
Realization of Periodic Functions
by Self-stabilizing Population Protocols

with Synchronous Handshakes

Anissa Lamani(B) and Masafumi Yamashita

Department of Informatics, Kyushu University, Fukuoka, Japan
anissa.lamani@gmail.com

Abstract. We consider in the following the problem of realizing periodic
functions by a collection of finite state-agents that cooperate by interact-
ing with each other. More formally, given a periodic non-negative integer
function f that maps the set of non-negative integers N to itself, we aim
in this paper at designing a distributed protocol with a state set Q and
a subset S ⊆ Q, such that, for any initial configuration C0, with prob-
ability 1, there are a time instant t0 and a constant d ∈ N satisfying
f(t + d) = νS(Ct) for all t ≥ t0, where νS(C) is the number of agents
with a state in S in a configuration C. The model that we consider is a
variant of the population protocol (PP) model in which we assume that
each agent is involved in an interaction at each time instant t, hence the
notion of synchronous handshakes. These additional assumptions on the
model are necessary to solve the considered problem. We also assume
that the interacting pairs are matched uniformly at random.

Keywords: Self-organizing systems · Self-stabilization · Clock synchro-
nization · Oscillators · Group construction · Population protocol ·
Uniform scheduler

1 Introduction

The food hunting of army ants, the synchronized flashing of fireflies..., these
remarkable self-organized behaviors observed in biological systems have intrigued
a lot of researchers and a lot of investigations have been initiated to understand
these autonomous and self-organized behaviors to implement them in artificial
distributed systems.

In a typical artificial distributed system, its global behavior is controlled
by its distributed elements, each of which determines its behavior depending
only on its local view (i.e., local snapshot of the system). The wider views the
elements have, the more delicately the global behavior can be controlled, needless
to say; or equivalently, the narrower views they have, the more disorderly the
distributed system would behave (at least in the worst case). Note that if no
communication (direct or indirect) is allowed then obviously coordination is
impossible to achieve. The extreme case is then when a distributed element
c© Springer International Publishing AG 2016
C. Mart́ın-Vide et al. (Eds.): TPNC 2016, LNCS 10071, pp. 21–33, 2016.
DOI: 10.1007/978-3-319-49001-4 2

22 A. Lamani and M. Yamashita

is completely isolated from the other elements, and changes its (local) state
when it happens to interact with another element. In this paper, provided this
extreme case and assuming an arbitrary initial state of the system (i.e., in a
self-stabilizing manner), we examine what is necessary to control the distributed
system and emerge a global behavior. Specifically, we examine the contribution
of synchrony to have the system behave orderly. Self-stabilization is an important
feature in distributed computing. It is more challenging to achieve as the system
must retrieve, by itself, a correct behavior starting from any possible initial
configuration. This permits to tolerate transient faults.

The closest model to our setting is the population protocol (PP) model that
was introduced by Angluin et al. [1] to model a collection of finite-state agents
that interact with each other in order to accomplish a common task [6]. Compu-
tations in PPs are performed through pairwise interactions i.e., when two agents
interact, they exchange their local information and update their state according
to a common protocol. The interaction pattern is assumed to be unpredictable
i.e., each agent has no control on the agents it interact with. Hence, it is assumed
that there is an external entity, called scheduler, which is in charge of selecting
the pairs of agents for an interaction. Remark that the definition of PP is general
enough to represent not only artificial distributed systems as sensor networks but
also natural distributed systems as animal populations and chemical reactions.

Let N be the set of non-negative integers. Given a periodic non-negative
integer function f : N → N with a period τ i.e., f(t + τ) = f(t) for all t ∈ N.
We present in this paper, a population protocol with a state set Q and a subset
S ⊆ Q, such that, for any initial configuration C0, with probability 1, there are a
time instant t0 and a constant d ∈ N satisfying f(t + d) = νS(Ct) for all t ≥ t0,
where νS(C) is the number of agents with a state in S in a configuration C.
That is, we aim at realizing the function f by counting the number of agents
in a given set of states S. In other words, our target is to design a protocol to
completely control, in a distributed manner, the number of agents with a state
in S to represent f . Remark that if we allow a scheduler that may not invite
some agents to interact at some time t, the problem becomes unsolvable even for
a simplest problem instance. For example, define a function fτ by fτ (t) = n if t
mod τ = 0 (where n is the size of the population), and fτ (t) = 0, otherwise. Since
the agents can only update their states when they are involved in an interaction,
provided that there are at least three agents in the population, there is no PP
that realizes fτ , since all agents must participate in an interaction to update their
states and reach a configuration C such that νS(C) = n from a configuration C ′

in which νS(C ′) = 0 (after convergence). We thus consider a variant of PP in
which we assume that every agent is part of an interaction at each instant.

