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Abstract. The division property, which is a new method to find inte-
gral characteristics, was proposed at Eurocrypt 2015. Thereafter, some
applications and improvements have been proposed. The bit-based divi-
sion property is also one of such improvements, and the accurate inte-
gral characteristic of Simon32 is theoretically proved. In this paper, we
propose the compact representation for the bit-based division property.
The disadvantage of the bit-based division property is that it cannot
be applied to block ciphers whose block length is over 32 because of
high time and memory complexity. The compact representation partially
solves this problem, and we apply this technique to 64-bit block cipher
PRESENT to illustrate our method. We can accurately evaluate the
propagation characteristic of the bit-based division property thanks to
the compact representation. As a result, we find 9-round integral charac-
teristics, and the characteristic is improved by two rounds than previous
best characteristic. Moreover, we attack 12-round PRESENT-80 and 13-
round PRESENT-128 by using this new characteristic.

Keywords: Integral cryptanalysis · Division property · Compact rep-
resentation · PRESENT

1 Introduction

The concept of an integral cryptanalysis was first introduced as the dedicated
attack against block cipher Square [4], and Knudsen and Wagner then formal-
ized the dedicated attack as the integral attack [6]. The integral cryptanalysis is
applied to many ciphers, and this is nowadays one of the most powerful crypt-
analyses [6,8,16,17]. The integral cryptanalysis mainly consists of two parts: a
search for integral characteristics and key recovery. The propagation of the inte-
gral property [6] and the degree estimation1 [5,7] have been used as well-known
methods to find integral characteristics.

At Eurocrypt 2015, the division property, which is a novel technique to find
integral characteristics, was proposed [12]. This technique is the generalization
of the integral property that can also exploit the algebraic degree at the same
time. After the proposal, the new understanding of the division property and
new applications have been proposed [2,10,11,14,18].
1 This method is often called the higher-order differential attack [5,7].
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At FSE 2016, the bit-based division property, which is a new variant of the
division property, was proposed [14]2. To analyze n-bit block ciphers with m
�-bit S-boxes, the conventional division property decomposes n-bit value into m
�-bit values, and the division property D�m

K
is used. For convenience, we call this-

type division property an integer-based division property. On the other hand,
the bit-based division property decomposes n-bit value into n 1-bit values, i.e.,
D1n

K
is used. The bit-based division property can find more accurate integral

characteristics than the integer-based division property. Actually, the bit-based
division property proves the 15-round integral characteristic of Simon32, and it
is tight [14].

Our Contribution. In this paper, we propose a compact representation for
the bit-based division property against S-box-based ciphers. A disadvantage of
the bit-based division property is that it requires about 2n time and memory
complexity to evaluate n-bit block ciphers. Therefore, the application is lim-
ited to block ciphers with small block length like Simon32 in [14]. Moreover,
at CRYPTO 2016, Boura and Canteaut introduced the parity set, which is the
so-called bit-based division property for an S-box [2], but the application is also
limited to the low-data distinguisher for a few rounds of PRESENT [1]. The com-
pact representation partially solves this problem, and we can get high-data dis-
tinguishers by reducing time and memory complexity. To demonstrate the advan-
tage of the compact representation, we apply our new technique to PRESENT.
As a result, we find new 9-round integral characteristics. Since the previous
best characteristic is 7-round one [15], our new characteristic is improved by two
rounds. Moreover, we attack 12-round PRESENT-80 and 13-round PRESENT-
128 by using the new integral characteristic. Zhang et al. discussed the security of
PRESENT against the integral attack in [19] and attacked 10-round PRESENT-
80 and 11-round PRESENT-128 by using the match-through-the-S-box (MTTS)
technique. Therefore, our new attack is also improved by two rounds.

2 Preliminaries

2.1 Notations

We make the distinction between the addition of F
n
2 and addition of Z, and we

use ⊕ and + as the addition of F
n
2 and addition of Z, respectively. For any a ∈ F

n
2 ,

the ith element is expressed in a[i], and the Hamming weight w(a) is calculated
as w(a) =

∑n
i=1 a[i]. For any a ∈ (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2 ), the vectorial Hamming

weight of a is defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Z
m. Moreover,

for any k ∈ Z
m and k′ ∈ Z

m, we define k � k′ if ki ≥ k′
i for all i (1 ≤ i ≤ m).

