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Abstract. Formal protocol analysis tools provide objective evidence
that a protocol under standardization meets security goals, as well as
counterexamples to goals it does not meet (“attacks”). Different tools are
however based on different execution semantics and adversary models. If
different tools are applied to alternative protocols under standardization,
can formal evidence offer a yardstick to compare the results?

We propose a family of languages within first order predicate logic
to formalize protocol safety goals (rather than indistinguishability).
Although they were originally designed for the strand space formalism
that supports the tool CPSA, we show how to translate them to goals for
the applied 7 calculus that supports the tool ProVerif. We give a criterion
for protocols expressed in the two formalisms to correspond, and prove
that if a protocol in the strand space formalism satisfies a goal, then
a corresponding applied 7 process satisfies the translation of that goal.
We show that the converse also holds for a class of goal formulas, and
conjecture a broader equivalence. We also describe a compiler that, from
any protocol in the strand space formalism, constructs a corresponding
applied 7 process and the relevant goal translation.

1 Introduction

Automated tools for analyzing cryptographic protocols have proven quite effec-
tive at finding flaws and verifying that proposed mitigations satisfy desirable
properties. Recent efforts to apply these tools to protocols approved by standards
bodies has led Basin et al. [5] to stress the importance of publishing the underly-
ing threat models and desired security goals as part of the standard. This advice
is in line with the ISO standard, ISO/IEC 29128 “Verification of Cryptographic
Protocols,” [23] which codifies a framework for certifying the design of cryp-
tographic protocols. There are three key aspects to this framework (described
in [26]). It calls for explicit (semi-)formal descriptions of the protocol, adversary
model, and security properties to be achieved. One final aspect is the produc-
tion of self-assessment evidence that the protocol achieves the stated goals with
respect to the stated adversary model. This fourth aspect is critical. It increases
transparency by allowing practitioners the ability to independently inspect and
verify the evidence. So, for example, if the evidence is the input/output of some
analysis tool, the results could be replicated by re-running the tool.
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Sometimes, however, two different tools are used to evaluate the same proto-
col. For example, in 1999, Meadows [28] found weaknesses in the Internet Key
Exchange (IKE) protocol using the NRL Protocol Analyzer [27], while in 2011
Cremers [17] found additional flaws using Scyther [16]. In such situations it can
be quite difficult to determine exactly what the cause of the difference is. Small
differences in any of the first three aspects of the framework could result in
important differences in the conclusions drawn. This has the potential to under-
mine some of the transparency gained by including the self-assessment evidence
to begin with.

Ideally the first three aspects of the assessment framework (i.e. protocol
description, adversary model, and protocol goals) could be described rigorously
in a manner that is independent of the tool or underlying formalism used to
verify them. For example, many tools assume a so-called Dolev-Yao adversary
model. Although some details vary depending on which cryptographic primi-
tives are being considered, there is generally a common understanding of what
is involved in this adversary model. However, this is typically not the case for
the other aspects. The particular syntax for describing a protocol is closely tied
to the underlying semantics which is entirely tool-dependent. Similarly, security
goals are frequently expressed in a stylized manner that is tightly coupled to
the tool or underlying formalism. We focus on this last point in this paper, by
providing a consistent interpretation of a particular language of security goals
in two chosen tools, CPSA and ProVerif [7,32].

We adopt a security goal language GL for safety properties. It was first intro-
duced in the strand space context [22]. GL contains both protocol-specific and
-independent vocabulary, so each protocol P determines the protocol-specific
language GL(IP) with its protocol-specific vocabulary. Security goals take the
so-called “geometric” form:

V.d—V

where @, ¥ are built from atomic formulas using conjunction, disjunction, and
existential quantification. GL(P) was designed with limited expressivity in order
to capture security goals that are preserved by a class of protocol transforma-
tions. The limited expressivity is advantageous for the current work because GL
talks only about events, message parameters and the relevant relations among
them. While some tools may represent more types of events than others, there
is a common core set of events such as message transmission and reception that
every tool must reason about. As a consequence, all statements of security goals
related to this core set of events and parameters are independent from the par-
ticular formalism that might be used to verify them. Indeed, this core set suffices
to express the security properties that protocols aim to achieve.

