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Abstract. This paper presents a novel counter-example guided abstrac-
tion refinement algorithm for the automatic verification of concurrent
programs. Our algorithm proceeds in different steps. It first constructs
an abstraction of the original program by slicing away a given subset of
variables. Then, it uses an external model checker as a backend tool to
analyze the correctness of the abstract program. If the model checker
returns that the abstract program is safe then we conclude that the orig-
inal one is also safe. If the abstract program is unsafe, we extract an
“abstract” counter-example. In order to check if the abstract counter-
example can lead to a real counter-example of the original program,
we add back to the abstract counter-example all the omitted variables
(that have been sliced away) to obtain a new program. Then, we call
recursively our algorithm on the new obtained program. If the recursive
call of our algorithm returns that the new program is unsafe, then we
can conclude that the original program is also unsafe and our algorithm
terminates. Otherwise, we refine the abstract program by removing the
abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented
our algorithm, and run it successfully on the concurrency benchmarks in
SV-COMP15. Our experimental results show that our algorithm signifi-
cantly improves the performance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance
of software, to the degree that concurrent programs have become crucial parts of
many applications. At the same time, concurrency gives rise to enormously com-
plicated behaviors, making the task of producing correct concurrent programs
more and more difficult. The main reason for this is the large number of pos-
sible computations caused by many possible thread (or process) interleavings.
Unexpected interference among threads often results in Heisenbugs that are dif-
ficult to reproduce and eliminate. Extensive efforts have been devoted to address
this problem by the development of testing and verification techniques. Model
checking addresses the problem by systematically exploring the state space of a
given program and verifying that each reachable state satisfies a given property.
Applying model checking to realistic programs is problematic, due to the state
explosion problem. The reason is that we need (1) to exhaustively explore the
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entire reachable state space in all possible interleavings, and (2) to capture and
store a large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g., [4,5,11,
15,17]) approach is one of the successful techniques for verifying programs. This
approach consists in four basic steps:

– Abstraction step: Construct a finite-state program as an abstraction of the
original program using predicate abstraction (with a set of predicates) and go
to the Verification step.

– Verification step: Use a model checker to check if the constructed finite state
program satisfies the desired property. If it is the case, then the original pro-
gram satisfies also the property and the verification algorithm terminates;
otherwise extract a counter-example and go to the Analysis step.

– Analysis Step: Check if the retuned counter example is spurious or not. If it
is not, then we have a real bug in the original program and the verification
algorithm terminates; otherwise go to the Refinement step.

– Refinement Step: If the counter-example is spurious, refine the set of used
predicates in the Abstraction step to eliminate the counter example. Return
to the Abstraction step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as
SLAM [4], BLAST [5], MAGIC [8] and CPAchecker [6]. However, CEGAR
may also suffer from the state-space exploring problem in the case of concurrent
programs due to the large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-
Example Guided Program Verification (CEGPV)) that addresses the state-space
explosion problem encountered in the verification of concurrent programs. The
work-flow of our CEGPV algorithm is given in Fig. 1. The algorithm consists
of four main modules, the abstraction, the counter-example mapping, the recon-
struction and the refinement. It also uses an external model checker tool.

The abstraction module takes as input a concurrent program P and a subset
V0 of its shared variables. It then constructs an over-approximation of the pro-
gram P, called P ′, as follows. First, it keeps variables in the set V0 and slices
away all other variables of the program P. Occurrences of the sliced variables are
replaced by non-deterministic values. Second, some instructions, where the sliced
variables occur, in the program P can be removed. Then, the model checker takes
as input P ′, and checks whether it is safe or not. If the model checker returns
that P ′ is safe, then P is also safe, and our algorithm terminates. If P ′ is unsafe,
then the model checker returns a counter-example π′.

The counter-example mapping module takes the counter-example π′ as its
input. It transforms the run π′ to a run π of the program resulting of the abstrac-
tion module (using V0 as its set of shared variables).

The reconstruction module takes as input the counter-example π of P ′. It
checks whether π can lead to a real counter-example of P. In particular, if P ′ is
identical to P, then the algorithm concludes that P is unsafe, and terminates.
Otherwise, the reconstruction adds back all omitted variables and lines of codes
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Fig. 1. An overview of the CEGPV algorithm.

to create a program P1 while respecting the flow of the instructions in π and the
valuation of the variables in V0. Hence, P1 has as its set of variables only the
omitted ones. Then, CEGPV algorithm then recursively calls itself to check P1

in its next iteration. If the iteration returns that P1 is unsafe, then the run π
leads to a counter-example of the program P. The algorithm concludes that P is
unsafe and terminates. Otherwise, the run π cannot lead to a counter-example
of P. Then the algorithm needs to discard the run π from P ′.

The refinement adds π to the set of spurious counter-examples of P ′. It then
refines P ′ by removing all these spurious counter-examples from the set of runs
of P ′. The new resulting program is then given back to the model checker tool.

Our CEGPV algorithm has two advantages. First, it reduces the number of
variables in the model-checked programs to prevent the state-space explosion
problem. Second, all modules are implemented using code-to-code translations.

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV, for the verification
of C/pthreads programs. We used CBMC version 5.1 as the backend tool [10].
We then evaluated CEGPV on the benchmark set from the Concurrency cate-
gory of the TACAS Software Verification Competition (SV-COMP15) [2]. Our
experimental results show that CEGPV significantly improve the performance
of CBMC, showing the potential of our approach.