Otherwise, k � k′. Let K be the set of k, and |K| denotes the number of elements
in K.
2 In [14], they proposed two variants of the bit-based division property: the conven-

tional bit-based division property and the bit-based division property using three
subsets. In this paper, we focus on the conventional bit-based division property.
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2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the secu-
rity of Square [4], and then it was formalized by Knudsen and Wagner [6].
Attackers first prepare N chosen plaintexts and encrypt them R rounds. If the
XOR of all encrypted texts becomes 0, we say that the cipher has an R-round
integral characteristic with N chosen plaintexts. Finally, we analyze the entire
cipher by using the integral characteristic. There are two classical approaches
to find integral characteristics. The first one is the propagation of the integral
property [6] and another is based on the degree estimation [5,7].

2.3 Division Property

The division property proposed in [12] is a new method to find integral charac-
teristics. This section briefly shows the definition and propagation rules. Please
refer to [12] in detail.

Bit Product Function. The division property of a multiset is evaluated by
using the bit product function defined as follows. Let πu : F

n
2 → F2 be a bit

product function for any u ∈ F
n
2 . Let x ∈ F

n
2 be the input and πu(x) be the

AND of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=
n∏

i=1

x[i]u[i].

Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2

be a bit product function for any u ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ). Let x ∈ (Fn1

2 ×
F

n2
2 × · · · × F

nm
2 ) be the input and πu(x) be defined as

πu(x) :=
m∏

i=1

πui
(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f is represented as

f(x) =
⊕

u∈F
n
2

af
u

(
n∏

i=1

x[i]u[i]
)

=
⊕

u∈F
n
2

af
uπu(x),

where af
u ∈ F2 is a constant value depending on f and u.

Definition of Division Property.

Definition 1 (Division Property [12]). Let X be a multiset whose elements
take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ). When the multiset X has the division
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property Dn1,n2,...,nm

K
, where K denotes a set of m-dimensional vectors whose ith

element takes a value between 0 and ni, it fulfills the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there arek ∈ K s.t.W (u) � k,

0 otherwise.

See [12] to better understand the concept in detail, and [10] and [11] help readers
understand the division property. In this paper, the division property for (Fn

2 )m

is referred to as Dnm

K
for the simplicity3. If there are k ∈ K and k′ ∈ K satisfying

k � k′ in the division property Dn1,n2,...,nm

K
, k can be removed from K because

the vector k is redundant.
Some propagation rules for the division property are proven in [12], and the

rules are summarized in [11]. We omit the description of the propagation rules
in this paper because it is not always necessary to understand this paper.

2.4 Bit-Based Division Property

The bit-based division property was introduced in [14]. They showed two bit-
based division properties: the conventional bit-based division property and the
bit-based division property using three subsets. In this paper, we only focus on
the conventional bit-based division property. To analyze n-bit block ciphers, the
conventional division property uses D�1,�2,...,�m

K
, where �i and m are chosen by

attackers in the range of n =
∑m

i=1 �i. This paper focuses on the conventional
bit-based division property, i.e., D1n

K
. Note that it is not against the definition

of the conventional division property.

Propagation Characteristic for S-Box. Let us consider the propagation
characteristic of the bit-based division property for an S-box. Similar observation
was shown by Boura and Canteaut in [2], and they introduced a new concept
called the parity set as follows.

Definition 2 (Parity Set). Let X be a set whose elements take a value of F
n
2 .

Its parity set is defined as

U(X) =

{

u ∈ F
n
2 |

⊕

x∈X

πu(x) = 1

}

.

Assuming X has the division property Dn
k ,

U(X) ⊆ {u ∈ F
n
2 : w(u) ≥ k}.

Let X and S(X) denote the input set and output set of the S-box, respectively.
Then, the parity set of S(X) fulfills

U(S(X)) ⊆ ∪u∈U(X)Vs(u),
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Table 1. Sets VS(u) for all u ∈ F
4
2 for the PRESENT S-box. All four-bit values are

represented in hexadecimal notation. The rightmost bit of the word corresponds to the
least significant bit.

