Software Architecture Design Reasoning:
A Card Game to Help Novice Designers

Courtney Schriek!, Jan Martijn E.M. van der Werf'®9,
Antony Tang?, and Floris Bex!

! Department of Information and Computing Science,

Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
c.j.schriek@students.uu.nl, {j.m.e.m.vanderwerf,f.j.bex}Ouu.nl
2 Swinburne University of Technology, Melbourne, Australia
atang@swin.edu.au

Abstract. Software design is a complicated process, and novice design-
ers have seldom been taught how to reason with a design. They use a
naturalistic approach to work their way through software design. In order
to impart the use of design techniques, a card game was developed to
help design reasoning. This game was tested on groups of students and
resulted in noticeable differences between the control and test groups.
Those who used the cards produced better design arguments: the groups
with the card game on average perform 75 % more reasoning than the
control groups. The results show that the design strategy used by the
groups is a clear indicator for how many and what kind of design prob-
lems are designed, while the cards influence how the designers solve these
problems.

1 Introduction

Software architecture design is a complicated process, mostly revolving around
problem-solving activities. Within software development many things have to be
taken into consideration, not least being the requirements, but also what avail-
able technologies there are, the needs of stakeholders, and those of the developers
and future redesign teams. This is known as a wicked problem, meaning that
problem and solution are intertwined so that understanding the problem depends
on how the designer wants to solve it. Such problems are inherently ill-defined
and have no standard solution [17]. As a result it is the design decisions made at
this stage that have the greatest influence on the eventual product. But people
do not always use logical thinking, instead making decisions based on instinct,
what is known as naturalistic decision making [10]. This can cause flawed rea-
soning, especially when the problem is complex and/or new, combined with the
designers lack of expertise.

In order to resolve these problems, designers need to move from naturalistic
decision making to logical reasoning decision making, especially when designers
are not experienced with either the problem domain or the solution domain.

© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 22-38, 2016.
DOI: 10.1007/978-3-319-48992-6_2

Software Architecture Design Reasoning 23

There has been some software design reasoning research, but there is no sim-
ple and comprehensive method that can be used in practice. In this paper, we
propose a card game for this purpose. The card game combines techniques in a
simple form, and is developed to help novice designers to consider certain rea-
soning steps during design. This card game has been tested in an experiment
involving students of a Software Architecture course. The aim of the experiment
is to assess any obvious differences among control and test groups, and to estab-
lish if the card game had a positive influence on the logical reasoning process
using qualitative analysis.

The card game is based on the reasoning techniques described in Tang and
Lago [25]. The main reasoning techniques are the identification of assumptions,
risks and constraints. The students also need to carry out trade-offs and artic-
ulate the contexts, problems, and solutions. Novice designers can forget that
they need to reason about certain things. Razavian et al. [15] proposed to use
a reflection system to remind designers. In their experiment, reflective thinking
was applied using reasoning techniques to trigger student designers to use log-
ical reasoning. In our experiment, cards were used to remind novice designers
to use reasoning techniques. The choice for cards instead of a software tool was
made because many software tools, such as those used for Design Rationale,
have been developed but are not prevalently used in the design world. The most
common reason for this is that the adoption and use of these systems take too
much time and are too costly to be effectively used [24]. The cost-effectiveness
of such a system isin fact the most important characteristic for consideration
by software companies [12]. Cards do not cost much to produce or to use, and
depending on the rules do not needextensive time to learn. Additionally, cards
are not unfamiliar in software design, as already several card games exist and
designers are familiar with their uses. For example, IDEO method cards are used
for stimulating creativity [8], Smart Decisions card are used for learning about
architecture design [3], and planning poker is played during release planning to
estimate the time needed to implement a requirement [5]. Our card game addi-
tionally includes several reflection periods during the experiment to encourage
participants toexplicitly reason with the design.

We compare novice designers equipped with reasoning techniques to the con-
trol groups using natural design thinking. The results show that the test groups
came up with many more design ideas than the control group.

In the following sections more background information on design reasoning
are given, together with reasoning techniques which stimulate logical reasoning
(Sect. 2). Next, we introduce the student experiment, how it has been performed,
and how validation of the results has been reached (Sect. 3). After this the results
of the experiment will be explained, ending with an analysis of the results and
further discussion on how the card game can be used for further experiments
(Sect. 4). Threats to validity are discussed in Sect.5. Section6 concludes the

paper.

24 C. Schriek et al.

2 Design Reasoning

Design reasoning depends on logical and rational thinking to support arguments
and come to a decision. In a previous research, it has been found that many
designers do not reason systematically and satisfice results easily [29]. Designers
often use a naturalistic process when making decisions where experience and
intuition play a much larger role [31]. As such, people need to be triggered to
consider their decisions in a more rational manner. This can be done by using
reasoning techniques. Previous research has shown that supporting designers
with reasoning analysis techniques can positively influence design reasoning [15,
27,28]. There are other issues with design thinking, which can be categorized as:
cognitive bias, illogical reasoning, and low quality premises.

