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Abstract. This paper presents a novel counter-example guided abstrac-
tion refinement algorithm for the automatic verification of concurrent
programs. Our algorithm proceeds in different steps. It first constructs
an abstraction of the original program by slicing away a given subset of
variables. Then, it uses an external model checker as a backend tool to
analyze the correctness of the abstract program. If the model checker
returns that the abstract program is safe then we conclude that the orig-
inal one is also safe. If the abstract program is unsafe, we extract an
“abstract” counter-example. In order to check if the abstract counter-
example can lead to a real counter-example of the original program,
we add back to the abstract counter-example all the omitted variables
(that have been sliced away) to obtain a new program. Then, we call
recursively our algorithm on the new obtained program. If the recursive
call of our algorithm returns that the new program is unsafe, then we
can conclude that the original program is also unsafe and our algorithm
terminates. Otherwise, we refine the abstract program by removing the
abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented
our algorithm, and run it successfully on the concurrency benchmarks in
SV-COMP15. Our experimental results show that our algorithm signifi-
cantly improves the performance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance
of software, to the degree that concurrent programs have become crucial parts of
many applications. At the same time, concurrency gives rise to enormously com-
plicated behaviors, making the task of producing correct concurrent programs
more and more difficult. The main reason for this is the large number of pos-
sible computations caused by many possible thread (or process) interleavings.
Unexpected interference among threads often results in Heisenbugs that are dif-
ficult to reproduce and eliminate. Extensive efforts have been devoted to address
this problem by the development of testing and verification techniques. Model
checking addresses the problem by systematically exploring the state space of a
given program and verifying that each reachable state satisfies a given property.
Applying model checking to realistic programs is problematic, due to the state
explosion problem. The reason is that we need (1) to exhaustively explore the
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entire reachable state space in all possible interleavings, and (2) to capture and
store a large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g., [4,5,11,
15,17]) approach is one of the successful techniques for verifying programs. This
approach consists in four basic steps:

— Abstraction step: Construct a finite-state program as an abstraction of the
original program using predicate abstraction (with a set of predicates) and go
to the Verification step.

— Verification step: Use a model checker to check if the constructed finite state
program satisfies the desired property. If it is the case, then the original pro-
gram satisfies also the property and the verification algorithm terminates;
otherwise extract a counter-example and go to the Analysis step.

— Analysis Step: Check if the retuned counter example is spurious or not. If it
is not, then we have a real bug in the original program and the verification
algorithm terminates; otherwise go to the Refinement step.

— Refinement Step: If the counter-example is spurious, refine the set of used
predicates in the Abstraction step to eliminate the counter example. Return
to the Abstraction step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as
SLAM [4], BLAST [5], MAGIC [8] and CPACHECKER [6]. However, CEGAR
may also suffer from the state-space exploring problem in the case of concurrent
programs due to the large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-
Example Guided Program Verification (CEGPV)) that addresses the state-space
explosion problem encountered in the verification of concurrent programs. The
work-flow of our CEGPYV algorithm is given in Fig.1. The algorithm consists
of four main modules, the abstraction, the counter-ezample mapping, the recon-
struction and the refinement. It also uses an external model checker tool.

The abstraction module takes as input a concurrent program P and a subset
Vy of its shared variables. It then constructs an over-approximation of the pro-
gram P, called P’, as follows. First, it keeps variables in the set V¢ and slices
away all other variables of the program P. Occurrences of the sliced variables are
replaced by non-deterministic values. Second, some instructions, where the sliced
variables occur, in the program P can be removed. Then, the model checker takes
as input P’, and checks whether it is safe or not. If the model checker returns
that P’ is safe, then P is also safe, and our algorithm terminates. If P’ is unsafe,
then the model checker returns a counter-example 7’.

The counter-example mapping module takes the counter-example 7’ as its
input. It transforms the run 7’ to a run 7 of the program resulting of the abstrac-
tion module (using Vj as its set of shared variables).

The reconstruction module takes as input the counter-example 7 of P’. It
checks whether 7 can lead to a real counter-example of P. In particular, if P’ is
identical to P, then the algorithm concludes that P is unsafe, and terminates.
Otherwise, the reconstruction adds back all omitted variables and lines of codes
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Fig. 1. An overview of the CEGPV algorithm.

to create a program P; while respecting the flow of the instructions in 7 and the
valuation of the variables in V(. Hence, P; has as its set of variables only the
omitted ones. Then, CEGPV algorithm then recursively calls itself to check P;
in its next iteration. If the iteration returns that P; is unsafe, then the run =
leads to a counter-example of the program P. The algorithm concludes that P is
unsafe and terminates. Otherwise, the run 7 cannot lead to a counter-example
of P. Then the algorithm needs to discard the run 7 from P’.

The refinement adds 7 to the set of spurious counter-examples of P’. It then
refines P’ by removing all these spurious counter-examples from the set of runs
of P’. The new resulting program is then given back to the model checker tool.

Our CEGPYV algorithm has two advantages. First, it reduces the number of
variables in the model-checked programs to prevent the state-space explosion
problem. Second, all modules are implemented using code-to-code translations.

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV, for the verification
of C/pthreads programs. We used CBMC version 5.1 as the backend tool [10].
We then evaluated CEGPV on the benchmark set from the Concurrency cate-
gory of the TACAS Software Verification Competition (SV-COMP15) [2]. Our
experimental results show that CEGPYV significantly improve the performance
of CBMC, showing the potential of our approach.

