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Abstract. Advancement of Al-enhanced control in autonomous systems
stands on the shoulders of formal methods, which make possible the rig-
orous safety analysis autonomous systems require. An aircraft cannot
operate autonomously unless it has design-time reasoning to ensure cor-
rect operation of the autopilot and runtime reasoning to ensure system
health management, or the ability to detect and respond to off-nominal
situations. Formal methods are highly dependent on the specifications
over which they reason; there is no escaping the “garbage in, garbage
out” reality. Specification is difficult, unglamorous, and arguably the
biggest bottleneck facing verification and validation of aerospace, and
other, autonomous systems.

This VSTTE invited talk and paper examines the outlook for the
practice of formal specification, and highlights the on-going challenges of
specification, from design-time to runtime system health management.
We exemplify these challenges for specifications in Linear Temporal Logic
(LTL) though the focus is not limited to that specification language. We
pose challenge questions for specification that will shape both the future
of formal methods, and our ability to more automatically verify and vali-
date autonomous systems of greater variety and scale. We call for further
research into LTL Genesis.

1 Introduction

Formal methods have now scaled to the point of enabling rigorous safety analysis
of full-scale, real-life systems, and none too soon, as such capabilities are required
for developing the autonomous systems of the future. This is because autonomy
requires systems to be reactive and concurrent [36], operating in real-time and
in an open environment. Formal methods have been recognized as a critical, and
often expected, design-time component for autonomous and life-critical systems,
such as aircraft and spacecraft. FAA standards including DO-178-B [46] DO-178-
C [48], and DO-254 [47] incorporate formal specification, validation, and verifica-
tion. For one example, NASA’s Lunar Atmosphere Dust Environment Explorer
(LADEE) mission was a resounding success. LADEE used model-based develop-
ment starting with specification of the requirements; refinement of these spec-
ifications via analysis against system models; automatic generation of software
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from verified models; and a variety of verification techniques including formal
methods, static analysis, formal inspection, and code coverage applied early and
often throughout the system design lifecycle [22]. We have influenced the design
of an automated air traffic control system via model checking analysis [55-57].
We have also used formal methods to help NASA assess the Functional Alloca-
tion question: in the early design stage, when there are thousands of options for
allocating essential system functions, how can we formally analyze the space of
many possible deigns to determine which are the most safe [16,37]?

In addition to design-time analysis, autonomous systems in particular crit-
ically depend on formal runtime reasoning, for runtime verification that unan-
ticipated events do not violate their specifications, and to ensure system health
management, or the ability to detect and respond to off-nominal situations that
could not be verified at design time. NASA’s Copilot language and compiler gen-
erates runtime monitors for distributed, hard real-time systems, including pitot
tube subsystems and MAVLink (Micro Air Vehicle Link); these verified sys-
tems have flown in the Edge 540 aircraft [38]. Our own Realizable, Responsive,
Unobtrusive Unit (R2U2) [18,41,49-51] utilizes formal specifications to generate
runtime observers integrated with Bayesian reasoning to provide runtime system
health management for Unmanned Aerial Systems (UAS) such as NASA’s Swift
and DragonEye UAS.

All of these formal methods, from design time to runtime, require formal
specifications. A formal methodology, as defined by Manna and Pnueli in their
seminal text on reactive and concurrent systems [36], consists of a specifica-
tion language and a repertoire of proof methods by which the correctness of a
proposed system, relative to the specification, can be formally verified. By this
definition, a formal methodology provides two components central to autonomy:
(1) the ability to make early, precise decisions, e.g. between multiple possible
designs, about major system functions; (2) the ability to remove ambiguities
from the system’s expected behavior, from design-time behavioral descriptions
to runtime behavioral monitors. For clarity through the remainder of the paper,
we will distinguish the formal specification, or the description of the behavioral
requirement that most often appears in the form of a formula (which we will call
©), from the system model that instead specifies how the system works (M). The
verification question is then the question of whether (or not) these two things
match; both are necessary inputs to a proof method.