To solve our problem, we also need to consider the self-stabilizing clock syn-
chronization problem. Clock synchronization is one of the important features in
distributed computing as it provides a form of logical clock that could be used to
solve several distributed problems. The problem has been widely investigated in
the context of distributed computing [3,6,9]. Under the PP model, the problem
was recently addressed in [4] where it has been shown that in the case where

Realization of Periodic Functions by Self-stabilizing Population Protocols 23

the agents have only a constant number of states, the self-stabilizing synchro-
nization problem is impossible to solve, even if the agents know their covering
time, which is the minimum number of transitions for them to have met with
each other agent with certainty. A self-stabilizing population protocol is then
proposed to solve the phase synchronization problem. In the proposed solution,
an unlimited resource station called Base Station is used to provide an infinite
repetition of phases, 0, 1, . . . , τ − 1 and ensure that any agent i does not exe-
cute phase x + 1 (mod τ) before all the agents have executed phase x (mod τ)
i.e., there are time instants in which the clock values of the agents are not all
the same. In this paper, provided our scheduler, we propose a solution for the
self-stabilizing synchronization problem using a constant number of states.

Most of the problems investigated in PPs consider the computational power
of the model and hence are static. So far, only few investigations have considered
dynamic problems: in [2], a self-stabilizing token circulation protocol on rings
with a pre-selected leader was proposed. In [5], both the self-stabilizing mutual
exclusion and the group mutual exclusion problems were considered. In [10],
the authors investigated the convergence time and the threshold effects exhib-
ited by Lotka-Volterra-type protocols. In a companion paper [8], the authors
investigated the problem of realizing a (digitized) sine curve in a self-stabilizing
manner. Under a deterministic scheduler which is adversarial, they showed that
the problem is at least as difficult as the self-stabilizing leader election problem,
and hence (by [7]) at least n states are necessary to solve the problem.

2 Preliminaries

We consider a collection A = {0, 1, . . . , n − 1} of identical (anonymous) finite-
state agents that interact with each other in order to cooperate and solve a given
problem. Computations are performed through pairwise interactions i.e., when
two agents interact, they exchange their information and update their states
according to a common deterministic protocol P = (Q, δ), where Q is a finite
set of states (of an agent) and δ is a transition function (Q×Q) → (Q×Q) that
specifies the result of each interaction; if two agents in A with states p and p′

interact at time t, their states at t+1 will be q and q′, where (q, q′) = δ(p, p′). We
assume that each agent is able to interact with any other agent in the population.

Let pi ∈ Q be the state of an agent i ∈ A. The n-tuple C = (p1, p2, . . . , pn)
of states where each entry pi corresponds to the state of the agent i, describes
the global state of the population, and is called a configuration. We frequently
regard C as a mapping A → Q such that C(i) = pi for all i ∈ A. Once an
interaction pattern has been given to a configuration C, the configuration C ′ at
the next time instant is naturally constructed from C as follows: for each pair
(i, j) of agents in the interaction pattern, we replace pi and pj in C with qi and
qj , where (qi, qj) = δ(pi, pj). In this paper, we distinguish the initiator and the
responder in δ, so that δ(pi, pj) = (qi, qj) may not imply δ(pj , pi) = (qj , qi).

Unlike the classical model of PP, we assume that at each instant t, each agent
is part of an interaction, we hence assume that n is even. The scheduler, in charge

24 A. Lamani and M. Yamashita

of creating a maximum matching on all the agents, is assumed to be probabilistic
and uniform i.e., the pairs of agents are matched uniformly at random.

Let P = (Q, δ) and C be the set of all possible configurations of P , respec-
tively. Given a configuration C ∈ C and an interaction pattern, i.e., a set of
interactions (i.e., disjoint pairs of agents) R = {(i1, j1), (i2, j2), . . . , (im, jm)}, we
say that C ′ yields from C via R, denoted by C

R→ C ′, if for all k = 1, 2, . . . ,m,
(C ′(ik), C ′(jk)) = δ(C(ik), C(jk)), and otherwise, if i �∈ {ik, jk : 1 ≤ k ≤ m},
C ′(i) = C(i) holds. Let Ct and Rt be respectively the configuration and the inter-
action pattern on Ct at time t. An execution E of a protocol P can be represented
by a sequence of configurations and interaction patterns (C0, R0, C1, R1, . . .)
such that for all t ≥ 0, Ct

Rt→ Ct+1. Recall that Rt is produced by the scheduler.
Since this paper assumes that each agent is part of an interaction and n is even,
|Rt| = n/2 for any t. By C

∗→ C ′, we denote the fact that a configuration C ′ is
reachable from C after a finite number of transitions.