Cognitive bias occurs when judgments are distorted because the probability of
something occurring is not inferred correctly or there is an intuitive bias. This can
be seen with representativeness bias and availability bias, where the probability
of an event is mistaken because it either looks more typical, or representative,
or because it is more easily envisioned. An example is anchoring, where software
designers choose solutions for a design problem based on familiarity, even when
it is ill-suited to solve the problem [21,23].

Illogical reasoning is when the design reasoning process is not used and prob-
lems occur with identifying the relevant requirements. The basis premises and
arguments being used in the design discussion are not based on facts.

Low quality premises for design argumentation can be caused by missing
assumptions, constraints or context. Premises of poor quality can be caused by
either an inaccurate personal belief or the premise being incomplete or missing.
Much of reasoning depends on the quality of the premises themselves, if these are
not explicitly stated or questioned, software designers are more likely to make
incorrect decisions [23,26]. The basis of how such reasoning problems can develop
lies in the difference between the two design thinking approaches: the naturalistic
decision making, and the rational decision making. This is sometimes referred
to as a dual thinking system: System 1 is fast and intuitive with unconscious
processes, i.e., naturalistic decision making. System 2 is slow and deliberate with
controlled processes, i.e., rational decision making [9]. People naturally defer to
System 1 thinking, and so in the case of software design designers need to be
triggered to use System 2 thinking for decision making. This is done by invoking
reflective thinking or prompting, which in the simplest sense is thinking about
what you are doing, meaning that the person consciously evaluates their ideas
and decisions [18,22].

2.1 Design Reasoning Techniques

In order to trigger logical reasoning several design reasoning techniques can be
implemented during design, such as risk analysis [14], trade-offs [1], assumption
analysis [11], and problem structuring [16]. These reasoning techniques support
logical reasoning by means of analysis of various aspects of design decisions.
These techniques are well known. However, to combine these techniques in a

Software Architecture Design Reasoning 25

simple form to teach and remind students to consider certain reasoning steps
during design is new.

The reasoning techniques chosen for this experiment are not exhaustive and
are instead a selection of common techniques already used in software architec-
ture: problem structuring, option generation, constraint analysis, risk analysis,
trade-off analysis and assumption analysis.

Problem structuring is the process of constructing the problem space by
decomposing the design into smaller problems. These then lead to reasoning
about requirements and the unknown aspects of the design [19]. This reasoning
technique focuses on identifying design problems and how these can be resolved
when the situation is one the designer is unfamiliar with. It is used to identify
the problem space and the key issues in design by asking questions related to
the problem, such as what are the key issues. Its aim is to prevent the designer
from overlooking key issues because of unfamiliarity with the problem. The more
time spend on problem structuring the more rational an approach the designer
uses.

Solution Option generation is a technique specifically directed at the prob-
lem of anchoring by designers, in which the first solution which comes to mind
is implemented without considering other options. With option analysis the
designer looks at each decision point at what options are available to solve a
design problem.

Constraint analysis looks at the constraints exerted by the requirements,
context and earlier design decisions and how they impact the design. These
constraints are often tacit and should be explicitly expressed in order to take
them into account. Trade-offs can come from conflicting constraints.

Risk analysis is a technique to identify any risks or unknowns which might
adversely affect the design. Risks can come from the designer not being aware
if the design would satisfy the requirements, in which case the design needs
to be detailed in order to understand these risks and mitigate them. Or the
design might not be implementable because designers are unaware of the business
domain, technology being used and the skill set of the team. These risks should
be explicated and estimated.

Trade-off analysis is a technique to help assess and make compromises when
requirements or design issues conflict. It can be used for prioritization of prob-
lems and to weigh the pros and cons of a design which can be applied to all key
decisions in a design [25].

Assumption analysis is a technique used to question the validity and accuracy
of the premise of an argument or the requirements. It focusses mainly on finding
hidden assumptions. It is a general technique which can be used in combination
with the other reasoning techniques [23].

We propose a simple method that combines the main design reasoning tech-
niques, and use a card game to prompt novice designers. In our research, we test
the effectiveness of this technique.

26 C. Schriek et al.

3 Student Experiment

The theory studied in this paper is that applying reasoning techniques, through
the use of a card game, has a positive influence on design reasoning with software
designers. This theory is tested using an experiment focusing on inexperienced
designers or novices. This experiment involved test and control groups carrying
out a design. The results of the two groups are compared to one another. We
use simple descriptive statistics and qualitative analysis to analyse the results.
The subjects for the experiment are 12 teams of Master students from the
University of Utrecht, following a Software Architecture course. These were split
into 6 control teams and 6 test teams, with most having three designers working
together, two teams with two designers, and one team with four designers. Based
on an earlier assessment, the teams were ranked, from which they were randomly
selected for the test or control groups to ensure an equal amount of skill.