Related Work. CEGAR is one of the successful techniques used in program
verification. Our CEGPV algorithm can be seen as a new instance of the CEGAR
algorithm that can be implemented on the top of any verification tool. In contrast
with the classical CEGAR algorithms (e.g., [5,9,11,12,18]) where the programs
are abstracted using a set of predicates, our CEGPV algorithm uses variable
slicing techniques to obtain the abstract program.
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Variable slicing is also one of the verification guided approaches to address
the state-space exposing problem. In [18], an analysis tool for detecting memory
leaks is presented based on slicing some of the program variables. Each generated
abstract program is then checked by a backend tool. RankChecker [7] is a testing
tool based on an assumption that most concurrency bugs have a small number of
variables involved. To reduce the search space, it forces processes in a concurrent
program to interleave at certain points that access a subset of variables. Corral
[15] abstracts the input program by only keeping track of a subset of variables. If
the counter-example of the abstract program is spurious, Corral then refines the
abstraction by decreasing the set of omitted variables. The algorithm terminates
once the counter-example corresponds to a run of the original program. Our
CEGPV algorithm also abstract programs by slicing away some variables (as
it is also done by the localization reduction techniques [13,14]). However, our
CEGPV algorithm has the feature to recursively call itself in order to check if
the counter-example can lead to a real one while trying to keep the number of
variables of the model-checked programs as small as possible.

2 Motivating Example

In this section, we informally illustrate the main concepts of our algorithm.
Figure 2a is a simplified version of a program in the concurrent C benchmark

in SVCOMP [2]. The program P has two processes, called P and Q, running in
parallel. Processes communicate through five shared variables which are x, y, z,
t1 and t2, ranging over the set of integers. All variables are initialized to 0. The
behavior of a process is defined by a list of C-like instructions. Each instruction
is composed of a unique label and a statement. For example, in process P, the
instruction p1: x = y ? z ? 0 : 1 : 1 has p1 as a label, and x = y ? z ? 0 : 1 :
1 as a statement. That statement is a ternary assignment in which it assigns 0
to x if both y and z are equal to 1, and assigns 1 to x otherwise. The assertion
labeled by p5 holds if the expression t1 + t2 is different from 1, and in that case
the program is declared to be safe. Otherwise, the program is unsafe.

x = y = z = t1 = t2 = 0

process P:

p1: x = y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(a) A simple program P

x = y = z = 0

process P:

p1: x = *;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = *;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(b) Abstract program P1

Fig. 2. A toy example and its abstraction
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In order to apply our algorithm, we first need to deter-
mine a subset of program variables that will be sliced away.
To that aim, we construct a dependency graph between
variables. The dependency graph consists of a number of
vertices and directed edges. Each vertex corresponds to a
variable of the program. The edges describe the flow depen-
dency between these variables. The dependency graph of
the program P is given in Fig. 3. For instance, x depends on
both y and z due to the two assignments labeled by p1 and
q1. Similarly, the assignment labeled by p2 creates a depen-
dency between the variables y and z. We use the dependency
graph to decide the first set of variables to be sliced away.
In general, we keep variables that influence the safety of the program. In the set-
tings of the example, the variables t1 and t2 are used in the assertion at p5 and
therefore we keep track of the variables t1 and t2. Furthermore, we keep also track
of x since t1 and t2 are dependent on x.

ρ:

p1 (x = 0)

p4 (t1 = 0)

q1 (x = 1)

q4 (t2 = 1)

p5 (assert false)

ϕ:

q1 (x = 1)

q4 ( t2 = 1)

p1 (x = 0)

p4 (t1 = 0)

p5 (assert false)

Fig. 4. Counter-examples of P1

Once we have the subset of variables
{t1, t2, x} to be preserved, we need to slice
away the variables {y, z}. To do that, we
abstract the program by replacing occur-
rences of the variables y and z by a non-
deterministic value *. Assignments labeled
by p1 and q1 are transformed to x = * ? * :
0 ? 1 ? 1 and x = * ? 0 : * ? 0 ? 1, respectively.
We make a further optimization to trans-
form these assignments to x = *. Since we
are not anymore keeping track of the vari-
ables y and z, instructions which are assign-
ments to these variables can be removed. In
this case, we remove the instructions labeled
by p2, p3, q2 and q3 from the abstract pro-
gram. All the other instructions remain the
same. Resulting abstract program, called
P1, is given in Fig. 2b. P1 has only three
variables t1, t2 and x, and five instructions.

The next step of our algorithm is to feed the abstract program to a model
checker. The model checker checks whether the program is safe or not. If the
program is unsafe, the model checker returns a counter-example. In our case,
since P1 is unsafe, we assume the model checker returns a counter-example, called
ρ, given in Fig. 4. In the obtained counter-example ρ, the process P executes the
instruction labeled by p1. At that instruction, the non-deterministic symbol *
returns the value 0, and therefore x is assigned to 0. Then the process P executes
the instruction labeled by p4 and sets the value of t1 to 0. The control then
switches to the process Q which executes the instructions labeled by q1 and q4.
They evaluate both x and t1 to 1. Then, the assertion in the instruction labeled
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by p5 is checked. The expression in the assertion, t1 + t2 != 1, is evaluated to
false, so the program is unsafe.

