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Abstract. This paper presents a novel background knowledge approach
which selects and combines existing mappings from a given biomedical
ontology repository to improve ontology alignment. Current background
knowledge approaches usually select either manually or automatically a
limited number of different ontologies and use them as a whole for back-
ground knowledge. Whereas in our approach, we propose to pick up only
relevant concepts and relevant existing mappings linking these concepts
all together in a specific and customized background knowledge graph.
Paths within this graph will help to discover new mappings. We have
implemented and evaluated our approach using the content of the NCBO
BioPortal repository and the Anatomy benchmark from the Ontology
Alignment Evaluation Initiative. We used the mapping gain measure to
assess how much our final background knowledge graph improves results
of state-of-the-art alignment systems. Furthermore, the evaluation shows
that our approach produces a high quality alignment and discovers map-
pings that have not been found by state-of-the-art systems.

Keywords: Ontology matching + Background knowledge - Repository
of ontologies + Biomedical ontologies + BioPortal

1 Introduction

Ontology alignment is recognized by the scientific community as an important
area of research because of its multiple applications in different domains [7]:
ontology engineering, data integration, information sharing, etc. Especially in
the biomedical domain that generates and manipulates a big volume of data.
Ontology matching plays a key role in the development of biomedical research
by facilitating the development of data warehouses articulated around common
ontologies. Many works have been made to extract mappings automatically,
mainly using lexical and structural matchers, but these matchers often fail when
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the ontologies to align have different structures and do not use the same vocab-
ulary (different terms to describe the same concepts) [21]. In the recent years,
the community has started to consider an alternative solution for automatic
approaches in the use of background knowledge as a semantic mediator to dis-
cover mappings between ontologies. These background knowledge resources span
from thesaurus, lexical resources, linked open data, one or several ontologies or
a full repository of ontologies [18-20] and in our case, already existing mappings.
The use of background knowledge has raised the following challenges: (1) selec-
tion: How to select the most useful background to align ontologies? (2) usage:
How to use such knowledge in order to enhance alignment results? In all proposed
approaches, the use of background knowledge was a complementary solution to
traditional automatic approaches. In this paper, we propose a novel approach
to align ontologies using only a background knowledge built from heterogeneous
mappings, the main idea is to combine the knowledge formalized in mappings
produced manually by human experts, to mappings produced automatically by
simple lexical matching to discover new mappings between the ontologies to be
aligned. The main contributions of this paper are:

— A novel approach to align ontologies using a background knowledge graph
automatically built from existing mappings

— A novel measure called Path Confidence Measure to select the most accu-
rate from several candidates mappings derived from the previously built back-
ground knowledge graph.

We have implemented and evaluated our approach using the content of the
NCBO BioPortal' repository and the Anatomy benchmark? from the Ontology
Alignment Evaluation Initiative. The obtained results show that our approach
produces a high quality alignment, and discovers mappings not found by state-
of-the-art alignment systems.

The rest of this paper is organized as follows. Section?2 defines ontology
matching and common biomedical ontology mappings. Section 3 describes our
novel approach exploiting existing mappings extracted from a given repository
to align biomedical ontologies. Section 4 presents the proposed Path Confidence
Measure. Section 5 describes the implementation of our approach. Section 6 pro-
vides the evaluation results of our approach. Section 7 discusses related work.
Finally, Sect. 8 concludes our paper and points out future work.

2 Preliminaries

2.1 Ontology Matching

Ontology matching is the process of finding correspondences between two given
ontologies O and Os. Each correspondence can be formalized by a quadruplet

! http://bioportal.bioontology.org/.
2 http:/ /oaei.ontologymatching.org/2015 /anatomy /index.html.
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< ey,eq,,n = with e; € O1 and ey € O,, 1 is a relationship between two
given entities e; and es, and n is the confidence value of this relationship (gen-
erally, a value between 0 and 1) [7]. In this paper, we deal only with equivalence
relationship between entities.