Related Work. CEGAR is one of the successful techniques used in program
verification. Our CEGPYV algorithm can be seen as a new instance of the CEGAR
algorithm that can be implemented on the top of any verification tool. In contrast
with the classical CEGAR algorithms (e.g., [5,9,11,12,18]) where the programs
are abstracted using a set of predicates, our CEGPV algorithm uses variable
slicing techniques to obtain the abstract program.
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Variable slicing is also one of the verification guided approaches to address
the state-space exposing problem. In [18], an analysis tool for detecting memory
leaks is presented based on slicing some of the program variables. Each generated
abstract program is then checked by a backend tool. RankChecker [7] is a testing
tool based on an assumption that most concurrency bugs have a small number of
variables involved. To reduce the search space, it forces processes in a concurrent
program to interleave at certain points that access a subset of variables. Corral
[15] abstracts the input program by only keeping track of a subset of variables. If
the counter-example of the abstract program is spurious, Corral then refines the
abstraction by decreasing the set of omitted variables. The algorithm terminates
once the counter-example corresponds to a run of the original program. Our
CEGPYV algorithm also abstract programs by slicing away some variables (as
it is also done by the localization reduction techniques [13,14]). However, our
CEGPV algorithm has the feature to recursively call itself in order to check if
the counter-example can lead to a real one while trying to keep the number of
variables of the model-checked programs as small as possible.

2 DMotivating Example

In this section, we informally illustrate the main concepts of our algorithm.

Figure 2a is a simplified version of a program in the concurrent C benchmark
in SVCOMP [2]. The program P has two processes, called P and ), running in
parallel. Processes communicate through five shared variables which are x, vy, z,
tl and t2, ranging over the set of integers. All variables are initialized to 0. The
behavior of a process is defined by a list of C-like instructions. Each instruction
is composed of a unique label and a statement. For example, in process P, the
instruction pl: x =y 7z ?70:1:1haspl asalabel,and x=y?7z70:1:
1 as a statement. That statement is a ternary assignment in which it assigns 0
to x if both y and z are equal to 1, and assigns 1 to x otherwise. The assertion
labeled by p5 holds if the expression t1 + t2 is different from 1, and in that case
the program is declared to be safe. Otherwise, the program is unsafe.

( ) ( )
x=y=z=t1=1t2=0 x=y=z=0
process P: process Q: process P: process Q:
pl: x = y?z70:1:1; ql: x = y?0:270:1; wils ¢ = & @lils 5¢ =
p2:y = z; q2:y = lz;
p3:z=0; q3:z=1;
pd: tl = x; qd: t2 = x; pd: tl = x; qd: t2 = x;
p5: assert t1+t2 1= 1, p5: assert t1+t2 1= 1,

| J | J

(a) A simple program P (b) Abstract program Pq

Fig. 2. A toy example and its abstraction
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In order to apply our algorithm, we first need to deter- )
mine a subset of program variables that will be sliced away.
To that aim, we construct a dependency graph between
variables. The dependency graph consists of a number of
vertices and directed edges. Each vertex corresponds to a /°\
variable of the program. The edges describe the flow depen-
dency between these variables. The dependency graph of \a e)

the program P is given in Fig. 3. For instance, x depends on
both y and z due to the two assignments labeled by pl and Fig.3. Dependency
ql. Similarly, the assignment labeled by p2 creates a depen-  graph of P.
dency between the variables y and z. We use the dependency
graph to decide the first set of variables to be sliced away.
In general, we keep variables that influence the safety of the program. In the set-
tings of the example, the variables t1 and t2 are used in the assertion at p5 and
therefore we keep track of the variables t1 and t2. Furthermore, we keep also track
of x since t1 and t2 are dependent on x.

Once we have the subset of variables
{t1, t2, x} to be preserved, we need to slice
away the variables {y, z}. To do that, we (— . N ( , )
abstract the program by replacing occur- ' '
rences of the variables y and z by a non-
deterministic value *. Assignments labeled
by pl and ql are transformed to x = * ? * :
0?71?71andx=%*70:*?071, respectively.

P 12
We make a further optimization to trans- %( ) E( )
x=1 x=0

é é

form these assignments to x = *. Since we
are not anymore keeping track of the vari-
ables y and z, instructions which are assign-
ments to these variables can be removed. In
this case, we remove the instructions labeled
by p2, p3, q2 and g3 from the abstract pro- {_ )L )
gram. All the other instructions remain the

same. Resulting abstract program, called Fig. 4. Counter-examples of P,
P1, is given in Fig.2b. P; has only three

variables t1, t2 and x, and five instructions.

The next step of our algorithm is to feed the abstract program to a model
checker. The model checker checks whether the program is safe or not. If the
program is unsafe, the model checker returns a counter-example. In our case,
since P; is unsafe, we assume the model checker returns a counter-example, called
p, given in Fig. 4. In the obtained counter-example p, the process P executes the
instruction labeled by pl. At that instruction, the non-deterministic symbol *
returns the value 0, and therefore x is assigned to 0. Then the process P executes
the instruction labeled by p4 and sets the value of t1 to 0. The control then
switches to the process @ which executes the instructions labeled by ql and q4.
They evaluate both x and tl to 1. Then, the assertion in the instruction labeled
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by p5 is checked. The expression in the assertion, t1 + t2 != 1, is evaluated to
false, so the program is unsafe.