Although ρ is the counter-example of P1, ρ is not identified to be a counter-
example of P since P1 is an abstraction of P. In order to check whether ρ
can lead to a counter-example of P, we need to add back some of the omitted
variables and lines of codes. Adding back this information to ρ will result in a
new program, called Sρ. In this case, we add y and z to ρ.

y = z = 0

process P:

p1: assume 0 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 0 == 0

process Q:

q1: assume 1 == y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: assume 1 == 1;p5: assert false;

Fig. 5. The program Sρ

The program Sρ is
given in Fig. 5. When
adding back variables,
several instructions are
restored such as the
instructions labeled by
p2, p3, q2 and q3.
Variables, which appear
in the counter-example,
can be discarded since
their values are known.
For example, x at p1 in
ρ is 0. We replace the
occurrence of x in q1
by 1. We also transform the assignment in the instruction labeled by p1 to
an assumption to check whether the value of x is equal to the value of right
hand side of assignment, i.e. assume 0 == y ? z ? 0 : 1 : 1. The assumption
blocks the execution until the expression in the assumption is evaluated to true.
Similarly, the instruction labeled by p4 is transformed to assume 0 == 0. Then,
we remove assumptions that are trivially true such as assume 0 == 0. Since Sρ

needs to respect the order of instructions in ρ, the instruction labeled by p1 is
only executed after the instruction labeled by q3.

x = t1 = t2 = 0

process P:

p1: x = *;

p4: t1 = x;

p5: assert (t1+t2 != 1);

observer :

if x == 0 then

if t1 == 0 then

if x == 1 then

if t2 == 1 then

assume false;

process Q:

q1: x = *;

q4: t2 = x;

Fig. 6. The refined program P2

The model checker
checks Sρ and returns
that Sρ is safe. This
means ρ can not lead to
a counter-example of P.
We then need to refine
P1 to exclude ρ from its
set of runs. Therefore,
we create a refinement of
P1, called P2 and given
in Fig. 6, as follows. We
use an observer to check
whether the actual run
is identical to the run ρ.
Two runs are identical if (1) their orders of executed instructions are the same,
and (2) valuations of variables after each instruction are the same in both runs.
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If the actual run is identical to the run ρ, then that run is safe. For the sake of
simplicity, we model the observer as a sequence of conditional statements. After
each instruction in the run ρ, except the assertion at the end of ρ, we create a
conditional statement to re-evaluate values of variables. For instance, if x ==
0 follows the assignment x = * at p1, where 0 is the value of x at instruction
labeled by p1 in ρ. If if x == 0 is passed, then the execution can check if t1 ==
0 after running assignment t1 = x at p4. Otherwise, the execution is no longer
followed by the observer. If an execution passes all conditional statements of the
observer, then the actual run is identical to ρ. The assumption assume false at
the end of observer is to prevent the execution of the assertion at p5. Hence, P2

excludes ρ from its runs.

y = z = 0

process P:

p1: assume 1 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 1 == 1;

process Q:

q1: assume 0 == y?0:z?0:1;

q2: y = ! z;

q3: z = 1;

q4: assume 1 == 1;

p5: assert false;

Fig. 7. The program Sϕ

The model checker
checks P2. It returns a
counter-example, called
ϕ, as given in Fig. 4.
In ϕ, the instructions
of the process Q, which
are labeled by q1 and
q4, are issued first. After
that, the instructions of
P, which are labeled by
p1, p4 and p5, are per-
formed. Similar to the
way we verify ρ, we add y and z back to ϕ and construct a new program to
simulate ϕ, called Sϕ. Sϕ is presented in Fig. 7. In the counter-example Sϕ, the
variables x, t1 and t2 are replaced by their values in ϕ. Then, instructions labeled
by p4 and q4 are removed due to the optimization. We also force Sϕ to respect
the flow of the counter-example ϕ. For instance, the instruction labeled by p1
only runs after the instruction labeled by q3.

π:

q1(assume true)

q2(y = 1)

q3(z = 1)

p1 (assume true)

p2 (y = 1)

p3 (z = 0)

p5 (assert false)

Fig. 8. Counter-example of Sϕ

The model checker checks Sϕ. It then
concludes that Sϕ is unsafe with a proof
by a counter-example, called π, given in
Fig. 8. We need to verify whether π can
lead to a counter-example of P by adding
more variables and lines of codes, and
then constructing a new program that
respects the flow of instructions in π.
However, all variables of the program P
are used, so π is a counter-example of P.
Thus, P is unsafe and the algorithm stops.

3 Concurrent Programs

In this section, we describe the syntax and semantics of programs we consider
but before that we will introduce some notations and definitions.
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For A a finite set, we use |A| to denote its size. Let A and B be two sets, we
use f : A �→ B to denote that f is a function that maps any element of A to an
element of B. For b ∈ B, we use b ∈ f to denote that there is an a ∈ A such
that f(a) = b. For a ∈ A and b ∈ B, we use f [a ←↩ b] to denote the function f ′

where f ′(a) = b and f ′(a′) = f(a′) for all a′ �= a.

Syntax. Figure 9 gives the grammar for a C-like programming language that we
use for defining concurrent programs. A concurrent program P starts by defining
a set of shared variables. Each shared variable is defined by the command var
followed by a unique identifier. We assume that the variable ranges over some
(potentially infinite) domain D. Then the program P defines a set of processes
(or threads). Each process has a unique identifier p and its code is a sequence
consists of instructions (which is placed between begin and end). An instruction
ins is of the form “loc:stmt”, where loc is a label (or control location), and stmt
is a statement. We use label(ins) to denote the label loc of the instruction ins
and stmt(loc) to denote the statement stmt. We use VP to denote the set of
variables, ProcP to denote the set of processes of the program P. For a process
P ∈ ProcP , let IP be the set of instructions in the code of P and QP be the set
of labels appearing in its code. We assume w.l.o.g. that each instruction has a
unique label. Let IP := ∪P∈ProcP IP , and QP := ∪P∈ProcPQP . We assume that
we dispose of a function init : Proc �→ QP that returns the label of the first
instruction to be executed by each process.

