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Abstract. We consider in the following the problem of realizing periodic
functions by a collection of finite state-agents that cooperate by interact-
ing with each other. More formally, given a periodic non-negative integer
function f that maps the set of non-negative integers N to itself, we aim
in this paper at designing a distributed protocol with a state set @ and
a subset S C @, such that, for any initial configuration Cp, with prob-
ability 1, there are a time instant ¢y and a constant d € N satisfying
ft+d) = vs(Cy) for all t > to, where vg(C) is the number of agents
with a state in S in a configuration C'. The model that we consider is a
variant of the population protocol (PP) model in which we assume that
each agent is involved in an interaction at each time instant ¢, hence the
notion of synchronous handshakes. These additional assumptions on the
model are necessary to solve the considered problem. We also assume
that the interacting pairs are matched uniformly at random.

Keywords: Self-organizing systems - Self-stabilization - Clock synchro-
nization - Oscillators + Group construction : Population protocol -
Uniform scheduler

1 Introduction

The food hunting of army ants, the synchronized flashing of fireflies..., these
remarkable self-organized behaviors observed in biological systems have intrigued
a lot of researchers and a lot of investigations have been initiated to understand
these autonomous and self-organized behaviors to implement them in artificial
distributed systems.

In a typical artificial distributed system, its global behavior is controlled
by its distributed elements, each of which determines its behavior depending
only on its local view (i.e., local snapshot of the system). The wider views the
elements have, the more delicately the global behavior can be controlled, needless
to say; or equivalently, the narrower views they have, the more disorderly the
distributed system would behave (at least in the worst case). Note that if no
communication (direct or indirect) is allowed then obviously coordination is
impossible to achieve. The extreme case is then when a distributed element
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is completely isolated from the other elements, and changes its (local) state
when it happens to interact with another element. In this paper, provided this
extreme case and assuming an arbitrary initial state of the system (i.e., in a
self-stabilizing manner), we examine what is necessary to control the distributed
system and emerge a global behavior. Specifically, we examine the contribution
of synchrony to have the system behave orderly. Self-stabilization is an important
feature in distributed computing. It is more challenging to achieve as the system
must retrieve, by itself, a correct behavior starting from any possible initial
configuration. This permits to tolerate transient faults.

The closest model to our setting is the population protocol (PP) model that
was introduced by Angluin et al. [1] to model a collection of finite-state agents
that interact with each other in order to accomplish a common task [6]. Compu-
tations in PPs are performed through pairwise interactions i.e., when two agents
interact, they exchange their local information and update their state according
to a common protocol. The interaction pattern is assumed to be unpredictable
i.e., each agent has no control on the agents it interact with. Hence, it is assumed
that there is an external entity, called scheduler, which is in charge of selecting
the pairs of agents for an interaction. Remark that the definition of PP is general
enough to represent not only artificial distributed systems as sensor networks but
also natural distributed systems as animal populations and chemical reactions.

Let N be the set of non-negative integers. Given a periodic non-negative
integer function f : N — N with a period 7 i.e., f(t+7) = f(t) for all t € N.
We present in this paper, a population protocol with a state set () and a subset
S C @, such that, for any initial configuration Cy, with probability 1, there are a
time instant ¢y and a constant d € N satisfying f(¢t + d) = vg(Cy) for all t > tg,
where vg(C) is the number of agents with a state in S in a configuration C.
That is, we aim at realizing the function f by counting the number of agents
in a given set of states S. In other words, our target is to design a protocol to
completely control, in a distributed manner, the number of agents with a state
in S to represent f. Remark that if we allow a scheduler that may not invite
some agents to interact at some time ¢, the problem becomes unsolvable even for
a simplest problem instance. For example, define a function f; by f-(¢) =nif ¢
mod 7 = 0 (where n is the size of the population), and f,(t) = 0, otherwise. Since
the agents can only update their states when they are involved in an interaction,
provided that there are at least three agents in the population, there is no PP
that realizes f,, since all agents must participate in an interaction to update their
states and reach a configuration C' such that vg(C') = n from a configuration C”
in which vg(C’) = 0 (after convergence). We thus consider a variant of PP in
which we assume that every agent is part of an interaction at each instant.