Let N be the set of non-negative integers. For any configuration C and a
subset of states S, νS(C) denotes the number of agents with a state p ∈ S in C.
Suppose that f is a periodic non-negative integer function f : N → N with a
period τ , i.e., f(t+τ) = f(t) for all t ∈ N. This paper investigates the problem of
designing a protocol P that realizes f (in a self-stabilizing manner). Formally, a
protocol P = (Q, δ) and a subset S of Q are looked for, that eventually realizes f ,
regardless of its initial configuration C0, in the following sense: for any execution
E : C0, C1, . . ., there are a time instant t0 and a constant d (0 ≤ d ≤ τ) satisfying
f(t + d) = νS(Ct) for all t ≥ t0 with probability 1.

To achieve our goal, we first present a protocol τ -CLK that implements a
self-synchronized clock using τ states and then use it to design a protocol POh,
called a primitive oscillator that realizes a primitive periodic function h whose
period is τ and range is {0, n}. We next explain how to execute a set of primi-
tive oscillators in parallel in such a way as to satisfy prescribed offsets between
them, assuming that the agents that participate in different oscillators are dis-
joint, although they interact to synchronize their executions. Since a periodic
function f is represented by the sum of a set of primitive periodic functions
hi with range {0, ni}, the problem of designing a protocol that realizes f is
reduced to the group construction problem to assign each agent to a group gi

in such a way that each group gi eventually accommodates ni agents (to run
primitive oscillators POhi

). The group construction problem for one group is
trivial. The general group construction problem can be reduced to the problem
for n groups, each consisting of one agent. We present first a protocol for solv-
ing the general group construction problem that requires Ω(n) states. Aiming
at the reduction of the space complexity, we next present a heuristic protocol
to approximately construct m groups of size n0, . . . , nm−1 respectively, using
m · c · max{b1, . . . , bm−1} states, where c is a small constant larger than 5 and
bk = nk/n0 ∈ N for k = 1, 2, . . . ,m − 1.

Realization of Periodic Functions by Self-stabilizing Population Protocols 25

3 Clock Synchronizers and Primitive Oscillators

3.1 Self-stabilizing Clock Synchronization

In this section, we first formulate the self-stabilizing clock synchronization prob-
lem taking care of the fact that the scheduler is probabilistic, and show that there
is a self-stabilizing clock synchronization protocol that solves the problem. A pro-
tocol P = (Tτ , δτ), where Tτ = {0, 1, . . . , τ − 1}, is said to be a self-stabilizing
modulo τ clock synchronization protocol if for any execution E : C0, C1, . . . start-
ing from any initial configuration C0 ∈ C, with probability 1, there are a time
instant t0 ∈ N and an integer d (≥ −t0) satisfying ν{(t+d) mod τ}(Ct) = n for
all t(≥ t0). Consider the following protocol τ -CLK.

Protocol 1. τ -CLK: Self-stabilizing Modulo τ Clock Synchonizer
δ(x, y) = ((min(x, y) + 1) mod τ, (min(x, y) + 1) mod τ)

Theorem 1. Protocol τ -CLK is a self-stabilizing modulo τ clock synchroniza-
tion protocol.

Proof. Let E : C0, C1, . . . be any execution starting from any initial configuration
C0. Once it reaches a configuration Ct such that ν{(t+d) mod τ}(Ct) = n, by the
assumption on the scheduler, no matter what maximum matching is proposed
as the interaction pattern, ν{(t+d+1) mod τ}(Ct+1) = n holds. Thus it suffices to
show that, with probability 1, there is a time instant t such that ν{t′}(Ct) = n
holds for some t′ ∈ Tτ .

Since the case of τ = 1 is trivial, we assume that τ ≥ 2. Consider a directed
graph G = (C, E) representing the transition relation between configurations, i.e.,
(C,C ′) ∈ E if and only if C

R→ C ′ via some interaction pattern R, which implies
that when the current configuration is C, the next configuration is C ′ with a
positive probability. Let C∗ = {C : ν{t}(C) = n for some t ∈ Tτ}. Thanks to the
theory of finite state Markov chain, in order to show that, with probability 1,
there is a time instant t such that ν{t′}(Ct) = n holds for some t′, it is sufficient
to show that for any C ∈ C, there is a C ′ ∈ C∗ that is reachable from C in G.
We show this fact in the following.

For any C ∈ C, let ZC = {t ∈ Tτ : ν{t}(C) = 0}, which is the set of states
t ∈ Tτ that does not appear in C. By definition, C ∈ C∗ if and only if |ZC | = τ−1.
We show that for any C �∈ C∗ there is a configuration C ′ reachable from C in G
such that |ZC | < |ZC′ |.