VS(u)

0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xA 0xC 0x7 0xB 0xD 0xE 0xF

u = 0x0 x x x x

u = 0x1 x x x x

u = 0x2 x x x x

u = 0x4 x x x x

u = 0x8 x x x x x x

u = 0x3 x x x x x x x x

u = 0x5 x x x

u = 0x9 x x x x x x

u = 0x6 x x x x x x

u = 0xA x x x x x x x x x x

u = 0xC x x x x

u = 0x7 x x x x x x x

u = 0xB x x x x x x x x x x

u = 0xD x x x x x x x

u = 0xE x x x x x x

u = 0xF x

where
Vs(u) = {v ∈ F

n
2 | ANF of (πv ◦ S) contains πu(x)}.

The definition of the parity set trivially derives the following proposition.

Proposition 1. Let X be a multiset whose elements take a value of F
n
2 . When

the multiset X has the bit-based division property D1n

K
, the parity set of X fulfills

U(X) ⊆ {u ∈ F
n
2 : there are k ∈ K satisfying u � k}.

Moreover, assuming U(X) ⊆ K
′, the set X has the bit-based division property

D1n

K′ .

Proposition 1 shows that the bit-based division property of S(X) can be evaluated
from that of X via the parity set.

Case of PRESENT S-Box. As an example, let us consider the case of the
PRESENT S-box. Let (x4, x3, x2, x1) and (y4, y3, y2, y1) be the input and output

3 In [12], the division property was referred to as Dn,m
K

.
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Table 2. Propagation of the bit-based division property for PRESENT S-box. Vectors
on F

4
2 are represented an hexadecimal notation.

k of input D14

k K of output D14

K k of input D14

k K of output D14

K

0x0 {0x0} 0x8 {0x1, 0x2, 0x4, 0x8}
0x1 {0x1, 0x2, 0x4, 0x8} 0x9 {0x2, 0x4, 0x8}
0x2 {0x1, 0x2, 0x4, 0x8} 0xA {0x2, 0x4, 0x8}
0x3 {0x2, 0x4, 0x8} 0xB {0x2, 0x4, 0x8}
0x4 {0x1, 0x2, 0x4, 0x8} 0xC {0x2, 0x4, 0x8}
0x5 {0x2, 0x4, 0x8} 0xD {0x2, 0x4, 0x8}
0x6 {0x1, 0x2, 0x8} 0xE {0x5, 0xB, 0xE}
0x7 {0x2, 0x8} 0xF {0xF}

of the S-box, respectively, and the algebraic normal form of the PRESENT S-box
is described as

y4 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3 + x1 + x2 + x4 + 1,

y3 = x1x2x4 + x1x3x4 + x1x2 + x1x4 + x2x4 + x3 + x4 + 1,

y2 = x1x2x3 + x1x2x4 + x1x3x4 + x2x4 + x3x4 + x2 + x4,

y1 = x2x3 + x1 + x3 + x4.

Table 1 shows sets of VS(u) for all u ∈ F
4
2 for the PRESENT S-box. Assuming

that X fulfills D14

k , let D14

K′ be the bit-based division property of S(X) and K
′ is

K
′ = ∪u∈U(X)Vs(u), U(X) ⊆ {u ∈ F

n
2 : u � k}

from Proposition 1. We compute K
′ for any k ∈ F

4
2 and then remove redundant

vectors. Table 2 shows the propagation characteristic of the bit-based division
property for the PRESENT S-box.

3 Compact Representation for Division Property

3.1 Motivation

We can find more accurate integral characteristics by using the bit-based divi-
sion property than the integer-based division property. However, this evaluation
requires about 2n time and memory complexity for n-bit block ciphers. There-
fore, the bit-based division property is applied to small block-length ciphers like
Simon32 in [14]. Moreover, the application of the parity set is limited to the low-
data distinguisher for a few rounds of PRESENT [2]. It is an open problem to
apply the bit-based division property to high-data distinguishers for non small
block-length cipher.
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3.2 General Idea

The compact representation for the bit-based division property partially solves
this problem. We focus on the fact that different division properties cause the
same division property through an S-box. Then, we regard the different proper-
ties as the same property, and it helps us to evaluate the propagation character-
istic efficiently.