To solve our problem, we also need to consider the self-stabilizing clock syn-
chronization problem. Clock synchronization is one of the important features in
distributed computing as it provides a form of logical clock that could be used to
solve several distributed problems. The problem has been widely investigated in
the context of distributed computing [3,6,9]. Under the PP model, the problem
was recently addressed in [4] where it has been shown that in the case where
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the agents have only a constant number of states, the self-stabilizing synchro-
nization problem is impossible to solve, even if the agents know their covering
time, which is the minimum number of transitions for them to have met with
each other agent with certainty. A self-stabilizing population protocol is then
proposed to solve the phase synchronization problem. In the proposed solution,
an unlimited resource station called Base Station is used to provide an infinite
repetition of phases, 0,1,...,7 — 1 and ensure that any agent ¢ does not exe-
cute phase  + 1 (mod 7) before all the agents have executed phase z (mod )
i.e., there are time instants in which the clock values of the agents are not all
the same. In this paper, provided our scheduler, we propose a solution for the
self-stabilizing synchronization problem using a constant number of states.

Most of the problems investigated in PPs consider the computational power
of the model and hence are static. So far, only few investigations have considered
dynamic problems: in [2], a self-stabilizing token circulation protocol on rings
with a pre-selected leader was proposed. In [5], both the self-stabilizing mutual
exclusion and the group mutual exclusion problems were considered. In [10],
the authors investigated the convergence time and the threshold effects exhib-
ited by Lotka-Volterra-type protocols. In a companion paper [8], the authors
investigated the problem of realizing a (digitized) sine curve in a self-stabilizing
manner. Under a deterministic scheduler which is adversarial, they showed that
the problem is at least as difficult as the self-stabilizing leader election problem,
and hence (by [7]) at least n states are necessary to solve the problem.

2 Preliminaries

We consider a collection A = {0,1,...,n — 1} of identical (anonymous) finite-
state agents that interact with each other in order to cooperate and solve a given
problem. Computations are performed through pairwise interactions i.e., when
two agents interact, they exchange their information and update their states
according to a common deterministic protocol P = (@, ¢), where @ is a finite
set of states (of an agent) and ¢ is a transition function (@ x Q) — (@ x @) that
specifies the result of each interaction; if two agents in A with states p and p’
interact at time ¢, their states at t+1 will be ¢ and ¢’, where (¢, q¢") = §(p,p’). We
assume that each agent is able to interact with any other agent in the population.
Let p; € @ be the state of an agent i € A. The n-tuple C = (p1,p2,.-.,Pn)
of states where each entry p; corresponds to the state of the agent i, describes
the global state of the population, and is called a configuration. We frequently
regard C' as a mapping A — @ such that C(i) = p; for all i € A. Once an
interaction pattern has been given to a configuration C, the configuration C’ at
the next time instant is naturally constructed from C as follows: for each pair
(2,7) of agents in the interaction pattern, we replace p; and p; in C' with ¢; and
g;, where (g;,q;) = 6(ps,p;). In this paper, we distinguish the initiator and the
responder in §, so that §(p;,p;) = (¢, q;) may not imply 6(pj,pi) = (g;,¢)-
Unlike the classical model of PP, we assume that at each instant ¢, each agent
is part of an interaction, we hence assume that n is even. The scheduler, in charge
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of creating a maximum matching on all the agents, is assumed to be probabilistic
and uniform i.e., the pairs of agents are matched uniformly at random.

Let P = (Q,0) and C be the set of all possible configurations of P, respec-
tively. Given a configuration C' € C and an interaction pattern, i.e., a set of
interactions (i.e., disjoint pairs of agents) R = {(i1, j1), (i2,J2),- -, (im, Jm)}, we
say that C’ yields from C via R, denoted by C it C'ifforall k=1,2,...,m,
(C"(i1),C"(ir)) = 8(C(ix), C(jx), and otherwise, if i & {ix, jx : 1 < k < m}.
C'(i) = C(4) holds. Let C; and R; be respectively the configuration and the inter-
action pattern on Cy at time ¢. An execution £ of a protocol P can be represented
by a sequence of configurations and interaction patterns (Cp, Rg,C1, Ry,...)

such that for all ¢t > 0, C; By Ci41. Recall that R; is produced by the scheduler.
Since this paper assumes that each agent is part of an interaction and n is even,
|R;| = n/2 for any t. By C' = C’, we denote the fact that a configuration C’ is
reachable from C after a finite number of transitions.