Although p is the counter-example of Py, p is not identified to be a counter-
example of P since P; is an abstraction of P. In order to check whether p
can lead to a counter-example of P, we need to add back some of the omitted
variables and lines of codes. Adding back this information to p will result in a
new program, called S,. In this case, we add y and z to p.

The program S, is
given in Fig.5. When
adding back variables,
several instructions are
restored such as the
instructions labeled by

p2, p3, q2 and @3 p2:y =z; / ql: assume 1 == y?0:270:1;
Y ) *
p3:z=0; q2:y = lz;

Variables, which appear

in the counter-example, / a3z =1;
can be discarded since p5: assert false;

their values are known.
For example, x at pl in
p is 0. We replace the
occurrence of x in ¢l
by 1. We also transform the assignment in the instruction labeled by pl to
an assumption to check whether the value of x is equal to the value of right
hand side of assignment, i.e. assume 0 ==y 7z 7 0 : 1 : 1. The assumption
blocks the execution until the expression in the assumption is evaluated to true.
Similarly, the instruction labeled by p4 is transformed to assume 0 == 0. Then,
we remove assumptions that are trivially true such as assume 0 == 0. Since &,
needs to respect the order of instructions in p, the instruction labeled by pl is
only executed after the instruction labeled by 3.

The model checker
checks S, and returns

y=z=0
process P: process Q:

pl: assume 0 == y?z70:1:1;

Fig. 5. The program S,

that S, is safe. This )
x=t1=1t2=0
means p can not lead to
a counter-example of P process P: observer: process Q:
We then need to refine | PEX=% —===--- > if x == 0 then calix =%
. H - 1
P, to exclude p from its ,-> iftl==0then |
e .
set of rumns. Therefore, L’ if x == 1 then <
we create a refinement of pditl =x --"~ if t2 == 1 then < q4: t2 = x;
Py, called Ps and given p5: assert (t1+t2 = 1); assume false;

in Fig. 6, as follows. We
use an observer to check
whether the actual run
is identical to the run p.
Two runs are identical if (1) their orders of executed instructions are the same,
and (2) valuations of variables after each instruction are the same in both runs.

Fig. 6. The refined program P>
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If the actual run is identical to the run p, then that run is safe. For the sake of
simplicity, we model the observer as a sequence of conditional statements. After
each instruction in the run p, except the assertion at the end of p, we create a
conditional statement to re-evaluate values of variables. For instance, if x ==
0 follows the assignment x = * at pl, where 0 is the value of x at instruction
labeled by pl in p. If if x == 0 is passed, then the execution can check if t1 ==
0 after running assignment t1 = x at p4. Otherwise, the execution is no longer
followed by the observer. If an execution passes all conditional statements of the
observer, then the actual run is identical to p. The assumption assume false at
the end of observer is to prevent the execution of the assertion at p5. Hence, Po
excludes p from its runs.
The model checker
checks Py. It returns a | y=z=0
counter-example, called process P: process Q:

¢, as given in Fig.4. pl: assume 1 == y?z70:1:1; qu: assume 0 == y?70:270:1;

In ¢, the instructions q2y=z
of the process ), which 3z =1
are labeled by ql and
q4, are issued first. After
that, the instructions of
P, which are labeled by
pl, p4 and p5, are per- Fig. 7. The program S,
formed. Similar to the
way we verify p, we add y and z back to ¢ and construct a new program to
simulate ¢, called S,. S, is presented in Fig. 7. In the counter-example S, the
variables x, t1 and t2 are replaced by their values in . Then, instructions labeled
by p4 and g4 are removed due to the optimization. We also force S, to respect
the flow of the counter-example ¢. For instance, the instruction labeled by pl
only runs after the instruction labeled by g3.

The model checker checks S,. It then p .
concludes that S, is unsafe with a proof m
by a counter-example, called 7, given in

p2:y = z;
p3:z=0;

p5: assert false;

Fig.8. We need to verify whether 7 can (assume true) (assume true)
lead to a counter-example of P by adding

more variables and lines of codes, and

then constructing a new program that

respects the flow of instructions in . z=1) (z=0)

However, all variables of the program P
are used, so 7 is a counter-example of P.
Thus, P is unsafe and the algorithm stops.

(assert false)

3 Concurrent Programs Fig. 8. Counter-example of S,

In this section, we describe the syntax and semantics of programs we consider
but before that we will introduce some notations and definitions.
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For A a finite set, we use |A| to denote its size. Let A and B be two sets, we
use f: A B to denote that f is a function that maps any element of A to an
element of B. For b € B, we use b € f to denote that there is an a € A such
that f(a) =b. For a € A and b € B, we use f[a < b] to denote the function f’
where f/(a) = b and f'(a’) = f(a’) for all ' # a.