Compact Representation for PRESENT S-box. The focus is that there
are some input division properties whose output division property is the same.
For example, the output division property from D14

{0x1} is D14

{0x1,0x2,0x4,0x8}, which

is the same as that from D14

{0x2}. In the compact representation, we regard their
input properties as the same input property. Table 3 shows the compact repre-
sentation for PRESENT S-box. While sixteen values are used to represent the
bit-based division property, only seven values {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄} are used in the
compact representation. For simplicity, let Sc be

Sc = {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄}.

Table 3. Compact representation for PRESENT S-box.

Compact Real property Output property Redundant

0̄ {0x0} {0x0} 0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄

1̄ {0x1, 0x2, 0x4, 0x8} {0x1, 0x2, 0x4, 0x8} 1̄, 3̄, 6̄, 7̄, Ē, F̄

3̄ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD} {0x2, 0x4, 0x8} 3̄, 7̄, Ē, F̄

6̄ {0x6} {0x1, 0x2, 0x8} 6̄, 7̄, Ē, F̄

7̄ {0x7} {0x2, 0x8} 7̄, F̄

Ē {0xE} {0x5, 0xB, 0xE} Ē, F̄

F̄ {0xF} {0xF} F̄

Note that we have to check the original vectors when we remove redundant
vectors. Assuming that the division property is D{3̄,6̄,Ē}, each original vectors are
represented as

3̄ → {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}, 6̄ → {0x6}, Ē → {0xE}.

Therefore, Ē is redundant because 0xE � 0xA. On the other hand, there is not
a vector k satisfying 0x6 � k in k ∈ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}. As a
result, after remove redundant vectors, the division property becomes D{3̄,6̄}.
The right-end column in Table 3 shows redundant vectors by the compact rep-
resentation.
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3.3 Toy Cipher Using PRESENT S-box

We apply the compact representation to the input division property of S-boxes,
and the propagated output division property is not represented by the compact
representation. We need to carefully apply the compact representation to the
output division property, which depends on the structure of a target cipher. For
simplicity, let us consider a key-alternating cipher underlying PRESENT S-box,
where the block length is 4 bits, and Fig. 1 shows the 2-round cipher. Let p and
c be the plaintext and ciphertext, and xi and yi denote the input and output of
the ith S-box, respectively. Note that the division property does not change for
constant addition. Then, our aim is to evaluate the division property of c, and
it is enough to manage only the compact representation of the division property
in x2. Our next aim is to evaluate the compact representation in x2. Then, it
is enough to manage only the compact representation in x1 and the following
propagation characteristic is applied.

{0̄} → {0x0} → {0̄},

{1̄} → {0x1, 0x2, 0x4, 0x8} → {1̄},

{3̄} → {0x2, 0x4, 0x8} → {1̄},

{6̄} → {0x1, 0x2, 0x8} → {1̄},

{7̄} → {0x2, 0x8} → {1̄},

{Ē} → {0x5, 0xB, 0xE} → {3̄, (Ē)},

{F̄} → {0xF} → {F̄}.

Note that the property Ē derives 3̄ and Ē, but Ē is redundant.

S S
x1

p c
x2y1 y2

Fig. 1. Key-alternating cipher underlying PRESENT S-box.

Example 1. Assuming the division property of p is {Ē}, the division property
of x1 is also {Ē} because the division property is independent of the constant
XORing. Applying the first S-box, the division property of y1 is {3̄, Ē}, and Ē is
redundant. Since the division property is independent of the constant XORing,
the division property of x2 is {3̄}. Applying the second S-box, the bit-based
division property of y2 is D14

{0x2,0x4,0x8}, and the bit-based division property of c

is also D14

{0x2,0x4,0x8}. Therefore, the least significant bit of c is balanced.

3.4 Core Function of PRESENT

PRESENT does not have simple key-alternating structure like Fig. 1. There is a
bit permutation in the diffusion part of the round function, and we can decom-
pose the round function of PRESENT into four subfunctions. Figure 2 shows the
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s s s s s s s s s s s s s s s s

round key

Fig. 2. Equivalent circuit of round function of PRESENT.