Let N be the set of non-negative integers. For any configuration C' and a
subset of states S, vs(C') denotes the number of agents with a state p € S in C.
Suppose that f is a periodic non-negative integer function f : N — N with a
period 7, i.e., f(t+7) = f(¢) for all ¢ € N. This paper investigates the problem of
designing a protocol P that realizes f (in a self-stabilizing manner). Formally, a
protocol P = (@, d) and a subset S of @) are looked for, that eventually realizes f,
regardless of its initial configuration Cp, in the following sense: for any execution
€ :Cy,Ch,..., there are a time instant to and a constant d (0 < d < 7) satisfying
ft+d) =vs(C,) for all t > tg with probability 1.

To achieve our goal, we first present a protocol 7-CLK that implements a
self-synchronized clock using 7 states and then use it to design a protocol POy,
called a primitive oscillator that realizes a primitive periodic function A whose
period is 7 and range is {0,n}. We next explain how to execute a set of primi-
tive oscillators in parallel in such a way as to satisfy prescribed offsets between
them, assuming that the agents that participate in different oscillators are dis-
joint, although they interact to synchronize their executions. Since a periodic
function f is represented by the sum of a set of primitive periodic functions
h; with range {0,n;}, the problem of designing a protocol that realizes f is
reduced to the group construction problem to assign each agent to a group g;
in such a way that each group g; eventually accommodates n; agents (to run
primitive oscillators POy,). The group construction problem for one group is
trivial. The general group construction problem can be reduced to the problem
for n groups, each consisting of one agent. We present first a protocol for solv-
ing the general group construction problem that requires £2(n) states. Aiming
at the reduction of the space complexity, we next present a heuristic protocol
to approximately construct m groups of size ng,...,n,,_1 respectively, using
m - c-max{by,...,by_1} states, where c is a small constant larger than 5 and
b =ni/ng € Nfork=1,2,...,m—1.
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3 Clock Synchronizers and Primitive Oscillators

3.1 Self-stabilizing Clock Synchronization

In this section, we first formulate the self-stabilizing clock synchronization prob-
lem taking care of the fact that the scheduler is probabilistic, and show that there
is a self-stabilizing clock synchronization protocol that solves the problem. A pro-
tocol P = (Ty,d,), where T, = {0,1,...,7 — 1}, is said to be a self-stabilizing
modulo 7 clock synchronization protocol if for any execution & : Cy, Cy, . .. start-
ing from any initial configuration Cy € C, with probability 1, there are a time
instant to € N and an integer d (> —to) satisfying v{4+a) mod +}(Ct) = n for
all ¢(> tg). Consider the following protocol 7-CLK.

Protocol 1. 7-CLK: Self-stabilizing Modulo 7 Clock Synchonizer
0(z,y) = ((min(z,y) + 1) mod 7, (min(z,y) +1) mod 7)

Theorem 1. Protocol 7-CLK is a self-stabilizing modulo T clock synchroniza-
tion protocol.

Proof. Let &£ : Cy, C4, ... be any execution starting from any initial configuration
Cop. Once it reaches a configuration Cy such that vy 4y mod }(Ct) = n, by the
assumption on the scheduler, no matter what maximum matching is proposed
as the interaction pattern, v((41d+1) mod T}(Ct+1) = n holds. Thus it suffices to
show that, with probability 1, there is a time instant ¢ such that vy (Ct) = n
holds for some t’ € T,.