We distinguish the direct matching which has only the two ontologies to be
aligned as an input, from the indirect matching which uses external resources,
that we call Background Knowledge (BK), to enhance the quality of direct
matching. These resources may be one mediator ontology, a set of ontologies,
an existing alignment. The common schema to perform an alignment using a
BK is composed of two steps: anchoring and deriving relations [19,20]. Anchor-
ing consists in finding for source and target entities their equivalent entities in
the BK. This step is generally done by using a lexical matcher. The second step
consists in deriving relations between the entities of ontologies to align according
to the relations between the anchored entities in the BK.

2.2 Biomedical Ontologies Mapping

The number of biomedical ontologies is too big to allow manual alignment of
all of them (the repository NCBO BioPortal stores more than 500 biomedical
ontologies). In addition, their size is also very large (e.g., SNOMEDCT, Gene
Ontology). Therefore, interconnecting manually all biomedical ontologies is not
feasible. However, we can find some reliable manually produced mappings in
several resources such as UMLS? [3], the OBO Foundry [6] and the NCBO Bio-
Portal? [11]. For instance, the OBO Foundry ontology developers produce Xref
relations between the concepts of their ontologies(more than 141 ontologies) that
can be considered mappings (latter called OBO mappings). As another example
CUI (Concept Unique Identifier) mappings that are produced by the US National
Library of Medicine team. When an ontology or a terminology is integrated in the
UMLS Meta-Thesaurus, a CUI is manually assigned to each concept, grouping
concepts together. These manually produced mappings are the formalization of
human experts knowledge that we aim to exploit to enhance biomedical ontology
matching.

3 Overview of Our Approach

Our approach aims to reuse mappings that can be extracted from a repository of
ontologies to discover new ones, especially by combining manually and automat-
ically produced mappings. Indeed, we hypothesis that manual mappings may
be the bridge that overcomes the limitations of automatic matchers. As we can
see in Fig. 1, our approach involves five steps: (1) Extraction of different kinds
of mappings between all ontologies stored in the repository to construct the
Global Mapping Graph, (2) Anchoring the concepts of the source ontology on

3 Unified Medical Language System.
4 Not all mappings in BioPortal are manually produced, see Sect. 5.1 for more infor-
mation about NCBO BioPortal mappings.
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the resulted graph, (3) Selection of mappings that may help to discover new
ones using resulted anchors. The selected mappings are organized in the form of
a graph called the Specific Mapping Graph, (4) Anchoring the concepts of the
target ontology on the Specific Mapping Graph and extract all paths between the
source and target anchors (candidate mappings. Finally (5) Filtering discovered
candidates mappings to keep only the most reliable ones according to a given
aggregation strategy.
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Fig. 1. Overview of the proposed approach

3.1 Building the Global Mapping Graph

In the biomedical domain the most known resources of manually produced map-
pings are: (i) ontologies produced by the OBO Foundry, (ii) ontologies integrated
in UMLS. For a given repository of ontologies, to build the Global Mapping
Graph we start by checking for each ontology if it is an OBO ontology, or if it
is integrated in UMLS. Then, we extract from each one its manually produced
mappings (OBO from the first category and CUI mappings from the second one).
After that, we use a lexical matcher or any other efficient matcher to match each
ontology with all others ontologies in the repository. We add these mappings
produced automatically to those produced manually. For each extracted map-
ping we keep the source and the target concepts, the ontology of each concept,
the set of labels of each concept and the provenance of this mapping (OBO, CUI,
etc.). We can add any other sets of relevant mappings to enrich the final set of
extracted mappings. At the end of the mappings extraction step we obtain a
large set of mappings. We merge these mappings to obtain the Global Mapping
Graph (naturally some mappings have common concepts). We note that this
step is done just for once; the Global Mapping Graph is an independent resource
that can be exploited to match any couple of ontologies. In case of enriching the
repository with a new ontology, we will only extract its related mappings with
other ontologies, and adding them to the resulted graph.
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3.2 Anchoring Source Concepts

The second step consists in anchoring source concepts on the Global Mapping
Graph. If the source ontology is stored in the repository, the anchors are the
source concepts themselves. Otherwise, the anchors can be found using a lexi-
cal matcher on the concept labels between the source ontology and all concepts
of the Global Mapping Graph. In this case, the mappings returned by the lexi-
cal matcher will be the first selected mappings in the Specific Mapping Graph.
The use of a lexical matcher offers the advantages of being fast (anchoring is a
preprocessing stage) and effective in aligning biomedical ontologies [10]. For a
given source concept we can get wrong anchors, for that we can imagine to use
more sophisticated matchers but this choice could entail higher costs in terms
of resources (time and memory). In our approach we propose to let the filter at
the end (see Sect. 3.5).