Figure 1 shows one such example of a formal methodology. In this case, the for-
mal specification is given as a set of Linear Temporal Logic (LTL) formulas; the
system model is a description of system operation in a formal semantics we call
M. A set of validation specifications is written simultaneously with the system
model M; specification debugging increases confidence in the correctness of this
set, and model checking against M serves to validate M. A set of verification spec-
ifications, which first pass specification debugging, are model-checked against M
to verify that the early design satisfies its requirements. These specifications can
then be carried throughout the system development process, e.g., used for test-
case generation or simulation, and all the way to runtime verification of the final
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Fig. 1. A goal system design process (based on LTL model checking) where specifica-
tions are first debugged, then utilized for early system design validation, used in design
verification, and carried through the system development process to runtime [56].

system implementation. This goal system design process, using Linear Temporal
Logic (LTL) as the specification language and model checking as a proof method
appeared in [56], where it was used successfully during the design time of a coor-
dination protocol for an automated air traffic control system. Formal methods,
including model checking, are highly dependent on the specifications over which
they reason; not only are specifications required for analysis, but there is no escap-

ing the “garbage in, garbage out” reality.
Figure2 zooms in on the inputs to
this process. The bottom line for formal
methods is that the inputs to formal analy-
sis are the biggest challenge. In [56], over
100 person-hours were required to create
the inputs, which dwarfs the less than 10
hours of total runtime required to complete
model checking analysis. In the follow-on
study of a more complex version of the sys-
tem with a large space of possible designs,
over 1000 person-hours were required to
generate the inputs that resulted in the
1620 model-checking instances (model-
specification-set pairs) whose automated
verification then averaged approximately
5minutes per pair [16]. (Validation and
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Fig. 2. Bottom line: inputs to formal
analysis are the biggest challenge.
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further analysis, e.g., using fault trees, took several hours per pair but still
far less time than specification; total time for input generation of all automated
analysis including validation, verification, and fault tree analysis totaled over
2000 person-hours [17].)

When it comes to formal system modeling, there is some hope in the form
of synthesis. Recall that in model checking, we check whether M = ¢, e.g., does
the system model satisfy its specification? LTL Synthesis is predicated on the
fact that designing M is hard and expensive; re-designing M when M ¥ ¢ is also
hard and expensive [52]. Starting from LTL formula ¢ synthesis designs M such
that M = ¢, which simplifies verification, eliminates the problem of re-designing
M, and, for algorithmic derivations, eliminates the burden of design entirely [52].
While synthesis as a technique does not yet enjoy the same level of tool support
or scalability as verification techniques such as model checking, the field is well
on the way to being able to greatly improve the bottleneck of the system model
as input to the formal verification process. However, synthesis shares with model
checking the requirement of a formal specification: the input formula . So, while
synthesis is a worthwhile goal with the potential to eventually solve half of the
inputs bottleneck, what we really need is LTL Genesis!

The remainder of this paper is organized as follows. Section 2 asks where we
will get specifications from, while Sect.3 examines how we will examine their
quality. Section4 asks how do we best use specifications, including introduc-
ing new ideas for specification patterns. Section 5 asks how should we organize
specifications to enable these uses and examines the merits of strategies for
accomplishing this. Section 6 concludes and gives an outlook for a future of well-
specified autonomous systems.

2 Specification Origins

Specifications are required for all applications of formal methods, yet extracting
specifications for real-life safety critical systems often proves to be a huge bottle-
neck or even an insurmountable hurdle to the application of formal methods in
practice. This is the state for safety-critical systems today and as these systems
grow more complex, more pervasive, and more powerful in the future, there is
not a clear path even for maintaining the bleak status quo [3,4].