c-prog ::= var + process +

var ::= var x ;
process ::= process p begin inst ∗ end

inst ::= loc: stmt ;
stmt ::= skip

| x := expr
| goto loc1, . . . locn
| assume expr
| assert expr
| if expr
then inst else inst fi

expr ::= expr *

Fig. 9. Syntax of concurrent programs

A skip statement corresponds to
the empty statement that leaves
the program state unchanged. A
goto statement of the form “goto
loc1,. . . locn” jumps nondeterministi-
cally to an instruction labeled by loct

for some t ∈ {1, . . . , n}. An assign-
ment statement (asg for short) of the
form “x := expr” assigns to the vari-
able x the current value of the expres-
sion expr. An assumption statement
(asp) of the form “assume expr” checks
whether the expression expr evaluates
to true and if not, the process execu-
tion is blocked till that the value of
expr is true. An assertion statement
(asr) of the form “assert expr” checks whether the expression expr evalu-
ates to true, and if not the execution of the program is aborted. A conditional
statement (cnd) of the form “if 〈expr〉 then inst1 else inst2 fi” executes the
instruction inst1, if the expression expr evaluates to true. Otherwise, it exe-
cutes the instruction inst2. We assume w.l.o.g. that the label of inst1 is different
from the label of inst2. We assume a language of expressions expr interpreted
over D. Furthermore, in order to allow nondeterminism, expr can receive the
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non-deterministic value *. We use Expr to denote the set of all expressions in
P. Let Varexpr : Expr �→ 2VP be a function that returns the set of variables
appearing in a given expression (e.g., Varexpr(y + z + 1) = {y, z}).

Semantics. We describe the semantics informally and progressively. Let us
first consider the case of a (sequential) program Ps that has only one process
P (i.e., ProcPs

={P}). A sequential configuration c is then defined by a pair
(loc, state) where loc ∈ QP is the label of the next instruction to be executed
by the process P , and state : VP �→ D is a function that defines the valuation
of each shared variable. The initial sequential configuration cinit(Ps) is defined
by (init(P ), stateinit) where stateinit(x) = 0 for all x ∈ VPs

. In other words,
at the beginning of the program, all variables have value 0 and the process P
will execute the first instruction in its code. The transition relation −→Ps

on
sequential configurations is defined as usual: For two sequential configurations
c, c′, we write c−→Ps

c′ to denote that the program Ps can move from c to c′.
Now, we consider the case of the concurrent program P that has at least

two processes (i.e., |ProcP | ≥ 2). For every P ∈ ProcP , let PP be the sequen-
tial program constructed from P by deleting the code of any process P ′ �= P
(i.e., PP contains only the instructions of the process P ). We define a function
label definition q̄ : ProcP �→ QP that associates for each process P ∈ ProcP ,
the label q̄(P ) ∈ QP of the next instruction to be executed by P . A concur-
rent configuration (or simply configuration) c is a pair (q̄, state) where q̄ is a
label definition, and state is a memory state. We use LabelOf(c), StateOf(c) to
denote q̄ and state respectively. The initial configuration cinit(P) is defined by
(q̄init, stateinit) where q̄init(P ) = init(P ) for all P ∈ ProcP , and stateinit(x) = 0
for all x ∈ VP . In other words, at the beginning, each process starts at the
initial label, and all variables have value 0. We use C(P) to denote the set of
all configurations of the program P. Then, the transition relation between con-
figurations is defined as follows: For two given configurations c = (q̄, state) and
c′ = (q̄′, state′) and a label loc ∈ QP of some process P , we write c loc−−→P c′

to denote that program P can move from the configuration c to the configura-
tion c′ by executing the instruction labeled by loc of the process P . Formally,
we have c loc−−→P c′ iff (q̄(P ), state)−→PP

(q̄′(P ), state′), q̄(P ) = loc, and for every
P ′ ∈ (ProcP \ {P}), we have q̄(P ′) = q̄′(P ′).

A run π of P is a finite sequence of the form c0 · loc1 · c1 · loc2 · · · locm ·
cm, for some m ≥ 0 such that: (1) c0 = cinit(P) and (2) ci

loci+1−−−−→P ci+1 for
all i ∈ {0, . . . , m − 1}. In this case, we say that π is labeled by the sequence
loc1loc2 . . . locm and that the configuration cm is reachable by P. We use Trace(π)
and Target(π) to denote the sequence loc1·loc2 . . . locm in π and the configuration
cm, respectively. We use ΠP to denote the set of all runs of the program P.
The program P is said to be safe if there is no run π reaching a configuration
c = (q̄, state) (i.e., Target(π) = c) such that q̄(P ), for some process P ∈ ProcP ,
is the label of an assertion statement of the form “assert expr” where the
expression expr can be evaluated to false at the configuration c.



34 P.A. Abdulla et al.

4 Counter-Example Guided Program Verification

In this section, we present our Counter-Example Guided Program Verification
(CEGPV) algorithm. The CEGPV algorithm takes a program P as its input
and returns whether P is safe or not. The work-flow of the algorithm is given
in Fig. 1. The algorithm consists of four modules, the abstraction, the counter-
example mapping, the reconstruction and the refinement. It also uses an external
model checker as a back-end tool. Recall that VP denotes the set of variables of
the program P. The algorithm starts by selecting a subset of variables V0 ⊆ VP
using a dependency graph (not shown in Fig. 1 for sake of simplicity).

The abstraction takes P and V0 as its input. It then constructs an over-
approximation of P, called P ′, as follows. First, it keeps variables in V0 and slices
away all other variables of P. Occurrences of the sliced variables are replaced by
a non-deterministic value. Second, some instructions, where the sliced variables
occur, in P can be discarded. After that, P ′ is given to a model checker. Observe
that P ′ has V0 as its set of shared variables.