3.1 Experiment Design and Pilot Testing

Before the student experiment, a pilot study was run to test the card game
and refine it by finding any major flaws or misunderstandings. The pilot study
was performed by two Master students whom had already completed the course.
The results of the pilot resulted in several important changes being made to the
card game. Firstly, the cards were simplified and reduced to 7 cards, to simplify
card play as the initial number of cards made it difficult to choose from them.
The final card game is show in Fig. 1. The pilot showed that card play tapered
off towards the end of the design session. To enforce card play, three reflective

Reasoning activities

Context Problem Solution

Reasoning techniques

Constraint Assumption Risk Trade-off

Fig. 1. Final cards of the card game

Software Architecture Design Reasoning 27

periods were added evenly spread throughout the session when cards have to
be played. Lastly, the card rules were simplified to remove restrictions on fluid
discussion. This resulted in the following set of playing rules:

The game is played in terms of a discussion;

The discussion starts when you play a card;

Others contribute to the discussion by playing their own cards;

When a decision is made the cards related to that topic can be removed.

Ll

The assignment used in the experiment is the same as used in the Irvine
experiment performed at the University of California [30]. This assignment is
well known in the field of design reasoning, as participants to the workshop
analysed the transcripts made and submitted papers on the subject [13]. The
assignment is to design a traffic simulator. Designers are provided with a problem
description, requirements, and a description of the desired outcomes. The design
session takes two hours. The assignment was slightly adjusted to include several
viewpoints as end products in order to conform to the course material [1]. The
sessions were recorded with audio only and transcribed by two researchers.

The card game is constructed based on an earlier experiment [15] which incor-
porated the reasoning techniques as reflective questions by an external observer
who served as a reflection advocate to ask reflective questions. The card game
replaces these questions with cards. Four of the reasoning techniques previously
given were made directly into cards; constraint, assumption, risk and trade-off.
Problem structuring and option generation would be triggered by using these
techniques and looking at the design activities; context, problem and solution.

Three reflection periods were created at 15 min, 45 min and 1h and 45 min.
In these pre-set times, the students in the test groups were asked to use the
cards to prompt discussion and support collaboration. The cards were paired
with a table showing suggested questions to ask. Combining the cards enables
different questions, such as: which constraints cause design problems? The con-
trol groups performed the same assignment without the card game, nor having
pre-set reflection periods to revise their discussions.

A deductive analysis approach is used for coding the transcripts. The coding
scheme is based on the design activities and reasoning techniques. The results
of the experiment are analysed using qualitative measures, in this case with
discourse analysis performed on the transcripts.

3.2 Results

In this section the results of the experiment are shown. The results show that
there are significant differences between the control and test groups, supporting
the theory that reasoning techniques influence design reasoning in a positive
manner by having them use these techniques more.

Design Session Length. The first and most obvious difference is the time
taken for the design session between the control and test groups. Though all

28 C. Schriek et al.

groups were given two hours to complete their session, it is mostly the test
group which took full advantage of this (Tablel). Half of the control groups
finished their design before the 1.5h mark. Only one test group did the same.
From the audio recording, we conclude that this was due to a misunderstanding,
as the group believed they had already breached the two hour mark. One test
group even surpassed the two hour mark by almost half an hour.

Table 1. Design session times

Control group Time Test group Time
Cl 1:43:51 T1 2:01:23
C2 1:57:15 T2 1:23:00
C3 1:22:47 T3 1:59:56
C4 1:13:39 T4 2:24:42
C5 1:17:20 T5 1:54:48
C6 2:05:33 T6 1:51:34

Card Game Influence. To establish if there are any noticeable differences in
the use of the reasoning techniques, the frequencies in which these were used are
measured and compared (Table2). The results show that there is a noticeable
difference in the frequencies in which the reasoning techniques are used. From
the techniques directly influenced by the cards especially assumption and risk
analysis are consistently more used by the test groups.

Table 2. Design reasoning techniques frequencies

Analysis techniques | T1 | T2 | T3 | T4 | T5|T6 | Total

Assumption analysis |14 | 6 | 9 | 5| 8 | 7 | 49
Constraint analysis 9, 2| 7| 810 | 43
Risk analysis 71655 5| 34
Trade-off analysis 5121 2 41| 2 16
Option generation 19 | 2|11 | 6 6| 8| 52

Problem structuring |33 |19 |24 |25 |20 |25 |146

Total 84 |45 |54 52 |49 |56 | 340
Analysis techniques | C1|C2|C3|C4 | C5 | C6 | Total
Assumption analysis| 2 | 0| 2 3| 1| 3| 11
Constraint analysis 46|10 7| 7| 5| 39
Risk analysis 22 411 3| 15
Trade-off analysis 11 3101 6
Option generation 1] 3 6 9| 7 30

Problem structuring | 15 {20 |18 |12 |15 |13 | 93
Total 25 139 37 |35 33 32 194

Software Architecture Design Reasoning 29

Option generation and problem structuring, which are indirectly influenced
by the cards, are also more prevalent with the test groups. The test groups on
average perform 75 % more reasoning than the control groups.

