine function,

i0 —if
e’ +e
cos(f) = ———,
©) 5
we find that
n n 2mi3 k¢ —2mi3 k¢t
[Teos@m3*n =T % J;e
k=1 k=1

=

n
— o [ 23 (8727Ti3_"2t + 1) .
k=1 k=1

Taking absolute values, the first product becomes of absolute value 1. Expanding the
latter product, whatever remains becomes a partial sum from (3.7), so that letting n
tend to infinity,

1) = Hcos(zw:r"t) .

k=1

It should be clear that this does not decay polynomially with #, so certainly the Cantor
measure is no good if we were to believe that the Cantor set had positive Fourier
dimension. Of course, this is not the case anyway.

We conclude this chapter with some remarks connecting dynamics, fractals, mea-
sures, Diophantine approximation and numeration systems. This requires a bit of
functional analysis. We refer the reader to [41] for an excellent textbook on the topic.

As we have seen, to both Diophantine properties and to base b expansions, we
may associate dynamical systems on the unit interval. In the former case, this was the
Gauss map, and in the latter the base b map. Both of these are ergodic with respect
to measures which are absolutely continuous with respect to the Lebesgue measure,
so almost all numbers are typical with respect to both of these measures. Our main
problem is to take an atypical property from one and prove that this forces the other
to be typical.

In terms of measures, invariant sets such as the ternary Cantor set give rise to
other preserved measures than the Lebesgue measure (and similarly for sets invariant
under the Gauss map). A quick-and-dirty way of constructing such measures is
to take a point, look at its backward orbit and take a weak limit of averages of
point measures along the orbit. By the Riesz representation theorem, these measures
correspond to linear functionals in the unit ball of C([0, 1])*, the dual space to the
continuous functions on the interval with the topology of uniform convergence. The
Banach-Alaoglu theorem ensures the existence of a limit point, which again by Riesz
corresponds to a measure with its support on the orbit closure of the initial point. In
this way, one may construct many invariant measures for a continuous transformation
of the interval.
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The set of invariant measures can easily be shown to be closed (hence compact) and
convex. As such, itis spanned by its extremal points, and it is again an easy exercise to
prove that these are exactly the measures with respect to which the transformation is
ergodic. It then follows from the pointwise ergodic theorem that such measures must
be mutually singular. In the cases considered above, the space of ergodic measures
has an element which is absolutely continuous with respect to Lebesgue and a whole
bunch of ‘fractal’ measures such as the Cantor measure.

In view of this, it would seem that our problems should boil down to considering
nice, convex subsets of the Banach space C([0, 1])*, and subsequently study the
support of elements in their intersections, when interpreted as measures by the Riesz
representation theorem. However easy this may sound, it really is horrible! Indeed,
one can construct a simplex in an infinite dimensional space whose extremal points
are dense within it (the Poulsen simplex [43]). Evidently, the existence of such
monstrous sets makes life harder for us, but it also puts the study of Diophantine
approximation into a much broader context with connections all over mathematics.

4 Higher Dimensional Problems

In the last section, we mentioned a major open problem in Diophantine approxi-
mation: Are algebraic irrational numbers absolutely normal? In order to approach
this problem, we should address the concept of approximation by algebraic num-
bers. This is a higher dimensional problem, and we will approach it by considering
rational approximation in higher dimensional spaces. The added flexibility of having
more than one variable allows us to come up with new problems as well as to state
analogues of old ones in higher dimension. As it turns out, some of the unsolved prob-
lems in one dimension can be resolved in higher dimension, while some problems
which naturally live in higher dimensions remain unsolved.

As our starting point, we will derive some elementary results from the geometry
of numbers (see [17, 39]). Let S € R” be a centrally symmetric convex set, i.e. a
set S such that if x, y € S then the line segment joining x and y is fully contained in
S, and so that if x € S, then —x € S. Of course, such sets need not be Borel, as is
easily seen by taking the open unit ball in R? together with a non-measurable subset
of the unit sphere. However convex sets do belong to the larger class of Lebesgue
measurable sets and so have a well defined volume. A first question is, how large
this volume can get before we are guaranteed the existence of a point different from
the origin with integer coordinates in S. Clearly, 2" is a lower bound, as is seen by
considering the cube. As it turns out, this is best possible.

Theorem 4.1 Let S be a convex, centrally symmetric body of volume strictly greater
than 2". Then, S contains a point from 7" \ {0}.

Proof First, consider the set S = %S, ie.

S ={xeR":2xeS}.
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This set has volume strictly greater than 1. We divide the set up into disjoint bits
S =xeR':uy<x;<u+1}NS, where u=(uy,...,u,) €Z".

Now, consider the sets S/ =S/, —u C [0, 1)". The sum of the volumes of the S
is strictly greater than 1, so two of the sets must overlap. Hence, there are distinct
points x’, x” € §” and distinct points /', u” € Z", such thatx’' —x" =u' — ' =u €
7" \ {0}. But by convexity and central symmetry,

/ 1.7

1 _1 r__ 1
X — X —zueS—zS,

sothatu € S.

Note that if we further assume that S is closed, the inequality of the above theorem
can be weakened to vol(S) > 2" by a simple compactness argument. We can use
Theorem4.1 to provide solutions to systems of Diophantine inequalities.

Theorem 4.2 Let (a;) € GL(n, R) be some invertible matrix, let cy,...,c, > 0,
and consider the system of inequalities

n
E apxj| < ci
j=1

n
E agxj| <c, 2=<i<n.
Jj=1

Ifcy- - cp > |det(a[j)

, this system has a non-trivial integer solution.

Proof 1t is straightforward to verify that the system of inequalities define a cen-
trally symmetric convex set of volume 2"c; - - - ¢, |det(a,-j)|_1. Thus, if ¢; - - ¢, >
|det(a,j) , the theorem is immediately implied by Theorem4.1.

To get the full theorem, we first replace c; by c¢; + € for some arbitrary € €
(0, 1). By the above argument, there is an integer solution x© € Z" for each ¢, and
furthermore, the corresponding convex sets are all bounded by a constant independent
of e. Consequently, there are only finitely many possible integer solutions to the
system of equations, so one must occur for all ¢ in some sequence with ¢, — 0.
This is the point we are looking for.

Now, let xq, ..., x, € R, let N € N and define the matrix
00---0 1
10---0 —x;
(aij)z 01"'0_X2

00---1—x,
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Taking ¢; = N" and ¢; = --- = ¢,41 = 1/N, the conditions of Theorem4.2 are
clearly satisfied. We have shown the following extension of Dirichlet’s theorem.
Corollary 4.3 Let x|, ...,x, € R, let N € N. There are integers py, ..., p, and gq,
0 < g < N" such that
i 1
xi—&' <—, 1<i<n.
q| gN

Just as we did in the case of Dirichlet’s theorem, we can derive a non-uniform
version.

Corollary 4.4 Let xy, ...,x, € R. There are infinitely many tuples (py, ...,py) €
Z" and integers q € 7.\ {0}, such that
Pi 1 .
xi—; <W, 1<i<n.

Considering instead the transpose of the above matrix,

o1 ---0 0
@=100 -1 0
00 --- 0 1
I —x, - —x2 —x;
withc; = ---¢, = N and ¢,4; = N7", we get another corollary.

Corollary 4.5 Let x1,...,x, € R, let N € N. There are integers p and qy, . . ., qn,
0 < max{|q;|} < N such that

1
lq-x—pl < T
Here and elsewhere, X denotes the vector with coordinates (xi, . . ., X,).
Writing, as is usual in number theory, | - || for the distance to the nearest integer

(or nearest vector with integer coordinates in sup-norm in higher dimension) and
letting |q| = max{|g;|}, the L*°-norm of the vector q, we get the following corollary.

Corollary 4.6 Let x € R". There are infinitely many q € 7" \ {0}, such that

la- x|l < lql™".

Several things stand out here. One is the duality between the two forms of
Diophantine approximation, the simultaneous approximation and the ‘linear form’
approximation. Another is a little better hidden. Let £ € R and consider the vector
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x = (& €2, ..., &Y. Feeding this vector into Corollary 4.6 gives us infinitely many
integer polynomials taking small values at £.

The curve given by I' = {(x1,...,x,) € R" : x; = ¢/, ¢ € R} is known as a
Veronese curve, and much of the field known as Diophantine approximation on
manifolds has its genesis in an attempt to understand the Diophantine properties
of points on these curves and so the approximation properties of real numbers by
algebraic numbers. This is a natural extension of the usual approximation by rational
numbers, which is the case n = 1. Indeed, here a linear form has just one variable,
so that one considers the quantity [|g&||, which on dividing by ¢ gives a rational
approximation to the real number &.

For completeness, we should mention the two alternative ways of studying alge-
braic approximation (the book of Bugeaud [13] is an excellent resource). For this
purpose, we introduce a little notation. Let A, denote the set of real, algebraic num-
bers of degree at most n. For an integer polynomial P, let H(P) denote the naive
height of P, i.e. the maximum among the absolute values of the coefficients of P.
Finally, for « € A, let H(«) denote the height of the minimal integer polynomial of
a. With these definitions, we introduce two families of Diophantine exponents,

w, (&) = sup{w > 0:0 < |P(§)| < H(P)™" for infinitely many
P € Z[X], deg P < n},

and
wi(€) =supfw >0:0< [ —al < H(a)~*~! for infinitely many o € A,}.

The two exponents were introduced in order to classify the transcendental num-
bers, a topic which we will not discuss in these notes. The first should be compared
with Corollary 4.6, which almost immediately tells us that unless ¢ is algebraic,
wy,(€) > n for all £ € R. Indeed, we just apply the corollary directly to the vector
(€, €%,...,€"). The only additional thing to take care of is the fact that |q| is not
equal to H(P), as the latter takes the constant term of P into account where the for-
mer does not. However, with £ restricted to some bounded subset of R, the two are
comparable, and the resulting difference in definitions is absorbed by the supremum
in the definition of w, (). The two exponents are related, which is to be expected: if
a polynomial takes a small value at &, it is not too unlikely that there is a root nearby,
and conversely if « is an algebraic number close to £, then the minimal polynomial
of « probably takes a small value at £.

We summarise some relations due to Wirsing [48] between the exponents in the
following proposition.

Proposition 4.7 For any n and any &, w,(§) > w;: (§). Furthermore, if  is not alge-
braic of degree at most n, the following inequalities hold:
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w,(§) = w,(§) —n+1

wie = O
. w, (&)
w,(§) = m 4.1)
Vn?4+16n -8

Wi = 7+ g

The two exponents need not be the same.

We will not prove the proposition here. However, there is an interesting point to
be made. The relation between the exponents takes us into the world of transfer-
ence theorems, which underlies the duality between simultaneous and linear forms
approximation. We give a very general transference principle, from which many
others can be derived (see [16]).