Algorithm 1. Generate propagation characteristic table for the sub function
1: procedure evalSubFunction(k ∈ (Sc)

4)
2: Ki is the set of the propagated division property from ki through the S-box.
3: K

′ is an empty set.
4: for all (x, y, z, w) ∈ (K4 × K3 × K2 × K1) do
5: k′

4 ⇐ compact(x4‖y4‖z4‖w4)
6: k′

3 ⇐ compact(x3‖y3‖z3‖w3)
7: k′

2 ⇐ compact(x2‖y2‖z2‖w2)
8: k′

1 ⇐ compact(x1‖y1‖z1‖w1)
9: K

′ = K
′ ∪ {k′}

10: end for
11: remove redundant vectors from K

′

12: return K
′

13: end procedure

equivalent circuit of the round function of PRESENT. The input and output of
every sub function are four four-bit values, and the position of each four-bit
value then moves. Since this equivalent circuit does not have bit-oriented per-
mutation except the interior of sub functions, we first generate the propagation
characteristic table of sub functions under the compact representation. Then, we
evaluate the propagation characteristic of round functions from the table under
the compact representation.

Propagation Characteristic for Sub Function. Let k = (k4, k3, k2, k1) ∈
(Sc)4 be the input division property of the sub function. Then, the output divi-
sion property K is the set whose elements are vectors in (Sc)4. Algorithm 1 shows
the algorithm to generate the propagation characteristic table under the compact
representation for the sub function. Here, compact is a function that converts
from the bit-based division property to the compact representation.

Example 2 (Propagation characteristic from (3̄, 6̄, 7̄, F̄)). The output bit-based
division property of each S-box is evaluated from the corresponding compact
representation as
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Algorithm 2. Generate propagation characteristic table for the sub function
1: procedure evalRoundFunction(k ∈ (Sc)

16)
2: Ki ⇐ evalSubFunction([k4∗i+4, k4∗i+3, k4∗i+2, k4∗i+1])
3: for all (x,y, z,w) ∈ (K4 × K3 × K2 × K1) do
4: k′

16 = x4, k
′
12 = x3, k

′
8 = x2, k

′
4 = x1

5: k′
15 = y4, k

′
11 = y3, k

′
7 = y2, k

′
3 = y1

6: k′
14 = z4, k

′
10 = z3, k

′
6 = z2, k

′
2 = z1

7: k′
13 = w4, k

′
9 = w3, k

′
5 = w2, k

′
1 = w1

8: K
′ = K

′ ∪ {k′}
9: end for

10: remove redundant vectors from K
′

11: return K
′

12: end procedure

3̄ → {0x2, 0x4, 0x8}, 6̄ → {0x1, 0x2, 0x8}, 7̄ → {0x2, 0x8}, F̄ → {0xF}.

Then, let D14

K′ be the output bit-based division property, and K
′ is represented

as 18(= 3 × 3 × 2 × 1) vectors

(0x11B5), (0x3195), (0x11F1), (0x31D1), (0x51B1), (0x7191),
(0x1935), (0x3915), (0x1971), (0x3951), (0x5931), (0x7911),
(0x9135), (0xB115), (0x9171), (0xB151), (0xD131), (0xF111).

Then, the compact representation of 18 vectors is

(1̄1̄3̄3̄), (3̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (7̄1̄3̄1̄), (1̄3̄3̄3̄), (3̄3̄1̄3̄), (1̄3̄7̄1̄),
(3̄3̄3̄1̄), (3̄3̄3̄1̄), (7̄3̄1̄1̄), (3̄1̄3̄3̄), (3̄1̄1̄3̄), (3̄1̄7̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (F̄1̄1̄1̄).

After remove redundant vectors, the output division property is represented as

(1̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (1̄3̄7̄1̄), (7̄3̄1̄1̄), (3̄1̄1̄3̄), (F̄1̄1̄1̄)

by the compact representation.

4 Improved Integral Attack on PRESENT

4.1 New Algorithm to Find Integral Characteristics

We show a new algorithm to find integral characteristics of PRESENT by using
the compact representation of the division property. Note that the given integral
characteristic is the same as that given by the accurate propagation characteristic
of the bit-based division property.