Constraint analysis on the other hand is about even among the test and
control groups, and does not show the same rise in use of reasoning techniques. To
better understand these results, we examine the distinct values of the individual
reasoning elements. The reasoning techniques themselves are overarching and can
contain several elements, and elements can be repeated. The distinct number of
design elements identified by the two groups is given in Table 3. The groups can
repeatedly discuss the same assumption for instance, but the number of distinct
assumptions identified shows that the reasoning techniques help designers find
new design information. The distinct design elements are shown in the grey
columus in Table 3. The percentage difference shows 77 % more identification of
distinct reasoning elements by the test groups.

Table 3. Design reasoning elements — no. of distinct identification

Design reasoning| T1 T2 T3 T4 TS T6 Total distinct
elements elements identified

Assumption 1515 6 6 10 6 5 5 11 8 7 17 47

Constraint 9 8 17 8 5 4 9 7 13 8 18 7 42

Risk 6 6 7 6 7 5 7 7 7 7 8 6 37

Total 126

Design reasoning| C1 C2 C3 C4 C5 Cé6 Total distinct
elements elements identified

Assumption 2 2 1 1 2 2 5 5 1 1 3 3 14

Constraint 4 4 12 8 17 9 9 5 22 8 16 8 42

Risk 2 2 2 2 3 3 4 4 1 1 3 3 15

Total 71

Our results show that assumptions and risks occur with a similar frequency
as with their reasoning techniques. The constraints are shown to have an even
more similar frequency across the test and control groups, there is hardly any
difference at all. Although trade-off analysis shows an obvious difference, it is
the lowest in frequency with both test and control groups. This is a surprising
result as option generation shows a much greater difference in frequency. How-
ever, trade-off analysis, which concerns options, does not. To investigate these
results we need to look at the elements which make up trade-offs; pros and cons
(Table4). Taking a closer look towards the results, the differences between the
test and control group becomes more obvious. The frequencies of pros and cons
more closely match that of option generation. More pros and cons for various
options are given; only the combination of both pro and con is scarce. As the
coding scheme used requires a trade-off to have both a pro and a con for an
option explains why trade-off analysis has such low frequencies. Interestingly, in

30 C. Schriek et al.

comparison to the control groups, the test groups use both more pro with 53 %
more, but also far more cons to argue about their options, tripling the amount
with 269 % compared to the control group.

Table 4. Trade-off analysis, pros and cons elements

T1 T2 |T3|T4|T5 | T6 | Total
Tradeoff analysis| 5 | 2| 2| 4| 2| 1 16
Pros 17 4110 8| 4| 3 |46
Cons 10 2| 8|13 9| 6 |48
C1/C2|C3|C4|C5/|C6 | Total
Tradeoff analysis| 1 | 1| 0| 3| 0| 1| 6
Pros 2,41 5112 3| 4 30
Cons 112,04 2] 413

Table 5. Design problem, option and solution elements

T1 T2 |T3|T4|T5 | T6 | Total
Design problems |29 |10 |17 |17 | 8 |13 | 94
Design options |42 | 9 33 |28 |18 |18 | 148
Design solutions |29 |10 |17 |17 | 8 |11 | 92
C1/C2|C3 C4|C5|C6 | Total
Design problems | 3 | 8 |13 |19 |16 |11 | 70
Design options 510 |14 |18 |25 |23 | 95
Design solutions | 4 | 9 |13 |20 |17 |11 | 74

Looking at the identified design problems, options and solutions we find that
mostly the design options have increased in the test groups compared to the
control group, with a percentage difference of 56 % (Table5). This corroborates
with the increase in option generation established before. The identified design
problems and solutions have increased with the test groups, but not by much: a
percentage difference of 34 % in design problems, and 24 % with design solutions.

4 Discussion

The results of the experiment show significant differences in applying reason-
ing between the control and test groups. The cards overall trigger more design
reasoning in the test groups. More assumptions and risks are identified, more
options are generated and more key issues are defined with problem structuring.
In this section we analyse the results and discuss their meaning.

Software Architecture Design Reasoning 31

4.1 Thorough Reasoning vs Satisficing

A first result is the marked difference in the time spent in design. The test
groups took longer for their design session, while the control groups took less
time overall.

The test groups found more things to discuss and reason using the cards,
whereas the control group is more partial to satisficing behaviour, which is a
phenomenon where designers do not look exhaustively for every potential solu-
tion to a problem, but go with the first solution that is satisfying [20,29]. This
suggests that due to the cards, the test groups were reminded to reason with the
reasoning topics, and were encouraged to explore more about the design. This
supports our finding that the card game leads to applying more reasoning
techniques.