Since the case of 7 = 1 is trivial, we assume that 7 > 2. Consider a directed
graph G = (C, F) representing the transition relation between configurations, i.e.,

(C,C") € E if and only if C £ ¢ via some interaction pattern R, which implies
that when the current configuration is C, the next configuration is C’ with a
positive probability. Let C* = {C : v(4;(C) = n for some ¢ € T;}. Thanks to the
theory of finite state Markov chain, in order to show that, with probability 1,
there is a time instant ¢ such that v, (Ct) = n holds for some ', it is sufficient
to show that for any C' € C, there is a C’ € C* that is reachable from C in G.
We show this fact in the following.

For any C' € C, let Z¢ = {t € Tr : v (C) = 0}, which is the set of states
t € T that does not appear in C. By definition, C' € C* if and only if |Z¢| = 7—1.
We show that for any C' ¢ C* there is a configuration C’ reachable from C in G
such that |Z¢| < |Zev|.

First consider the case in which |Z¢| = 0. Recall that n is even and thus n/2
is a natural number. If v, _1,(C) < n/2, there is a maximum matching R that
matches every agent with state 7 — 1 to an agent with a different state, and by

definition 0 € Z¢, where C' Eiyel , since an agent with 0 emerges in C” if and
only if two agents with state 7 — 1 interact in C.
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Suppose otherwise that v(,_1}(C') > n/2+1, which implies that v(,_4,(C) <
n/2 — 1. Consider a maximum matching R that matches every agent with state
¢r—1 to an agent with the same state; if v;;_13(C) is odd, then R matches the

remaining one to an agent with state 0. Then v¢,_11(C’) < n/2, where C it c,
since vi;_13(C") < vr—23(C) +1 < n/2. A configuration C” such that 0 € Z¢n
is reachable from C in G.

Next, consider the case in which |Z¢| > 0. Let R be any interaction pattern

in C and C’ the configuration such that C £ ¢’ Observe that if v (C) =0
then v{41) mod }(C’) = 0, and hence |Z¢| < |Z¢/| holds. Assume first that
vr—1(C) > 0, if v(z_13(C) < n/2, then we can easily find C” such that |Z¢| <
|Zc| holds. Otherwise if vy, _13(C) > n/241, by a similar argument as above, we
can show that there is a path from C' to C' in G, such that 0 < v(,_13(C") < n/2
holds.

By contrast, assume that v, _1(C) = 0. We show that after at most 7 steps,
vr—1(C") > 0, where C — C’. Let consider the smallest ¢ € [0, 7 — 2] such that
v:(C) > 0 (for all ¢ = 0,1,...,t — 1, v (C) = 0). Note that v1(C’") > 0. If
v-—1(C") = 0 then again v;,2(C”) > 0 where C' — C”. By repeating the same
reasoning, after at most 7 steps, v,—1(C~) > 0 where C = C~. We retrieve the
cases discussed above.

3.2 Primitive Oscillators

Let a = (ta,tp,tdste) be a tuple of four parameters representing respectively
amplitude, period, delay and length where 0 < g < ). By fo, we denote a
function with period ¢, defined as follows: f,(t) = ¢ if tq < t(mod ¢p) < tq+
te — 1, and f,(t) = 0, otherwise.

Figure 1l illustrates a part of f,, where fe
a = (5,10,6,4). That is, for example,
fa(z) =0 when  =0,1,...,5, and f(x) =

5 when z = 6,7,8,9. We call such a func-

tion (fa) primitive (periodic) function. Note < |

that a constant function is also a primitive R R ERE E T T
function. T w

. . . L
In Fig. 1, f, is presented as a continuous P

trapezoidal function to emphasize the shape
of the oscillations, however, recall that, in
reality, f, is a discontinuous step function.
A pair of protocol P = (Q, §) and a subset
S of @) is said to be a primitive oscillator if it
realizes a primitive function f,: For any execution & : Cy, Cq, ... starting from
any initial configuration Cy € C, with probability 1, there are a time instant
to € N and an integer d (> —to) satisfying vg(Ci1q) = f(¢) for all t(> tg).
Given a = (n, 7, ta,te), let T, ,, = {td,ta+1,...,tqa+t¢—1}. Then, the pair
PO, = (1-CLK, T,,,,) is a primitive oscillator for f,, by the next corollary.