First consider the case in which |ZC | = 0. Recall that n is even and thus n/2
is a natural number. If ν{τ−1}(C) ≤ n/2, there is a maximum matching R that
matches every agent with state τ − 1 to an agent with a different state, and by
definition 0 ∈ ZC′ , where C

R→ C ′, since an agent with 0 emerges in C ′ if and
only if two agents with state τ − 1 interact in C.

26 A. Lamani and M. Yamashita

Suppose otherwise that ν{τ−1}(C) ≥ n/2+1, which implies that ν{τ−2}(C) ≤
n/2 − 1. Consider a maximum matching R that matches every agent with state
qτ−1 to an agent with the same state; if ν{τ−1}(C) is odd, then R matches the

remaining one to an agent with state 0. Then ν{τ−1}(C ′) ≤ n/2, where C
R→ C ′,

since ν{τ−1}(C ′) ≤ ν{τ−2}(C) + 1 ≤ n/2. A configuration C ′′ such that 0 ∈ ZC′′

is reachable from C in G.
Next, consider the case in which |ZC | > 0. Let R be any interaction pattern

in C and C ′ the configuration such that C
R→ C ′. Observe that if ν{t}(C) = 0

then ν{(t+1) mod τ}(C ′) = 0, and hence |ZC | ≤ |ZC′ | holds. Assume first that
ντ−1(C) > 0, if ν{τ−1}(C) ≤ n/2, then we can easily find C ′ such that |ZC | <
|ZC′ | holds. Otherwise if ν{τ−1}(C) ≥ n/2+1, by a similar argument as above, we
can show that there is a path from C to C ′ in G, such that 0 < ν{τ−1}(C ′) ≤ n/2
holds.

By contrast, assume that ντ−1(C) = 0. We show that after at most τ steps,
ντ−1(C ′) > 0, where C → C ′. Let consider the smallest t ∈ [0, τ − 2] such that
νt(C) > 0 (for all t′ = 0, 1, . . . , t − 1, νt′(C) = 0). Note that νt+1(C ′) > 0. If
ντ−1(C ′) = 0 then again νt+2(C ′′) > 0 where C ′ → C ′′. By repeating the same
reasoning, after at most τ steps, ντ−1(C−) > 0 where C

∗→ C−. We retrieve the
cases discussed above.

3.2 Primitive Oscillators

Let α = (ιa, ιp, ιd, ι�) be a tuple of four parameters representing respectively
amplitude, period, delay and length where 0 ≤ ιd ≤ ιp. By fα, we denote a
function with period ιp defined as follows: fα(t) = ιa if ιd ≤ t(mod ιp) ≤ ιd +
ι� − 1, and fα(t) = 0, otherwise.

Fig. 1. A primitive (periodic) func-
tion fα, where α = (5, 10, 6, 4)

Figure 1 illustrates a part of fα, where
α = (5, 10, 6, 4). That is, for example,
fα(x) = 0 when x = 0, 1, . . . , 5, and fα(x) =
5 when x = 6, 7, 8, 9. We call such a func-
tion (fα) primitive (periodic) function. Note
that a constant function is also a primitive
function.

In Fig. 1, fα is presented as a continuous
trapezoidal function to emphasize the shape
of the oscillations, however, recall that, in
reality, fα is a discontinuous step function.

A pair of protocol P = (Q, δ) and a subset
S of Q is said to be a primitive oscillator if it
realizes a primitive function fα: For any execution E : C0, C1, . . . starting from
any initial configuration C0 ∈ C, with probability 1, there are a time instant
t0 ∈ N and an integer d (≥ −t0) satisfying νS(Ct+d) = f(t) for all t(≥ t0).

Given α = (n, τ, ιd, ι�), let Tιd,ι�
= {ιd, ιd +1, . . . , ιd + ι� − 1}. Then, the pair

POα = (τ -CLK, Tιd,ι�
) is a primitive oscillator for fα, by the next corollary.

Realization of Periodic Functions by Self-stabilizing Population Protocols 27

Corollary 2. Let f be any periodic function with period τ that takes a value in
{0, n}. Then there is a state set Sf ⊆ Qτ such that τ -CLK with Sf realizes f .

Proof. Letting Sf = {t mod τ : f(t) = n}, τ -CLK with Sf realizes f by
definition.

4 Synchronization of Primitive Oscillators

In this section, we investigate how to synchronize several primitive oscillators, in
order to satisfy prescribed offsets between them, assuming that the agents that
participate in different oscillators are disjoint (i.e., they know to which group
they belong), although they do interact to synchronize their executions. The
offset is the difference, expressed in time, between the delays of two primitive
oscillators referenced to the same point in time (see Fig. 2). In our case, the
offset is expressed as the difference between the agents’ clock values. We assume
that the primitive oscillators have the same period, however, they might have
different delays. Note that we can assume that the offset is positive without
loss of generality, since we can order the primitive oscillators according to the
predefined offsets.