The test groups were less easily satisfied with their decisions since they found
more issues that they had to address. We can see this difference in attitude by
examining the transcripts. The test groups often mention how they have run out
of time before they are completely satisfied with their design. As can be seen in
the extract of T5 (Fig.2), a new design issue was mentioned, but there was no
time to solve it.

The control groups on the other hand, especially those which did not reach
the two hour mark, simply ran out of issues to resolve. In the extract of C5
(Fig. 2) they were touching on design issues that they needed to solve, but they
convinced themselves that what they had was good enough (satisficing). They
did not go further into detail to explore more about that decision but instead
ended the discussion. Hence, the card game combats satisficing behaviour.

The control groups were easier satisfied with their decisions and design, even
when they had not reached the full two hours given. For the test groups, the
card game stimulated the designers to keep refining their design and consider
their decisions, and often the time given was too short for these groups to fully
explore the design.

4.2 How Cards Influence Design Discourse

The cards directly influence the design discourse in two ways. Firstly, the cards
provide inspirations for students to investigate a certain topic. Secondly, the
students use the cards to reassess their previous discussion by classifying it in
card terms, e.g. a system rule is later identified as having been a constraint.
Examples like the extract from T3 show how these cards are used for inspiration
(Fig.2). Person 2 was looking over the cards searching for issues to discuss and
came up with a risk, which needed to be clarified for the other person. This
risk made the designers reconsider an earlier assumption, that the program is a
web-based application, which later turned into a nearly 5 minute long trade-off
discussion.

With the extract from T2 we can see the cards being used for classification
(Fig.2). Here they had just discussed a problem and found a solution for it. But
when they reassessed the discussion as a problem, they realized that in order to
solve the problem, they had also identified risks and used assumptions.

32

C. Schriek et al.

T5 (1:52:06-1:52:15)

PERSON 2: So we have we got everything. I think maybe only the traffic light is not taken into account and that’s
connected to intersection.

PERSON 1: Yeah. Definitely need to be there just make it here. And do we also model dependencies.

PERSON 2: Okay I think we don’t have the time to put in. Maybe we can sketch it.

C5(1:16:38 1:17:19)

PERSON 2: Oh ok. Do we have to say something more? Are we done actually? Or do they actually also wanna know
how we include the notation and such, because-

PERSON 1: No they also get the documents, so they can see

PERSON 2: Yeah ok, but maybe how we come up with the- I dont know. No? isnt necessary?
PERSON 3: Mm

PERSON 1: Its just use UML notation, for all

PERSON 2: For all?

PERSON 1: No, and lifecycle model, and petri net. No, no petri net

PERSON 2: Perhaps petri net. Ok, shall we- shall I just?

PERSON 1: Yeah

PERSON 2: Ok

T3 (0:20:31-0:21:10)

PERSON 2: HTML 5 yeah? Information would of course [inaudible] constraints or risk or trade-offs, we have to
make- a risk might be of course that- of course there is a [inaudible] so while you are travelling. For example, when
you have an older device that could be a problem of course. So then you couldnt use the navigation maybe, the- well,
[inaudible] right?

PERSON 1: What do you mean exactly? For example.

PERSON 2: Yeah well, for example, if you are travelling and you want to use the

application. You want to use the traffic simulator, then of course that might be the case that your device is not suitable
for it. For example. So, on the other hand

T2 (0:28:14-0:28:28)

PERSON 1: So this was a problem

PERSON 3: This was a problem

PERSON 1: Yeah

PERSON 2: Yeah. Because [inaudible]

PERSON 1: And a risk right

PERSON 2: A constraint? Yeah but it was also like an assumption that you have a minimum length. That is our
assumption right or-

PERSON 3: Yeah we created that now, and thats ok because its our own system

T4 (1:25:13-1:26:05)

PERSON 1: So that’s the trade-off. The other side is good to have in the cloud because you can easily push a new
update every hour if you want but you need really really strong server for all this simulations. Now professor did not
say how much money she has. So it can be also. There can be also an option to pay for usage of this server for every
simulation or for every hour of simulation.

PERSON 2: I don’t think so.

PERSON 1: There can be an option. But it can be also very expensive so when I think about everything I think that is
cheaper and easier to have local stand-alone version.

PERSON 2: Yeah.

PERSON 3: Yeah.

Fig. 2. Transcript extracts

Software Architecture Design Reasoning 33

4.3 Reasoning with Risk, Assumption and Trade-Off

A main purpose of the reasoning card game is to prompt the students to consider
design elements. The results of the experiment show that especially risks and
assumptions are considered more by the test groups. Trade-off analysis does not
show much difference, whereas constraint remained the same.

In many cases, the test groups considered the design scope to be clear at
first glance. But when they started using the cards and thought more about the
design topics, they found out that it actually is more complicated than they first
realized. The designers reflect on their previous ideas, discuss and redefine them,
which clearly shows that the cards trigger reasoning in designers.