The input of the algorithm is the bit-based division property of the plaintext
set. The algorithm first converts from this bit-based division property to the
corresponding compact representation. In every round function, the algorithm
evaluates the propagation characteristic for four sub functions independently and
the relocation of 16 four-bit values. Algorithm2 shows the algorithm to evaluate
the propagation characteristic for round functions. This evaluation is repeated
until there is no integral characteristic in the output of the round function.
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7-Round Integral Characteristic Revisited. We first revisit the 16th order
integral characteristic [15], where the lsb in the output of the 7-round PRESENT
is balanced when the least sixteen bits are active and the others are constant.
The bit-based division property of the plaintext set is D164

0x00000000000000FF, and the
compact representation is

0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄F̄F̄.

Ciphertexts encrypted one round have the following compact representation

0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄.

Moreover, ciphertexts encrypted two rounds have the following compact repre-
sentation

1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄.

Table 4 shows the propagation characteristic, where we perfectly remove redun-
dant vectors. After six rounds, we get 70 elements in the compact representation.
We finally apply additional one-round function, and the propagated bit-based
division property does not include 0x0000000000000001. Therefore, the lsb in
the output of the 7-round PRESENT is balanced.

Table 4. Propagation from D164

0x00000000000000FF

#rounds 0 1 2 3 4 5 6 7a

|K| 1 1 1 707281 349316 1450 70 63
aWe do not use the compact representation in the
final round.

New 9-Round Integral Characteristic. We next search for integral charac-
teristics exploiting more number of active bits. Let us recall Table 3. Then, the
propagated characteristic from Ē is {0x5, 0xB, 0xE}, and the output bit-based
division property is most far from unknown property except for F̄.

Table 5. Propagation from D164

0xFFFFFFFFFFFFFFF0

#rounds 0 1 2 3 4 5 6 7 8 9a

|K| 1 1 81 8277 136421 2497368 343121 1393 70 63
aWe do not use the compact representation in the final round.

We prepare the plaintext set that the least significant four bits are passive
and the others are active, and the compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄0̄.
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Table 6. Propagation from D164

0xFFFFFFFFFFFFFFFE

#rounds 0 1 2 3 4 5 6 7 8 9a

|K| 1 1 15 174 1053 96251 444174 19749 188 376
aWe do not use the compact representation in the final round.

Ciphertexts encrypted one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted two rounds
consists of 81 elements, where all representations are represented by only Ē and
F̄. After eight rounds, we get 70 elements in the compact representation. We
finally apply additional one-round function, and the propagated bit-based divi-
sion property does not include 0x0000000000000001. Therefore, the lsb in the
output of the 9-round PRESENT is balanced. Table 5 shows the propagation
characteristic, where we perfectly remove redundant vectors.

The number of rounds that integral characteristics cover is clearly maximized
when the number of active bits is 63. Therefore, we moreover search for integral
characteristics exploiting 263 chosen plaintexts. Then, we prepare the plaintext
set that the least significant bit is passive and the others are active, and the
compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Ciphertexts encrypted one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted two rounds con-
sists of 15 elements, where all compact representations are represented by only
Ē and F̄. After eight rounds, we get 188 elements in the compact representation.
We finally apply additional one-round function, and the integral property is

0xEEE0EEE0EEE0EEE0,

where E means that the 1st bit is balanced, and 0 means that all bits are balanced,
i.e., 28 bits are balanced. Table 6 shows the propagation characteristic, where we
perfectly remove redundant vectors.