3.3 Selection of the Specific Mapping Graph

This step allows selecting the appropriate fragment from the Global Mapping
Graph for a given input ontology (Algorithm1). For each concept in the list
of source anchors, we select its direct mappings in the Global Mapping Graph
(mappings of different provenance). For each new concept in the Specific Mapping
Graph, we search for their direct mappings and so on, until no new concept is
found. Indeed if a concept A is mapped directly to B, the concept B may be
automatically or manually mapped to another concept C that has no mapping
with A. Finally, we obtain the Specific Mapping Graph which is composed of all
concepts related to the source ontology interconnected via selected mappings. It
is interesting to note that this Specific Mapping Graph is not limited in number
of used ontologies, our units are concepts, not ontologies.

3.4 Anchoring Target Concepts

This step is necessary only if the target ontology is not in the initial repository.
Otherwise, the anchors are the target concepts themselves. Indeed, if a target
concept belongs to a mapping related to the source ontology, this target concept
should be already in the resulted Specific Mapping Graph. In the same manner
(see Sect. 3.2), we can use any efficient lexical matcher to anchor target concepts
on Specific Mapping graph concepts and add the returned alignment in it.

3.5 Filtering Candidates Mappings

To derive mappings between the source and the target ontologies, we search
for all paths between the source anchors and the target anchors in the Specific
Mapping Graph. In Fig. 2 we can find an example of paths between the concept
(MA:1012) and the concept (NCIT:C32337). One source concept may have sev-
eral target concepts (several mapping candidates). Indeed, mappings composing
the Specific Mapping Graph, in particular automatically produced ones, may be
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Algorithm 1. Specific Mapping Graph Selection
Input: Global MappingGraph, source Anchors,MappingsResulted FromAnchoring
Output: SpecificMappingGraph
if sourceOntology ¢ BiomedicalOntologyRepository then
Speci ficM appingGraph=M appings Resulted From Anchoring
end if
for each c € sourceAnchors do
listConcepts.add(c)
end for
next «— 0
while next < listConcepts.size() do
x — listConcepts.get(next)
Extract S from Global M appingGraph: all direct mappings of z
for each m € S do
if m & SpecificM appingGraph then
Speci ficM appingGraph.add(m)
end if
if m.targetConcept & listConcepts then
listConcepts.add(m.targetConcept)
end if
end for
next + +
end while
return SpecificMappingGraph

not precise (or wrong) which lead to derive wrong mappings. The challenge is to
select the most accurate candidate target concept, especially if we deal with 1:1
mappings (searching only for equivalence relationship). In our case, a candidate
mapping corresponds to one or several paths linking the same source concept to
the same target concept. Paths in Fig. 2 represents a candidate mapping between
the concept (MA:1012) and the concept (NCIT:C32337). We have experimented
different aggregation strategies (see Sect. 6.2) to select one mapping from several
candidates for a given source concept, but these strategies produced a low recall.
To improve the quality of the final alignment, we propose a novel measure to
select for a given source concept the best mapping from several candidates. This
measure is described in the next Section.

4 Path Confidence Measure

We define the type of a given path as a distinct sequence of provenances that
forms this path, independently from intermediate concepts. For example, the
type of path linking the concept (MA:1012) to the concept (MeSH:D17626) in
Fig.2 is OO (OBO_OBO). The types of path linking the concept (MA:1012) to
the concept (NCIT:C32337) are: OO, OSO, OLLL, etc.