At NASA in particular, extracting specifications needed for any formal analy-
sis is a huge challenge [4,5,16,37,55,56]. Some critical systems are designed
without ever having what this community would consider to be a formal set
of requirements. Some design processes don’t formally define requirements until
the testing phase, far too late to use them for design or design-time analysis,
or other key periods in the system development life-cycle where formal methods
are applicable. Even for critical systems where specifications are defined early
in the system development life-cycle, they often mix many different objectives,
mixing many different levels of detail and describing things like how the system
is defined, how the system should behave, legal-speak on why the system satisfies
rules, and more — sometimes all in the same sentence! As safety-critical systems
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Fig. 3. An illustration of the outdated V Systems Engineering Model from [27].

become increasingly complex and the budgetary and other constraints tighten,
where can we look in the future to hope to extract the specifications we need for
formal analysis?

Even outside of the formal methods community, systems engineering
processes are adapting to the fact that the old standard V model of systems
engineering (shown in Fig. 3) is outdated and does not capture the steps neces-
sary for the design of today’s complex, possibly autonomous, systems [27]. This
realization comes from the need to define, and debug, requirements first, modify
them throughout the system design lifecycle with each new phase of develop-
ment, and perform verification at every stage of system design, not just at the
end. AFRL has documented the unreasonable cost associated with the V model
[21,25,26]. While an estimated 70 % of faults are introduced in the early design
phases on the left of the V, all but 3.5% are found in the later stages of system
integration and testing (on the right of the V), where they are increasingly costly
to fix. The estimated nominal cost for fault removal is 300-1000x for faults found
in the final “Acceptance” or “Operation” phase versus the early design phases
[25,26]. The emerging realization that we need to define precise specifications
that can be automatically analyzed from the earliest stages of system design has
given rise to many different methods for deriving specifications, e.g., in LTL.

Though none of these have emerged as industrial standards, several spec-
ification extraction strategies remain under study as active areas for further
research.

Human Authorship: Train system designers to write formal specifications first
and have them author their own LTL, or pair designers with formal methods
team to write specifications.

— Advantages include potential for accuracy and improved design-level reason-
ing; disadvantages include high learning curves and lack of automation.
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Natural Language Processing (NLP): Extract formal specifications from
English Operational Concepts, encoding them in LTL for automated analysis.
Notable tools include ARSENAL [20] and VARED [5]. NLP is highly input-
dependent: it is difficult to handle unstated assumptions, implied /arbitrary func-
tions, slang, mixed abstraction levels, and other inconsistencies. There is a ques-
tion whether structured English is advantageous over natural language.

— Advantages include the high level of automation and low learning curve
required; disadvantages include that is it hard to measure correctness, com-
pleteness, and closeness to the designers intentions.

Specification Mining: Extract behaviors from existing systems. Can combine
with test-case generation to explore system behavior [13].

— Advantages include automation; disadvantages include the need for a code
specification as input.

Static Analysis: Map all paths of a program.

— Advantages include automation; disadvantages include that it is hard to dif-
ferentiate normal usage from exceptions; also some essential specifications, like
function postconditions, can be difficult to extract [54].

Learning/Dynamic Invariants: Analyze actual executions; observe use-cases.

— Advantages include that checking observed variable values against a library
of fixed invariant patterns can automatically generate valuable specifications.
Disadvantages include that specifications might refer to internal details or be
irrelevant; observations are too limited and are heavily dependent on the set
of observed executions [54].

Specification Wizard: Semi-automated exploration of system facets, guided
by human input.

— Disadvantages include that similar ideas similar were tried previously and
failed to catch on widely; advantages include that today’s complex autonomous
systems demand a more standardized system design process that may provide
a better platform to build upon. With the widespread use of COTS compo-
nents that could be added to an online database and the recent advances in
specification extraction from LTL patterns and component parameters, there
is a new opportunity for a wizard.