Theorem 4.8 Consider two systems of [ linearly independent linear forms, (fy(z))
and (g(w)), all in l variables. Let d = |det(gy)|. Suppose the function

Dz, W) =D fi(@g(W),
k

has integer coefficients in all products of variables z;w;. If the system of inequalities
max [fi(z)| < A
can be solved with z € 7' \ {0}, then so can the system of inequalities
max (W) < ({ = DD, 42

Proof As the forms (f;) are linearly independent, the associated homogeneous sys-
tem of equations only has the zero solution. Hence, for any solution to the first system,
z € 7"\ {0},

0 < max [fi ()] < A.

Since the right hand side of (4.2) decreases with A, we may suppose that the last
inequality above is actually an equality. Finally, we can permute the forms in order
to make sure that the maximum is attained for the last form and change signs to
remove the absolute value. In other words, we suppose without loss of generality
that z € Z! \ {0} is a solution to the initial system of inequalities with

max [ (2)] = fi(@) = \.

Filling these numbers into the expression for @, we get a linear form in the
variables w, which together with the first / — 1 forms of the system (g;(w)) forms
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a system of linear forms. We may calculate its determinant, which turns out to be
fi(z)d = )\d. Using Theorem4.2, the system

@@z w| <1, lgW <)V 1<k<i-1,

has a non-zero integer solution w. This certainly gives us the first / — 1 inequalities
of (4.2).

To get the final inequality, |g;(w)| < (I — 1)(Ad)"/¢~?, note that @ (z, w) is an
integer by assumption, and so must be = 0. Hence,

-1

MMMHWMMWN=+Zﬁ®wW)

k=1

< A= DDV,

by the triangle inequality. This completes the proof.

This theorem explains why there is a relation between a system of inequalities
given by a matrix and that given by its transpose, as seen in the following theorem.

Theorem 4.9 Let (L;) denote a system of n linear forms in m variables and let (M)
denote the transposed system of m linear forms in n variables. Suppose that there is
an integer solution X # 0 to the inequalities

IL&®I <C, |5 <X,
where 0 < C < 1 < X. Then the system

M| <D, |ul<U,
has a non-zero integer solution, where

D= (- I)X(l—n)/(l—l)cn/(l—l)’ U=(- 1)Xm/(l—1)c(1—m)/(1—1)’ l=m-+n.

Proof We introduce new variablesy = (y;, ..., y,) and v = (vy, ..., v,) to capture

the nearest integers in the systems. Hence, we define two new systems of / linear
forms in [ variables

C LX) +y) 1<k=<n
X,y) =
fex.y) [Xlxk_n n<k<l
and
Cuy, 1<k<n
g(u,v) =
X(—Mi_,(w) +vx_,) nk <<l

It is easily checked that the conditions of Theorem4.8 hold true with d = C"X™.
Applying this theorem gives a non-zero integer solution ((u), (v)).
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It remains for us to check that u # 0, but this is easy: If D < 1 and u = 0, the
inequalities resulting from Theorem4.8 would force v = 0, which contradicts the
initial conclusion. Hence, u # 0 as required or D > 1, in which case it is trivial to
solve the inequalities.

At this point, let us define some sets which will be of great importance in the next
section. The set of badly approximable numbers is the set

C
)c—l—7 z@foralll—)e(@}.
q q

Bad = [x € R : For some C(x) > 0,
q

From Khintchine’s theorem, this set is Lebesgue null. From the theory of continued
fractions, it is also the set of numbers with bounded partial quotients, so the same
conclusion follows immediately from the ergodicity of the Gauss map.

Similarly to the one dimensional case, one can define the sets (also denoted Bad
by abuse of notation),

C
Bad = Ix € R" : for some C(x) > 0, [lgx|| > % forall g € Z\{O}] .
q n

Or the corresponding linear forms version,

B * n. C(X) n
ad* = {x € R" : for some C(x) > 0, ||q - x|| > forallq € Z" \ {0} { .

lql"
Corollary 4.10 The sets Bad and Bad* are the same.

Proof The proof is just an application of Theorem4.9. For x € R", define the linear
form M (t) = x - t in n variables, and let L;(#) = #;u denote the transposed system of
n linear forms in 1 variable. Clearly, x € Bad* if and only if

1M (t) max{|z;]|}" = c*, (4.3)

where ¢* > 0 depends only on x for all non-zero integer vectors t. Similarly, x € Bad
if and only if
max{[|L; w)[|}*u] > c,

where ¢ > 0 depends only on x for all non-zero integers u.
Suppose x € Bad*. We will prove thatx € Bad, soletu # Obe aninteger. LetX =
U and C > max{||L;(u)||} with 0 < C < 1, as otherwise there is nothing to prove.
As x € Bad*, the values of D and U of Theorem4.9 must satisfy that DU" > c*, as
otherwise we would have a contradiction to (4.3). However, with the relations of the
theorem,
DU" = nX(l—n)/nC (nXl/n)” — I’ln+]CX]/n,
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so that
C'X = (nf(nJrl)DUn)" > n—n(nJrl)C*n.

This shows that if ¢* is positive and exists, then ¢ = n™""+D¢*" will work as a
constant to prove that x € Bad. The converse is symmetrical.

Many other nice results follow from the transference technique. It is of interest
to note that the above transference inequalities become equalities only at the critical
exponent derived from the Dirichlet type theorems, as seen from the above corol-
lary. This is also the case for the inequalities between the exponents of algebraic
approximation, where the critical exponent for both variants is n (see (4.1)), where
the inequalities become again become equalities. Transference theorems generally
reveal less information away from the critical exponent.

It would be natural to conjecture that results similar to the Khintchine theorem
should hold true for algebraic approximation or at least in some form for the ambient
space containing a given Veronese curve. This is in fact the case, but the lack of
a good analogue of continued fractions in higher dimensions is an obstacle for the
methods already used to be applicable. We will give a sketch of a geometrical proof
of a Khintchine type theorem for a single linear form, which is in a sense stronger
than its one-dimensional analogue, as it does not assume the approximation function
to be monotonic when the number of variables is at least 3. We will then discuss the
monotonicity assumption in one dimension.

For the purposes of the proof, we will need a converse to the Borel-Cantelli
lemma, which we state without proof. A lower bound on the measure of such a set
may be found using the following lemma (see e.g. [47])

Lemma 4.11 Let (82, B, 1) be a probability space and let E, be a sequence of
events. Suppose that Y, j1(E,) = 0o. Then,

0 2
(=2 nE)
p(lim sup E,,) > lim sup .
Q—o0 ngzl /’L(Em ﬂ En)

In particular, if the events E, are pairwise independent, u(limsup E,) = 1.

‘We will consider the set
W,() = {x € R": ||q - x|| < ¥(|q|) for infinitely many q € Z"}.
In this notation, the set originally considered in the first section would be
Wi () = {x € R : |lgx]| < ¥(|q]|) for infinitely many g € Z},
so it is a natural generalisation. In the case of W (1)), we showed that the set is full

provided > 1(g) = oo (note the change in condition due to the change in definition),
and provided the function qi(q) was monotonic.
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Theorem 4.12 Let i) : N — R be some function, with qi(q) monotonic if m =
1, 2. Then, the set W,, (1) is full if >_ q"~'1)(q) = oo. If the series converges, the set
W, (1)) is null.

We will follow a proof given by Dodson [19]. As in the case of Khintchine’s
theorem, we will make some restrictions. We will consider only points in the unit
square [0, 1)™, which we will think of as a torus by identifying the edges. We will
think of W,,(y)) N[0, 1)™ as a limsup-set, so for a fixed q € Z™ let

Eq={xeR":llq-x|l < ¢(qD},

so that
W,, () = limsup Eq.

We call the sets Eq resonant sets due to a connection with physics, which we will not
explore here.

Lemma 4.13 For each q € Z", |Eq| < 9¥(|q]).

Sketch of proof. We sketch the argument for m = 2. This is a simple geometric
argument. The set E, consists of a bunch of parallel strips. Considering only the
central lines of these, i.e. the solution curves to ¢;x + g>y = p in the unit square, and
matching up the sides of the square to form a torus, we obtain a closed geodesic curve
on the torus. The set Eq forms a tubular neighbourhood of this geodesic. Calculating
the length (roughly |q|) and width of this strip (roughly % (|q|)|q|~"), we arrive at
the conclusion.

Lemma 4.14 Suppose the vectors q, ' € Z™ are linearly independent over R. Then
the corresponding resonant sets are independent in the sense of probability, i.e.
|Eq NEy| = |Eql|Eq].

Sketch of proof. Once more, we give a sketch for m = 2. Consider again the central
geodesics of the two resonant sets. As the vectors  and q’ are linearly indepen-
dent, these tesselate the torus into parallelograms. There will be | det(q, q')| such
parallelograms, where (q, q') denotes the matrix with columns q and q'.

Consider now the tubular neighbourhoods and their intersections. These will con-
sist of a union of scaled copies of the parallelograms of the tessellation. Calculating
their individual sizes as before will give the required result.

Proof of Theorem4.12. The convergence statement is easy. The set W, (1)) is covered

by the set
U U £,

nzk |q|=k

so as there are roughly Q™! vectors q € Z" with |q| = Q, Lemma4.13 immediately
gives us that
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U U Ed <« 2 n" e,

n>k |q|>k n=k

which is a tail of a convergent series.

To get the divergence half of the statement, we show that a subset has full measure.
The key is to pick a sufficiently rich collection of integer vectors for which the thinned
out series (the volume sum) still diverges, but for which any pair of vectors is linearly
independent. Define the sets

Sy = {q € Z™ : qis primitive, g, > 1, |q| = k}.

We will consider only vectors in P = USy.

If q, ' € P satisfy a linear dependence, then for some integer v, we must have
q = vq’ (or the converse). It follows that v divides all the coordinates of ¢, so by
primitivity, v = £1. But since the last coordinates are positive, we must have v = 1,
whence q = ¢'. In other words, any pair of vectors q, q' € P are linearly independent,
and so by Lemma4.14 we have |Eq N Ey| = |Eq||Eq]|.

To apply Lemma4.11, we must ensure that the volume sum still diverges when
restricted to a sum over P. In order to accomplish this, we require an asymptotic
formula for the number of elements in Sj. But this is not difficult.

#Sk = 2 lai=kgn=1 1 = 2 laimkaguz1 2ap H(d) = 22 11(d) 2 jri=k/a 1

(G1,-gm)=1 (q15-wsqm)=h . rm>1
m—
=2""22m—1) Zdlk w(d) (%) + error term.

Here, 1 denotes the Mobius function, and we have used the classical fact that
24 1(d) is equal to one for n = 1 and equal to zero otherwise. For m = 2, the
main term is = 3¢(k), where ¢ denotes the Euler ¢-function. For m > 3, we have

s ()10 )

m
dlk P

which lies between ¢(m — 1)~! and 1, where ¢ denotes the Riemann ¢-function.