To enhance the selection of the final mappings, we propose the novel Path
Confidence Measure(PCM) that takes the confidence value of given path type
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Fig. 2. Extracted mappings from BioPortal for the mouse anatomy concept 1012 (each
concept is represented by the acronym of its ontology and its code within BioPortal)

into account. The confidence value is a score assigned to each path type according
to its ability to discover correct mappings. This measure is inspired from the
most frequent aggregation strategy (also called popularity in [16]) based on the
hypothesis: for a given source concept, the most accurate target concept is the
concept that has the highest number of paths linking it to this source concept.
In this hypothesis we assume that all path types has the same confidence value.
However, the quality of discovered mappings is different from one path type to
another. Indeed, some types give better results than the others (see Sect.5).
For this purpose, we introduce the confidence value of a given path type as
a coefficient to be multiplied by the number of paths of this type. The Path
Confidence Measure for a given candidate mapping (Cs, C;) is defined as the sum
of the number of each path type linking Cs to C; multiplied by its confidence
value. We use the log function to avoid the over-estimation of a given candidate
mapping due to a large number of a given path type. We add 1 to avoid log(0)
and we divide by the max sum to normalize values between 0 and 1. For a given
candidate mapping (Cs, C}), we compute the PCM value of the target concept
C; as follows:

>izi log(1+ NP, x CV;)
maxf2, >3 log(1+ NPj; x OV;)

PCM(CS7Ct) =

where n is the number of different types of paths that lead to the target concept
Cy from the source concept Cs; NP; is the number of paths of type ¢ linking
Cs to Cy; CV; is the confidence value of the path of type i; m is the number of
concepts of the source ontology. This measure is proposed only to select for a
given source concept, one target concept from several candidates.
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5 Implementation

To evaluate our approach, we have implemented it using the reference repository
of biomedical ontologies NCBO BioPortal and the ontologies of the Anatomy
track from Ontology Alignment Evaluation Initiative 2015°.

5.1 NCBO BioPortal

NCBO BioPortal is a community based repository. Currently, it is one of the rich-
est repository in the biomedical domain with more than 500 biomedical ontolo-
gies. The repository offers a REST web services APLS In particular, mappings of
different provenances” between stored ontologies. In addition of OBO and CUI
mappings that we have previously explained, the repository generates automat-
ically other mappings such as LOOM [10], SAME_URI and REST mappings.
LOOM mappings are based on close lexical match between preferred names of
concepts or a preferred name and a synonym. The lexical match involves remov-
ing white-space and punctuation from labels. SAME_URI mappings are based
on exact match between the URI of concepts. Finally, REST mappings that are
mappings uploaded manually by users of the portal, they represent the minority.
In addition, the portal integrates an efficient Annotator [15] which can be used
as a lexical matcher. For a given concept label, the Annotator returns a list of
concepts that have the same label.

5.2 Anatomy Track

The Anatomy track consists in finding an alignment of 1516 mappings between
the Adult Mouse Anatomy ontology (2738 concepts)and a part of the NCI The-
saurus (describing the human anatomy 3298 concepts). The task has a good
share of non-trivial mappings.

Instead of creating a local repository of biomedical ontologies, we have chosen
to use the NCBO BioPortal. Another factor that motivates our choice is the
mappings of different provenances that are stored and accessible through its
REST API. Consequently, BioPortal can be considered as a huge graph where
nodes are concepts and edges are mappings with different provenances. With
this vision, BioPortal can play the role of the Global Mapping Graph in our
approach. Also, the source and the target ontologies of the Anatomy track are
already stored in BioPortal, we do not need to anchor concepts (see Sects. 3.2
and 3.4), we can access directly to them using their URI. Consequently, to run
our approach, we need just to execute the steps 3 and 5 of the proposed approach
to produce the final alignment.