Then, the model checker takes as input P ′, generated by the abstraction
module or the refinement module, and checks whether it is safe or not. If the
model checker returns that the program is safe, then P is also safe, and our
algorithm terminates. If the program is unsafe, then the model checker returns
a counter-example π′ of the form c0 · loc1 · c1 · loc2 · · · locm · cm.

The counter-example mapping takes the counter-example π′ as its input. It
transforms the run π′ to a run of the program resulting of the abstraction module.

The reconstruction takes always as input a counter-example π of P ′ (which
results from the application of the abstraction module to the program P). It
then checks whether π can lead to a real counter-example of P. In particular,
if V0 = VP , i.e. no variable was sliced away from P, then P ′ is identical to P.
Therefore, π is also a counter-example of P. The algorithm concludes that P is
unsafe, and then terminates. Otherwise, the reconstruction adds back all omitted
variables (i.e., VP \ V0) and lines of codes to create a program P1. The program
P1 also needs to respect the flow of the instructions in π. In other words, the
instruction labeled by loci, for some i ∈ {1, . . . , m}, in P1 can only be executed
after executing all the instructions labeled by locj for all j ∈ {1, . . . , i − 1}.
For each run of the program P1, let c′

i be the configuration after executing the
instruction labeled by loci. The configuration c′

i needs to satisfy StateOf(c′
i)(x) =

StateOf(ci)(x) for all x ∈ V0, i.e. each value of variable in the set V0 at the
configuration c′

i is equal to its value in the configuration ci.
Then CEGPV recursively calls itself to check P1 in its next iteration. Inputs

of the next iteration are P1, and a subset of variables V1 ⊆ VP1 = (VP \ V0),
which is selected using the dependency graph. If the iteration returns that P1 is
unsafe, then the run π leads to a counter-example of P. The algorithm concludes
that P is unsafe and terminates. Otherwise, π cannot lead to a counter-example
of P. Then the algorithm needs to discard π from the set of runs of P ′.

The refinement adds π to the set of spurious counter-examples of P ′ (result-
ing from the application of the abstraction module to P). It then refines P ′ by



Counter-Example Guided Program Verification 35

removing all these spurious counter-examples from the set of runs of P ′. The
new resulting program is then given back to the model checker.

In the following, we explain in more details each module of our CEGPV
algorithm. The counter-example mapping module is described at the end of the
subsection dedicated to the explanation of the refinement module (Sect. 4.3).

4.1 The Abstraction

The abstraction transforms P into a new program P ′ by slicing away all variables
in VP \V0 and some lines of codes. In particular, we define a map function [[.]]ab

that rewrites P into P ′. The formal definition of the map [[.]]ab is given in Fig. 10.
In the following, we informally explain [[.]]ab.

The map [[.]]ab keeps only the variables in V0 and removes all other variables
of P. The map [[.]]ab also keeps the same number of processes as in P, and
transforms the code of each process of P to a corresponding process in P ′.

[[ c-prog ]]ab
def= [[ var x ]]+ab[[ process ]]+ab

[[ var x ]]ab
def=

var x; if x ∈ V0

var x; otherwise
[[ process ]]ab

def= process p begin [[ inst ]]∗ab end

[[ inst ]]ab
def= loc: [[ stmt ]]ab;

[[skip]]ab
def= skip

[[goto loc1, . . . , locn]]ab
def= goto loc1, . . . , locn

[[ x := expr ]]ab
def= skip if x /∈ V0

x := [[ expr ]]ab otherwise
[[assume expr ]]ab

def= assume [[ expr ]]ab
[[assert expr ]]ab

def= assert [[ expr ]]ab
[[if expr then inst1
else inst2 fi]]ab

def=
if [[ expr ]]ab then [[ inst1 ]]ab
else [[ inst2 ]]ab fi

[[ expr ]]ab
def=

∗ if Varexpr(expr) ∩ (VP0 \ V0) = ∅

expr otherwise

Fig. 10. Translation map [[.]]ab

For each instruction in a
process, the map [[.]]ab keeps
the label and transforms the
statement in that instruc-
tion. The map [[.]]ab replaces
occurrences of sliced vari-
ables in the statement by the
non-deterministic value *.
First, the skip and goto
statements remain the same
since they do not make use
of any variable. Second, for
an assignment statement of
the form “x := expr”, if
the variable x is not in V0,
then that statement is trans-
formed to the skip state-
ment. If at least one discarded variable occurs in the expression expr, then the
assignment is transformed to “x := ∗”. Otherwise, the assignment remains the
same. Third, for both an assumption statement of the form “assume expr” and
an assertion of the form “assert expr”, the map [[.]]ab replaces the expression
expr by the nondeterministic value *, if at least one discarded variable occurs
in expr. Otherwise, the assumption and assertion remain the same. For a condi-
tional statement, the map [[.]]ab transforms its guard to be non-deterministic if
it makes use of one of the discarded variables. The consequent instruction and
alternative instruction are also transformed in a similar manner by the map [[.]]ab.
Finally, we remove any instruction that trivially does not affect the behaviors of
[[P]]ab.