Fig. 1. A primitive (periodic) func-
tion fo, where oo = (5,10, 6,4)
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Corollary 2. Let f be any periodic function with period T that takes a value in
{0,n}. Then there is a state set Sy C Q, such that T-CLK with Sy realizes f.

Proof. Letting Sy = {t mod 7 : f(t) = n}, 7-CLK with Sy realizes f by
definition.

4 Synchronization of Primitive Oscillators

In this section, we investigate how to synchronize several primitive oscillators, in
order to satisfy prescribed offsets between them, assuming that the agents that
participate in different oscillators are disjoint (i.e., they know to which group
they belong), although they do interact to synchronize their executions. The
offset is the difference, expressed in time, between the delays of two primitive
oscillators referenced to the same point in time (see Fig.2). In our case, the
offset is expressed as the difference between the agents’ clock values. We assume
that the primitive oscillators have the same period, however, they might have
different delays. Note that we can assume that the offset is positive without
loss of generality, since we can order the primitive oscillators according to the
predefined offsets.

To simplify the explanation of our pro-
tocol, we first focus on how to synchronize —
two primitive oscillators. Let PO, (k=0,1)
be two primitive oscillators for the set of
agents Ay, where ap = (ng, T, tq,,te,) and / \ / ‘
ng = |Ag|. Let o be the offset. Provided that =
AgN Ay =0 and |AgU A;] is even, a protocol Offset
that works on A = AgU A1 is looked for, such
that for any execution & : Cy, C1, . .. starting Fig. 2. Offset between two primi-
from any initial configuration Cy € C, with tive oscillators
probability 1, there are a time instant {y € N
and integers do,d; (> —to) satisfying the following conditions: (1) o = d; — do,
and (2) for k = 0,1, vs, (Ctra,) = fa,(t) for all t(> ty), where Sy is the state
set of POy, i.e., PO,, = (7-CLK, S;). We call a protocol satisfying these con-
ditions (POq,,0, POy, ).

In the following, we present a protocol P = (Q,d) and a subset S of Q) that
satisfy these conditions. First, the set of agents is A = Ay U A1, and the state
set is Q = G2 X Q,, where Go = 0, 1. An agent ¢ € A is in state (k,t) € Q means
that it belongs to group Ay and its local time is ¢t. Note that in this section,
agents do not change their group Ay, and we concentrate on the synchronization
of their local times so that all members in the same group have the same time,
while the difference of the local times in Ay and A; is exactly o, provided that
initially all members in Ay are in a state in {k} x T, i.e., initially each agent
correctly recognizes its group. Let = = (k,r) and 2’ = (k’,r') be two states.
The following protocol 2-CPO defines (y,y’) = d(x,a’), where y = (¢, s) and
y' = (¢, ). In the 2-CPO, 4, is the transition function of -CLK. Note that the
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description of 2-CPO presents the case in which ¥ = 0 and &’ = 1 holds (and
the case in which k& = &’ holds). Although omitted in 2-CPO, the other case in
which k£ = 1 and &’ = 0 should be defined symmetrically.

Protocol 2. 2-CPO: Coupling Two Primitive Oscillators

if k = k' then /* The agents are part of the same group. */
£="{ =kand (s,58) =8 (r,7)
else /* The agents are part of different groups. */ (k=0 and k' = 1) */
if (r+o0) mod 7 =7 then
L=k=0,{=kK=1,s=(r+1) modTand s = (r'+1) mod
else
l=k=0,{=kK=1,s=(r+1) mod7Tand s =(r+o+1) modr

Theorem 3. The protocol defined by 2-CPO is indeed (PO,,,0, POy, ), pro-
vided that initially all agents in Ay have a state in {k} x T, for k=0,1.