® http://oaei.ontologymatching.org/2015/.
5 http://data.bioontology.org/documentation.
" http:/ /www.bioontology.org/wiki/index.php/BioPortal_Mappings.
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6 Evaluation

The selection of the Specific Mapping Graph step with the mouse anatomy (MA)
as a source ontology and the NCBO BioPortal as Global Mapping Graph has
produced a graph® combining 85192 concepts and 368371 mappings of different
provenance (see Fig.2). We have extracted the preferred label of each concept
and annotate it using the BioPortal Annotator, because it works with a richest
synonym dictionary which allows to discover mappings that the LOOM algo-
rithm does not discover. Indeed, the LOOM algorithm is based only on close lex-
ical match without using any complementary resources. Mappings are extracted
in JSON format as we can see in [2], we note that no score is assigned to these
mappings, we have just the information about their provenance. It is important
to keep this information to be able to explain the provenance of a given derived
mapping by the end. The distribution of extracted mappings per provenance is
presented in Table 1. As we can see, the number of the annotator mappings is
greater than the number of LOOM mappings, this can be explained by the fact
that the annotator works only with exact string match whereas LOOM involves
some pretreatment such as removing white-space and punctuation from labels.

Table 1. Number of extracted mappings per provenance

Provenance of mappings | Number of mappings
LOOM 196225
Annotator 78446
OBO 65305
CUI 17551
SAME_URI 10488
REST 356

6.1 Evaluation of Paths Types Quality

From the resulted Specific Mapping Graph, we have extracted all possible paths
between the concepts of the source ontology MA and the concepts of the target
ontology NCIt. Each path represents a candidate mapping that may be true or
false according to the reference alignment provided by OAEI2015. We have com-
puted the true positive mappings (mappings present in the reference alignment)
and the false positive mappings (mappings absent in the reference alignment)
for each type of path. Using these parameters, we have computed the precision,
recall and F-Score for each type of path. Figure 3 represents the top 50 path types
ranked according to the F-Score measure. Based on the obtained results, we can

8 We have created the graph using the graph database Neo4J (https://neodj.com/).
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conclude that the best paths are the shortest ones: direct matching (paths of type
A and L), paths with two steps; one mediator concept (OO,LA,LL,0OA,LA) and
paths with three steps; two mediator concepts (OOA,LLA,LLL). We note that
the combination of manually and automatically produced mappings provides a
good results(e.g., LAJOOA,LA). The longest paths return a few mappings can-
didates, and generally wrong ones (see Fig. 4).

M False positive mappings M True positive mappings

1403

[ S T SERV - Y

1017

Fig. 4. True positive/False positive mappings per length of paths (number of steps)

According to this study, we have chosen to use the F-Score of each path’s
type as its confidence value to asses its ability to discover true positive mappings.

6.2 Evaluation of Final Alignment Quality

In order to evaluate the quality of the Specific Mapping Graph, we have compared
mappings derived from it (mappings linking MA concepts to NCIt concepts) to
the reference mappings of the Anatomy track. First of all, we have evaluated
all mappings derived from the Specific Mapping Graph without any aggregation
strategy. Then, we have experimented three strategies to select only one target
concept for each source concept: (i) the first found; i.e. the final node of the
shortest path leading to the target ontology (ii) the most visited target concept;
it is the concept of the target ontology that has the highest number of paths
from a given source concept and (iii) the target concept that has the greatest
PCM score (path’s type F-Score as confidence value). Then, we have compared
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the alignment produced by our approach to the final alignments of the four
top systems in OAEI 2015 [4] for the Anatomy track. The results presented in
Table 2 show that our final alignment is competitive with top alignment systems.
Without any strategy of aggregation, our final alignment has the best precision
but relatively a low recall, what gives it the worst F-Score. However, the use of
any aggregation strategy improve the recall, and lets our final alignment having
the second position after AML system. We note that AML and LogMapBio [14]
systems use already biomedical ontologies as BK. Also, AML implement several
features that help improving the final alignment. The best F-Score is obtained
using the PCM measure for the selection of final mappings. Indeed, the proposed
measure promotes paths with high confidence.