Lemma 1. If [[P]]ab is safe, then P is safe.
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4.2 The Reconstruction

Let π be a counter-example of the program [[P]]ab of the form c0 · loc1 · c1 ·
loc2 · · · locm · cm. The reconstruction transforms P to a new program P1 by
forcing P to respect the sequence of configurations and labels in π. In particular,
we define a map function [[.]]co to rewrite the program P into the program P1.
The formal definition of the map [[.]]co is given in Fig. 11. For a label loc, let
IndexOf(loc) = {i ∈ {1, . . . , m} | loci = loc} be the set of positions where the
label loc occurs in the run π. Let newloc be a function that returns a fresh label
that has not used so far. The map [[.]]co starts by adding a new variable cnt. The
variable cnt is used to keep track of the execution order of the instructions in π.
All variables in V0 are removed by the map [[.]]co since their values is determined
by π. The map [[.]]co also keeps the same number of processes as in the program
P, and transforms the code of each process.

[[ c-prog ]]co
def
= var cnt;[[ var x ]]+co[[ process ]]+co

[[ var x ]]co
def
=

var x; if x /∈ V0

var x; otherwise

[[ process ]]co
def
= process p begin [[ inst ]]co end

[[ inst ]]co
def
=

[[loc : stmt ]]co,ab if loc ∈ I[[P]]
ab

[[loc : stmt ]]co,oth; otherwise

[[loc : stmt ]]co,oth
def
=

⎧
⎪⎪⎨

⎪⎪⎩

loc: if (cnt == 0) then [[ stmt ]]0co,oth; else

. . .
if (cnt == m) then [[ stmt ]]mco,oth;

else skip; fi; . . . fi;

[[loc : stmt ]]co,ab
def
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

loc: if (cnt + 1 ∈ IndexOf(loc) ∧ cnt == 0) then

[[ stmt ]]0co,ab; else

. . .
if (cnt + 1 ∈ IndexOf(loc) ∧ cnt == m − 1) then

[[ stmt ]]m−1
co,ab; else assume false; fi; . . . fi;

newloc : cnt := cnt + 1;

[[skip]]ico,−
def
= skip where − ∈ {ab, oth}

[[goto loc1, . . . , locn]]ico,−
def
= goto loc1, . . . , locn where − ∈ {ab, oth}

[[assume expr ]]ico,−
def
= assume [[ expr ]]cco where − ∈ {ab, oth}

[[assert expr ]]ico,−
def
= assert [[ expr ]]cco where − ∈ {ab, oth}

[[x := expr ]]ico,ab
def
= assume StateOf(ci+1)(x) == [[ expr ]]ico

[[x := expr ]]ico,oth
def
= x := [[ expr ]]ico

[[if expr then inst1
else inst2 fi]]ico,ab

def
=

assume [[ expr ]]ico == true; [[ inst1 ]]co if label(inst1) ∈ LabelOf(ci+1)

assume [[ expr ]]ico == false; [[ inst2 ]]co otherwise
[[if expr then inst1
else inst2 fi]]ico,oth

def
=

if [[ expr ]]ico then [[ inst1 ]]co
else [[ inst2 ]]co fi

[[ expr ]]ico
def
= expr [∀x ∈ V0 : x ← StateOf(ci)(x)]

Fig. 11. Translation map [[.]]co

The map [[.]]co transforms instructions in each process as follows. Instructions
that occur in [[P]]ab, are transformed by the map [[.]]co,ab, while other instructions
are transformed by the map [[.]]co,oth. For an instruction of the form “loc: stmt”,
the map [[.]]co,oth keeps the label loc and creates m + 1 copies of the statement
stmt. The i-th copy of stmt, with i ∈ {0, . . . , m}, is executed after reaching the
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configuration ci in the run π. Therefore, the i-th copy only can be only executed
under the condition “cnt == i”. Then, the statement stmt is transformed based
on the configuration ci in the run π, denoted by [[.]]ico,oth. Similarly, the map
[[.]]co,ab keeps the label loc and creates m copies of the statement stmt (which
corresponds to number of instructions in the run π). The i-th copy of stmt,
with i ∈ {1, . . . , m}, is executed if the label loc appears at position i in the
run π. Therefore, the i-th copy can be executed under the condition “cnt +
1 ∈ IndexOf(loc)” (i.e., the label loc appears at the position cnt + 1) and that
cnt = i − 1 (i.e., after reaching the configuration ci−1). Then, the map [[.]]co,ab

transforms the statement stmt based on the configurations ccnt−1 and ccnt (i.e.,
the configurations before and after executing the instruction labeled by loc) in
the run π, denoted by [[.]]cnt

co,ab. The variable cnt is then increased by one to denote
that one more instruction in the run π has been executed.

In general, the map [[.]]ico,ab, for some i ∈ {0, . . . , m − 1} rewrites all expres-
sions in statements. The skip and goto statement remain the same. For both an
assertion of the form “assert expr” and assumption “assume expr”, [[.]]cco,ab

transforms their expressions expr. For an assignment of the form “x := expr”,
it rewrites that assignment by an assumption checking that, the value of x in
the configuration ci+1 is equal to the value of expr at the configuration ci. For a
conditional statement of the form if 〈expr〉 then inst1 else inst2 fi”, [[.]]cco,ab,
we first check which branch has been taken in the run π. To do that, we check
the labels appearing in the configuration ci+1. After that, we add an assumption
to check whether the branch has been correctly selected in the counter-example.
if expr is evaluated to true at the configuration ci and the label of inst1 appears
at the configuration ci+1, then it executes the instruction [[inst1]]

i
co,ab. Otherwise,

it executes the instruction [[inst2]]
i
co,ab. Finally, all occurrences of variables in V0

in any expressions expr are replaced by their values in the configuration ci.
The map [[.]]ico,oth, for some i ∈ {0, . . . , m}, transforms statements as follows.