The upshot is that for m > 3, Sy contains a constant times k=1 elements, and
the divergence of the original series implies the divergence of the restricted series
without further work. For m = 2 we need to average out the irregularities of the
Euler function, but using the classical estimate > <N o(n) = %N 24+ 0N logN),
we may apply Cauchy condensation over 2-adic blocks to get the divergence of the
new series. This however requires the monotonicity of the function.

Quite a few remarks should be made at this point. Firstly, the result is valid
even more generally than the one stated here. The full Khintchine—Groshev theorem
concerns systems of linear forms, and states the set of matrices
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Winn (1) = {A € Matyx,(R) : [IqAll < 1(|q]) for infinitely many q € Z™},

is null or full according to the convergence or divergence of the series >_ ¢" ' (q)".

Secondly, the divergence assumption is not needed except for in one case. Namely,
in the case m = n = 1, an explicit counterexample to the classical Khintchine the-
orem without assumption of monotonicity can be given. However, conjectures do
exists, which tell us what to expect. It is natural in this context to impose the restric-
tion that the approximating rationals should be on lowest terms. The Duffin—Schaeffer
conjecture [21] states that the set

{xeR:

X — d < 1(g) for infinitely many coprime (p, g) € Z x N ] ,
q

should be null or full according to the convergence or divergence of the series
> d@)(9).

The convergence half is easy, and in the case of an appropriately monotonic
approximation function, the result follows immediately from condensation and
Khintchine’s theorem. The difficulty is in getting the result for non-monotonic error
functions. However, it is known that the set must be either null or full. It is hence
tempting to try to apply Lemma4.11 to get positive measure and proceed to deduce
full measure from this law. However, controlling the intersections appears to be
beyond the reach of current methods. What is clear is that it is hopeless to control
the individual intersections, and the entire sum must be considered at least in very
long blocks at a time.

Thirdly, as in the case when the above results give a null set, it is natural to
ask what the Hausdorff dimension should be. As in the case of a single number,
it is easy to get an upper bound, at least in the case ¥ (g) = ¢~". Just applying a
covering argument in the spirit of the convergence case, one finds that in this case,
dimg(Wy,.(q = g7 %) < (m — 1)n+ (m + n)/(1 + v). The initial integer comes
from the hyperplanes central to the resonant sets, with the fraction at the end being
the really interesting component. In fact, this is sharp, and we will return to these
types of estimates in the final section of the notes.

Fourthly, we did not answer the question we originally asked. Namely, we were
interested in points on the Veronese curves and in a final instance in points in a fractal
subset of the Veronese curve. For the full Veronese curves, these things can be done,
but with considerably more difficulty. Even the convergence case was not settled
before 1989 by Bernik [9] with the divergence case taking another 10 years before
being settled by Beresnevich [4]. By contrast, the above results about the ambient
space date back to 1938.

As a final remark on the Khintchine—Groshev theorem, in the case when one
considers simultaneous approximation or more than one linear form, similar ques-
tions can be asked when different rates of approximation are required in the different
variables. Again, the questions can be answered under some assumptions on the
approximating functions, and whether sets arising in this way are null or full depend
once again on the convergence or divergence of a certain series.
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We dwell a little on this last point. Consider again Corollary 4.4, this time with
n = 2. Littlewood suggested multiplying the two inequalities instead of considering
them separately, and so to consider

P1 ‘ 2] 1
R M
q q q
or more concisely,
qllgxlligyll < 1. 4.4)

By Corollary 4.4, this inequality always has infinitely many solutions for any pair
(x, y), but it is a little more flexible than the original one. Indeed, one approximation
could be pretty bad indeed, just as long as the other one is very good, and the inequality
would still hold.

From the theory of continued fractions, we know that many numbers x exist which
have ¢ |lgx|| > C > 0 for all g (the badly approximable numbers, or equivalently
those with bounded partial quotients), and similarly we know that there are badly
approximable pairs, i.e. pairs for which Corollary 4.4 cannot be improved beyond a
positive constant (we will prove this and much more in the next section). Littlewood
asked whether there are pairs such that (4.4) cannot be improved beyond a constant.
Due to the added flexibility, he conjectured that this should not be the case, so that
for any pair (x, y),

lim inf x| gyl = 0. (4.5)

where the liminf is taken over positive integers g.

Equation (4.5) is the Littlewood conjecture. Littlewood apparently did not think
that it should be too difficult, and set it as an exercise to his students in the thirties.
To date, it is an important unsolved problem in Diophantine approximation. This is a
case, where many of the known results are metric. Probably the most famous among
them is the result of Einsiedler, Katok and Lindenstrauss [23], which states that the
set of exceptions (x, y) to (4.5) must lie in a countable union of sets of box counting
dimension zero. From the elementary properties of Hausdorff dimension together
with (3.6), it follows that both the Hausdorff dimension and the Fourier dimension
are also equal to zero.

In fact, their approach follows the approach to continued fractions via the geodesic
flow outlined in the first section. There is no good analogue of continued fractions
in higher dimension, but an analogue of the geodesic flow on SL,(R)/SL,(Z) is
certainly constructible. In the classical, one-dimensional case, the geodesic flow is
given by the action of the diagonal subgroup of SL,(R), and badly approximable
numbers correspond to geodesics which remain in a compact subset of the space
SL,(R)/ SL,(Z). The approach of Einsiedler, Katok and Lindenstrauss works instead
with the diagonal subgroup of SL3(R), acting on SL3(R)/ SL3(Z).

This action is a two-parameter flow and its dynamics is very complicated.
Nonetheless, the three authors manage to prove many things about the simplex of
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preserved measures described in the final section, and in particular about the extremal
points. They show that the only possible ergodic measures are the Haar measure and
measures with respect to which every one-parameter subgroup of the diagonal group
acts with zero entropy. Readers acquainted with the notion of entropy should be able
to see how this will have an impact on the box counting dimension of the support of
the measure.

The relation between the flow and the Littlewood conjecture is a little technical,
but briefly the pair (x, y) satisfies the Littlewood conjecture if and only if the orbit
of the point

100
x 10 ] SL3(Z)
yO0l1

is unbounded under the action of the semigroup

e 00
AT = 0 e0):s,teR,
0 0¢é

Hence, the set of exceptions can be embedded into a set of points in SL3(R)/ SL3(Z)
with bounded A*-orbits, and the result can be deduced from the dynamical statement.
It is very impressive work. We will say something non-trivial but somewhat easier
in the final section of these notes.

5 Badly Approximable Elements

In this section, we will discuss badly approximable numbers, and in fact do so in
higher dimensions. A consequence of our main result is Jarnik’s theorem [29]: the
set of badly approximable numbers has maximal Hausdorff dimension. However
we will prove much more, including the result that badly approximable numbers
form a set of maximal dimension inside the Cantor set. The latter relates digital
properties with Diophantine properties, and although it does not resolve the question
of absolute normality of algebraic irrational numbers, it does provide information
on which Diophantine properties a number failing spectacularly at being normal to
some base can have.

The work presented in this section originated in an unfortunately failed attempt
to resolve the Schmidt conjecture with Thorn and Velani [36]. We did solve other
problems in the process, though. In order to present this, we need some new sets. For
i,j > 0withi+ j = 1, denote by Bad(i, j) the set of (i, j)—badly approximable pairs
(x1, x2) € R?; that is (x;, xo) € Bad(i, j) if there exists a positive constant c(x;, x)
such that for all g € N

max{flgx; I, lgx2|I'7} > e(x1, x2) g7
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In the case i =j = 1/2, the set is simply the standard set of badly approximable
pairs or equivalently as we saw in the last section the set of badly approximable
linear forms in two variables. If i = O we identify the set Bad(0, 1) with R x Bad
where Bad is the set of badly approximable numbers. That is, Bad(0, 1) consists of
pairs (x, xp) with x; € R and x, € Bad. The roles of x| and x; are reversed if j = 0.
In full generality, Schmidt’s conjecture states that Bad(i, j)) N Bad(i’, j') # @. Itis a
simple exercise to show that if Schmidt’s conjecture is false for some pairs (i, j) and
(7, ') then Littlewood’s conjecture in simultaneous Diophantine approximation is
true.

The Schmidt conjecture was recently settled in the affirmative by Badziahin,
Pollington and Velani [3], who established a stronger version. An [1] subsequently
proved an even stronger result, which we remark on towards the end of this section.

We will set up a scary generalisation of the sets Bad(i, j). For the purposes of
these notes, we will consider general metric spaces. The examples to keep in mind
are nice fractal subsets of Euclidean space, such as the Cantor set or the Sierpinski
gasket. Let (X, d) be the product space of t metric spaces (X;, d;) and let (£2, d) be
a compact subspace of X which contains the support of a non-atomic finite measure
m.

Let R = {R, € X : o € J} be a family of subsets R, of X indexed by an infinite,
countable set J. Thus, each resonant set R, can be split into its  components R, ; C
(X;,d;).Let 3 :J — R, : a — (3, be a positive function on J and assume that the
number of o € J with 3, bounded from above is finite. We think of these as the
resonant sets similar to the central lines of the resonant neighbourhoods considered
in the last section.

Foreachl <i <t,letp; : Ry — Ry : r — p;(r) beareal, positive function such
that p;(r) — 0 as r — oo and that p; is decreasing for r large enough. Furthermore,
assume that p; (r) > pa(r) > --- > p,(r) for r large — the ordering is irrelevant. Given
a resonant set R, let

Fo(prs ..., p) = {x € X0 di(xi, Ro)) < pi(B,) forall 1 <i<t}

denote the ‘rectangular’ (py, ..., p;)—neighbourhood of R,,. For a real number ¢ > 0,
we will define the scaled rectangle,

cFo(prs ..., p) ={x € X:di(xi, Rai) < cpi(Ba) forall 1 =i =<1},
and similarly for other rectangular regions throughout this section. Consider the set

Bad*(R’ﬂap]"”7pl)
={xe2:cx) >0 s.t.x ¢ c(x) Fo(p1,...,p;) forall a € J}.

Thus, x € Bad*(R, 3, p1, . .., p;) if there exists a constant ¢(x) > 0 such that for all
ael,
d;i(xi, Ro;) = c(k) pi(Bs) forsomel <i<t.
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We wish to find a suitably general framework which gives a lower bound for the
Hausdorff dimension of Bad*(R, 3, p1, . . ., p;). Without loss of generality we shall
assume that sup,,.; p;(3,) is finite for each i — otherwise Bad*(R, 3, p1, ..., p1) =9
and there is nothing to prove.

Givenlj,...,l; e Ry and c € 2 let
F;l,....L)={xeX : di(xi,c;) <I; forall 1 <i<t}
denote the closed ‘rectangle’ centred at ¢ with ‘sidelengths’ determined by [y, . .., /,.