Syntax. Figure9 gives the grammar for a C-like programming language that we
use for defining concurrent programs. A concurrent program P starts by defining
a set of shared variables. Each shared variable is defined by the command var
followed by a unique identifier. We assume that the variable ranges over some
(potentially infinite) domain D). Then the program P defines a set of processes
(or threads). Each process has a unique identifier p and its code is a sequence
consists of instructions (which is placed between begin and end). An instruction
ins is of the form “loc:stmt”, where loc is a label (or control location), and stmt
is a statement. We use label(ins) to denote the label loc of the instruction ins
and stmt(loc) to denote the statement stmt. We use Vp to denote the set of
variables, Procp to denote the set of processes of the program P. For a process
P € Procp, let Ip be the set of instructions in the code of P and Qp be the set
of labels appearing in its code. We assume w.l.o.g. that each instruction has a
unique label. Let Ip := Upeprocplp, and Qp := Upcproc, Qp. We assume that
we dispose of a function init : Proc — Qp that returns the label of the first
instruction to be executed by each process.
A skip statement corresponds to

the empty statement that leaves [ R R )
the program state unchanged. A <c'1<’;Zi; o= <T:§ {process)
« L=V C )
goto statement of the form “goto (process) ::= process p begin (inst)* end
locy,...loc,” jumps nondeterministi- (inst) ::= loc:(stmt) ;
cally to an instruction labeled by loc; (stmt) ::= skip
for some t € {1,...,n}. An assign- | @ := {expr)
| goto locy, ... loc,
ment statement (asg for short) of the | B (e
form “x := expr” assigns to the vari- | assert (expr)
able z the current value of the expres- | 1f (eapr) ‘ _
sion erpr. An assumption statement then (instjelse {inst) £i
« » (expr) ::= (expr)|*
(asp) of the form “assume expr” checks

whether the expression ezpr evaluates

to true and if not, the process execu- Fig. 9. Syntax of concurrent programs
tion is blocked till that the value of

expr is true. An assertion statement

(asr) of the form “assert expr” checks whether the expression ezpr evalu-
ates to true, and if not the execution of the program is aborted. A conditional
statement (cnd) of the form “if (expr) then inst; else insty £i” executes the
instruction insty, if the expression expr evaluates to true. Otherwise, it exe-
cutes the instruction insts. We assume w.l.o.g. that the label of inst; is different
from the label of insty. We assume a language of expressions expr interpreted
over . Furthermore, in order to allow nondeterminism, expr can receive the
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non-deterministic value *. We use Expr to denote the set of all expressions in
P. Let Varegp, : Expr — 2V7 be a function that returns the set of variables
appearing in a given expression (e.g., Vareypr(y + z + 1) = {y, z}).

Semantics. We describe the semantics informally and progressively. Let us
first consider the case of a (sequential) program Py that has only one process
P (i.e., Procp,={P}). A sequential configuration c is then defined by a pair
(loc, state) where loc € Qp is the label of the next instruction to be executed
by the process P, and state : Vp — D is a function that defines the valuation
of each shared variable. The initial sequential configuration ¢;,;+(Ps) is defined
by (init(P), state;nit) where state;n;+(x) = 0 for all z € Vp_. In other words,
at the beginning of the program, all variables have value 0 and the process P
will execute the first instruction in its code. The transition relation —p_ on
sequential configurations is defined as usual: For two sequential configurations
¢, ¢, we write ¢ —p, ¢ to denote that the program Ps can move from ¢ to ¢'.
Now, we consider the case of the concurrent program P that has at least
two processes (i.e., |Procp| > 2). For every P € Procp, let Pp be the sequen-
tial program constructed from P by deleting the code of any process P’ # P
(i.e., Pp contains only the instructions of the process P). We define a function
label definition q : Procp — Qp that associates for each process P € Procp,
the label g(P) € Qp of the next instruction to be executed by P. A concur-
rent configuration (or simply configuration) ¢ is a pair (g, state) where q is a
label definition, and state is a memory state. We use LabelOf(¢), StateOf(¢) to
denote ¢ and state respectively. The initial configuration ¢;,;:(P) is defined by
(Ginit, Stateinit) where Ginit(P) = init(P) for all P € Procp, and state;,;t(x) =0
for all z € Vp. In other words, at the beginning, each process starts at the
initial label, and all variables have value 0. We use C(P) to denote the set of
all configurations of the program P. Then, the transition relation between con-
figurations is defined as follows: For two given configurations ¢ = (g, state) and

¢ = (7, state’) and a label loc € Qp of some process P, we write 0 ¢!
to denote that program P can move from the configuration ¢ to the configura-
tion ¢’ by executing the instruction labeled by loc of the process P. Formally,
we have ¢ 2% ¢ iff (g(P), state) —p, (¢ (P), state’), G(P) = loc, and for every
P’ € (Procp \ {P}), we have g(P') = 7 (P').

A run 7 of P is a finite sequence of the form cq - locy - ¢1 - locy - - - loc,, -
Cm, for some m > 0 such that: (1) ¢g = ¢inu(P) and (2) ¢ e, it for
all i € {0,...,m — 1}. In this case, we say that 7 is labeled by the sequence
locilocy . .. loc,, and that the configuration ¢,, is reachable by P. We use Trace(w)
and Target () to denote the sequence locy -locs . . . loc,, in 7 and the configuration
Cm, respectively. We use ITp to denote the set of all runs of the program P.
The program P is said to be safe if there is no run m reaching a configuration
¢ = (g, state) (i.e., Target(n) = ¢) such that g(P), for some process P € Procp,
is the label of an assertion statement of the form “assert expr” where the
expression expr can be evaluated to false at the configuration c.
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4 Counter-Example Guided Program Verification

In this section, we present our Counter-Example Guided Program Verification
(CEGPV) algorithm. The CEGPV algorithm takes a program P as its input
and returns whether P is safe or not. The work-flow of the algorithm is given
in Fig. 1. The algorithm consists of four modules, the abstraction, the counter-
example mapping, the reconstruction and the refinement. It also uses an external
model checker as a back-end tool. Recall that Vp denotes the set of variables of
the program P. The algorithm starts by selecting a subset of variables Vo C Vp
using a dependency graph (not shown in Fig. 1 for sake of simplicity).