The skip and goto statement remain the same. For assignment, assumption, and
assertion, [[.]]ico,oth rewrites expressions in these statements. For a conditional
statement, it also rewrites the guards, the consequent instruction and the alter-
native instruction. The expression is transformed by replacing occurrences of
variables in V0 in that expression by their values in the configuration ci.

Lemma 2. If [[P]]co is unsafe, then P is unsafe.

4.3 The Refinement

Given a set of runs R of [[P]]ab, the refinement module constructs a program P ′

from [[P]]ab by discarding the set of runs in R from the set of runs of [[P]]ab. Before
giving the details of this module, we introduce some notations and definitions.

For a run π of the form c0 · loc1 · c1 . . . locm · cm, let Loc(π) = {loc1, . . . , locm}
be the set of all labels occurring in π, and Con(π) = {c0, c1, . . . , cm} be the set
of all configurations in π. Let Rloc =

⋃
π∈R Loc(π) and Rcon =

⋃
π∈R Con(π). Let

Prefix(π) = {c0 · loc1 · c1 . . . loci · ci|i ∈ {0, . . . , m − 1}} be the set of prefixes of
π and Rprefix =

⋃
π∈R Prefix(π) be the set of all prefixes of all runs in R.



38 P.A. Abdulla et al.

Then, we construct a graph (or a tree) GR to represent in concise manner
the set of runs in R. The graph GR = (V,E) consists of a number of vertices
V and directed edges E where V = Rprefix and E = {(v, v′)|∃loc ∈ Rloc, c ∈
Rcon and v′ = v · loc · c}. In other words, each vertex corresponds to a prefix in
Rprefix , and each edge describes the transition from one prefix to another one.

Let v ∈ V , P ∈ Proc[[P]]
ab

, and loc ∈ QP . Let Next(v, loc) = {c|c ∈ Rcon :

v · loc · c ∈ (V ∪ R)} be the function that returns the set of configurations
which can be reached from v through executing the instruction labeled by loc.
Let Reach(v, P ) = {loc|loc ∈ QP ,∃c ∈ C([[P]]ab) and ∃v′ ∈ Π([[P]]ab) : (v′ =
v · LabelOf(Target(v))(P ) · c) ∧ (v′ /∈ (V ∪ R)) ∧ (loc = LabelOf(c)(P ))} be
the function that returns the set of all possible labels loc of the process P that
can be reached by a run v′ /∈ R ∪ V which is an extension of the prefix v by
executing an instruction of the process P . In order to force the execution of
[[P]]ab to perform a different run than the ones in R, we make sure that [[P]]ab

follows the prefix v ∈ Rprefix , and then performs the instruction of the process P
that leads to a new prefix p′ which was not part of Rprefix or R. Then, we create
the output program P ′ of the refinement module from [[P]]ab by adding (1) an
observer process to simulate the execution of the prefix v′, and (2) a controller
per process to continue execution of each process from the reached location
after executing the prefix v′. We add a new variable, called label, used by the
observer to communicate to each controller where the execution will resume for
each process after leaving the observer.

start: goto v1, v2, . . . , vn;
. . .
vi: for all x ∈ V0: x := StateOf(Target(vi))(x);

goto (vi, P1), . . . , (vi, Pm);
. . .
(vi, Pj): if Reach(vi, Pj) = ∅ then

loc := LabelOf(Target(vi))(Pj);
if stmt(loc) of the form “x := *” then

x := *;
assume x /∈ {StateOf(c)(x)|c ∈ Next(vi, loc)};

else assume false ; fi;
label := ∗;
assume label ∈ Reach(vi, Pj);
flag := 1;
for all P ∈ Proc[[P]]

ab

\ {Pj}
label := LabelOf(Target(vi)) (P );

fi;
assume false ;
. . .

. . .

Fig. 12. Pseudocode of observer with V =
{v1, . . . , vn} and Proc[[P]]

ab

= {P1, . . . , Pm}

We construct an observer as
given in Fig. 12. The observer
is executed before any processes
in [[P]]ab. It starts by non-
deterministically jumping to a
node vi (representing a prefix of
a run in R), where vi represents
a vertex of GR. At the node vi,
values of variables are updated
to the valuation at Target(vi).
Then, the observer decides, in
non-deterministic manner, to exe-
cute an instruction of a process
Pj ∈ [[P]]ab. If the execution of
an instruction of Pj , from the pre-
fix vi, does not lead a new prefix
which is not in R ∪ Rprefix (i.e.,
Reach(v, Pj) is empty), then the
execution of the observer termi-
nates (and so of the program P ′).
If Reach(v, Pj) is not empty, we
first distinguish the case where the next instruction to be executed by Pj is
a non-deterministic assignment to some variable x. Then, the observer ensures
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that the new value assigned to x is different from its value in any configuration
which can be reached from vi through executing this non-deterministic assign-
ment by Pj . After that, the observer communicates the new label of Pj by setting
the variable label to it. Finally, it sets the variable flag to one to enable the exe-
cution of other processes and communicates to them their starting instruction
by setting the variable label.

assume flag == 1;
if label ∈ QP then goto label;
else assume false ;
. . .

Fig. 13. Pseudocode of con-
troller of the process P

Each process P in [[P]]ab is controlled by
a controller, given in Fig. 13. The controller is
placed at the top of the code of P . The con-
troller then checks if the label stored in the vari-
able label is in indeed belongs to P , if it is the
case, it jumps to that label. Otherwise, P needs
to wait until one of its label is written.

Finally, we can easily define a mapping map that maps any run of P ′ to a run
of [[P]]ab. This mapping map is used in the Counter-example mapping module.
We can also extend the definition of the mapping map to sets of runs in the
straightforward manner.

Lemma 3. map(Π(P ′)) = Π([[P]]ab) \ R.