Table 2. Quality evaluation of the discovered mappings

Systems Mappings | Correct | Incorrect | Precision | Recall | F-Score
Resulted BK | All mappings | 2247 1416 831 0,934 0,630 |0,753
First found 1504 1366 138 0,901 0,909 | 0,905
Most frequent | 1504 1372 | 132 0,905 0,912 | 0,909
PCM 1503 1395 108 0,920 0,928 | 0,924
AML 1477 1412 66 0,931 | 0,956 0,944
LogMapBio 1549 1366 183 0,901 0,882 |0,891
LogMap 1397 1282 115 0.846 0,918 |0,88
XMAP 1414 1312 102 0,865 0,928 | 0,896

6.3 Specific Mapping Graph: Usefulness Evaluation

The mapping gain [8] is a measure proposed to asses the usefulness of a BK for a
given task of alignment. It measures how many new mappings have been found
in an alignment A thanks to a given BK comparing to another alignment B. For
clarity, we recall here the formula of this measure. Given two alignments A and
B between ontologies S and T, the mapping gain between A and B is defined as
the fraction of mappings in A that are not in B.

Co(AN-B) C(AN-B)

MG(A, B) = Min( B GB)

)

where Cs and C; denote respectively the sets of concepts in the alignments (A
and B) and belong respectively to the source and the target ontologies.

To evaluate the usefulness of the Specific Mapping Graph as a BK, we have
computed the mapping gain using the previous formula replacing A by our final
derived alignment (with PCM) and B by one of alignments produced by the four
top systems in the OAEI 2015 (see Table 3).

9 http://oaei.ontologymatching.org/2015 /results /anatomy /index.html.


http://oaei.ontologymatching.org/2015/results/anatomy/index.html

30 A. Annane et al.

Table 3. Mapping gain using resulted BK

Systems # Absent concepts of MA | # Absent concepts of NCIT | Mapping gain
AML 7 195 5%
LogMapBio | 134 247 9%
XMAP 188 302 13%
LogMap 218 337 16 %

Based on analysis done in [§8], the authors conclude that if the use of a BK
provides a mapping gain greater than 2 %, the BK could be considered as use-
ful. According to that, the Specific Mapping Graph is useful for all these systems
(state-of-the-art alignment systems). We can observe that the resulted BK is sig-
nificantly useful for XMAP and LogMap because they do not use any biomedical
ontologies as a BK. The other systems already use biomedical ontologies as a
BK. AML uses three ontologies (Uberon, DOID and Mesh) which represents 292
591 concepts. LogMap uses top ten ontologies returned by the algorithm pre-
sented in [5]. The first ontology returned by this algorithm is SNOMEDCT which
contains 324129 concepts. In the last both cases we observe the large number
of concepts comparing to the Specific Mapping Graph’s concepts number (85192
concepts). We observe also that even if AML and LogMap use a biomedical BK,
the Specific Mapping Graph allows to enhance their results. Table4 presents
the number of reference mappings found by our approach, missed by the other
systems.

Table 4. Mappings found by our approach, missed by top alignment systems

AML | LogMapBio | XMAP | LogMap
20 87 161 133

7 Related Work

The selection of the appropriate BK to enhance biomedical ontology matching
is an active research issue. Several approaches have been proposed to address
it. To avoid the complexity of an automatic selection, many approaches usually
manually select the relevant BK. For examples, WordNet is used in [20], DOLCE
in [17]. The manual selection does not guarantee the enhancement of a given
task of alignment, and requires a wide range of knowledge. For this purpose,
several automatic approaches have been defined to select the appropriate BK as
those described in [18,19]. The most similar work to this paper is done in [12].
Their approach consists in aligning the source and the target ontologies with
each ontology in a set of intermediate ontologies. Then, compose the different
produced alignments to derive mappings between source and target ontologies.
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The authors do not extract manually produced mappings and they do not extract
mappings between intermediates ontologies. Using their approach, one can derive
only mappings with one mediator concept (paths of two steps only). In the
same manner [5] propose to compose mappings after selecting dynamically five
ontologies from BioPortal. However, and as we can see in Fig. 4, paths of length
three (two mediator concepts) and four (three mediator concepts) return many
reference mappings. For example, 945 reference mappings are returned by three-
step-paths. This can be the explanation of the high F-Score obtained by our
approach (0.928) comparing to the F-Score obtained in their experimentation
(0.847 and 0.913 respectively).