Also, for any k > 1 and n € N, let F,, denote any generic rectangle intersected with
£2, i.e. a set of the form F(c; p1(k"), ..., p:(k™)) N £2 in 2 centred at a point ¢ in
£2. As before, B(c, r) is a closed ball with centre ¢ and radius r. The following
conditions on the measure m and the functions p; will play a central role in our
general framework.

(A) There exists a strictly positive constant ¢ such that for any ¢ € £2

.. logm(B(c,r))
liminf ——— =
r—0 logr

0.

It is easily verified from the Mass distribution principle of Lemma 3.3 that if the
measure m supported on §2 is of this type, then dim 2 > § and so dim X > §.

(B) For k > 1 sufficiently large, any integer n > 1 and any i € {1, ..., t},
pi(k")
M) < < \i(k),
(O = iy SN

where )\5 and X! are lower and upper bounds depending only on k but not on
n,such that /\ﬁ(k) — oo as k — oo.
(C) There exist constants 0 < a <1 < b and ly > 0 such that

m(F(c; 1y, ..., 1))
-~ m(F( L, L) T

foranyc,c € Q2 andanyly, ..., < ly. This condition implies that rectangles
of the same size centred at points of 2 have comparable m-measure.
(D) There exist strictly positive constants D and Ly such that

mQ2F(cl, ..., L)) <D
m(F(c; Ly, ..., 1))
foranyc € 2 andanyly, ..., 1, <ly. This condition simply says that the mea-

sure m is ‘doubling’ with respect to rectangles.
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(E) Fork > 1 sufficiently large and any integer n > 1

m(Fn+l)

where X is a function depending only on k such that A\(k) — oo as k — oo.

In terms of achieving a lower bound for dim Bad*(R, (3, py, . . . p;), the above four
conditions are rather natural. The following final condition is in some sense the only
genuine technical condition and is not particularly restrictive.

We should state at this point that if m is a product measure of measures satisfying
the decay condition that there exist strictly positive constants § and ry such that for
ceRandr <r

ar’ < mB(c,r) <br’, (5.1)

where 0 < a < 1 < b are constants independent of the ball, then the product measure
satisfies all conditions above. This is extremely useful, and missing digit sets have
this property, as do all regular Cantor sets.

Theorem 5.1 Ler (X,d) be the Cartesian product space of the metric spaces
X1,d1), ..., (X, dy) and let ($2,d, m) be a compact measure subspace of X. Let
the measure m and the functions p; satisfy conditions (A) to (E). For k > ko > 1,
suppose there exists some 0 € R so that for n > 1 and any rectangle F, there exists
a disjoint collection C(OF,) of rectangles 20F, .| contained within OF, satisfying

m(0F,)

#C(OF,) > Ky m(Tn-H)

5.2)
and

# [20Fn+1 c C(OF,) : rJI}in ) di(ci,Ra) < 20p:(k"Y) forany 1 <i<t
ael(n+

m(0F,)
< Ky ———. (5.3)
m(OF 1)
where 0 < Ky < K1 are absolute constants independent of k and n. Furthermore,
suppose dimy (UpesRy) < 6. Then

dimg Bad*(R, B, p1, ..., p1) = 6.

The statement of the theorem with all its assumptions is pretty bad, and the proofis
in fact a rather dull affair. We give a short sketch. Fixing k > ko, the conditions of the
theorem give us a way to construct a Cantor type set inside Bad*(R, 0, p1, .- -, pr)-
Namely, we begin with a rectangle 6F. In this and any subsequent step, we take out
the collection C(6F,), which is pretty big due to (5.2). The points in the rectangles
from (5.3) will have some difficulties lying in the set Bad*(R, 3, p1, . . ., p), as they
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are fairly close to a resonant set from J(n + 1). Hence, we discard them and retain
a collection F,.1(0F,) of closed rectangles. The assumption (5.3) tells us that a
positive proportion of the collection will remain, and we continue in this way to get
a Cantor set constructed from rectangles. From the construction, this set is contained

in Bad*(R, 3, p1, ..., p1), and in fact the unspecified constant in the definition of
the set can in all cases be chosen to be c(k) = min;<;<(6/\/(k)). We call the set
Kc(k)-

We now construct a probability measure on the Cantor set recursively. For any
rectangle OF), in F, we attach a weight (6 F,) which is defined recursively as follows:
forn=1,

1
0F) = —=1
w(OF) 7,

and forn > 2,

0F,) = ! OF F, F,
i n)—mﬂ( 1) (F, C F,_1).

This procedure thus defines inductively a mass on any rectangle used in the construc-
tion of K. In fact a lot more is true: u can be further extended to all Borel subsets
A of £2 to determine 1(A) so that 1 constructed as above actually defines a measure
supported on K. ). The probability measure p constructed above is supported on
K. and for any Borel subset A of £2

p(A) = inf > u(F),

FeF

where the infimum is taken over all coverings F of A by rectangles F € {F, : n > 1}.

The mass distribution principle of Lemma 3.3 can then be applied to this measure
to find that dim K x) > 6 — 2¢(k), where e(k) tends to zero as k tends to infinity. To
conclude, we let k do this, and so have constructed a subset of Bad* (R, 3, p1, . .., 1)
whose dimension is lower bounded by §. All the technical assumptions occur natu-
rally in the process of constructing the set and applying the mass distribution princi-
ple.

The remarks preceding the statement of Theorem 5.1 immediately gives us the
following version, which is of more use to us.

Theorem 5.2 For 1 <i <t, let (X;,d;) be a metric space and (§2;,d;, m;) be a
compact measure subspace of X; where the measure m; satisfies (5.1) with exponent
6;. Let (X, d) be the product space of the spaces (X;, d;) and let ($2,d, m) be the
product measure space of the measure spaces (82;, d;, m;). Let the functions p; satisfy
condition (B). For k > ko > 1, suppose there exists some 6 € R so that forn > 1
and any rectangle F, there exists a disjoint collection C(0F,) of rectangles 20F,
contained within 0F, satisfying
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#C(OF,) > Pi(k") i
ki H YT (5.4)

and

#{ZHF,,H c C(OF,) : rjr}inl)d,-(ci,Ra,,-) < 20p;(K"™") forany 1 <i < t}
aeJ(n+

pik") \"
—ZH&MMJ’ e

where 0 < Ky < K| are absolute constants independent of k and n. Furthermore,
suppose dimpy (UyesRy) < D i_, 0i. Then

t
dimy Bad"(R. . p1....p1) = D 6.

Note that while Theorem5.1 will only give the lower bound on the Hausdorff
dimension in the last equation, the upper bound is a consequence of the assumptions.
Indeed, any set satisfying (5.1) will have Hausdorff dimension equal to J, and for
these particular nice sets, the Cartesian product satisfies the expected dimensional
relation, so that the ambient space in the above result is of Hausdorff dimension
i1 0

The interest in Theorem 5.1 is not in its proof, but in its applications. In the
original paper, in addition to the study of Bad(i,j) and similar sets, the theorem
was applied to approximation of complex numbers by ratios of Gaussian integers, to
approximation of p-adic numbers, to function fields over a finite field, to problems
in complex dynamics and to limit sets of Kleinian groups. More applications have
occurred since then.

Initially, we use it to prove Jarnik’s theorem. Let I = [0, 1] and consider the set

Bad; = [x e[0,1]:

X — P > ¢(x)/q? for all rationals I—)] .
q q

This is the classical set Bad of badly approximable numbers restricted to the unit
interval. Clearly, it can be expressed in the form Bad*(R, 3, p) with p(r) = r~2and

X=82=[0,1], J={(p, 9 e NxN\{0}: p < g},

p
a:(p,q)e], ﬁa=q, Ruza

The metric d is of course the standard Euclidean metric; d(x, y) := |x — y|. Thus in
this basic example, the resonant sets R,, are simply rational points p/q. With reference
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to our framework, let the measure m be one—dimensional Lebesgue measure on /.
Thus, 6 = 1 and all the many conditions are easily checked.

We show that the conditions of Theorem 5.1 are satisfied for this basic example.
The existence of the collection C(6B,,), where B, is an arbitrary closed interval of
length 2 k=2 follows immediately from the following simple observation. For any
two distinct rationals p/g and p’/q’ with k" < g, ¢’ < k"*! we have that

S > k=22, (5.6)
T qq

Thus, any interval 6B, with 0 := %k‘z contains at most one rational p/q with
k" < g < k"', Let C(6B,) denote the collection of intervals 20B, ., obtained by
subdividing @B, into intervals of length 2k~%"~* starting from the left hand side of
0B,. Clearly

#C(0B,) > [k*/2] > k*/4 = r.h.s. of (5.2) with k, = 1/4.
Also, in view of the above observation, for k sufficiently large
Lhs.of (5.3) < 1 < k*/8 = r.h.s. of (5.3) with k, = 1/8.

The upshot of this is that Theorem 5.1 implies that dimy Bad; > 1. In turn, since
Bad, is a subset of R, this implies that dimy Bad; = 1.

The key feature exploited to check the conditions on the collection is the fact that
rational numbers are well spaced. In higher dimensions, the appropriate analogue is
the following lemma, the idea of which goes back to Davenport.

Lemma 5.3 Letn > 1 be an integer and k > 1 be a real number. Let E C R" be a
convex set of n—dimensional Lebesgue measure

< -
|E| — n!k—(iH—l) .

Suppose that E contains n + 1 rational points (pfl)/qi, .. ,p?")/qi) withl < q; <k,
where O < i < n. Then these rational points lie in some hyperplane.

Proof Suppose to the contrary that this is not the case. In that case, the rational points
(pgl) /Gis -, pl(-") /qi) where 0 < i < n are distinct. Consider the n—dimensional sim-
plex A subtended by them, i.e. an interval when n = 1, a triangle when n = 2, a
tetrahedron when n = 3 and so on. Clearly, A is a subset of E since E is convex.
The volume | A| of the simplex times n factorial is equal to the absolute value of the
determinant
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(1 (n)
Lpo /40 ~-~p(()”)/qo
n
Lpy'/av - v /4
det=| | ) .

1p1/q, - p™ /gy

As this determinant is not zero, it follows from the assumption made on the ¢g; that

1
n! x |A] = |det| > —— > kD
qoql qn

Consequently, |A| > (n!)~'k="+D > |E|. This contradicts the fact that A C E.

Of course, in one dimension this is exactly the spacing estimate used in the proof
of Jarnik’s result above.

Lemma 5.3 serves to ensure that not too many rectangles are bad for the application
of Theorem 5.1, but we need some way of ensuring that there are enough rectangles
to begin with. Lemma 5.5 below accomplishes this and is proved using the following
simple covering lemma.