For the control groups it is clear that considering assumptions and risks
for decision making about the design is not at the forefront of their minds, as
indicated by their low distinct element frequencies. With the test groups, the
cards remind the designers to take these considerations into account, as again
can be seen in T3 where person 2 lists the cards, which prompts him to identify
a risk (Fig.2).

For the trade-off analysis few pros and cons were discussed, contributing to
the low number of trade-offs. However, the test groups generated many pros,
and especially more cons to argue against the solution options than the control
group. The control groups also generate many pros, but fewer cons (Table4).
This suggests that the control groups are more concerned with arguments that
support their options, or arguing why these are good, instead of looking at
potential problems that could invalidate their options (cons). The test groups
are more critical of their choices and look at options from different viewpoints.
The extract of T4 shows part of a larger trade-off analysis in which several
options are heavily discussed: mostly to have either a standalone program, or
one which is cloud or web-based (Fig.2). In this part, person 1 mentions that a
pro for a cloud based program would be that you can update every hour, but
a con is that a strong server is necessary which would be costly. The person
then proceeds to suggest another option to ask users to pay for the usage of
the server. This is not well-received by the group and person 1 admits that this
option would still be a very expensive one and gives a pro to their first option:
a local standalone version to which the others agree.

Even though the group eventually went with their first option, they took the
time to explore multiple options and critically assess them by providing both
pros and cons. The control groups had fewer of such discussions.

4.4 Reasoning with Design Context, Problems and Solutions

The effect of the card game is to combat satisficing behaviour and lack of design
reasoning by stimulating the designers to reconsider their options and decisions,
ultimately taking more time to delve into the issues. And yet, when we look at the
design problems and design solutions identified by both groups, the percentage
difference is much lower than that of the other elements, such as options and
problems structuring. The cards prompt designers to consider their problems

34 C. Schriek et al.

and explore more of the design, but problems are not identified as much by the
test groups, as the other reasoning techniques are used.

Design problems identification can be influenced by other factors, such as
design strategy and designer experience. Design strategies such as problem-
oriented, or solution-oriented can influence the information seeking behaviour
of designers [16]. The approach used for problem-solving, whether to focus on
finding problems or solutions first, seems to have more of an impact on the design
problems being identified. When comparing groups with similar strategies, the
influence of the cards becomes clearer.

As an example, we have groups T2 and C1. Both use a satisficing strategy,
where they actively avoided going into the details. They preferred to view a
problem as being outside of their scope. Their option generation and trade-off
analysis results are very similar. But the problem structuring, risk, assumption
and constraint analysis of T2 is at least double of that of C1. Despite their
adherence to a minimum satisficing strategy, the cards prompted T2 to recognize
problems which often resulted from identified risks and constraints, for which
they made assumptions to simplify the problem and solution.

It seems that the design strategy used by the groups is a clearer indicator
for how many and what kind of design problems are identified, while the cards
influence how the designers solve these problems. This supports our finding that
problem identification depends more on the design strategy than on
the card game.

4.5 Constraint Identification

The card game seems to have no influence on constraint analysis. The individual
constraints identified by both groups are the same. This result in itself is inter-
esting, considering the effect of the cards on the other reasoning techniques. The
question here is why constraint analysis is different. One possible explanation for
this is that the very nature of constraints, i.e. limitations on the design, as seen
by novice designers, is intrinsically bound to the requirements. When thinking
about design and what the system must accomplish, novice designers think of
what is required, and what is not required. As a result both test and control
groups identify constraints as things that are not allowed or rules that the sys-
tem must follow. What is interesting here is that both groups identify much of
the same constraints, with many coming directly from the requirements in the
assignment, even taking on the same wording.

We find that both test and control groups frequently take over the literal
requirements presented in the text as constraints. To give a more detailed rep-
resentation of this, for the test groups there are 11 identified constraints which
are shared in various degrees amongst the groups. There are 11 other constraints
which they do not share and had to be inferred from the assignment, with 5 of
these being identified by only one group. The control groups share 12 constraints
from the text, and only 5 are other.

This then goes to explain the similar results when it comes to constraint
analysis, many of them are found literally in the text of the assignment and

Software Architecture Design Reasoning 35

require minimal effort to find. It is easy to see why these constraints would be in
the text as requirements, as it is to the clients benefit to give clear instructions
on what the program should and should not do. This means that constraints
are easier to identify, causing the cards to have little influence, as these are
given as requirements. The card game provides no noticeable difference
in constraint identification. The other techniques, such as assumptions and
risks, must all be inferred from the text and are not clearly given. The effect of
the cards is more obviously shown there.

5 Threats to Validity

We recognise the threats to validity in this research, especially those revolving
around generalization. For the transcripts, discourse analysis was used to inter-
pret the text, which in itself is subjective and reliant on the view of the researcher
[7]. This paper is an empirical research in the form of an experiment involving
an example assignment. Empirical research is one of the main research methods
within the software architecture research field, relying on evidence to support
the research results. We address the internal and external validity of the results
acknowledging any limitations which may apply [4].