In this paper we aim to demonstrate how to cross-validate results between the
two tools CPsA [32] and ProVerif [7]. We will interpret goal formulas consistently
relative to the underlying formalisms used by both tools, in this case strand
spaces and the applied 7 calculus respectively. Figure 1 diagrammatically depicts
the consistency we demonstrate for such cross-tool semantics.
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strand traces

Fig. 1. Consistency of cross-tool semantics

We draw the reader’s attention to several aspects of this diagram. First, the
two triangles represent standalone logical semantics for the goal language GL
with respect to each of the execution semantics of the two tools. In Sect. 3 we
describe the left triangle: the strand space semantics for CPSA of GL(P) relative
to a notion of executions we call “strand runs.” We cover the right triangle in
Sect. 4 by giving the semantics of GL*(P) relative to a trace execution semantics
of the applied 7 calculus for ProVerif.

Figure 1 includes two different logical languages GL(P) and GL*(P), because
applied 7 processes P can represent strictly more events than strand spaces. In
particular, P may represent internal events required to parse received messages.
Thus we will offer an embedding f : GL(P) — GL*(P) on the goal language. We
can therefore only hope to get consistent answers from CPSA and ProVerif on
goals expressible in GL(P), or equivalently, its f-image, f(GL(P)) C GL*(P).

Of course, if the corresponding predicates of GL(P) and GL*(P) refer to
essentially different things, we cannot expect consistent results. In Sect. 5,
Definition 4, we present a relation—P represents P under f—that character-
izes when a protocol P and process term P “can only do the same things.”
The idea is to ensure that the corresponding formulations of each of the roles
are locally bisimilar. The represents relation thus expresses a correctness cri-
terion for translating protocols from one formalism to the other. Since again
the applied 7 calculus is more expressive than strand spaces, we focus on an
embedding from strands into applied w. We describe a compiler that transforms
a strand space protocol IP into a bisimilar process term P; the represents relation
defines compiler correctness for it.

Finally, in Sect.6 we demonstrate how represents relation on protocols lifts
to a global bisimulation Bf on the configurations in the operational semantics
of the two sides. We then show that this bisimulation respects security goals in
the sense that any goal satisfied on the left by a strand run is also satisfied on
the right by a corresponding trace. The converse cannot be true for all goals
because applied 7 traces are totally ordered whereas strand runs may be only
partially ordered. However, we conjecture that for any goal that is insensitive to
the inessential orderings of a trace, if a trace satisfies the goal then so does a
corresponding strand run.
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Related Work. We have described above how this paper connects to the pro-
tocol verification framework described by Matsuo et al. [26] and standardized in
the ISO in [23]. Although the use of formal logics to express protocol security
goals is not new [10,18], our focus on using such a logic to connect distinct veri-
fication formalisms seems to be new. There was a lot of work in the early 2000s
detailing the connections between the various protocol analysis formalisms being
developed at the time [6,11,15,31]. This work tended to focus on connecting the
underlying execution semantics of the various formalisms without explicit ref-
erence to formal security goals. Thus, in reference to Fig.1, only the outside
edges were described. By filling in the details of the internal connections, explic-
itly relating the execution semantics to a security goal language, it is easier for
a practitioner to understand how the two sides relate. More recently Kremer
and Kiilnnemann [24] provided a similar translation between a stateful applied 7
calculus and that of the tamarin tool’s [29] multiset rewriting formalism. They
show their translation correct with respect to a first-order logic of security goals
very similar to our own. However, rather than relating the results of different
tools performing analysis in different formalisms, they rely on this translation
to justify the use of tamarin as a back-end utility for the stateful applied 7
front-end.

There have been several related projects that unite a variety of protocol
validation tools into a single tool suite. Most notably, the AVISPA [3] and
AVANTSSAR [4] projects provide a unified interface to several back-end tools.
The available toolset seems to be limited to bounded verification, whereas in
this paper we connect two formalisms capable of unbounded verification. Their
protocol description language, ASLan++, however does serve as a formalism-
independent protocol description format for the available analysis tools. Simi-
larly, Almousa et al. [2] define translations from Alice-and-Bob protocol descrip-
tions into various formal models and implementations. They prove the correct-
ness of these translations with respect to a simple yet general (local) semantics.
Such correctness seems to be related to our semantic correctness criterion dis-
cussed in Sect. 5. Perhaps it would be possible to prove that any pair of trans-
lations from their high-level description language into both strand spaces and
the applied 7 calculus that respect their semantics would satisfy our correctness
criterion.

Many tools have also embarked on establishing indistinguishability properties
of protocols, also sometimes called privacy-type properties. In this area, logical
languages to express goals are less developed. However, we consider this an
important area to pursue the present cross-tool logical program also.