4.2 Key Recovery with MTTS Technique and FFT Key Recovery

We attack 12-round PRESENT-80 and 13-round PRESENT-128 by using new
9-round integral characteristics. Our attack uses the match-through-the-S-box
(MTTS) technique [19] and FFT key recovery [13]. We briefly explain their pre-
vious techniques.
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Match-through-the-S-box (MTTS) Technique [19]. The MTTS technique was
proposed by Zhang et al., and it is the extension of the meet-in-the-middle
technique [9]. Let x = (x4, x3, x2, x1) and y = (y4, y3, y2, y1) be the input and
output of the PRESENT S-box. Assuming that x1 is balanced over a chosen
plaintext set Λ, the aim is to recover round keys such that

⊕
Λ x1 = 0. Then,

x1 = y4y2 ⊕ y3 ⊕ y1 ⊕ 1 from the ANF of S−1, and
⊕

Λ y4y2 =
⊕

Λ y3 ⊕ y1
because

⊕
Λ x1 = 0. Therefore, we independently evaluate the XOR of y4y2 and

that of y3 ⊕ y1, and we then search for round keys that two XORs take the
same value. In [19], Zhang et al. attacked 10-round PRESENT-80 and 11-round
PRESENT-128 by using the MTTS technique.

Fast Fourier Transform (FFT) Key Recovery Technique [13]. The FFT key
recovery was proposed by Todo and Aoki, and it was originally used for the
linear cryptanalysis in [3]. We now evaluate the XOR

⊕

Λ

fk1(c ⊕ k2),

where fk1 is a Boolean function depending on a round key k1. Moreover, κ1

and κ2 are bit lengths of k1 and k2, respectively. Then, we can evaluate XORs
over all (k1, k2) with 3κ22κ1+κ2 time complexity. Note that the time complexity
does not depend on the number of chosen plaintexts. Therefore, we can easily
evaluate the time complexity by only counting the bit length of involved round
keys.

Integral Attack Against 12-Round PRESENT-80. Let Xi be the input
of the (i + 1)th round function, and Y i is computed as Y i = Xi ⊕ Ki, where
Ki denotes the round key. Moreover, Xi[j], Y i[j], and Ki[j] denote the jth bit
of Xi, Y i, and Ki from the right hand, respectively. Here, X0 is plaintexts, and
Y i is ciphertexts in i-round PRESENT. Figure 3 shows the 3-round key recovery
for PRESENT.

In the first step, we choose 260-plaintext sets (denoted by Λ) and get cor-
responding ciphertexts after 12-round encryption. We store frequencies of two
32-bit values

YE = (Y 12[0], Y 12[2], . . . , Y 12[62]) YO = (Y 12[1], Y 12[3], . . . , Y 12[63])

into voting tables.
In the second step, we compute the XOR of (X10[16] × X10[48]) from YE by

guessing involved round keys. The XOR is computed as
⊕

Λ

(X10[16] × X10[48]) = fK10[16,48], K11[0,8,...,56](YE ⊕ K12
E ),

where K12
E = (K12[0], K12[2], . . . , K12[62]). The FFT key recovery can evaluate

the XOR with the time complexity 3×32×22+8+32 = 3×247. Note that this time
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Fig. 3. 3-Round key recovery for PRESENT.

complexity is negligible because we already use 260 time complexity to prepare
chosen plaintexts.

In the third step, we compute the XOR of (X10[0] ⊕ X10[32]) from YO by
guessing involved round keys. The XOR is computed as

⊕

Λ

(X10[0] ⊕ X10[32]) = f ′
K11[4,12,...,60](YO ⊕ K12

O ).

where K12
O = (K12[1],K12[3], . . . , K12[63]). Note that we do not need to guess

K10[0] and K10[32] because they relate to
⊕

Λ(X10[0]⊕X10[32]) linearly. Then,
the XOR is evaluated with the time complexity 3 × 32 × 28+32 = 3 × 245, and it
is also negligible.

S

61

S

61

K 10

K 11

K 11

K 12

K 12

guessed as

guessed as

Fig. 4. Involved round keys of PRESENT-80.

In the fourth step, we search for round keys satisfying
⊕

Λ

(X10[16]X10[48]) =
⊕

Λ

(X10[0] ⊕ X10[32]).
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Since involved round keys are 42 bits and 40 bits, the total is over 80 bits.
However, from the key scheduling algorithm, the total bit length of involved
round keys reduces to 68 bits (see Fig. 4). Therefore, by repeating this procedure
N times, we can reduce the key space to 268−N .

Finally, we exhaustively search remaining keys, and the time complexity is
280−N . Therefore, the data complexity is N × 260, and the time complexity is
(N × 260 + 280−N ) for N ∈ {1, 2, . . . , 16}.