Fig. 2. Offset between two primi-
tive oscillators

To simplify the explanation of our pro-
tocol, we first focus on how to synchronize
two primitive oscillators. Let POαk

(k = 0, 1)
be two primitive oscillators for the set of
agents Ak, where αk = (nk, τ, ιdk

, ι�k
) and

nk = |Ak|. Let o be the offset. Provided that
A0 ∩A1 = ∅ and |A0 ∪A1| is even, a protocol
that works on A = A0∪A1 is looked for, such
that for any execution E : C0, C1, . . . starting
from any initial configuration C0 ∈ C, with
probability 1, there are a time instant t0 ∈ N
and integers d0, d1 (≥ −t0) satisfying the following conditions: (1) o = d1 − d0,
and (2) for k = 0, 1, νSk

(Ct+dk
) = fαk

(t) for all t(≥ t0), where Sk is the state
set of POαk

, i.e., POαk
= (τ -CLK, Sk). We call a protocol satisfying these con-

ditions 〈POα0 , o, POα1〉.
In the following, we present a protocol P = (Q, δ) and a subset S of Q that

satisfy these conditions. First, the set of agents is A = A0 ∪ A1, and the state
set is Q = G2 ×Qτ , where G2 = 0, 1. An agent i ∈ A is in state (k, t) ∈ Q means
that it belongs to group Ak and its local time is t. Note that in this section,
agents do not change their group Ak, and we concentrate on the synchronization
of their local times so that all members in the same group have the same time,
while the difference of the local times in A0 and A1 is exactly o, provided that
initially all members in Ak are in a state in {k} × Tτ , i.e., initially each agent
correctly recognizes its group. Let x = (k, r) and x′ = (k′, r′) be two states.
The following protocol 2-CPO defines (y, y′) = δ(x, x′), where y = (�, s) and
y′ = (�′, s′). In the 2-CPO, δτ is the transition function of τ -CLK. Note that the

28 A. Lamani and M. Yamashita

description of 2-CPO presents the case in which k = 0 and k′ = 1 holds (and
the case in which k = k′ holds). Although omitted in 2-CPO, the other case in
which k = 1 and k′ = 0 should be defined symmetrically.

Protocol 2. 2-CPO: Coupling Two Primitive Oscillators
if k = k′ then /* The agents are part of the same group. */

� = �′ = k and (s, s′) = δτ (r, r′)
else /* The agents are part of different groups. */ (k = 0 and k′ = 1) */

if (r + o) mod τ = r′ then
� = k = 0, �′ = k′ = 1, s = (r + 1) mod τ and s′ = (r′ + 1) mod τ

else
� = k = 0, �′ = k′ = 1, s = (r + 1) mod τ and s′ = (r + o + 1) mod τ

Theorem 3. The protocol defined by 2-CPO is indeed 〈POα0 , o, POα1〉, pro-
vided that initially all agents in Ak have a state in {k} × Tτ for k = 0, 1.

Proof. Let E : C0, C1, . . . be any execution starting from any initial configura-
tion C0 such that, for all i ∈ A, C0(i) = (0, t) for some t ∈ Tτ if and only if
i ∈ A0. By the definition of 2-CPO, the agents do not change their groups, and
thus through out the execution, all members originally in A0 (resp. A1) are in
A0 (resp. A1).

Observe that agents in A1 cannot affect agents in A0 (except to increment
time), and the clocks (i.e., the second element t of state (0, t)) of agents in A0 are
eventually synchronized by executing τ -CLK.1 That is, there is a time instant
t0 and a constant d such that for any t ≥ t0, all of their clocks show r = (t + d)
mod τ at Ct, with probability 1, by Theorem 1. All agents in A1 also execute
τ -CLK, but their clocks are not synchronized, unless all of their clocks show
r′ satisfying r′ = (r + o) mod τ at Ct. On the other hand, if there is a time
instant t > t0 at which the clock of each of the agents in A1 at Ct shows time r′

satisfying r′ = (r + o) mod τ , then the conditions for 〈POα0 , o, POα1〉 hold.
Thus it suffices to show that there is a time instant t ≥ t0 at which all of their

clocks are synchronized and show time r′ satisfying r′ = (r + o) mod τ , with
probability 1. Thanks again to the theory of finite state Markov chain, we follow
the same argument as in the proof of Theorem 1. We define the graph G on the
configuration space C of 2-CPO representing the transition of this protocol. Let
C∗ be the set of configurations corresponding to the desired configurations, and
show that for all configuration C ∈ C, there is a path to a configuration in C∗.
Let C be any configuration. Without loss of generality, we can assume that the
clocks of all agents in A0 are synchronized in C. If n0 ≥ n1, then obviously there

1 In spite that the size of A0 may be odd, the clocks of agents in A0 are eventually
synchronized by executing τ -CLK, since every agent that interacts with an agent in
different group increments its time, even if it does not interact with an agent in the
same group.