The abstraction takes P and Vg as its input. It then constructs an over-
approximation of P, called P’, as follows. First, it keeps variables in V and slices
away all other variables of P. Occurrences of the sliced variables are replaced by
a non-deterministic value. Second, some instructions, where the sliced variables
occur, in P can be discarded. After that, P’ is given to a model checker. Observe
that P’ has V|, as its set of shared variables.

Then, the model checker takes as input P’, generated by the abstraction
module or the refinement module, and checks whether it is safe or not. If the
model checker returns that the program is safe, then P is also safe, and our
algorithm terminates. If the program is unsafe, then the model checker returns
a counter-example 7’ of the form cq - locy - ¢1 - locy - - - loc,, - ¢,

The counter-ezample mapping takes the counter-example 7’ as its input. It
transforms the run 7’ to a run of the program resulting of the abstraction module.

The reconstruction takes always as input a counter-example 7 of P’ (which
results from the application of the abstraction module to the program P). It
then checks whether 7 can lead to a real counter-example of P. In particular,
if Vo = Vp, i.e. no variable was sliced away from P, then P’ is identical to P.
Therefore, 7 is also a counter-example of P. The algorithm concludes that P is
unsafe, and then terminates. Otherwise, the reconstruction adds back all omitted
variables (i.e., Vp \ Vp) and lines of codes to create a program P;. The program
P1 also needs to respect the flow of the instructions in 7. In other words, the
instruction labeled by loc;, for some i € {1,...,m}, in P; can only be executed
after executing all the instructions labeled by loc; for all j € {1,...,i — 1}.
For each run of the program Py, let ¢; be the configuration after executing the
instruction labeled by loc;. The configuration ¢ needs to satisfy StateOf(c})(z) =
StateOf(¢;)(z) for all z € Vj, i.e. each value of variable in the set V( at the
configuration ¢ is equal to its value in the configuration ¢;.

Then CEGPYV recursively calls itself to check P; in its next iteration. Inputs
of the next iteration are P;, and a subset of variables V1 C Vp, = (Vp \ Vo),
which is selected using the dependency graph. If the iteration returns that Py is
unsafe, then the run « leads to a counter-example of . The algorithm concludes
that P is unsafe and terminates. Otherwise, m cannot lead to a counter-example
of P. Then the algorithm needs to discard 7 from the set of runs of P’.

The refinement adds 7 to the set of spurious counter-examples of P’ (result-
ing from the application of the abstraction module to P). It then refines P’ by
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removing all these spurious counter-examples from the set of runs of P’. The
new resulting program is then given back to the model checker.

In the following, we explain in more details each module of our CEGPV
algorithm. The counter-example mapping module is described at the end of the
subsection dedicated to the explanation of the refinement module (Sect. 4.3).

4.1 The Abstraction

The abstraction transforms P into a new program P’ by slicing away all variables
in Vp \ Vo and some lines of codes. In particular, we define a map function [.],,
that rewrites P into P’. The formal definition of the map [.] , is given in Fig. 10.
In the following, we informally explain [.] ;.

The map [.],,, keeps only the variables in Vo and removes all other variables
of P. The map [.],, also keeps the same number of processes as in P, and
transforms the code of each process of P to a corresponding process in P’.

For each instruction in a
process, the map [.],,, keeps

def +
the label and transforms the [(e-prog)l, = [[<“':r ? "l”f[[ip 20$55>
. . def E 0
statement in that instruc- [fvar 2)],, = {Motherwme
tion. The map H'ﬂab replaces [[(pm(ess)]]ub L process p begin [(inst)], end
. . def

occurrences of sliced vari- [(inst)],p - loc:  [{stmt)]
ables in the statement by the [skipla, e skip
non-deterministic value *.  [gote loci,.. locu],, = goto locy, ... locy

. R o def [ skip ifx ¢ Vo
First, the skip and goto [z := {eapr)lap = ;.= [(eapr)],, otherwise
statements remain the same [assume(exzpr)],, 4 o ssume [{ezpr)],
since they do not make use [assert(ezpn)],, = assert [(expr)]

[if (expr) then (insti) def if [(expr)],, then [(inst1)],,

of any variable. Second, for else (insty) fi],, ~ else [(insty)],, fi

an assignment statement of [eapr)]., < {* if Varegpr(expr) N (Vp, \ Vo) # @
the form “z := expr”, if PTHab = capr otherwise
N 9
the variable x is not in Vj,
then that statement is trans- Fig. 10. Translation map [.],,

formed to the skip state-

ment. If at least one discarded variable occurs in the expression expr, then the
assignment is transformed to “z := *”. Otherwise, the assignment remains the
same. Third, for both an assumption statement of the form “assume expr” and
an assertion of the form “assert expr”, the map [.],, replaces the expression
expr by the nondeterministic value *, if at least one discarded variable occurs
in expr. Otherwise, the assumption and assertion remain the same. For a condi-
tional statement, the map [.],, transforms its guard to be non-deterministic if
it makes use of one of the discarded variables. The consequent instruction and
alternative instruction are also transformed in a similar manner by the map [.] ;-
Finally, we remove any instruction that trivially does not affect the behaviors of

[[P]]ab'
Lemma 1. If [P],, is safe, then P is safe.
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4.2 The Reconstruction