Integral Attack Against 13-Round PRESENT-128. We attack 13-round
PRESENT-128 by using the similar strategy as the 12-round attack. We do not
write the procedure in detail because of the page limitation.
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61
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61
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K 11

K 12

K 13

K 13

K 12

K 11

guessed as

guessed as

guessed as

Fig. 5. Involved round keys of PRESENT-128.

As a result, the FFT key recovery can evaluate the XOR of (X10[16] ×
X10[48]) with the time complexity 3 × 64 × 22+8+32+64 = 3 × 2112. Moreover,
the FFT key recovery can evaluate the XOR of (X10[0]⊕X10[32]) with the time
complexity 3 × 64 × 28+32+64 = 3 × 2110. While involved round keys are 112
bits and 110 bits, the total bit length of involved round keys reduces to 126
bits because of the key scheduling algorithm (see Fig. 5). Therefore, by repeat-
ing the procedure N times, we can reduce the key space to 2126−N . Finally, we
exhaustively search remaining keys. The time complexity is 2128−N , and it is the
dominant complexity. Therefore, the data complexity is N × 260, and the time
complexity is 2128−N for N ∈ {1, 2, . . . , 16}.

5 Conclusion

We proposed the compact representation for the bit-based division property in
this paper. It is difficult to apply the bit-based division property to block ciphers
whose block length is over 32 because of high time and memory complexity. The
compact representation partially solves this problem. To demonstrate the advan-
tage of our method, we applied this technique to 64-bit block cipher PRESENT.
As a result, we attacked 12-round PRESENT-80 and 13-round PRESENT-128
by using new 9-round integral characteristic, and they are improved by two
rounds than the previous best integral attacks.



34 Y. Todo and M. Morii

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

2. Boura, C., Canteaut, A.: Another view of the division property (2016). (Accepted
to CRYPTO2016). https://eprint.iacr.org/2016/554

3. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76788-6 7

4. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

5. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

6. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

7. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy. The Springer International Series in Engineering and Computer Science,
vol. 276, pp. 227–233. Springer, Heidelberg (1994)

8. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7 3

9. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 16

10. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. IACR Cryptology ePrint Archive 2015, 459 (2015). http://eprint.iacr.
org/2015/459

11. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

12. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

13. Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64–81. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-12280-9 5

14. Todo, Y., Morii, M.: Bit-based division property and application to Simon fam-
ily. IACR Cryptology ePrint Archive 2016, 285 (2016). (Accepted to FSE2016).
https://eprint.iacr.org/2016/285

15. Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331–345. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-02726-5 24

16. Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the square
attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99.
Springer, Heidelberg (2002). doi:10.1007/3-540-45661-9 7

http://dx.doi.org/10.1007/978-3-540-74735-2_31
https://eprint.iacr.org/2016/554
http://dx.doi.org/10.1007/978-3-540-76788-6_7
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-27890-7_3
http://dx.doi.org/10.1007/978-3-642-35999-6_16
http://eprint.iacr.org/2015/459
http://eprint.iacr.org/2015/459
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-319-12280-9_5
https://eprint.iacr.org/2016/285
http://dx.doi.org/10.1007/978-3-319-02726-5_24
http://dx.doi.org/10.1007/3-540-45661-9_7


Compact Representation for Division Property 35

17. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71039-4 23

18. Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26617-6 12

19. Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-30840-1 7

http://dx.doi.org/10.1007/978-3-540-71039-4_23
http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://dx.doi.org/10.1007/978-3-319-30840-1_7


http://www.springer.com/978-3-319-48964-3


	Compact Representation for Division Property
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Integral Attack
	2.3 Division Property
	2.4 Bit-Based Division Property

	3 Compact Representation for Division Property
	3.1 Motivation
	3.2 General Idea
	3.3 Toy Cipher Using PRESENT S-box
	3.4 Core Function of PRESENT

	4 Improved Integral Attack on PRESENT
	4.1 New Algorithm to Find Integral Characteristics
	4.2 Key Recovery with MTTS Technique and FFT Key Recovery

	5 Conclusion
	References