Lemma 5.4 Let (X, d) be the Cartesian product space of the metric spaces (X1, dy),
.., Xy, dy) and F be a finite collection of ‘rectangles’ F = F(c; 1y, ..., 1) with
ceXandly, ..., fixed Then there exists a disjoint sub-collection {F,,} such that

U F c Y 3Fn

FeF m

Proof Let S denote the set of centres ¢ of the rectangles in . Choose ¢(1) € S and
fork > 1,

k
ctk+1) € S\ [ J2F(cm):b,....1)

m=1

aslongas S\ Ul;:l 2F(c(m); 1y, ..., 1) # 0. Since #S is finite, the process termi-
nates and there exists k; < #S such that

ki
S C U 2F(c(m): 1y, ..., 1) .

m=1
By construction, any rectangle F(c; [, ..., [;) in the original collection F is con-
tained in some rectangle 3 F(c(m); I, ..., ;) and since d;(c;(m), c;(n)) > 2I; for
each 1 < i <t the chosen rectangles F'(c(m); [, ..., ;) are clearly disjoint.

Lemma 5.5 Let (X, d) be the Cartesian product of the metric spaces (X, dy), ...,
Xy, d;) and let (52, d, m) be a compact measure subspace of X. Let the measure m
and the functions p; satisfy conditions (B) to (D). Let k be sufficiently large. Then
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for any 0 € R and for any rectangle F, (n > 1) there exists a disjoint collection
C(OF,) of rectangles 20F, | contained within 0F, satisfying (5.2) of Theorem5.1.

Proof Begin by choosing k large enough so that for any i € {1, ..., 1},

pi(k")
pikntty —

(5.7)

That this is possible follows from the fact that /\f(k) — o0 as k — oo (condi-
tion (B)). Take an arbitrary rectangle F, and let [;(n) := 0p;(k"). Thus 0F, :=
F(c; 1(n), ..., ;(n)). Consider the rectangle 7,, C 6F, where

T, =F(; i(n) =2Li(n+ 1), ..., [,(n) —2[,(n+ 1)) .

Note that in view of (5.7) we have that T, D %GFH. Now, cover T, by rectangles
20F,,, with centres in £2 N T,. By construction, these rectangles are contained in
0F, and in view of the Lemma5.4 there exists a disjoint sub-collection C(6F,) such
that

T, C U 69F,,+1 .
20F ;41 CC(OF,)

Using the fact that rectangles of the same size centred at points of £2 have com-
parable m measure (condition (C)), it follows that

am(%epn) < m(T,) < #C(OF,) bm(60F, 1) .

Using the fact that the measure m is doubling on rectangles (condition (D)), so
that m(%@Fn) > D~ 'm(F,) and m(60F, ;) < m(80F,.,) < D*m(0F,,,), it fol-
lows that

0F,
scF,) = & MO0
bD* m(0F 1)
With Theorem 5.1 and the lemmas, we can intersect the sets Bad(iy, . . ., i,) with
nice fractals. We begin with the case wheni; = --- =1, = 1/n.

Let £2 be a compact subset of R” which supports a non-atomic, finite measure m.
Let £ denote a generic hyperplane of R” and let £© denote its e-neighbourhood. We
say that m is absolutely a—decaying if there exist strictly positive constants C, «, rg
such that for any hyperplane £, any € > 0, any x € £2 and any r < ry,

m (BN L) = € (5) mBen).

This is a quantitative way of saying that the support of the measure does not con-
centrate on any hyperplane, and so a way of quantifying the statement that the set £2
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is sufficiently spread out in R”. If £2 C R is supporting a measure m which satisfies
(5.1), then it is relatively straightforward to show that m is absolutely é—decaying.
However, in higher dimensions one need not imply the other.

Inside the set £2, we will define sets of weighted badly approximable numbers as
follows. For 0 <iy,...,i, < 1withi; +---4+1i,=1,let

Badg (iy, ..., i)

=1xe€: 1rnax{||qx,-||1/if > c(x)q’1 for some c(x) > 0, forallg € x .
<j<n

When i} = --- =i, = 1/n, we will for brevity denote this set by Bad, (n).

Theorem 5.6 Let 2 be a compact subset of R" which supports a measure m satisfy-
ing condition (5.1) and which in addition is absolutely a—decaying for some o > 0.
Then

dimy Badg (n) = dimy £2 .

Proof] The set Badp () can be expressed in the form Bad* (R, 3, p) with p(r) =
=+ and

X=R"d), J={((p1,...,pn),q) € N" x N\{0}},

a=p1,.-sp)q@Q €J, Ba=q, Ro=P1/q---,Pn/q) -

Here d is standard sup metric on R”; d(x, y) = max{d(x, y1), ..., d(x,, y»)}. Thus
balls B(c, r) in R" are genuinely cubes of sidelength 2r.

We show that the conditions of Theorem 5.1 are satisfied. Clearly the function p
satisfies condition (B) and we are given that the measure m supported on §2 satisfies
condition (A) Conditions (C), (D) and (E) also follow from (5.1). Since the resonant
sets R, are all points, the condition dimg (U,csR,) < 9 is satisfied by properties (iv)
and (vii) of Hausdorff dimension. We need to establish the existence of the disjoint
collection C(#B,) of balls (cubes) 20B,; where B, is an arbitrary ball of radius
k~"0+3) with centre in £2. In view of Lemma 5.5, there exists a disjoint collection
C(6B,) such that

#C(0B,) > ry kIH9; (5.8)

i.e. (5.2) of Theorem5.1 holds. We now verify that (5.3) is satisfied for any such
collection.
‘We consider two cases.

Case 1: n = 1. The trivial spacing argument of (5.6) shows that any interval 6B, with
0= %k’z contains at most one rational p/q with k" < g < tlie.aedJn+1).
Thus, for k sufficiently large
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1
Lhs.of (5.3) <1 < 3 x r.h.s. of (5.8) .

Hence (5.3) is trivially satisfied and Theorem5.1 implies the desired result. As a
special case, we have shown that the badly approximable numbers in the ternary
Cantor set form a set of maximal dimension.

Case 2: n > 2. We will prove the theorem in the case that n = 2. There are no
difficulties and no new ideas are required in extending the proof to higher dimensions.
One just needs to apply Lemma 5.3 in higher dimensions.

Suppose that there are three or more rational points (p;/q, p2/q) with k" < g <
k"*! lying within the ball/square 6B,. Now put § = 2~!(2k*)~!/2. Then Lemma 5.3
implies that the rational points must lie on a line £ passing through 6B,. Setting
¢ = 80k~ "tV3 it follows that

Lh.s. of (5.3) < #{20B,1 C C(6B,) : 20B,1 N L # 0}
<#{20B,+1 C C(6B,) : 2B, C L}.

Using that the balls 26,,; are disjoint and that the measure m is absolutely
a-decaying, this is

(e) .
- m(6B, N L) < a~'pC8ge2—Ik 3 06—a)
m(293n+1) -

On choosing k large enough, this becomes < % x r.h.s. of (5.8). Hence (5.3) is

satisfied and Theorem 5.1 implies the desired result.

We now prove the result for general values of #;, but under a more restrictive
assumption on the underlying fractal.

Theorem 5.7 For 1 <j <n, let £2; be a compact subset of R which supports a
measure m; satisfying (5.1) with exponent 0;. Let §2 denote the product set §2; x
-+ x 82,. Then, for any n—tuple (i, ..., i,) withi; > 0 and er-'zl ij=1,

dimH Badg (il, ey ln) = dlmH 2.
A simple application of the above theorem leads to following result.
Corollary 5.8 Let K| and K, be regular Cantor subsets of R. Then

dim].[ ((K] X Kz) ﬂBad(z,])) = dlmH(K] X Kz) = dlm].[ K] + dimHKz .

Proof of Theorem5.7. We shall restrict our attention to the case n = 2 and leave it
for the reader to extend this to higher dimensions.

A relatively straightforward argument shows that m := m; x m, is absolutely
a—decaying on £2 with o := min{dy, d,}. In fact, more generally for 2 < j < n, if
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each m; is absolutely coj—decaying on £2;, then m :=my x ... x m, is absolutely
a—decaying on 2 = £2 X --- x §2, with @ = min{a;, - - - , o, }.

Now let us write Bad(i, j) for Bad(ij, i) and without loss of generality assume
that i < j. The case i = is already covered by Theorem 4 since m is absolutely
a—decaying on 2 and clearly satisfies (5.1). The set Bady, (7, j) can be expressed in
the form Bad* (R, 3, p1, p2) with p1 () = r~9D, p, () = =0+ and

X=R*, 2=2,x2, J={((p1,p2),q) € N* x N\{0}},

a=(pnLp).9) e, Ba=q, Ro=Pi1/q.p2/9) .

The functions p;, p, satisfy condition (B) and the measures m;, m, satisfy (5.1).
Also note that dimgy (U,c;R,) = 0 since the union in question is countable. We need
to establish the existence of the collection C(0F,), where each F, is an arbitrary
closed rectangle of size 2k~"(1+) x 2k="(0+) with centre ¢ in £2. By Lemma5.5,
there exists a disjoint collection C(6F,) of rectangles 20F,.; C 0F, such that

#C(OF,) > ky kUFD0 102, (5.9)

i.e. (5.4) of Theorem 5.2 is satisfied. We now verify that (5.5) is satisfied for any such
collection. With # = 27'(2k*)~'/2, the Lemma 5.3 implies that

Lh.s. of (5.5) < #{20F,.; C C(OF,) : 20F,.i N L # @}, (5.10)

where L is a line passing through 6F),. Consider the thickening 7'(£) of £ obtained
by placing rectangles 40F,; centred at points of £; that is, by ‘sliding” a rectangle
40F, ., centred at a point of £, along L. Then, since the rectangles 26F, | C C(6F,)
are disjoint,

#{20F .1 C C(OF,) : 20F 11 N L # B} 5.11)
< #{20F,,, C C(0F,) : 20F,,, C T(L)}
_ m(T(L) N6F,)
m20F, 1)

Without loss of generality we can assume that £ passes through the centre of
0F,. To see this, suppose that m(T(L£) N 0F,) # 0 since otherwise there is nothing
to prove. Then, there exists a point x € T'(L£) N OF, N §2 such that

T(L) NOF, C 20F, N T'(L) .

Here F! is the rectangle of size k"1 x k=) centred at x, £’ is the line parallel
to £ passing through x and 7’(L’) is the thickening obtained by ‘sliding’ a rectangle
80F, centred at x, along £'. Then the following argument works just as well on
20F, NT'(L).
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Let A denote the slope of the line £ and assume that A > 0. The case A < 0 can
be dealt with similarly. By moving the rectangle 6F, to the origin, straightforward
geometric considerations lead to the following facts:

(FI)
40 (k*<n+l>(1+j) + Ak*(n+l)(1+i))

V1 + A2 '

(F2) T(L)NOF, C F(c; Iy, ) where F(c; I, 1) is the rectangle with the same cen-
tre ¢ as F,, and of size 2/, x 2/, with

T(L) = £ where ¢ =

ll — % (kfn(1+j) + 4k7(i‘l+1)(1+j) + Ak*(ﬂ+1)(l+i)) and 12 — 0k7n(1+j)'

The asymmetrical shape of the sliding rectangle adds tremendously to the techni-
cal calculations from now on. However, we can in fact estimate the right hand side
of (5.11) by considering two cases, depending on the magnitude of A. Throughout,
let a;, b; denote the constants associated with the measure m; and condition (5.1) and

let
; 4biby  \'"
w = _ .
K1 (1161225‘+52
Case 1: A > wk™"UH) /k=0+D  In view of (F2) above, we trivially have that

m(OF, NT(L)) < m(F(c:l. 1)) < byby [ 1.