Notably, Zeller asked: can we have specifications for free [54]? Can we combine
specification mining, test-case generation, static analysis, and dynamic invariants
to extract specifications automatically? The specifications would be automati-
cally mined from code, so that specification validation would equate to software



14 K.Y. Rozier

defect detection. While this is a promising strategy for software runtime verifi-
cation, fundamentally this process still requires code as an input. (In a sense,
the code is now the specification; so we have not solved the specification genesis
problem.) This strategy does not solve the specification problem for early design
time, where code has not yet been written, or for cyber-physical systems that
combine code with other components. The problem of requiring input code can
be mitigated by using specifications extracted from the last version of a system
for creating new designs. However, there remain challenges with specialization
of the previous code, levels of abstraction, and relevance to the new system.
Other challenges include scalability, efficiency, and expressiveness of extracting
specifications for free. Still, Zeller’s idea is highly intriguing!

3 Specification Quality

How can we know when we’re “done” extracting specifications or have some idea
of how well we’ve done? As critical systems continue to grow in complexity, how
will we measure the completeness, coverage, or general quality of a specification
or a set of specifications? We asked these questions in a panel at NFM2014 [4],
yet in large degree they remain open areas for future research.

The emerging area of specification debugging [24,30], also called sanity check-
ing, has made notable progress in automated analysis of specification quality,
chiefly in four areas. We briefly discuss each, with respect to LTL specifications
specifically.

Satisfiability. For LTL, satisfiability checking reduces to model checking against
a universal model, or a model that accepts all possible valuations of the variables
at all states [43]. Formally, if we let ¢ be a specification over the set Prop
of propositions then a system model M is universal if it contains all possible
traces over Prop: L,(M) = (2°7°P)®. A model checker negates ¢ and checks
for emptiness of the combined model for ¢ and M. Then ¢ is satisfiable by
any counterexample returned by model checking against M: M ¥ —p iff ¢ is
satisfiable. If there is no counterexample, then ¢ is not satisfiable. In [43,44]
we advocate for a sanity check of checking ¢, -, and the conjunction of all
specifications describing the same system for satisfiability before using them in
system design and verification.

Stated another way, let ¢ describe a “good” requirement that the system
must uphold. Then —¢ describes a “bad” behavior that the system must never
display. The model checker takes as input ¢, then negates it, combines it with
the input model, and checks if the resulting combined automaton is empty,
outputting a counterexample if not. Model checking ¢ against a universal model
will show whether or not -y is satisfiable. A counterexample returned by the
model checker in this case is a satisfying assignment to the formula. If -y is not
satisfiable, then the model checking search of its combination with the universal
model will not return a counterexample because no satisfying assignment exists.
The reverse situation is also a problem. If ¢ is not satisfiable, then -y is a
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tautology. So, in a normal model checking run, we would model check —¢ against
a system model, the model checker would negate ¢ to get —p, and return a
counterexample, which we are expecting to indicate that there is something
wrong with the system model. However, since —¢ is a tautology, no matter how
we change the system model, we will always get some counterexample.

In [44], we conducted an extensive experimental evaluation of LTL satisfia-
bility checking via model checking, concluding that using symbolic model check-
ing for this task is vastly superior to explicit-state model checking in terms of
both correctness and performance. (Symbolic tools always returned the correct
SAT/UNSAT result; this was not true for any of the explicit tools available at the
time, perhaps due to the difficulty of implementing their algorithms.) In [45] we
designed a portfolio approach consisting of 30 new encodings for LTL satisfiabil-
ity via symbolic model checking that performed up to exponentially faster than
was previously possible. In [33,34], the explicit approach was improved, circum-
venting explicit-state model checking and solving the LTL satisfiability problem
directly using techniques borrowed from propositional SAT solving. Today, the
(freely available) tools PANDA [45] and Aalta [34], represent the state of the
art in symbolic (via the nuXmv model checker) and explicit LTL satisfiability
checking, respectively.

Vacwity. Sanity checks in industry include many types of simple, often ad hoc,
tests such as checking for duplicate conflicting variable assignments or enabling
conditions that are never enabled [32]. Vacuity checking can help detect errors in
specifications by checking whether a subformula of a specification does not affect
the satisfaction of the specification in the system model [31]. A common exam-
ple is checking for implications like O(p — Og¢) where p can never be enabled.
Inherent vacuity checking is a set of sanity checks that can be applied to a set
of temporal properties, even before a model of the system has been developed,
but many possible errors cannot be detected by inherent vacuity checking [15].
This capability is available in some proprietary industrial tools [7], and VaqUoT
provides a front-end checker for nuXmv, but it only handles the subset of LTL
that can be encoded as CTL [19]. VARED [5] integrates an updated algorithm
for vacuity checking [23] into an end-to-end toolchain for requirements analysis.