Let 7 be a counter-example of the program [P],, of the form ¢y - locy - ¢; -
locs - - -locy, - ¢,. The reconstruction transforms P to a new program P; by
forcing P to respect the sequence of configurations and labels in 7. In particular,
we define a map function [.],, to rewrite the program P into the program P;.
The formal definition of the map [.]_, is given in Fig.11. For a label loc, let
IndexOf(loc) = {i € {1,...,m}|loc; = loc} be the set of positions where the
label loc occurs in the run 7. Let newloc be a function that returns a fresh label
that has not used so far. The map [.]_, starts by adding a new variable cnt. The
variable cnt is used to keep track of the execution order of the instructions in 7.
All variables in Vi are removed by the map [.]_, since their values is determined
by . The map [.],, also keeps the same number of processes as in the program
P, and transforms the code of each process.

[e-prog)]., < var ents[(var 2] [(process)],
def [var z; if x ¢ Vo
" | Yas<zy otherwise
[(process)].., <! process p begin [(inst)],, end
o loc : (stmt if locel
[(inst)] dof [ ( )]]cn,ab i [»].,
0 [loc : (stmt)]., o otherwise
loc: if (cnt ==0) then [(stmt)]

[(var )],

0

cooths €1se

loc - (s e ..

lloc + {stmt)]o o if (cnt == m) then [(stmt)]
else skip; fi;...fi;

loc: if (ent 4+ 1 € IndexOf(loc) A ent == 0) then

m .
co,oth?

[[(stmt)]]goyab; else
def
loc : (stmt =
lloc + {stmb)] . ay if (ent + 1 € IndexOf(loc) A cnt ==m — 1) then
[(stmt)]]g:‘,_alb; else assume false; fi;...fi;

newloc : ent := ent + 1;
[[skip]]io._ 2 skip where — € {ab, oth}

def
[goto locy,...,loc,]!, _ = goto locy,...,loc, where — € {ab, oth}

Lf assume [(expr)];, where — € {ab, oth}

1 assert [(expr)]:, where — € {ab, oth}

[assume <erp7')]]ioﬁ
[assert (expr)]., _

[« := (expr)].,. o0 4f assume StateOf(c; 11)(x) == [expr)]’,

i def )

[z = {expr)lio o = @ :=[emp)],,
[if (expr) then (inst1) der [ assume [(expr)],, == true; [(inst1)],, if label(inst1) € LabelOf(cit1)
else (insts) fi] assume [(expr)]. == false; [(inst2)],, otherwise
[if (expr) then (inst1) aet if [(expr)]., then [(inst1)],,
else (inst2) f£i[}, ., else [(inst2)],, fi

Keapr)]:, < (expr) Vo € Vo : & — StateOf(c;)(x)]

i
co,ab

Fig. 11. Translation map [.]_,

The map [.],, transforms instructions in each process as follows. Instructions
that occur in [P],, are transformed by the map [.].. o.ab> While other instructions
are transformed by the map [.] ., ;- For an instruction of the form “loc: stmt”,
the map [[.ﬂco’oth keeps the label loc and creates m -+ 1 copies of the statement
stmt. The i-th copy of stmt, with ¢ € {0,...,m}, is executed after reaching the
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configuration ¢; in the run 7. Therefore, the i-th copy only can be only executed
under the condition “cnt == ¢”. Then, the statement stmt is transformed based
on the configuration ¢; in the run m, denoted by ﬂ]]zo oth- Similarly, the map
[-].0.as keeps the label loc and creates m copies of the statement stmt (which
corrésponds to number of instructions in the run m). The i-th copy of stmt,
with ¢ € {1,...,m}, is executed if the label loc appears at position i in the
run 7. Therefore, the i-th copy can be executed under the condition “cnt 4+
1 € IndexOf(loc)” (i.e., the label loc appears at the position ent + 1) and that
ent =i — 1 (i.e., after reaching the configuration ¢;_;). Then, the map [.]., .,
transforms the statement stmt based on the configurations ce,¢—1 and cepnt (i.é.,
the configurations before and after executing the instruction labeled by loc) in
the run 7, denoted by [.]5*" .. The variable ent is then increased by one to denote
that one more instruction in the run 7 has been executed.

In general, the map [['Mo,ab» for some i € {0,...,m — 1} rewrites all expres-
sions in statements. The skip and goto statement remain the same. For both an
assertion of the form “assert expr” and assumption “assume expr”, [[.]]Eo’ab
transforms their expressions expr. For an assignment of the form “x := expr”,
it rewrites that assignment by an assumption checking that, the value of = in
the configuration c; 1 is equal to the value of expr at the configuration ¢;. For a
conditional statement of the form if (expr) then inst; else insts £i”, [.]5, .4
we first check which branch has been taken in the run 7. To do that, we check
the labels appearing in the configuration c; 1. After that, we add an assumption
to check whether the branch has been correctly selected in the counter-example.
if expr is evaluated to true at the configuration ¢; and the label of inst; appears
at the configuration c;; 1, then it executes the instruction [inst; Otherwise,

) ;L:o,ab'
it executes the instruction [insts],, ;- Finally, all occurrences of variables in Vo
in any expressions expr are replaced by their values in the configuration c;.
The map [.]., ;5. for some i € {0,...,m}, transforms statements as follows.
The skip and‘got(; statement remain the same. For assignment, assumption, and
assertion, [['ﬂzo,oth rewrites expressions in these statements. For a conditional
statement, it also rewrites the guards, the consequent instruction and the alter-
native instruction. The expression is transformed by replacing occurrences of
variables in Vj in that expression by their values in the configuration c;.