Proof. Let € : Cy,C1,... be any execution starting from any initial configura-
tion Cy such that, for all i € A, Cy(i) = (0,¢) for some ¢t € T, if and only if
i € Ag. By the definition of 2-CPO, the agents do not change their groups, and
thus through out the execution, all members originally in Ay (resp. A;) are in
Ao (resp. Al)

Observe that agents in A; cannot affect agents in Ay (except to increment
time), and the clocks (i.e., the second element ¢ of state (0,t)) of agents in Ay are
eventually synchronized by executing 7-CLK.! That is, there is a time instant
to and a constant d such that for any ¢ > tg, all of their clocks show r = (¢ + d)
mod 7 at Cy, with probability 1, by Theorem 1. All agents in A; also execute
7-CLK, but their clocks are not synchronized, unless all of their clocks show
r’ satisfying 7/ = (r + 0) mod 7 at C;. On the other hand, if there is a time
instant ¢ > tg at which the clock of each of the agents in A; at C; shows time r’
satisfying ' = (r 4+ 0) mod 7, then the conditions for (PO,,, 0, PO,,) hold.

Thus it suffices to show that there is a time instant ¢t > t¢ at which all of their
clocks are synchronized and show time 7’ satisfying ' = (r + 0) mod 7, with
probability 1. Thanks again to the theory of finite state Markov chain, we follow
the same argument as in the proof of Theorem 1. We define the graph G on the
configuration space C of 2-CPO representing the transition of this protocol. Let
C* be the set of configurations corresponding to the desired configurations, and
show that for all configuration C' € C, there is a path to a configuration in C*.
Let C be any configuration. Without loss of generality, we can assume that the
clocks of all agents in Ag are synchronized in C. If ng > n1, then obviously there

! In spite that the size of Ag may be odd, the clocks of agents in Ay are eventually
synchronized by executing 7-CLK, since every agent that interacts with an agent in
different group increments its time, even if it does not interact with an agent in the
same group.
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is an interaction pattern R that matches all members in A; to members in Ay,
and C' € C* is reached from C via R, by the definition of 2-CPO.

Otherwise if ng < nq, let Z¢o be the set of agents i in A; whose clock in
C satisfies ' = (r + 0) mod 7. Consider an interaction pattern R defined as
follows:

M1: Take a maximum matching among Z¢, so that every agent (except at most
one, say i) matches to an agent in Z¢.

M2: Take a maximum matching between agents in Ag and those in
Ai\Zc(U{i}) if there is such an ¢ in M1.

M3: Take a maximum matching among the agents whose parters have not been
determined in M1 and M2.

Let C’ be a configuration reached from C' via R. If all agents in A; can be
matched by M1 and M2 (without using M3), then C’ € C*.

Otherwise, by M1, Zc\{i} C Z¢v. Set Zeo» also contains agents in A; that
are matched with agents in Ay by M2. Since ng > 1 and |A;| + |Asz| is even,
|Zc| < |Zcr|. Thus there is a path from C to a configuration C” at which all
agents in A, can be matched by M1 and M2.

We extend this protocol to synchronize m primitive oscillators. Let PO,
(k=0,1,...,m — 1) be m primitive oscillators for the set of agents Ay, where
ar = (N, T,td,,te,) and ng = |Ag|. Let op (k = 0,1,...,m — 1) be the
offset between PO,, and PO,,_,. Provided that Aj’s are disjoint and A =
Uo<k<m—1A4y is of even size, a protocol that works on A is looked for, such that
for any execution &£ : Cy, C1, ... starting from any initial configuration Cy € C,
with probability 1, there are a time instant ¢y € N and integers dj, (> —tg) for
k=0,1,...,m — 1 satisfying the following conditions: (1) o, = dg41 — dj for
k=0,1,...,m—2,and (2) for k =0,1,...,m — 1, v5, (Ci1d,) = fa,(t) for all
t(> to), where Sy, is the state set of PO,,, i.e., PO,, = (7-CLK, S;). We call a
protocol satisfying these conditions (POq,, 00, POg,, 01, ,0m—2,POq, ).