Recently, other measures have been proposed to select the most appropriate
set of ontologies (which represents the BK) as the effectiveness [13] and the
mapping gain [8] measures. The drawback of the proposed measures resides in
the fact that they select the whole ontologies (many thousands of concepts) even
if we need just for a fragment from these ones. Furthermore, dealing with whole
ontologies makes it necessary to limit the number of selected ontologies. In our
approach, there is no limitation of the number of selected ontologies, our units
are concepts. We select only concepts that may help us to discover new mappings
without considering the number of used ontologies. In [8] the selection is based
on the mapping gain score. The ontologies with a low mapping gain (less then
the defined threshold) are eliminated even if they contain some concepts that
may help to discover reliable mappings. In our case, we do not select specific
ontologies but we work with all ontologies in the repository at the same time.
We propose to follow mappings of different provenances, and select progressively
potential useful concepts. Therefore, we combine the lexical overlapping with
the human knowledge from mappings produced manually without eliminating
any candidate mediator concept.

Furthermore, in all other approaches, the selection and the combination of dif-
ferent ontologies is based only on mappings produced automatically, they do not
distinguish different types of mappings (different provenances). They are based
mainly on the lexical overlapping between the BK and ontologies to be aligned.
This criteria does not guarantee the selection of the best BK. For instance,
the huge biomedical ontology SNOMED-CT with its rich lexical content may
always be ranked first to match biomedical ontologies, even if more appropri-
ate BK are available as Uberon for Anatomy in [5]. The use of SNOMED-CT
needs more resources, memory to manage the whole ontology and time to anchor
concepts on it.

Moreover, the Specific Mapping Graph could be reused as a resource to map
the source ontology with any other ontology. If a new ontology is added to the
initial repository, we just need to extract its related mappings with the concepts
in the Specific Mapping Graph and integrate them. In the previous approaches,
one will need to restart the selection process from scratch. The probability of not
finding an anchor for a given concept in a rich repository of biomedical ontologies
as NCBO BioPrtal (8150126 concepts) is very low. In this case, we can search
on the web for ontologies that may contain this concept as proposed in [1,18].
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8 Conclusion and Future Work

This paper deals with the selection and the combination of heterogeneous exist-
ing mappings, produced manually and automatically, stored in a biomedical
repository, to discover new ones. OQur approach is based on building the Specific
Mapping Graph as a BK. Such graph allows to get an alignment of high quality
between ontologies to be aligned without using complex lexical and structural
measures. One source concept may have several candidates target concepts. To
select the most accurate one, we have proposed the Path Confidence Measure
that takes the confidence of a given path type into account.

The presented evaluation shows that our approach provides good results,
competitive to those of state-of-the-art systems. Also, that the reuse of existing
mappings allows discovering mappings missed by the previous approaches.

The explanation of final mappings is one of challenges of ontology match-
ing [21]. Indeed, it is very important to be able to justify the provenance of a
given mapping instead of a simple score. In our approach, each found mapping
is deducted from one or several paths. The edges of paths are tagged with their
provenance. Consequently, all found mappings are explained.

Moreover, we have evaluated our approach using one benchmark (Anatomy
benchmark). For a better evaluation, we will evaluate it on other OAEI biomed-
ical benchmarks. Also to improve the quality of the final alignment, we plan to
study the impact of the variation of the PMC threshold on the F-Score, currently
no threshold is applied. Also, the coherence of automatically produced BioPor-
tal mappings has been critiqued in [9]. For this purpose, we plan to integrate
a semantic verification into our approach to improve the quality of produced
alignment. Currently our approach is used to derive only 1:1 mappings. We
will experiment the usefulness of our method to derive n:m mappings. This will
be possible if we extract not only mappings but also fragments of ontologies
(sequence of concepts linked with is_a relationship) that connect two concepts
in the Specific Mapping Graph if they belong to the same ontology.
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