Realization of Periodic Functions by Self-stabilizing Population Protocols 29

is an interaction pattern R that matches all members in A1 to members in A0,
and C ′ ∈ C∗ is reached from C via R, by the definition of 2-CPO.

Otherwise if n0 < n1, let ZC be the set of agents i in A1 whose clock in
C satisfies r′ = (r + o) mod τ . Consider an interaction pattern R defined as
follows:

M1: Take a maximum matching among ZC , so that every agent (except at most
one, say i) matches to an agent in ZC .

M2: Take a maximum matching between agents in A0 and those in
A1\ZC(∪{i}) if there is such an i in M1.

M3: Take a maximum matching among the agents whose parters have not been
determined in M1 and M2.

Let C ′ be a configuration reached from C via R. If all agents in A1 can be
matched by M1 and M2 (without using M3), then C ′ ∈ C∗.

Otherwise, by M1, ZC\{i} ⊆ ZC′ . Set ZC′ also contains agents in A1 that
are matched with agents in A0 by M2. Since n0 ≥ 1 and |A1| + |A2| is even,
|ZC | < |ZC′ |. Thus there is a path from C to a configuration C ′′ at which all
agents in A2 can be matched by M1 and M2.

We extend this protocol to synchronize m primitive oscillators. Let POαk

(k = 0, 1, . . . ,m − 1) be m primitive oscillators for the set of agents Ak, where
αk = (nk, τ, ιdk

, ι�k
) and nk = |Ak|. Let ok (k = 0, 1, . . . ,m − 1) be the

offset between POαk
and POαk+1 . Provided that Ak’s are disjoint and A =

∪0≤k≤m−1Ak is of even size, a protocol that works on A is looked for, such that
for any execution E : C0, C1, . . . starting from any initial configuration C0 ∈ C,
with probability 1, there are a time instant t0 ∈ N and integers dk (≥ −t0) for
k = 0, 1, . . . ,m − 1 satisfying the following conditions: (1) ok = dk+1 − dk for
k = 0, 1, . . . ,m − 2, and (2) for k = 0, 1, . . . ,m − 1, νSk

(Ct+dk
) = fαk

(t) for all
t(≥ t0), where Sk is the state set of POαk

, i.e., POαk
= (τ -CLK, Sk). We call a

protocol satisfying these conditions 〈POα0 , o0, POα1 , o1, . . . , om−2, POαm−1〉.
We present a protocol P = (Q, δ) and a subset S of Q that satisfies this

condition. First, the set of agents is A = ∪1≤k≤mAk, and the state set is Q =
Gm × Tτ , where Gm = {0, 1, . . . ,m − 1}. An agent i ∈ A is in state (k, t) ∈ Q
means that it belongs to group Ak and its local time is t. We are concerned with
synchronization so that all members in the same group have the same time, while
the difference of the local times in Ak and Ah is exactly ok if h = k+1, provided
that initially all members in Ak are in a state in {k}×Tτ . Let x = (k, r) and x′ =
(k′, r′) be two states. The following protocol m-CPO defines (y, y′) = δ(x, x′),
where y = (�, s) and y′ = (�′, s′). In the m-CPO, δτ is the transition function of
τ -CLK. Note that the description of m-CPO presents the case in which k ≤ k′

holds. Although omitted in m-CPO, the other case in which k > k′ should be
defined symmetrically.

30 A. Lamani and M. Yamashita

Protocol 3. m-CPO: Coupling m Primitive Oscillators
if k = k′ then /* The agents are part of the same group. */

� = �′ = k and (s, s′) = δτ (r, r′)
else /* The agents are part of different groups. */ (k < k′) */

if (((r + ok) mod τ = r′) ∨ (k + 1 < k′)) then
� = k, �′ = k′, s = (r + 1) mod τ and s′ = (r′ + 1) mod τ

else
� = k, �′ = k′, s = (r + 1) mod τ and s′ = (r + ok + 1) mod τ

By induction on m and using Theorem 3 the following theorem holds.

Theorem 4. The protocol defined by m-CPO is indeed 〈POα0 , o0, POα1 , o1, . . . ,
om−2, POαm−1〉, provided that initially all agents in Ak have a state in {k}×Tτ for
k = 0, 1, . . . ,m − 1.

For k = 0, 1, . . . τ − 1, by defining fk as fk(t) = f(t) if t(mod τ) = k, we
deduce the following:

Proposition 5. Any periodic function f with period τ can be decomposed
into τ primitive periodic functions fk (k = 0, 1, . . . τ − 1) such that f(t) =∑

0≤k≤τ−1 fk(t) for all t.