5 Optimizations

In this section, we present two optimizations of our CEGPV algorithm. The
first optimization concerns the reduction of the number of iterations of our
GEGPV algorithm by considering several counter-examples instead of one at
each iteration. The second optimization concerns an efficient implementation of
the reconstruction and refinement modules when considering SMT/SAT based
model-checkers such as CBMC [10].

Combining Counter-Examples. Our reconstruction module takes as input a
counter-example π of the form c0 · loc1 ·c1 · loc2 · · · locm ·cm of the program [[P]]ab,
and construct the program P1 which needs to respect the flow of the instruc-
tions in π and also the evaluation of the set of shared variables in V0. To do so
efficiently, we drop the constraint that the program P1 should follow the valua-
tions of the shared variables in V0 in our code-code translation [[.]]co. This means
that the constructed program P1 should only make sure to execute the instruc-
tion labeled by loci, for some i ∈ {1, . . . ,m}, after executing all the instructions
labeled by locj for all j ∈ {1, . . . , i−1}. We also modify the refinement module to
discard all the runs π′ in the set of runs of [[P]]ab such that Trace(π′) = Trace(π)
in case that the program P1 is declared safe by model-checker.

We can furthermore optimize our CEGPV algorithm by not imposing any
order on the execution of two instructions labeled by loci and locj if they can be
declared to be independent (as done in stateless model-checking techniques [3]).
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SMT Based Optimization. The CEGPV algorithm can be integrated into
SMT/SAT based model-checkers such as CBMC [10]. Recall that in Sect. 4.2,
we force a program running in a specific order of instructions, and in Sect. 4.3,
we forbid that order of instructions in a program. These operations can be eas-
ily done performed using clock variables [16]. Indeed, for each label loc in the
program, we associate to a clock variable clockloc ranging over the naturals. The
clock variable clockloc is assigned 0 if the instruction labeled by loc is not exe-
cuted. Given labels loc1 and loc2, in order to force the execution of the instruction
labeled by loc1 before the execution of the instruction labeled by loc2, we need
only to make sure that 0 < clockloc1 and clockloc1 < clockloc2 . In the similar way,
we can write a formula to force the SMT/SAT based model checker to return a
counter-example different from the already encountered ones.

Table 1. Performance of CEGPV in comparison to CBMC on benchmarks of the SV-
COMP15 Concurrency category [2]. Each row corresponds to a sub-category of the SV-
COMP15 benchmarks, where we report the number of checked programs. The column
pass gives the number of correct answers retuned by each tool. An answer is considered
to be correct for a (un)safe program if the tool return “(un)safe”. The columns fail
report the number of unsuccessful analyses performed by each tool. An unsuccessful
analysis includes crashes, timeouts. The columns time gives the total running time in
seconds for the verification of each benchmark. Observe that we do not count, in the
total time, the time spent by a tool when the verification fails.

CBMC 5.1 CEGPV

sub-catergory #programs pass fail time pass fail time

pthread-wmm-mix-unsafe 466 466 0 40301 466 0 1076

pthread-wmm-podwr-unsafe 16 16 0 286 16 0 21

pthread-wmm-rfi-unsafe 76 76 0 958 76 0 141

pthread-wmm-safe-unsafe 200 200 0 12578 200 0 917

pthread-wmm-thin-unsafe 12 12 0 252 12 0 15

pthread-unsafe 17 12 5 441 17 0 302

pthead-atomic-unsafe 2 2 0 2 2 0 2

pthread-ext-unsafe 8 4 4 7 8 0 7

pthread-lit-unsafe 3 2 1 3 2 1 2

pthread-wmm-rfi-safe 12 12 0 3154 12 0 138

pthread-wmm-safe-safe 104 102 2 352 104 0 114

pthread-wmm-thin-safe 12 12 0 28 12 0 12

pthread-safe 14 7 7 124 13 1 63

pthead-atomic-safe 8 7 1 76 8 0 10

pthread-ext-safe 45 19 26 938 31 14 569

pthread-lit-safe 8 3 5 8 3 5 5
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6 Experiment Results

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV [1], for the verification
of C/pthreads programs. We used CBMC version 5.1 as a backend tool [10]. We
then evaluated CEGPV on the benchmark set from the Concurrency category of
the TACAS Software Verification Competition (SV-COMP15) [2]. The set con-
sists of 1003 C programs. We have performed all experiments on an Intel Core
i7 3.5 Ghz machine with 16 GB of RAM. We have used a 10 GB as memory limit
and a 800 s as timeout parameter for the verification of each program.

In the following, we present two sets of results. The first part concerns the
unsafe programs and the second part concerns safe ones. In both parts, we com-
pare CEGPV results to the ones obtained using CBMC 5.1 tool [10]. To ensure
a faire comparison between the two tools, we use the same loop-unwinding and
thread duplication bounds for each program. Table 1 shows that CEGPV is
highly competitive. We observe that, for unsafe programs, CEGPV significantly
outperforms CBMC. CEGPV is more than 10 times faster (on average) than
CBMC, except for few small programs. CEGPV also manages to verify almost
all the unsafe benchmarks (except one) while CBMC fails in the verification of
10 programs due to timeout. For safe benchmarks, CEGPV still outperforms
CBMC in the running time. In many programs, CEGPV succeeds to prove the
safety of several programs (except 20 programs), while CBMC fails to prove the
safety of 41 programs. Finally, we observe that, for the benchmark pthread− lit,
the results of both tools are almost the same. The reason is that the programs in
that benchmark only use few variables. Therefore, CEGPV does not slice away
variables in these programs.
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