It follows that

m(T(L) NOF,) _ byby 10 13
m(ZGFnJrl) - a1a2(29)51+52 J— D A+)01 f— D) (14062
5
LU B S SR T K IHDO+ (145
T a1a20t2 \w  wk!'t kI

5
b1by 3\ KD +A+s B apo+a+is
- a1a22‘51+52 w 4

Case2:0 < A < wk "0+ /—"0+) By Lemma 5.4, there exists a collection 3, of
disjoint balls B, with centres in §F, N £2 and radii 0k~""*) such that

OF, N2 C U 3B, .
B,eB,

Since i < j, it is easily verified that the disjoint collection 13, is contained in 20F,
and thus #5, < m(20F,)/m(B,,). It follows that
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m(0F, N T(L)) < m (Up,ep,3B, N T(L)) < #B, m(3B, N T(L)).
Applying (F1) and subsequently the fact that m is absolutely a-decaying, this is

- m(20F,)
m(B,)

m(3B,,) ( € )a

(e)
m (3Bn NnL ) < m(zan) m(B,) 30k —nGi+)

Now notice that

€ 4 . .
_ (1~ +D —(1+10)
YT < 3 (k + wk ).

Hence, for k sufficiently large we have

m(T (L) NOF,) < BU s atin
m(29F11+1) 4

On combining the above two cases, we have

T(L)N6OF, . . 1
Lhs. of 5.5) < "TE NOF) K1 paspsaan — Loy of 5.9,
m(20F 1) 4 4

Hence (5.5) is satisfied and Theorem 5.2 implies the desired result.

We give a few remarks on the results above. Firstly, an alternative approach
using homogeneous dynamics is also known due to Kleinbock and Weiss [33]. This
approach is less versatile, as it only works in real, Euclidean space, but the conditions
on the measure are slightly less restrictive, so in this respect their result is stronger.

Secondly, it would be really nice if the approach could give a result on num-
bers badly approximable by algebraic numbers. Unfortunately, the known spacing
estimates for algebraic numbers are not good enough to get the naive approach to
work (more on this in the next section). One could hope that proving a result on
badly approximable vectors on the Veronese curves would work, but unfortunately
Lemma5.3 does not allow us to control the direction of the hyperplane containing
the rational points. If this hyperplane is close to tangential to the curve, the approach
used above will not work, so more input is needed. In fact, the problem has now been
resolved for the full Veronese curve in 2 dimensions by Badziahin and Velani [2]
and in higher dimensions by Beresnevich [5]. To the knowledge of the author, the
problem of intersecting the sets with fractals remain unsolved.

Thirdly, our failure in proving Schmidt’s conjecture with this approach was due to
the fact that we could not construct a measure on Bad (i, j) satisfying the conditions
of Theorem 5.1. Since the publication of the paper, the conjecture has been settled,
and in fact An [1] proved that the sets Bad(i, j) are winning for the so-called Schmidt
game [45]. This implies that they are stable under countable intersection. We proceed
with a discussion of Schmidt games in one dimension and leave it as an exercise to
extend this to higher dimensions.
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Definition 5.9 Let F C R,andlet«, 5 € (0, 1). The Schmidt game is played by two
players, Black and White, according to the following rules:

1. Black picks a closed interval B of length r.

2. White picks a closed interval W; € B; of length ar.
3. Black picks a closed interval B, € W, of length Sar.
4. And soon...

By Banach’s fixpoint theorem, N;B; consists of a single point, x say. If x € F, White
wins the game. Otherwise, Black wins.

By requiring that the initial ball is chosen in a particular way, we can use the
above for bounded sets without breaking the game.

We are concerned with winning strategies for the game. In particular, we will
prove that if White has a winning strategy, then the set F' is large.

Definition 5.10 A set F is said to be («, §)-winning if White can always win the
Schmidt game with these parameters. A set F' is said to be a-winning if it is (a, 3)-
winning for any 3 € (0, 1).

We will prove the following theorems.
Theorem 5.11 An a-winning set F has Hausdorff dimension 1.
Theorem 5.12 [f (F;) is a sequence of a-winning sets, then N;F; is also a-winning.

Proof of Theorem5.11. We suppose without loss of generality that r = 1. For ease
of computation, we will also assume that 5 = 1/N for an integer N > 1. Given
an interval W; in the game, we may partition this set into N (essentially) disjoint
intervals. We will restrict the possible choices that Black can make by requiring that
she picks one of these. By requiring that 3 was slightly smaller than 1/N, we could
ensure that the intervals were properly disjoint. We will continue our calculations
with this assumption, even though we should strictly speaking add a little more
technicality to the setup.

Given that White plays according to a winning strategy, we find disjoint paths
through the game depending on the choices made by Black. In other words, for
each possible resulting element in F, we find a unique sequence with elements in
{0, ..., N — 1} and vice versa, for each such sequence, we obtain a resulting element.
Hence, this particular subset of F may be mapped onto the unit interval by thinking
of the sequence from the game as a sequence of digits in the base N-expansion of a
number between 0 and 1. To sum up, we have constructed a surjective function

g:F* = [0,1],

where F* C F. We extend this to a function on arbitrary subsets of R by setting
g(A) = gANF*).

Now, let {U;} be a cover of F* with U; having diameter p;. Then, with £ denoting
the outer Lebesgue measure,
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> LigU) = ﬁ(U g(Uo) > L0, 1]) = 1.

i=1 i=1

Let w > 0 be so small that any interval of length w(a/3)* intersects at most two
of the generation k intervals chosen by Black, i.e. any of the intervals By (ji, . . ., jk)
wherej; € {0, ..., N — 1}. Eveninhigher dimensions, w = 2/\/5 — 1 will donicely.
Finally, define integers
L log(Rw ™" p))
o [ log a3 } '

If p; is sufficiently small, then k; > 0 and p; < w(aP)%. Hence, the interval U;
intersects at most two of the generation k;-intervals chosen by Black. The image of
such an interval under ¢ is evidently an interval of length N, so since there are no
more than two of them, £(g(U;)) < 2Nk, Summing up over i, we find that

log N

= iE(Q(Ui)) < iZN""’ < I(ipw’
= =1 i=1

where K > 0 is explicitly computable in terms of N, a, # and w. Nonetheless, we
have obtained a positive lower bound on the %-length of an arbitrary cover of
F* with small enough sets. It follows that

log N 1
dimy(F) > og _ | log O .
[log(aB)|  |logal + |log 3|

The result now follows on letting 5 — 0.

Proofof Theorem 5.12. White plays according to different strategies at different stages
of the game. Explicitly, for o« and 3 fixed, in the first, third, fifth etc. move, White plays
according to a (o, afB«; Ey)-winning strategy, i.e. a strategy for the («, afSa; E,) for
which White is guaranteed to win the game. Since p(B;y1) = afap(B;_1), this is
a valid strategy, and hence the resulting x € E;. Along the second, sixth, tenth etc.
move, White plays according to a (o, a(Bar)?; E»)-winning strategy. This is equally
valid, and ensures that x € E.

In general, in the k’th move with k = 2/=1 (mod 2)!, White moves as if he was
playing the («, a(ﬂa)zl’l; E))-game. This ensures that the resulting element x is an
element of E; for any .

A positional strategy is a strategy which may be chosen by looking only at the
present state of the game without taking previous moves into account. In An’s proof,
the strategy chosen by White is not positional (at least it appears not to be). This
is a little annoying, as it was shown by Schmidt that any winning set admits a
positional strategy. Of course, this proof depends on the well-ordering principle, and
so ultimately on the axiom of choice. Describing a positional winning strategy may
hence not be that easy.
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6 Well Approximable Elements

In this section, we return to where we started, namely to Khintchine’s theorem and
to fractals arising from continued fractions. We will address three problems. The
first is the problem of the size of the exceptional sets in Khintchine’s theorem. This
will be resolved using a technique due to Beresnevich and Velani known as the mass
transference principle. The second is concerned with the ternary Cantor set and the
Diophantine properties of elements in it. We will discuss the possibility of getting a
Khintchine type theorem for this set and also give a quick-and-dirty argument, stating
that most numbers in the set are not ridiculously well approximable by algebraic
numbers. Finally, we will remark on some fractal properties which can be used in
the study of Littlewood’s conjecture.

Initially, we begin with a discussion of the exceptional sets arising from Khint-
chine’s theorem. The Hausdorff dimension of the null sets in the case of convergence
was originally calculated by Jarnik [30] and independently by Besicovitch [10].
Various new methods were introduced during the last century, with the notion of
ubiquitous systems being a key concept in recent years. Ubiquity was introduced
(or at least named) by Dodson, Rynne and Vickers [20] and put in a very general
form by Beresnevich, Dickinson and Velani [8]. A complete discussion of ubiquity
will not be given here, but the reader is strongly encouraged to look up the paper
Beresnevich, Dickinson and Velani.

Even more recently (this century), it was observed by Beresnevich and Velani [7]
that under relatively mild assumptions on a limsup set, one may transfer a zero—one
law for such a set to a zero—infinity law for Hausdorff measures, at least in the case
of full measure. In the cases considered in these notes, the converse case of measure
zero is easy. Note that the measure zero case is not always the easiest! One can cook
up problems where the convergence case of a Khintchine type theorem is the difficult
part. The sets considered in these notes however all fall within the category where
divergence is the difficult problem.

Atthe heart of the observation of Beresnevich and Velani is the following theorem,
usually called the mass transference principle. To state it, we will need a little notation.
For a ball B = B(x, r) € R" and a dimension function f, we define

B = B(x.f(n'"),
the ball with the same centre but with its radius adjusted according to the dimension

function and the dimension of the ambient space. As usual, for f(r) = r*, we denote
B by B*.

Theorem 6.1 Let {B;} be a sequence of balls in R" with r(B;) — 0 asi — oo. Let
f be a dimension function such that r~"*f (r) is monotonic. Suppose that

H"(B N limsup B)) = H"(B),

for any ball B C R". Then, for any ball B C R",
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H (B Nlim sup BY) = H/ (B),

Notice that the first requirement just says that the set lim sup B{ is full with respect
to Lebesgue measure, as H" is comparable with the Lebesgue measure. Note also,
that if r'f(r) — oo as r — 0, H/(B) = o0, so a re-statement of the conclusion
of the theorem would be as follows: Suppose that a limsup set of balls is full with
respect to Lebesgue measure. Then a limsup set of appropriately scaled balls is of
infinite Hausdorff measure.