2 A Simple Example

In this section we introduce an example protocol, and mention the goals that it
achieves. We then show how to formalize the goals it achieves in a first order
language introduced for the strand space formalism [22,33].
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A Simple Example Protocol. As a minimal example, consider the Simple
Example Protocol (SEP) used by Blanchet [8] and many others [14]. In this
protocol, an initiator A chooses a session key s, which it signs and then encrypts
using the public encryption key of an intended peer B. It then waits to receive
in exchange a sensitive payload d, delivered encrypted with s.

A — B {|[ 5 ]sa)ltpk()
B — A:{dl}s

One is traditionally interested in whether confidentiality is assured for d, and
whether A authenticates B as the origin of d or B authenticates A as the origin
of s. Actually, SEP already indicates why this way of expressing the goals is too
crude. In Fig. 2(a), we show the assumptions needed for a conclusion, from A’s
point of view, and the conclusion that B behaved according to expectations.
That is, the protocol is successful from A’s point of view. However, the story
is different from B’s point of view, as shown in Fig. 2(b). Although B certainly
can’t know whether A receives the final message, the fact that A’s intended peer
is some C who may differ from B is troublesome. If C’s private decryption key is
compromised, then the adversary can recover s and A’s signature, repackaging
them for B, and using s to recover the intended secret d.

If A has arun of the protocol apparently with If B has arun of the protocol apparently with

B; A;
and B’s private decryption key pk(B) ™" is and B’s private decryption key pk(B) ™" and
uncompromised; A’s signature key sk(A) are both uncom-
and the session key s is freshly chosen, promised;

and the session key s and payload d are
freshly chosen,

then B transmitted d with matching parame- then A took the first step of an initiator ses-
ters, sion, originating the key s, with some in-
and d remains confidential. tended peer C.
(a) (b)

Fig. 2. Main goal achieved by SEP from the points of view of each role

The Goal Language. We wish to express protocol security goals, such as those
in Fig. 2, in a language that is independent of the underlying formalism used to
verify the goals. We adopt a first order goal language developed in the context of
the strand space formalism. It was originally designed by Guttman [22] to limit
expressiveness in order to ensure goals in the language are preserved under a
certain class of protocol transformations. The limited expressivity was leveraged
by Rowe et al. [33] to measure and compare the strength of “related” protocols.
We believe the limited expressivity makes it possible for the formal statement of
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security goals to be independent of any underlying verification methodology or
formalism. Although the goal language was originally developed for the strand
space formalism and incorporated into CPSA, the main purpose of this paper is to
provide a semantics of the language for the applied 7 calculus that is consistent
with the strand space semantics so that it might be used also by ProVerif.

As suggested by the informal goal statements of Fig.2, the language needs
predicates to express how far a principal progressed in a role, the value of para-
meters used in messages, the freshness of values, and the non-compromise of
keys. We explain each of these in turn.

The progress made in a role is expressed with role position predicates. For
example, predicates of the form InitDone(n) or RespStart(m) say that an ini-
tiator has completed its last step, or that a responder has completed its first
step. Each role position predicate is a one-place predicate that says what kind
of event its argument n, m refers to.

At each point in a role, the agent will have bound some of its local parame-
ters to concrete values. The parameter predicates are two place predicates that
express this binding. For example, if n refers to an initiator’s event, we would
use Self(n,a) to express that the initiator’s local value for their own identity
is a. Similarly, SessKey(m, s) would say that the value bound to the local session
key parameter is referred to by s.

The role position predicates and the parameters predicates are protocol-
dependent in that the length of roles and the parameter bindings at various
points depend on the details of the protocol.

The goal language also contains protocol-independent predicates that apply
to any protocol. These predicates appear in Table 1. They help to express the
structural properties of protocol executions. Preceq(m,n) asserts that either m
and n represent the same event, or else m occurs before n; Coll(m,n) says that
they are both events of the same local session. m = n is satisfied when m and n
are equal.

The remaining predicates are used to express that values are fresh or uncom-
promised. This way of expressing freshness and non-compromise comes from the
strand space formalism, but it is possible to make sense of them in any formal-
ism. The idea is to characterize the effects of local choices as they manifest in
executions. Randomly chosen values cannot be guessed by the adversary or other
participants, so they may only “originate” from the local session in which it is
chosen, if at all. We will make the meaning of “origination” more precise for each
of the formalisms, but the intuition is that Ung(v) says that v is a randomly cho-
sen value, UngAt(n,v) specifies the node at which it originates, and Non(v) says
that v is never learned by the adversary. Within this language we can formally
express the two goals of Fig. 2 as we have done in Fig. 3 for the second goal.