We present a protocol P = (Q,d) and a subset S of @) that satisfies this
condition. First, the set of agents is A = Ui<x<m Ak, and the state set is Q) =
Gy X Ty, where G, = {0,1,...,m — 1}. An agent i € A is in state (k,t) € Q
means that it belongs to group Ay and its local time is t. We are concerned with
synchronization so that all members in the same group have the same time, while
the difference of the local times in Ay and Ay, is exactly og if h = k+ 1, provided
that initially all members in Ay are in a state in {k} xT. Let © = (k,r) and 2’ =
(K',r") be two states. The following protocol m-CPO defines (y,y’) = é(x,a’),
where y = (¢, s) and y' = (¢, ¢'). In the m-CPO, 4, is the transition function of
7-CLK. Note that the description of m-CPO presents the case in which k < &/
holds. Although omitted in m-CPO, the other case in which k& > &k’ should be
defined symmetrically.
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Protocol 3. m-CPO: Coupling m Primitive Oscillators

if k = k' then /* The agents are part of the same group. */
£=/{ =kand (s,8) = (r,7)
else /* The agents are part of different groups. */ (k < k') */
if (((r+ox) mod T=7r)V(k+1<k')) then
L=kt =FK,s=(r+1) modTand s = (r'+1) mod
else
=k ¢ =K ,s=(r+1) modTand s = (r+ox+1) mod T

By induction on m and using Theorem 3 the following theorem holds.

Theorem 4. The protocol defined by m-CPO is indeed (PO, , 00, POy, , 01, - .,
Om—2, POy, _,), provided that initially all agents in Ay, have a state in {k} x T, for
k=0,1,...,m—1.

For k = 0,1,...7 — 1, by defining fx as fx(t) = f(t) if t(mod 7) = k, we
deduce the following;:

Proposition 5. Any periodic function f with period T can be decomposed
into T primitive periodic functions fr (k = 0,1,...7 — 1) such that f(t) =
> o<k<r_1 fK(t) for allt.

Let POy be the primitive oscillator for f in the decomposition of f in
the proof of Proposition 5, for & = 0,1,...,7 — 1. Define P = (Q,9) as
(POy, 09, PO1,01,...,07—2,PO;_1), where o, =0 for k =0,1,...,7—2, and ¢
is 7-CPO. Let S = {(k,k)): k=0,1,...,7—1} C Q.

Corollary 6. Let Cy be any configuration such that for any k=0,1,...,7—1,
{i : Co(i) = (k,t) for some t € T} = f(k) holds. Then P with S realizes f
from Cy with probability 1.

Now, the remaining task is to reach a configuration C, starting from any
configuration Cj, that satisfies the initial condition in Corollary 6, which is the
theme of the next section.

5 Self-stabilizing Group Composition

Given a number of groups G, = {0,1,...,m — 1} along with their respective
sizes {ng,m1,..., nm—_1}, a protocol is said to solve the self-stabilizing group
m—1

construction problem if it ensures that given a population of size n = >"," " n;,
starting from an arbitrary configuration Cy € C, the population is eventually
divided into m groups of sizes ng,n1,...,n,—1, respectively.

e Accurate Solution. We first present a protocol P = (Gy,d,), denoted n-
GC, with the state set G, = {0,1,...,n — 1} that solves the group construction
problem for n groups, each of size 1. The idea behind n-GC is the same as the
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one used in the protocol proposed in [7], which is used for the leader election and
ensures that starting from an arbitrary configuration Cy € C, in any execution
& :Cy, (4, ..., there is a time instant ¢ty € N from which each agent has a unique
state. Transition function ¢, is given below.

Protocol 4. n-GC: Self-stabilizing n-Group Constructor
if (r #r') then 6,(r,r") = (r,7')
else 6,(r,r') = (r,(r +1) mod n)

By the definition of the n-GC, we can state the following proposition:

Proposition 7. Protocol n-GC is a self-stabilizing group construction protocol.

Corollary 8. The (general) self-stabilizing group construction problem is solv-
able by using n-GC.

Proof. Let n, (k=0,1,...,m — 1) be the size of Group k. We assume that an
agent 7 is in Group k if its state ¢ satisfies Z;:é n; <4< Z?:o n;. Then by
Proposition 7, the corollary holds.

Note that n-GC correctly works under a deterministic scheduler, and after
the convergence, agents never change the group to which they belong. The (only)
drawback however is the size n of state set G,,.

By Theorem 4 and Corollaries 6 and 8, we can construct a protocol that
realizes f with probability 1, by applying the fair merge technique. Hence,

Theorem 9. Any periodic function f is realizable using (n + 1) states.