Realizability. Realizability checking provides another, stronger sanity check for
a set of temporal properties in LTL by testing whether there is an open system
that satisfies all the properties in the set [40], but such a test is very com-
putationally expensive: 2ExpTime-Complete. However, notable progress on the
problem is underway. RATSY [8] checks realizability of the class of Generalized
Reactivity(1) (GR(1) [39]) specifications via an interactive game with the speci-
fier. Acacia+ [9] also solves LTL realizability problems encoded as safety games.
Another approach to realizability checking [35] builds upon RATSY using a
template-based specification mining approach to identify situations of an under-
constrained environment or an over-constrained system. This approach is com-
plimented by work on detecting unrealizability due to overly-strong system guar-
antees or overly restricted signals [29]. An algorithm for finding minimal cores
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of unrealizability of GR(1) specifications is implemented in nuXmv [12]. All
of these address the tricky space of checking specifications that are satisfiable
but unrealizable because there is no implementation that can produce outputs
that satisfy the specification given all possible inputs that can be generated by
the environment. Realizability is inherently tied to synthesis: the LTL synthesis
problem seeks to produce a model such that ¢ is realizable.

Coverage. Coverage is a complicated sanity check because significant research
has been contributed just to a set of definitions; measuring coverage for each such
definition is a separate research question. Informally, coverage asks whether a set
of LTL specifications considers all of the behaviors of the system; behaviors may
be defined in various ways with respect to states or paths through an execution
graph/automaton required for a specification to pass, the set of system variables,
model checking analysis, checks for incomplete or redundant sub-models, etc. In
a sense, coverage is complimentary to vacuity checking in that it asks whether
there are parts of the system that are not relevant for the verification process
to proceed. Coverage checking for LTL can be integrated into model checking
[11]. Algorithms for automatically checking LTL coverage and completeness have
been successfully used in industry for sanity checking, e.g., the requirements for
an airplane control system [6].

4 Specification Usage

How should formal specifications (both those we are given and those we must
extract) fit into the design life-cycle for different kinds of critical systems? How
can we indoctrinate formal specifications into diverse teams of system designers
without hitting barriers to adoption such as huge costs in terms of time and
learning curves? What should our roadmap look like for a future full of well-
specified (formally analyzable) critical systems?

Figure 4 shows the updated waterfall model for system design that has sup-
planted the former V model of Fig. 3. The need to define specifications early and
carry them through all stages of system design has given rise to many different
specification use strategies. All present interesting challenges for future research.

Property-Based Design: system design centers around specifications
— Challenge: defining a foundation of specifications early

Synthesis: generate M such that M = ¢

— Challenge: how can we synthesize a cyber-physical system M?

Specification-Based Testing: use specifications in test-case generation

— Challenge: how can we carry specifications through different levels of abstrac-
tion?
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Fig. 4. The current waterfall model for system engineering incorporates the specifica-
tions (aka system requirements) throughout all phases of system design.

From Design- to Run-Time: carry specifications through the design cycle

— Challenge: how do we define a specification design lifecycle?

Maintenance: using specifications in system up-keep

— Challenge: what do best practices for maintenance of specifications look like?

4.1 Specification Patterns

Since the early days of temporal logic specifications, we have been concerned
with dividing them into classes like Safety/Liveness/Guarantee/Obligation,
Fairness/Justice/Compassion, or Safety/Response/Reactivity [36]. While these
classes have proven useful in specializing algorithms for automated analysis, they
are still too coarse and tied to syntax for practical use; there is a need for more
functional and hierarchical specification.