The mass transference principle is valid in a more general setting of certain metric
spaces. As was the case in the framework of badly approximable sets, the metric
space must support a natural measure, which in this case should be a Hausdorff
measure. This is the case for the Cantor set with the Hausdorff log 2/log 3-measure,
and the mass transference principle is exactly the same if one reads log 2/log 3 for n
everywhere.

Finally, the reader will note that the mass transference principle in the present form
only works for limsup sets of balls. If one were to consider linear forms approximation
as we did in Sect.4, the limsup set would be built from tubular neighbourhoods of
hyperplanes, and for the more general setting of systems of linear forms from tubular
neighbourhoods of lower dimensional affine subspaces. This can be overcome by a
slicing technique, also developed by Beresnevich and Velani [6].

We will not go into details on the higher dimensional variant here, nor will we
prove the mass transference principle. Instead, we will deduce the original Jarnik—
Besicovitch theorem from Khintchine’s theorem.

Theorem 6.2 Let f be a dimension function and let 1) : N — R be some function
with ¢*f (0(q)) decreasing. Then,

H [x e0,1]:

< Y(q) for infinitely many (p, q) € 7 x N] ,

p
x-—
q

is zero or infinity according to whether the series Y, qf (1)(q)) converges or diverges.

Proof The convergence half is the usual covering argument, which we omit. For
the divergence part, we apply the mass transference principle. The balls are indexed
by rational numbers, with B,,,, = B(p/q, (gq)) and k = 1, so the limsup set of the
conclusion of Theorem 6.1 is just the set from the statement of the theorem. Hence,
it suffices to prove that lim sup Bf, /4 18 full with respect to Lebesgue measure, pro-
vided the series in question diverges. But this is just the statement of the original
Khintchine’s theorem.

An easy corollary of this statement tells us, that for 1)(q) = ¢~, the upper bound
of 2/v obtained on the Hausdorff dimension of the above set in Sect. 3 is sharp. In fact,
in Khintchine’s theorem, the requirement that g>¢)(g) is monotonic can be relaxed
substantially to the requirement that ¢)(g) is monotonic, which in turn gives us the
Hausdorff measure at the critical dimension (it is infinite) by the above argument.
The latter result could be deduced directly from Dirichlet’s theorem, as the set of all
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numbers evidently is full, but only for the special case of the approximating function
Plg) =q7"

We leave it for the reader to explore applications of the mass transference principle
(there are many). The point we want to make is that once a zero—one law for a
natural measure is known (Lebesgue in the case of the real numbers), it is usually a
straightforward matter of applying the mass transference principle to get a Hausdorff
measure variant of the known result. In other words, it is natural to look for a zero—
one law for the natural measure and deduce the remainder of the metrical theory
from this result.

We now consider the ternary Cantor set. Recall that the natural measure ; con-
structed in Sect. 3 on this set has the nice decay property, that for § = log 2/log 3 and
C1,Cy > 0,

clr5 <u(lc—r,c+r]) < czr<S (6.1)

forall ¢ € C and r > 0 small enough. We used this property in the preceeding section
as well. It is easy to see that any non-atomic measure supported on C satisfying
hypothesis (6.1) must also satisfy

w(lc —er,c+er]) < 6'365/1,([6‘ —r,c+r), (6.2)

for some c3 > 0, whenever r and e are small and ¢ € R. The inequality in (6.2)
is the statement that the measure is absolutely J-decaying, which was also used in
the preceeding section. In fact, this measure can also be seen to be the restriction
of the Hausdorff d-measure to C, so we are within the framework where the mass
transference principle can be applied.

Levesley, Salp and Velani [37] proved a zero—one law (and deduced the corre-
sponding statement for Hausdorff measures) for the set

We = {x eC: ‘x — :f—n‘ < ¢ (3") for infinitely many (p, n) € Z x N} .

Note the restriction on the approximating rationals. They are all rationals whose
denominator is a power of 3, and so are the endpoints in the usual construction of the
set. This is of course not satisfactory, as there are other rationals in the Cantor set, e.g.
1/4. Nevertheless, we do not at present know a full zero—one law for approximation of
elements in the Cantor set by rationals in the Cantor set. Their result is the following.

Theorem 6.3
0, 202, (3"w(3M)° < oo,
pWey = 2ozt TN
LY, (@) = .

We make a few comments on the proof, as it is a good model for many proofs of
zero—one laws for limsup sets. The convergence part is usually proved by a covering
argument as we have seen. For the divergence part, we give an outline of the method
used by Levesley, Salp and Velani. From Sect. 4, recall the converse to the Borel—
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Cantelli lemma given in Lemma4.11. By this lemma, it would suffice to prove that the
sets forming the /imsup set are pairwise independent to ensure full measure. However
in general, we have no reason to suspect that these sets are pairwise independent,
which is always a problem. However, if they satisfy the weaker condition of quasi-
pairwise independence (see below), the first part of the lemma will give positive
measure. This can subsequently be inflated in a number of ways. One possibility
is to look for an underlying invariance for an ergodic transformation. Another is to
apply the following local density condition.

Lemma 6.4 Let p be a finite, doubling Borel measure supported on a compact set
X C R¥ and let E C X be a Borel set. Suppose that there are constants rg, ¢ > 0,
such that for any ball B = B(x, r) withx € X and r < ry,

p(ENB) = cu(B).

Then E is full in X with respect to L.

This result is a consequence of the Lebesgue density theorem.

In order to prove a zero—one law, one now attempts to verify the conditions of
Lemma 6.4, with E being the limsup set, using Lemma4.11. In other words, for the
limsup set

A =limsupE,,

there is a constant ¢ > 0, such that for any sufficiently small ball B centred in X,

n(EnNB) N (E,NB)) _ . p(En N B) p(E, NB)
1(B) B 1(B) 1(B)

(6.3)

whenever m # n. The probability measure used in Lemma4.11 is the normalised
restriction of p to B. Just inserting the above estimate proves that (A N B) >
¢ 'u(B), whence A is full within X. In other words, it suffices to prove local pairwise
quasi-independence of events in the above sense.

For the result of Levesley, Salp and Velani, one considers the subset of We (1))
which is the limsup set of the sets

E.= |J B (35 w(3")) ne.
0<p<3"
3tp

After making some preliminary reductions, it is then possible to prove (6.3) by
splitting up into the cases when m and n are pretty close (in which case intersection
on the left hand side is empty) and the case when they are pretty far apart, where
some clever counting arguments and the specific form of the measure is needed. The
point we want to make is not in the details, but rather in the methods applied.

Of course, applying the mass transference principle immediately gives a condition
for the Hausdorff measure of the set W, to be infinite. Combining this with a covering
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argument for the convergence case, Levesley, Salp and Velani obtained the following
theorem in full.

Theorem 6.5 Let f be a dimension function with r—°f (r) monotonic. Then,

: 0, 3% 3 (1h(3")) < oo.
H (We) = n=l
Vo) [wa), i 37f((3") = oo

We now consider the approximation of elements of C by elements of A, where
the quality of approximation is measured in terms of the height of the approximating
number. The present argument is from [35]. Of course, we cannot hope to get a
Khintchine type result by the methods above, as we do not expect there to be any
algebraic irrational elements in C. In fact, we can say very little, and we are only able
to get a convergence result. We proceed to give a quick argument, which is not best
possible, but relatively short.

Let ¢ : R5; — Ry. We define the set

Kr(p; C) = {x € C: |x — a| < (H(w)) for infinitely many o € A,}.  (6.4)

Theorem 6.6 Let C be the ternary Cantor set and let 6 = log 2/ log 3. Suppose that
Y Rs1 — Ry satisfies either

oo oo
Z "= 1(r)? < 0o and v is non-increasing or Z r"(r)° < oo.
r=1 r=1

Then
1 (K, (1: ©)) = 0.

The result is almost surely not sharp. We first prove that the convergence of the
first series ensures that the measure is zero. This is by far the most difficult part of
the proof. We will use a bound on the distance between algebraic numbers, which is
in a sense best possible. If « and [ are distinct real algebraic numbers of degree at
most 7, then

lov = B = caH () "H(B) ™", (6.5)

where the constant ¢4 > 0 depends solely on n. The result can be found in Bugeaud’s
book [13] as a special case of corollary A.2, where the explicit form of the constant
c4 is also given. It generalises (5.6), which is the same estimate for rational numbers
between 0 and 1. In the case of rational numbers, the spacing distribution is much
more well-behaved than for real algebraic numbers of higher degree, and for this
reason, Theorem 6.6 is almost certainly not as sharp as it could be. Nonetheless, as
remarked in [13], the estimate in (5.6) is in some sense best possible.
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If for some k € N, 28 < H(a), H(B) < 2K*!, (6.5) implies that |o — 3] >
1¢4272"®+D - Consequently, for distinct real algebraic numbers o; with 2% <
H (o) < 2K the intervals [o; — %C42’2”(k“), a; + %642’2"("“)] are disjoint.

Let k£ € N. We will show that as k — oo,

Y(r)

sy = o). (6.6)

In other words, the ratio tends to 0 as k tends to infinity. Indeed, suppose to the
contrary that there is a ¢s > 0 and a strictly increasing sequence {k;}7°; € N such

that for any i € N
Y(r)

— Y > 5.
2ki <p<2kitl 47164272'l(k’+1)

By the convergence assumption of the theorem together with Cauchy’s condensation

criterion and the monotonicity of 1),

[e¢]

&0 o
Z 22n(k+1)15w(2k)15 — 22}1(5 Z (22knw(2k))0 < .
k=1 k=1
On the other hand, as ) is non-increasing,

- (1) ’
2015,/ (kNG < =5 .6
Z 2 (25 > 47 Z (2&5}?2%‘-“ 4—1042—2n(k;+l))

k=1 =1

we,

o0
> 475cic E 1 =00,
i=1

which is the desired contradiction.
Consider the sets

Ec= |J [lo—¢H@), a+dH@)]

a€h,
2k <H (o) <2kt!

Clearly, for k large enough

p(Ey) < Z plla = p(H (), o+ P (H()])
2k gs(iﬁzk“

< 36547022+ DIg ok
> nlla— 527 a4 o272,

a€h,
2k <H () <2k+!
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where we have used (6.2) and (6.6). The intervals in the final sum are disjoint. Hence,
the sum of their measure is bounded from above by the measure of K, which is equal
to 1. We have shown that for k > ko,

pE) < c3cgd ™02 D025

To complete the proof of this case, we note that [C¥(¢; K) is the set of points
falling in infinitely many of the E}. But

[o¢] [0¢] oo
z ,LL(Ek) < 03624_6 z 22n(k+l)5,(/}(2k)5 — 63024—52%15 Z 22nk(5w(2k)(5.
k=ko k=ko k=ko

Using Cauchy’s condensation criterion and the convergence assumption of the the-
orem, the latter series converges. Hence, the Borel-Cantelli lemma implies the the-
orem.