As a note, in the special case where m = 2 and ny = nq, it is possible to
solve accurately the group construction problem using only two states per agent.
However, agents change their groups infinitely often and hence, the solution can-
not be used directly in our case since the agents need to stay long enough in
their group to insure the synchronization of their clocks.

e Heuristic Protocol. Aiming at solving the self-stabilizing group construction
problem using a smaller number of states, we propose in the following a heuristic
protocol P = (Q,¢), denoted HGC, that approximately solves the group con-
struction problem. It is a heuristic in that we do not have a formal proof that
it indeed approximately solves the problem, with probability 1. Some simula-
tions have been performed that show the possible convergence of the protocol,
however, the stabilization time is extremely long.

Let ng,n1,...,nm_1 be the sizes of the groups, and assume that they are
sorted in the increasing order without loss of generality, i.e., ny < ng4q for k =
0,1,...,m—2. Protocol HGC assumes ng|n; for all j. Let B = {b1,b2,...,bm_1},
where ng = by - ng. Let ¢ € N be a small constant (compared with n) greater
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than 5. The state of agent ¢ € A is (k,t), where k € {0,1,...,m — 1} is the
current group the agent belongs to, and ¢t € {0,1,...,c-by — 1} indicates its local
progress. Protocol HGC defines (y,y') = §(z,z’), where x = (k,r), ' = (K, 77),
y=(£s) and y = (¢,5).

Protocol 5. HGC: Heuristic Group Constructor

if k = k' then /* The agents are part of the same group. */
ifr=r'"=c-bythenl=(k+1) modm,s=0andy =y
else
ifr<c-bythen f=k s=r+1andy =2
ifr'<c-bythen y=xz,¢ =k and s’ =r"+1
else /* The agents are part of different groups. */
L=k, s=0,¢ =k and s’ =0

To understand the idea of Protocol HGC, assume that ng = ny = ... = ny,_1
and thus by =1 for all K =1,2,...,m — 1. In order for an agent ¢ to change its
group k to ((k+1) mod m), agent ¢ needs to interact c-by = ¢ consecutive times
with an agent in the same group. That is, for any sufficiently large population, as
long as the difference in the group sizes is too large, there would be agents who
change their groups, which eventually leads a configuration to an equilibrium
state in which the size of each group is approximately the same.

As a final note, since the agents may change their group during the execution
of HGC, in order to realize a given function f using the fair merge of m-CPO
and HGC, we need to make sure that when an agent updates its group, it also
updates its clock value to adjust it to the new offset. That is, when an agent
interacts, it first executes the actions of m-CPO (assume that the new computed
clock value is s) and then executes the actions of HGC. If by executing HGC,
it changes the group it belongs to, it also updates its clock value to respect the
offset o (if any). That is, its new clock value is updated to (s + 0) mod 7.

6 Conclusion

In this paper, we have investigated the problem of realizing a periodic function f
assuming a variant of the PP model in which each agent is part of an interaction
at each time instant and the interacting pairs are chosen uniformly at random.

Several open problems arise from this work: (1) The problem of designing
a memory efficient self-stabilizing protocol that solves the group construction
problem under our setting remains open. That is, our group construction pro-
tocol is based on n-GC which requires n states, independently of the actual
specification. Provided that the number of groups is m = o(n), is it possible
to solve the problem in O(m) space?. Observe that by using less than n states,
agents need to change their group infinitely often (since initially, all agents might
have the same state). Hence, for our implementation, we also need to ensure that
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agents stay in a given group long enough to allow the stabilization of the primi-
tive oscillators. (2) While protocol HGC seems to achieve the desired goal from
the different simulations performed, its formal analysis remains open. More pre-
cisely, is it possible to estimate the “approximation ratio” of HGC?. (3) We
have assumed that every agent is part of an interaction at each time instant,
this assumption is necessary to represent accurately a given periodic function f.
If we relax the specification and allow an approximation of the periodic function
f, we may choose a weaker scheduler that chooses 1 < p < n/2 pairs of agents
for an interaction. It will be then challenging to investigate the impact of the
degree of synchrony (number of interactions at each instant), on the considered
problem.
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