Dwyer et al. [14] answered with definitions of specification formula patterns
that have many practically useful properties. Formula patterns are organized in
a hierarchy based on semantics and leverage experience with design and coding
patterns to enable system designers to more efficiently generate specifications.
This specification pattern system captures recurring solutions and allows speci-
fiers to generalize across domain-specific problems. It encourages re-use by better
enabling practitioners to identify the same patterns across systems and makes
transparent the means by which requirements are satisfied.

Formula patterns each have a name, intent, logic (language), scope (time
interval), and relationship to other patterns. Each pattern is characterized by
the following traits:
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Solves a Specific Problem, e.g. not too abstract

— Proven Concept effective in practice

Not Obvious or direct application of basic principles
— Describes Relationships, not single components

— Generative, describes how to construct a solution

However, challenges remain with the translational semantics of these formula
patterns: they are not compositional and are often inconsistent with the seman-
tics of informal definitions. Therefore, [10] introduced automata-based patterns.
These are:

— Compositional: based on compositions of patterns (logic executions) and
scopes (time)

— Homogeneous: don’t flatten key patterns/scopes separation

— Extensible: compositional semantics allow adding patterns & scopes

— Generic: can combine any pattern and any scope

— Faithful: formal guarantee that the translated temporal formula is faithful to
the intended natural semantics

While automata-based patterns correct some inconsistencies in the previous
formula patterns, they present other challenges: it is often more natural for
practitioners to think of specifications in terms of time lines (temporal logic) than
automata, and automata patterns pose a challenge for many of the sanity checks
from Sect. 3. Design-time formula patterns and automata patterns still do not
answer the pressing question: what about runtime specifications for autonomous
systems?

4.2 R2U2: Runtime Specification Patterns in the Field

Work on specification patterns focuses mostly on design time, which is impactful
for applications such as model checking. But in today’s complex, cyber-physical,
and/or autonomous systems, exhaustive verification is not achievable for all sub-
systems; in practice, more specifications are used for applications such as runtime
verification. Formula patterns are not compositional, which can be a challenge
for runtime evaluation. Automata patterns are not decomposable and are more
complex to sanity check, e.g., because it is easier to check satisfiability and real-
izability on a formula than an automaton. Yet it is vital to sanity check runtime
specifications.

Therefore, we ask the question: what about functional patterns?' Are there
different patterns for specification functions, e.g., between design time and run-
time? In our experience with runtime verification in the field [18,41,49-51], we
have observed the following five functional patterns.

! Note that the term functional patterns has been used in a different context: describ-
ing Requirements Specification Language (RSL) patterns for system state changes
in response to external stimuli [2].
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Ranges. Sensors have well-defined operating ranges: both ranges of the values
they can report and ranges of operation. For example, a laser altimeter has a
ceiling; above this altitude its readings should not be trusted. For each sensor,
we check its operating ranges and the bounds on correct values it can return.

Rates. For each sensor stream on a system, there are rate constraints. We must
check that value changes fall within realistic bounds, both for the sensitivity
and tolerances of the individual sensor and for the physics of the system. For
example, if a sensor indicates that an aircraft is falling faster than gravity, clearly
there is something wrong with that sensor!

Relationships. There are predictable relationships between multiple sensors; we
need to compare temporal outputs from related or redundant sensors for correct-
ness. For example, the readings from all three altimeters should be consistent,
modulo sensor noise. Pitching up and increasing power to the engines should
result in a rise in altitude shortly afterward.

Control Sequences. A sequence of events will predictably happen following a
command to take off, land, or carry out a procedure like a waypoint visit, with
check-able milestones along the way A command to take off requires an ordered
set of actions such as turning on the engines, taxiing, increasing altitude above
ground level, and reaching a prescribed altitude. A command to land involves
a series of actions in a precise order, such as an initial decrease in altitude,
deploying of landing gear, and approaching the appropriate runway.

Consistency Checks. Do all components have the same view of system
state/environment? We consider both intra- and inter-component properties.
For example, the rate of noise from a sensor should not suddenly increase. The
flight computer and autopilot should always agree on which waypoint the UAS
is currently visiting.