5.1 Internal Validity

Internal validity is about how far a valid conclusion can be made from the
experiment and data collected. Firstly, this research makes use of the Irvine
assignment which has been used and tested in other research and is well-known
in the field of design reasoning [13]. This limits the results of this research to
those applicable to this kind of design assignment.

Secondly, participants were randomly selected for their situational represen-
tativeness, as students of software architecture, and the result of this research
is limited to novice designers in the Netherlands. However, we have found con-
vincing results to show that the card game made a difference to the reasoning
capability of novice designers. We argue that these two limitations do not impose
a major threat to the interpretation of the evidence that the cards have a positive
effect on design reasoning by novices.

5.2 External Validity

External validity is about to what extent the results from the case study can
be generalized across other published design reasoning articles. The results
of this case study are supported by similar experiments [6,15,27,28], showing
that in the case of novice designers, being made aware of reasoning techniques
actively counteracts satisficing behaviour and results in performing more design
reasoning.

But the results also show a discrepancy when it comes to constraints, which
did not show any difference across test and control groups. There are two possi-
bilities for this discrepancy, either a requirement naturally leads to constraints,

36 C. Schriek et al.

or the assignment itself is too clearly defined by explicitly including constraints.
Whether the constraint card would have any influence on an assignment which
did not mention constraints in their requirements cannot be proven at this point.
For the design problems and solutions there seems to be a design strategy
component which has an influence on the amount of design problems being
identified. This makes it unclear how much of an influence the cards have.

5.3 Reliability

Reliability is about ensuring that the results found in the study are consistent,
and would be the same if the study is conducted again. To ensure that the coding
of the transcripts is reliable it was tested for inter-reliability using Cohens kappa
coefficient [2] to measure the level of agreement. The transcripts were each coded
by two researchers using Nvivo 10. The average kappa coefficient of each of the
transcripts was above 0.6 which is considered to show a good level of agreement.
The average of all transcripts combined is 0.64.

6 Conclusions

Software design is a complicated problem-solving process, which due to its effect
on the later stages of software development, is one of the most important stages
to consider. Problems occurring at this stage which are not solved immediately
will result in problems later during development or implementation, costing
money and time. Problems with software design can result from problematic
design decisions, which are easily influenced by designer biases. These biases can
be avoided by using more logical reasoning.

In this paper, we propose a simple card game to help novice designers? use
design reasoning. Design reasoning means using logic and rational thinking in
order to make decisions, something which people as a whole find difficult due to
the usual way they think. In order to prompt design reasoning several common
reasoning techniques were chosen to be represented by the card game. These
techniques are; problem structuring, option generation, constraint analysis, risk
analysis, trade-off analysis, and assumption analysis.

To study the effect of the card game, we designed an experiment based on 12
student groups following a software architecture course. These 12 groups were
divided into 6 control and 6 test groups. The 12 groups were asked to construct
a software design. The transcripts of these experiments were analysed using
discourse analysis. The results show a notable difference between the test and
control groups on nearly all technique usages. The effect of the cards is to trigger
the designers to use design reasoning techniques to reason with different aspects
of design, to prompt new discussion topics, or to reconsider previous discussions.
In all manners, the cards trigger reasoning and lead to more discussion and
reconsideration of previous decisions. Those who use the card game generally
identify more distinct design elements and spend more time reasoning with the
design. Only the constraint analysis technique shows no obvious difference.

Software Architecture Design Reasoning 37

Further research includes to study the effect of the card game to professional

designers, i.e., those who are experienced in the field. Professionals have more
experience. Therefore, it would be interesting to observe how such a simple card
game works with people who are more aware of design techniques. The card
game could also be used as a learning tool for novice designers, to further their
understanding of software architecture and learn design issues from the reasoning

angles.
References
1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Series in

12.

13.

14.

15.

16.

17.

18.

19.

Software Engineering. Addison Wesley, Reading (2012)

Cohen, J.: Weighted kappa: nominal scale agreement with provision for scaled
disagreement or partial credit. Psychol. Bull. 70, 213-220 (1968)

Smart Decisions: A software architecture design game. http://smartdecisionsgame.
com/

Galster, M., Weyns, D.: Emperical research in software architecture. In: 13th Work-
ing IEEE/IFIP Conference on Software Architecture, Italy, Venice, pp. 11-20.
IEEE Computer Society (2016)

Grenning, J.: Planning poker or how to avoid analysis paralysis while release plan-
ning. Hawthorn Woods Renaiss. Softw. Consult. 3, 1-3 (2002)

van Heesch, U., Avgeriou, P., Tang, A.: Does decision documentation help junior
designers rationalize their decisions? A comparative multiple-case study. J. Syst.
Softw. 86, 1545-1565 (2013)