Let POk be the primitive oscillator for fk in the decomposition of f in
the proof of Proposition 5, for k = 0, 1, . . . , τ − 1. Define P = (Q, δ) as
〈PO0, o0, PO1, o1, . . . , oτ−2, POτ−1〉, where ok = 0 for k = 0, 1, . . . , τ − 2, and δ
is τ -CPO. Let S = {(k, k)) : k = 0, 1, . . . , τ − 1} ⊆ Q.

Corollary 6. Let C0 be any configuration such that for any k = 0, 1, . . . , τ − 1,
|{i : C0(i) = (k, t) for some t ∈ Tτ}| = f(k) holds. Then P with S realizes f
from C0 with probability 1.

Now, the remaining task is to reach a configuration C, starting from any
configuration C0, that satisfies the initial condition in Corollary 6, which is the
theme of the next section.

5 Self-stabilizing Group Composition

Given a number of groups Gm = {0, 1, . . . ,m − 1} along with their respective
sizes {n0, n1, . . . , nm−1}, a protocol is said to solve the self-stabilizing group
construction problem if it ensures that given a population of size n =

∑m−1
i=0 ni,

starting from an arbitrary configuration C0 ∈ C, the population is eventually
divided into m groups of sizes n0, n1, . . . , nm−1, respectively.

• Accurate Solution. We first present a protocol P = (Gn, δn), denoted n-
GC, with the state set Gn = {0, 1, . . . , n − 1} that solves the group construction
problem for n groups, each of size 1. The idea behind n-GC is the same as the

Realization of Periodic Functions by Self-stabilizing Population Protocols 31

one used in the protocol proposed in [7], which is used for the leader election and
ensures that starting from an arbitrary configuration C0 ∈ C, in any execution
E : C0, C1, . . ., there is a time instant t0 ∈ N from which each agent has a unique
state. Transition function δn is given below.

Protocol 4. n-GC: Self-stabilizing n-Group Constructor
if (r �= r′) then δn(r, r′) = (r, r′)
else δn(r, r′) = (r, (r + 1) mod n)

By the definition of the n-GC, we can state the following proposition:

Proposition 7. Protocol n-GC is a self-stabilizing group construction protocol.

Corollary 8. The (general) self-stabilizing group construction problem is solv-
able by using n-GC.

Proof. Let nk (k = 0, 1, . . . , m − 1) be the size of Group k. We assume that an
agent i is in Group k if its state � satisfies

∑k−1
j=0 nj ≤ � <

∑k
j=0 nj . Then by

Proposition 7, the corollary holds.

Note that n-GC correctly works under a deterministic scheduler, and after
the convergence, agents never change the group to which they belong. The (only)
drawback however is the size n of state set Gn.

By Theorem 4 and Corollaries 6 and 8, we can construct a protocol that
realizes f with probability 1, by applying the fair merge technique. Hence,

Theorem 9. Any periodic function f is realizable using (n + τ) states.

As a note, in the special case where m = 2 and n0 = n1, it is possible to
solve accurately the group construction problem using only two states per agent.
However, agents change their groups infinitely often and hence, the solution can-
not be used directly in our case since the agents need to stay long enough in
their group to insure the synchronization of their clocks.

• Heuristic Protocol. Aiming at solving the self-stabilizing group construction
problem using a smaller number of states, we propose in the following a heuristic
protocol P = (Q, δ), denoted HGC, that approximately solves the group con-
struction problem. It is a heuristic in that we do not have a formal proof that
it indeed approximately solves the problem, with probability 1. Some simula-
tions have been performed that show the possible convergence of the protocol,
however, the stabilization time is extremely long.

Let n0, n1, . . . , nm−1 be the sizes of the groups, and assume that they are
sorted in the increasing order without loss of generality, i.e., nk ≤ nk+1 for k =
0, 1, . . . ,m−2. Protocol HGC assumes n0|nj for all j. Let B = {b1, b2, . . . , bm−1},
where nk = bk · n0. Let c ∈ N be a small constant (compared with n) greater

32 A. Lamani and M. Yamashita

than 5. The state of agent i ∈ A is (k, t), where k ∈ {0, 1, . . . ,m − 1} is the
current group the agent belongs to, and t ∈ {0, 1, . . . , c ·bk −1} indicates its local
progress. Protocol HGC defines (y, y′) = δ(x, x′), where x = (k, r), x′ = (k′, r′),
y = (�, s) and y′ = (�′, s′).