In industrial systems, LTL is often not the exclusive specification language.
While languages and constructs for specification vary widely and are often tailored

R2U2 specification format:

1. TL Observers: Efficient temporal reasoning
(a) Asynchronous: output (¢, {0,1})
(b) Synchronous: output (¢, {0, 1,7})
— Logics: MTL, pt-MTL, Mission-time LTL
— Variables: Booleans (from system bus), sensor filter outputs
2. Bayes Nets: Efficient decision making
— Variables: outputs of TL observers, sensor filters, Booleans
— Output: most-likely status + probability

Fig. 5. R2U2 system health management framework in a nutshell [41,50].
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to specific applications, one general trend is the propensity for expanding upon
LTL or combining it with other specification constructs. An example of this is the
specification format we use for R2U2, the Realizable, Responsive, Unobtrusive
Unit for runtime system health management. Figure 5 summarizes R2U2 speci-
fications, which combine two encodings for each linear-time temporal logic for-
mula, which may be in one of several variants of LTL, with efficient (non-dynamic)
Bayes Nets to provide diagnostic decision-making capabilities. Specifications ana-
lyzed via R2U2 are exclusively checked during runtime and do not follow previ-
ously defined patterns for formulas or automata because those describe design-
time specifications consisting exclusively of temporal logic formulas.

We need to expand specification patterns to runtime! How do we expand
patterns to reason about specifications in the field?

Health Nodes / Failure Modes
H_FG Magnetometer sensor
H_FC_RxUR |Receiver underrun
H_FC_RxOVR|Receiver overrun
H_FG_TxOVR|Transmitter overrun in sensor
H_FG_TxErr |Transmitter error in in sensor

Fig. 6. The possible failures a Fluxgate Magnetometer can suffer can be diagnosed by
a Bayes Net with a health node corresponding to each type of failure. These nodes take
as input the valuations from six temporal logic runtime observers; many failures require
inputs from multiple temporal observers in order to make an accurate diagnosis [18].

As an example, Fig. 6 displays a pictorial representation of a set of specifica-
tions for determining if a fault has occurred in the fluxgate magnetometer during
runtime. From the manual, we know that there are five possible faults that can
occur. We can write six temporal logic specifications that we encode as run-
time observers outputting statuses S1, ..., S6. The outputs from these runtime
observers are inputs to five Bayesian health nodes, one for determining whether
it is probabilistically likely that each possible fault has occurred. A health node
may hierarchically depend on the output from more than one runtime sensor
node and the runtime observers may supply temporal information to multiple
health nodes.

Cyber-physical, autonomous systems often utilize hierarchical, multi-
formalism specifications; see, e.g., [63]. In R2U2, we combine specifications in
a way that is hierarchically structured, compositional, and cross-language. How
do we organize R2U2 specifications?
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5 Specification Organization

How should we organize specifications? How do we store specifications in an
accessible way that allows for automated analysis including verification? How
do we best enable re-use from design time to runtime to the design of future
systems? How do we pair English and formal specifications in an understand-
able way? How do we preserve the hierarchical structure, compositionality, and
relationships between specifications in our practical, organizational structure?
Can we do all of this in a performable way?

Scenario definition languages such as the Aviation Scenario Definition Lan-
guage (ASDL) [28] establish structured specification standards over domain-
specific vocabulary for verification, execution, simulation, sharing, comparing,
and re-using scenario specifications. This approach provides transparency to
system designers via model-to-text translation, and graphical modeling envi-
ronments. ASDL is an Eclipse modeling framework suited to defining scenario
models for simulation, but we still need an efficient way to store and codify spec-
ifications. Most significantly, there is the question of M vs ¢: how do we distin-
guish functions of the system model from design- and runtime specifications so
that we can analyze specifications automatically and use them throughout the
system lifecycle?