To show that the convergence of the second series is sufficient to ensure zero
measure, we note that

#HaehA,:ael0,1],Ha)=H} <nn+1)2H + 1)". (6.7)

By (6.1), for any such o, we have pu([ov — ¢(H); a + (H)]) < cep(H)® for some
ce > 0. Elements of [C} (; K) fall in infinitely many of these intervals, and as

z z pllo =Y (H); o+ p(H)]) < n(n+ 1)ce E QH + 1)"p(H)°,
H=1 aecA, H=1

ael0,1]

H(o)=H

which converges by assumption, the measure of K (1; K) is zero by the Borel—
Cantelli lemma. O

It is possible to prove a stronger result using homogeneous dynamics. This was
done by Kleinbock, Lindenstrauss and Weiss [34], but the present result has the
advantage of being relatively simple to prove.

The final thing, which we will touch upon in these notes, is a result on the Lit-
tlewood conjecture, which uses the Fourier dimension, which we defined in Sect. 3,
but did not use for anything. We will sketch a proof of the following result, which is
a partial result of [28].

Theorem 6.7 Let {«;} C Bad be a countable set of badly approximable numbers.
The set of 3 € Bad for which all pairs (o, 3) satisfy the Littlewood conjecture is of
Hausdorff dimension 1.

For a single «;, this result was also proven by Pollington and Velani [42] by a
similar, but slightly more complicated method. It could also be deduced from homo-
geneous dynamics, but the present method is different, and in fact gives a stronger
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result. However, it falls short of anything near the seminal result of Einsiedler, Katok
and Lindenstrauss [23].

Note that unless both v and (3 are badly approximable, the Littlewood conjecture
is trivially satisfied. Indeed, if « is not badly approximable, there is a sequence g,

such that

Dn
o — —

n

anllgnell = 2 - 0.

Brutally estimating ||g, /3] < 1/2, we find that

dnllgnlllign Il — O,

so that the pair («, 3) satisfies the Littlewood conjecture. Hence, this problem natu-
rally lives on a set of measure zero, namely Bad x Bad.

The key tool in proving Theorem6.7 is a result on the discrepancy of certain
sequences, which holds true for almost all o« with respect to a certain measure intro-
duced by Kaufman [32].

Kaufman’s measure jy, is a measure supported on the set of real numbers with
partial quotients bounded above by M. To be explicit, for each real number o € [0, 1),

let
1

1
a +

a2+%

a=la,a,...]1=

be the simple continued fraction expansion of «. For M > 3, let
Fy={ael0,1):a;(a) <M foralli € N}. (6.8)

Recall that the set of badly approximable numbers consists exactly of the numbers
for which the partial quotients form a bounded sequence, so that

o0
Bad = U Fy.
M=1

Kaufman proved that the set F; supports a measure fiy, satisfying a number of
nice properties. For our purposes, we need the following two properties.

(1) For any s < dimg (F),), there are positive constants ¢, [ > 0 such that for any
interval I C [0, 1) of length |I| < [,

() = clIf.

(i1) For any M, there are positive constants ¢, 7 > 0 such that the Fourier transform
1y of the Kaufman measure ), satisfies

o () < clul™".
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The first property allows us to connect the Kaufman measure with the Hausdorff
dimension of the set F, via the mass distribution principle of Lemma 3.3. The second
property provides a positive lower bound on the Fourier dimension of the set F);, but
for our purposes the property is used only in computations.

The second key tool is the notion of discrepancy from the theory of uniform distri-
bution. The discrepancy of a sequence in [0, 1) measures how uniformly distributed
a sequence is in the interval. Specifically, the discrepancy of the sequence (x,) is
defined as

N
> xile) = NI

n=1

DN(-xn) = Ssup
1<€[0,1]

bl

where [ is an interval and x; is the corresponding characteristic function. A sequence
(x,,) is uniformly distributed if Dy (x,) = o(N).
Our key result is the following discrepancy estimate, which implies Theorem 6.7

Theorem 6.8 Let 11y be a Kaufiman measure and assume that for positive integers
u < v we have

1

v v
_ =N
> lan — anl <<10gvéwn

n,m=u

where (1) is a sequence of non-negative numbers and 1 > 0 is the constant from
property (ii) of the Kaufman measure. Then for py-almost every x € [0, 1] we have

Dy (anx) < (N log(N)* + ¥y)!/2 log(N log(N)? + ¥y)*/*** + max v,

where Wy = ) + - - - + Yn.
We will need a probabilistic lemma which can be found in [26].

Lemma 6.9 Let (X, u) be a measure space with j1(X) < oo. Let F(n, m, x), n,m >
0 be p-measurable functions and let ¢, be a sequence of real numbers such that
|[F(n—1,n,x)| < ¢, forn e N. Let Oy = ¢ + - - - + ¢y and assume that Oy —
oo. Suppose that for 0 < u < v we have

[P dn < o
X n=u

Then for p-almost all x, we have

F(0,N,x) < @\ log(@y)*/** + max .

We will also need the classical Erdés—Turdn inequality which can be found
in [40].
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Theorem 6.10 For any positive integer K and any sequence (x,) < [0, 1),

N

> elkxy)

n=1

k]

N £
Dy(i) < ——+3> -
NOw) S g Lk

where as usual e(x) = exp(2mix).

Proof of Theorem 6.8. Suppose M > 3 and for integers 0 < u < v let

v

F(u,v,x):Z%

h=1

v

Z e(ha,x)

n=u

Theorem 6.10 with K = N tells us that
Dy (anx) < F(0,N, x).

Integrating with respect to dyy,(x) and applying the Cauchy—Schwarz inequality
gives

2
dpm

Zv: e(hanx)

n=u

v
1
Fu,v,x) > duy < —
/|(uvx>| uM_h%hk/

v ] v .
= E_Ll o |v—utt +n§:juuM(h<an — ay))

n#m

Finally using property (ii) of the Kaufman measure we have

v

v
1 ,
/|F<u, v dpy < D0 o | v —ut LA 3 an—anl

h,k=1 n,m=u
n#m
v
< D Mlog(n)* + 4.

Since F(n — 1, n, x) < log(n)2 + 1), for all n > 1, the theorem then follows from
Lemma6.9.

For sequences which grow sufficiently rapidly, the theorem has a corollary with a
much cleaner statement. We will say that an increasing sequence of positive integers
(ay) is lacunary if there is a ¢ > 1 such that for any n, a,1;/a, > c. Applying this
inductively, we see that the sequence must grow at least as fast as some geometric
sequence.



124 S. Kristensen

Corollary 6.11 Let v > 0, let v be a Kaufman measure and (a,) a lacunary
sequence of integers. For p-almost every x € [0, 1] we have Dy(a,x) < N'/2
(IOgN)S/erV.

Proof We apply again Theorem 6.8. Using lacunarity of the sequence (a,), we see
that

o0
Z la, — a,|™" < oo.

n,m=1

Consequently, we can absorb all occurrences of ¥y as well as the final term
max,<y ¥, in the discrepancy estimate of Theorem 6.8 into the implied constant.
It follows that

Dy (a,x) < (N log(N)*)?log(N log(N)*)**™ « N'/?(log N)>/*t"
for p-almost every x, where v can be made as small as desired by picking ¢ small

enough.

Proof of Theorem6.7. Let G denote the set of numbers 3 € Bad for which there is
an i, such that
liminf g [|goyll lg31 > 0. (6.9)

Suppose, contrary to what we are to prove, that dimy G < 1. Pick an M > 3 such
that dimy F); > dimy G (this can be done in light of Jarnik’s theorem). Let p1 =
denote the Kaufman measure on Fy,.

Consider first one of the ay, and let (g;) denote the sequence of denominators of
convergents in the simple continued fraction expansion of «;. In the following, we
will use the various parts of Proposition 1.4 many times to deduce results about this
sequence and its relation to ;.

The sequence gy is lacunary. Hence, by Corollary 6.11, for y—almost every x,

Dy (gnx) < N'*(log N)>/**.
Let ¢)(N) = N~!/2*¢ for some ¢ > 0 and consider the interval
Iy = [ (N), p(N)].
By the definition of discrepancy, for every v € [0, 1] and p-almost every (3
[#{k < N : {q) € Iv} = 2NY(N)| < N'2(log )2+
Hence,

#{k <N : {qB} € Iy} > 2N (N) — KN'*(log N)* />
— 2N1/2+e _ KNI/Z(IOgN)5/2+V’
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where K > 0 is the implied constant from Corollary 6.11. Next let N, denote the
increasing sequences defined by

Ny =min{N € N:#{k <N : {q3} € Iy} = h}.
Since each gy, is a denominator of a convergent to «;,

qn, ||QN,,Oéi || <1

Hence, e
av, lameil law ] = Jan, 8] = (v7) 7.

This establishes our claim and shows that the exceptional set E; C F), for which
(6.9) holds has u(E;) = 0.

To conclude, let E be the set of 3 € F); for which there is an i or a j such that
either (6.4) or (6.5) is not satisfied. Then,

E=UEUUE,
i j

and therefore u(E) = 0.

Finally 1£(G) is maximal, so consider the trace measure fi of u on G, defined
by i(X) = p(X N G). It follows from property (i) of Kaufman’s measures that p
is a mass distribution on [0, 1), and since G is full, /i inherits the decay property
of (i) from p. By the mass distribution principle it then follows that dimy(G) =
dimpy (F)) > dimg (G), which contradicts our original assumption. Therefore we
conclude that dimy (G) = 1.

The proof of Theorem 6.7 in fact tells us that something stronger than the Little-
wood conjecture holds for the pairs (o, 3). Indeed, we can work a little more with
the inequalities obtained and get a speed of convergence along the sequence (g, ).
Further results using the full force of the uniform distribution of the sequence (g,,(3)
can be found in the original paper [28], where we also prove similar results for the
related p-adic and mixed Littlewood conjectures. However, it is beyond the scope
of these notes to discuss these topics, and for the clarity of the exposition we have
restricted ourselves to results on the original conjecture.

7 Concluding Remarks

These notes are far from being a complete description of the state-of-the-art in metric
Diophantine approximation. Recent developments in metric Diophantine approxima-
tion on manifolds has barely been touched upon, and the relation with homogeneous
dynamics which has led to spectacular advances in the theory has only been superfi-
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cially described. The selection of results reflect the tastes and expertises of the author,
and much is left out.

Nonetheless, it is hoped that the reader has caught a glimpse of the richness and
beauty of the metric theory of Diophantine approximation and has acquired a taste
for more. Certainly, there are problems and literature enough to last a lifetime of
research.
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