Lemma 2. If [P]., is unsafe, then P is unsafe.

4.3 The Refinement

Given a set of runs R of [P],,, the refinement module constructs a program P’
from [P],, by discarding the set of runs in R from the set of runs of [P],. Before
giving the details of this module, we introduce some notations and definitions.

For a run 7 of the form ¢y -locy ¢y ... locy, - ¢, let Loc(w) = {locy, ..., loc, }
be the set of all labels occurring in 7, and Con(w) = {cg,c1,...,cm} be the set
of all configurations in 7. Let Rioe = U, cg Loc(m) and Reon = U, cg Con(m). Let
Prefix(m) = {co - locy - ¢1 ... loc; - ¢;|i € {0,...,m — 1}} be the set of prefixes of
7 and Rprefic = U, cg Prefix(m) be the set of all prefixes of all runs in R.
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Then, we construct a graph (or a tree) Gg to represent in concise manner
the set of runs in R. The graph Gr = (V, E) consists of a number of vertices
V and directed edges E where V = Rpefi; and E = {(v,v")|Jloc € Rype,c €
Reon and v/ = v - loc - ¢}. In other words, each vertex corresponds to a prefix in
Rprefiz, and each edge describes the transition from one prefix to another one.

Let v eV, Pe Proc[[Pﬂ , and loc € Qp. Let Next(v,loc) = {c|c € Reon :

v-loc-c € (VUR)} be tﬁg function that returns the set of configurations
which can be reached from v through executing the instruction labeled by loc.
Let Reach(v, P) = {loc|loc € Qp,3c € C([P],,) and I’ € II([P],,) : (v =
v - LabelOf( Target(v))(P) - ¢) A (v ¢ (VUR)) A (loc = LabelOf(c)(P))} be
the function that returns the set of all possible labels loc of the process P that
can be reached by a run v ¢ RUV which is an extension of the prefix v by
executing an instruction of the process P. In order to force the execution of
[P],, to perform a different run than the ones in R, we make sure that [P],,
follows the prefix v € Rprefiz, and then performs the instruction of the process P
that leads to a new prefix p’ which was not part of Rp,ef; or R. Then, we create
the output program P’ of the refinement module from [P],, by adding (1) an
observer process to simulate the execution of the prefix v/, and (2) a controller
per process to continue execution of each process from the reached location
after executing the prefix v'. We add a new variable, called label, used by the
observer to communicate to each controller where the execution will resume for
each process after leaving the observer.

We construct an observer as
given in Fig.12. The observer
is executed before any processes
in [[P]]ab' It starts by non- vz forall x € Vo: x := StateOf( Target (v;))(x);

start: goto wv1,v2,...,Un;

deterministically jumping to a goto (vi, P1),., (vis Pm);
node v; (representing a prefix of (vi, P;): if Reach(v;, Pj) # @ then
a run in R), where v; represents loc := LabelOf( Target(v;)) (F;);
if stmt(loc) of the form “x := *” then
a vertex of Ggr. At the node v;, -
values of variables are updated assume = ¢ {StateOf(c)(z)|c € Next(v;, loc)};
to the valuation at Target(v;). lelbsi assume false ; fi;
. . abel (= *;

Then, the observer decides, in assume label € Reach(v;, P,);

e e g o ©EIh
non-deterministic manner, to exe- flag == 1;
cute an instruction of a process for all P € Procpzy A\ {Fj}
P; € [P],, If the execution of i label := LabelOf(Target(v:)) (P):
an instruction of P;, from the pre- assume false :

fix v;, does not lead a new prefix
which is not in RU Rprefiz (€.,
ReaCh(,v’Pj) is empty), then th,e Fig.12. Pseudocode of observer with V =
execution of the observer termi- _

, {vi,...,vn} and Procﬂpﬂ ={P,...,Pn}
nates (and so of the program P’). ab
If Reach(v, P;) is not empty, we
first distinguish the case where the next instruction to be executed by P; is
a non-deterministic assignment to some variable x. Then, the observer ensures
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that the new value assigned to z is different from its value in any configuration
which can be reached from v; through executing this non-deterministic assign-
ment by P;. After that, the observer communicates the new label of P; by setting
the variable label to it. Finally, it sets the variable flag to one to enable the exe-
cution of other processes and communicates to them their starting instruction
by setting the variable label.

Each process P in [P],, is controlled by assume flag == 1;

a controller, given in Fig.13. The controller js 1T label € Qp then goto label;
placed at the top of the code of P. The con- else assume false ;

troller then checks if the label stored in the vari-

able label is in indeed belongs to P, if it is the Fjg.13. Pseudocode of con-
case, it jumps to that label. Otherwise, P needs troller of the process P

to wait until one of its label is written.

Finally, we can easily define a mapping map that maps any run of P’ to a run
of [P],,- This mapping map is used in the Counter-ezample mapping module.
We can also extend the definition of the mapping map to sets of runs in the
straightforward manner.

Lemma 3. map(I1(P")) = II([P],,) \ R.

5 Optimizations

In this section, we present two optimizations of our CEGPV algorithm. The
first optimization concerns the reduction of the number of iterations of our
GEGPV algorithm by considering several counter-examples instead of one at
each iteration. The second optimization concerns an efficient implementation of
the reconstruction and refinement modules when considering SMT/SAT based
model-checkers such as CBMC [10].