One can turn to an all-in-one tool suite such as Matlab/Simulink, but since
these tools were not designed for specification organization, this solution tends
to be kludgy and not scalable. Considering the often long life of specifications,
which follow a system throughout its entire lifecycle, the lack of backwards-
compatibility in successive tool versions presents a significant negative.

SQL databases are routinely used for longterm, scalable information storage.
However, the relationships between specifications are inherently non-tabular;
fitting them into this schema requires flattening the database, and accessing
them requires extensive JOINs, making this solution non-performable.

None of these strategies solve the organization problem. We have hit an era
of Big Data of Specifications. If we follow recommended practices for system
design, then specifications are everywhere! So, how do we organize specifications
for each subsystem, subcomponent, and level of abstraction? How do we mine
specifications for data, patterns, statistical analysis, and coverage? How do we
search specifications? How do we sort specifications? How do we integrate specifi-
cation languages for different purposes?” How do we make specifications available
for reuse?

5.1 A Property Graph Database Approach to Specification
Organization with Neo4j

We can represent R2U2 specifications using a property graph.

Definition 1. [42] A property graph G = (V, E, \, p) is a directed, edge-labeled,
attributed multi-graph where V' is a set of nodes, E is a multiset of directed edges,
A E — X is an edge labeling function assigning a label from the alphabet ¥ to
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each edge, and p: (VUE) x K — S is a property assignment function over the
sets K of property keys and S of property values.

Organizing big data requires a database that can store and enable efficient
access to large specification sets, so we use a property graph database. Neodj? is
a publicly available, performable, NoSQL graph database implemented in Java
and Scala that efficiently implements the property graph model to allow, e.g.,
constant-time traversals for relationships in the graph. A property graph data-
base stores Nodes (graph data records), and Relationships (directional connect
nodes), with Properties (named data values of type string, number, Boolean, or
array), on both Nodes and Relationships.

(X X) (XX
Relationship: takes as input
Property: variable name

<0 <0 <0 <0 Ntot =0 >=1
Node: Bayes Net health node
l l l l Properties: name, conditional probability table
Node: Temporal Logic Observer
Hdx Hdy FGx FGy Properties: name, LTL/MTL/pt-MTL formula Nb

Node: Boolean filter
Properties: name, filter

Node: Sensor signal
Properties: name, origin

Fig.7. A property graph database storage scheme for the Fluxgate Magnetometer
failure specifications of Fig. 6 with additional details from the case study in [18].

Figure 7 re-draws Fig.6 with the Neo4j database schema we are currently
investigating for R2U2 specifications. We have four types of Nodes: Bayes
Net health nodes that contain conditional probability tables, Temporal Logic
Observer nodes that store logic formulas, Boolean filter nodes that filter direct
sensor signals, and Sensor signal nodes that designate which system signals we
are reasoning about. All relationships pictured are of type “takes as input”
and are labeled with the name of the variable whose value is set by the given
input. Note that nodes can mix properties, so we can define our Temporal Logic
Observer nodes to have one type of formula, either LTL, MTL, or pt-MTL.

6 Conclusions and Outlook

Going forward, as a community, we need to continuously re-assess our answer to
the question “Where are we now?” with regards to specifications. For the fore-
seeable future, specifications remain arguably the biggest bottleneck in formal

2 https://neodj.com.
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methods and autonomy. While there are several promising research thrusts in
specification debugging, updated system design processes that encourage speci-
fication extraction, and specification patterns, we still do not have a clear path
forward, particularly in the context of cyber-physical, autonomous systems. The
questions posed by this paper of where we will get specifications from, how
should we measure their quality, how should we best use them, and how should
we organize them, continue to drive future research directions.

In future work, we plan to devise formal definitions of the functional specifi-
cation patterns introduced here. There are many experimental evaluations in the
pipeline, including use of functional specification patterns and technical analysis
and performance evaluation of a new Neo4j specification organization scheme
for R2U2 specifications. We also plan to advance capabilities for specification
debugging, particularly satisfiability checking, and methods for efficiently rea-
soning about specifications in new logics now appearing in industrial settings,
such as MTL [1].
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