Horsburgh, D.: Evaluation of qualitative research. J. Clin. Nurs. 12, 307-312 (2003)
IDEO: IDEO Method Cards. https://www.ideo.com/by-ideo/method-cards/
Kahneman, D.: Thinking, Fast and Slow. Penguin Books, London (2012)

Klein, G.: Naturalistic decision making. Hum. Factors J. Hum. Factors Ergon. Soc.
50, 456-460 (2008)

Lago, P., van Vliet, H.: Explicit assumptions enrich architectural models. In: 27th
International Conference on Software Engineering, ICSE 2005, pp. 206-214. ACM
(2005)

Lee, J.: Design rationale systems: understanding the issues. IEEE Expert. Syst.
Appl. 12, 78-85 (1997)

Petre, M., van der Hoek, A.: Software Designers in Action: A Human-Centric Look
at Design Work. CRC Press, Boca Raton (2013)

Poort, E.R., van Vliet, H.: Architecting as a risk- and cost management discipline.
In: 9th Working IEEE/IFIP Conference on Software Architecture, WICSA 2011,
pp. 2-11. IEEE Computer Society (2011)

Razavian, M., Tang, A., Capilla, R., Lago, P.: In two minds: how reflections influ-
ence software design thinking. J. Softw. Evol. Process 6, 394-426 (2016)
Restrepo, J., Christiaans, H.: Problem structuring, information access in design.
J. Des. Res. 4, 1551-1569 (2004)

Rittel, H.W.J., Webber, M.M.: Dilemnas in a general theory of planning. Policy
Sci. 4, 155-168 (1973)

Schon, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic
Books, New York (1983)

Simon, H.A.: The structure of ill structured problems. Artif. Intell. 4, 181-201
(1973)

http://smartdecisionsgame.com/
http://smartdecisionsgame.com/
https://www.ideo.com/by-ideo/method-cards/

38

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

C. Schriek et al.

Simon, H.A.: Rationality as process and as product of a thought. Am. Econ. Rev.
68, 1-16 (1978)

Stacy, W., MacMillan, J.: Cognitive bias in software engineering. Commun. ACM.
38, 57-63 (1995)

Stanovich, K.E.: Distinguishing the reflective, algorithmic, autonomous minds: is
it time for a tri-process theory? In: Two Minds: Dual Processes and Beyond, pp.
55-88. Oxford University Press (2009)

Tang, A.: Software designers, are you biased? In: 6th International Workshop on
SHAring and Reusing Architectural Knowledge, pp. 1-8. ACM, New York (2011)
Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design ratio-
nale. J. Syst. Softw. 79, 1792-1804 (2006)

Tang, A., Lago, P.: Notes on design reasoning techniques. SUTICT-TR.01,
Swimburne University of Technology (2010)

Tang, A., Lau, M.F.: Software architecture review by association. J. Syst. Softw.
88, 87-101 (2014)

Tang, A., Tran, M.H., Han, J., Vliet, H.: Design reasoning improves software design
quality. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281,
pp. 28—42. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87879-7_2

Tang, A., Vliet, H.: Software architecture design reasoning. In: Babar, M.A.
Dingsgyr, T., Lago, P., van Vliet, H. (eds.) Software Architecture Knowledge Man-
agement, pp. 155-174. Springer, Heidelberg (2009)

Tang, A., Vliet, H.: Software designers satisfice. In: Weyns, D., Mirandola, R.,
Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 105-120. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23727-5_9

UCL: Studying professional software design. http://www.ics.uci.edu/
design-workshop/

Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based
on empirical results of interviews with software designers. Inf. Softw. Technol. 49,
637-653 (2007)

http://dx.doi.org/10.1007/978-3-540-87879-7_2
http://dx.doi.org/10.1007/978-3-319-23727-5_9
http://www.ics.uci.edu/design-workshop/
http://www.ics.uci.edu/design-workshop/

2 Springer
http://www.springer.com/978-3-319-48991-9

Software Architecture

10th European Conference, ECSA 2016, Copenhagen,
Denmark, Movember 28 -- December 2, 2016,
Proceedings

Tekinerdogan, B.; Zdun, U.; Babar, A. (Eds.)

2018, XIlIl, 340 p. 81 illus., Softcover

ISBM: 978-3-319-4899]1-9

	Software Architecture Design Reasoning: A Card Game to Help Novice Designers
	1 Introduction
	2 Design Reasoning
	2.1 Design Reasoning Techniques

	3 Student Experiment
	3.1 Experiment Design and Pilot Testing
	3.2 Results

	4 Discussion
	4.1 Thorough Reasoning vs Satisficing
	4.2 How Cards Influence Design Discourse
	4.3 Reasoning with Risk, Assumption and Trade-Off
	4.4 Reasoning with Design Context, Problems and Solutions
	4.5 Constraint Identification

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity
	5.3 Reliability

	6 Conclusions
	References