Combining Counter-Examples. Our reconstruction module takes as input a
counter-example 7 of the form ¢ -loc; -¢; -loca - - - locy, - ¢, of the program [P],,,
and construct the program P; which needs to respect the flow of the instruc-
tions in 7 and also the evaluation of the set of shared variables in V. To do so
efficiently, we drop the constraint that the program P; should follow the valua-
tions of the shared variables in V{ in our code-code translation [.],,. This means
that the constructed program P; should only make sure to execute the instruc-
tion labeled by loc;, for some ¢ € {1,...,m}, after executing all the instructions
labeled by loc; for all j € {1,...,i—1}. We also modify the refinement module to
discard all the runs 7’ in the set of runs of [P],, such that Trace(n’) = Trace()
in case that the program P; is declared safe by model-checker.

We can furthermore optimize our CEGPV algorithm by not imposing any
order on the execution of two instructions labeled by loc; and loc; if they can be
declared to be independent (as done in stateless model-checking techniques [3]).
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SMT Based Optimization. The CEGPV algorithm can be integrated into
SMT/SAT based model-checkers such as CBMC [10]. Recall that in Sect.4.2,
we force a program running in a specific order of instructions, and in Sect. 4.3,
we forbid that order of instructions in a program. These operations can be eas-
ily done performed using clock variables [16]. Indeed, for each label loc in the
program, we associate to a clock variable clockj,c ranging over the naturals. The
clock variable clockjc is assigned 0 if the instruction labeled by loc is not exe-
cuted. Given labels loc; and locy, in order to force the execution of the instruction
labeled by loc; before the execution of the instruction labeled by locs, we need
only to make sure that 0 < clockjoe, and clockjec, < clockiec,. In the similar way,
we can write a formula to force the SMT/SAT based model checker to return a
counter-example different from the already encountered ones.

Table 1. Performance of CEGPV in comparison to CBMC on benchmarks of the SV-
COMP15 Concurrency category [2]. Each row corresponds to a sub-category of the SV-
COMP15 benchmarks, where we report the number of checked programs. The column
pass gives the number of correct answers retuned by each tool. An answer is considered
to be correct for a (un)safe program if the tool return “(un)safe”. The columns fail
report the number of unsuccessful analyses performed by each tool. An unsuccessful
analysis includes crashes, timeouts. The columns time gives the total running time in
seconds for the verification of each benchmark. Observe that we do not count, in the
total time, the time spent by a tool when the verification fails.

CBMC 5.1 CEGPV
sub-catergory #programs | pass | fail | time | pass | fail | time
pthread-wmm-mix-unsafe 466 466 | 0 40301 [466 | 0 | 1076
pthread-wmm-podwr-unsafe | 16 16 | 0 286 | 16 | O 21
pthread-wmm-rfi-unsafe 76 76 | 0 958 | 76 | 0 | 141
pthread-wmm-safe-unsafe 200 200 | 0 (12578 |200 @ O | 917
pthread-wmm-thin-unsafe 12 12 1 0 252 1 12 | 0O 15
pthread-unsafe 17 12 | 5 441 | 17 | 0 | 302
pthead-atomic-unsafe 2 210 2 0
pthread-ext-unsafe 4 7 0
pthread-lit-unsafe 1 3 1
pthread-wmm-rfi-safe 12 12 | 0| 3154 | 12 | 0 | 138
pthread-wmm-safe-safe 104 102 | 2 352 |104 | 0 | 114
pthread-wmm-thin-safe 12 12 | 0 280 12 1 0 12
pthread-safe 14 7 124 | 13 | 1 63
pthead-atomic-safe 8 71 76 8 0 10
pthread-ext-safe 45 19 126 938 | 31 |14 | 569
pthread-lit-safe 8 3|5 8 315 5
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6 Experiment Results

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPYV [1], for the verification
of C/pthreads programs. We used CBMC version 5.1 as a backend tool [10]. We
then evaluated CEGPYV on the benchmark set from the Concurrency category of
the TACAS Software Verification Competition (SV-COMP15) [2]. The set con-
sists of 1003 C programs. We have performed all experiments on an Intel Core
i7 3.5 Ghz machine with 16 GB of RAM. We have used a 10 GB as memory limit
and a 800s as timeout parameter for the verification of each program.

In the following, we present two sets of results. The first part concerns the
unsafe programs and the second part concerns safe ones. In both parts, we com-
pare CEGPV results to the ones obtained using CBMC 5.1 tool [10]. To ensure
a faire comparison between the two tools, we use the same loop-unwinding and
thread duplication bounds for each program. Table1 shows that CEGPV is
highly competitive. We observe that, for unsafe programs, CEGPYV significantly
outperforms CBMC. CEGPYV is more than 10 times faster (on average) than
CBMC, except for few small programs. CEGPV also manages to verify almost
all the unsafe benchmarks (except one) while CBMC fails in the verification of
10 programs due to timeout. For safe benchmarks, CEGPV still outperforms
CBMC in the running time. In many programs, CEGPV succeeds to prove the
safety of several programs (except 20 programs), while CBMC fails to prove the
safety of 41 programs. Finally, we observe that, for the benchmark pthread — lit,
the results of both tools are almost the same. The reason is that the programs in
that benchmark only use few variables. Therefore, CEGPV does not slice away
variables in these programs.
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