Protocol 5. HGC: Heuristic Group Constructor
if k = k′ then /* The agents are part of the same group. */

if r = r′ = c · bk then � = (k + 1) mod m, s = 0 and y′ = y
else

if r < c · bk then � = k, s = r + 1 and y′ = x′

if r′ < c · bk′ then y = x, �′ = k′ and s′ = r′ + 1
else /* The agents are part of different groups. */

� = k, s = 0, �′ = k′ and s′ = 0

To understand the idea of Protocol HGC, assume that n0 = n1 = . . . = nm−1

and thus bk = 1 for all k = 1, 2, . . . ,m − 1. In order for an agent i to change its
group k to ((k+1) mod m), agent i needs to interact c ·bk = c consecutive times
with an agent in the same group. That is, for any sufficiently large population, as
long as the difference in the group sizes is too large, there would be agents who
change their groups, which eventually leads a configuration to an equilibrium
state in which the size of each group is approximately the same.

As a final note, since the agents may change their group during the execution
of HGC, in order to realize a given function f using the fair merge of m-CPO
and HGC, we need to make sure that when an agent updates its group, it also
updates its clock value to adjust it to the new offset. That is, when an agent
interacts, it first executes the actions of m-CPO (assume that the new computed
clock value is s) and then executes the actions of HGC. If by executing HGC,
it changes the group it belongs to, it also updates its clock value to respect the
offset o (if any). That is, its new clock value is updated to (s + o) mod τ .

6 Conclusion

In this paper, we have investigated the problem of realizing a periodic function f
assuming a variant of the PP model in which each agent is part of an interaction
at each time instant and the interacting pairs are chosen uniformly at random.

Several open problems arise from this work: (1) The problem of designing
a memory efficient self-stabilizing protocol that solves the group construction
problem under our setting remains open. That is, our group construction pro-
tocol is based on n-GC which requires n states, independently of the actual
specification. Provided that the number of groups is m = o(n), is it possible
to solve the problem in O(m) space?. Observe that by using less than n states,
agents need to change their group infinitely often (since initially, all agents might
have the same state). Hence, for our implementation, we also need to ensure that

Realization of Periodic Functions by Self-stabilizing Population Protocols 33

agents stay in a given group long enough to allow the stabilization of the primi-
tive oscillators. (2) While protocol HGC seems to achieve the desired goal from
the different simulations performed, its formal analysis remains open. More pre-
cisely, is it possible to estimate the “approximation ratio” of HGC?. (3) We
have assumed that every agent is part of an interaction at each time instant,
this assumption is necessary to represent accurately a given periodic function f .
If we relax the specification and allow an approximation of the periodic function
f , we may choose a weaker scheduler that chooses 1 ≤ p < n/2 pairs of agents
for an interaction. It will be then challenging to investigate the impact of the
degree of synchrony (number of interactions at each instant), on the considered
problem.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

2. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. TAAS, 3(4), 13:1–13:28 (2008)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-
optimal self-stabilizing synchronizer using A phase clock. IEEE Trans. Dependable
Secure Comput. 4(3), 180–190 (2007)

4. Beauquier, J., Burman, J.: Self-stabilizing synchronization in mobile sensor net-
works with covering. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione,
A. (eds.) DCOSS 2010. LNCS, vol. 6131, pp. 362–378. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13651-1 26

5. Beauquier, J., Burman, J.: Self-stabilizing mutual exclusion and group mutual
exclusion for population protocols with covering. In: Fernàndez Anta, A., Lipari,
G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 235–250. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-25873-2 17

6. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

7. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on
space complexity of self-stabilizing leader election on a population protocol model.
Theory Comput. Syst. 50(3), 433–445 (2012)

8. Cooper, C., Lamani, A., Viglietta, G., Yamashita, M., Yamauchi, Y.: Constructing
self-stabilizing oscillators in population protocols. In: Pelc, A., Schwarzmann, A.A.
(eds.) SSS 2015. LNCS, vol. 9212, pp. 187–200. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21741-3 13

9. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract).
In: ICDCS, pp. 486–493 (1992)

10. Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański,
P.: On convergence and threshold properties of discrete Lotka-Volterra population
protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47672-7 32

http://dx.doi.org/10.1007/978-3-642-13651-1_26
http://dx.doi.org/10.1007/978-3-642-25873-2_17
http://dx.doi.org/10.1007/978-3-319-21741-3_13
http://dx.doi.org/10.1007/978-3-319-21741-3_13
http://dx.doi.org/10.1007/978-3-662-47672-7_32
http://dx.doi.org/10.1007/978-3-662-47672-7_32

http://www.springer.com/978-3-319-49000-7

	Realization of Periodic Functions by Self-stabilizing Population Protocols with Synchronous Handshakes
	1 Introduction
	2 Preliminaries
	3 Clock Synchronizers and Primitive Oscillators
	3.1 Self-stabilizing Clock Synchronization
	3.2 Primitive Oscillators

	4 Synchronization of Primitive Oscillators
	5 Self-stabilizing Group Composition
	6 Conclusion
	References