A formal semantics for this language has already been given with respect to
the execution model of strand spaces [22]. Our main contribution is to provide
a consistent semantics for this language with respect to the execution model of
the applied 7 calculus. To simplify this task we assume that messages have the
same representation in both formalisms. We now provide the necessary details
of the underlying term algebra for modeling messages.
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Table 1. Protocol-independent vocabulary of languages GL(II)

Functions: pk(a) sk(a) inv(k)
1tk(a,b)

Relations: Preceq(m,n) Coll(m,n) =
Ung(v) UngAt(n,v) Non(v)

Term Algebra. We will use an order-sorted term algebra to represent the values
exchanged in protocols. There is a partial order of sorts S ordered by <. We
assume the existence of a top sort T that is above all other sorts. We build
terms from sorted names and variables. We call <-minimal sorts basic sorts and
terms of those sorts are called basic values. The set of names is the disjoint union
of names for each basic sort: N = WeesNs, where Ny = N W N is the disjoint
union of two sets. We also consider two disjoint sets of variables X' = WscsXs
and W = WsesWs. Variables in X' will be bound to parts of messages received
by protocol participants, while variables in W will be used by the intruder.

We write 7 (X, A) to denote the set of terms built from set A using signature
X in the usual way. A term is ground if it contains no variables. An environment
is a map from A/UX UW that maps names to names and variables to terms. The
result of applying an environment o to a term u is denoted o (u). We only consider
sort-respecting environments in that for every term w : s, o(u) : s’ with s’ <'s.
Environments also respect the difference between N? and NY. Environments
can be updated so that, for example, o[z — v] is the environment that maps x
to v and otherwise acts like 0. We identify a subset of terms called messages by
partitioning ' into constructor symbols and destructor symbols, Y. & Y, and
letting MSG = 7 (X, N UX). These are the terms that are sent and received by
protocols. For concreteness assume Y. = {{-}5,{|- }2,[-].,- " -, pk, sk, Itk, ()71},
and that X; = {dec®, dec?, ver, fst,snd}.

We say that to is an ingredient of t, written to C ¢, iff either (i) to = t; or (ii)
t =t "ty and tg C t; or tg C ty; or (i) t = {|t1[}}, for * € {s,a} and tg C t1;
or (iv) t = [t1]s, and to C t1. The key of a cryptographic operation does not
contribute to the ingredients of the result; only the plaintext does.

The adversary’s ability to derive messages is represented in two ways. In the
first method, we partition X into X, W Xy and consider a convergent rewrite
system with rules g(¢1,...,t,) — t for g € ¥;. Since the system is convergent,
every term ¢ has a normal form denoted t|. The set of messages derivable from

Vn, b, a,s,d. RespDone(n) A Self(n,b)A Im, c. InitStart(m) A Self(m,a)A
Peer(n,a) A SessKey(n, s) ADatum(n,d)A = Peer(m,c) A SessKey(m, s)A
Non(sk(b)) A Non(sk(a)) A Unq(s) UngAt(m, s) A Preceq(m,n)

Fig. 3. Formalized goal achieved by SEP from the responder point of view
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some set X is thus nf(7 (Xpus, X)) N MSG, where nf(T) produces the set of
normal forms of the set of terms 7'. In the second method, the adversary uses
derivability rules of the form {t1,...,t,} I ¢t. The set of messages derivable from
some set X is the smallest set containing X and closed under . When each
rewrite rule g(ty,...,t,) — ¢ corresponds to a derivation rule {¢,...,t,} -t and
vice versa, the two notions of derivability coincide on a large class of protocols.
The two notions of derivability are equivalent when standard best practices are
used that prevent principals from inadvertently applying a constructor to a term
in ¥y whose normal form is not in MSG [25,30].

3 Strand Spaces

In this section we present the syntax and execution semantics of strand spaces
and we discuss how the executions furnish semantic models for the formulas of
the goal language GL(P).

Strands. A strand is a sequence of transmission and reception events, each of
which we will call a node. We use strands to represent the behavior of a single
principal in a single local protocol session. By convention, we draw strands with
double-arrows connecting the successive nodes e = eo. We use single arrows
e — o to denote the type of node (transmission vs. reception).

We write +¢ for a node transmitting the term ¢ and —t for a node receiving
t, and we write msg(n) for ¢ if n is a node +t. We write dmsg(n) for the pair
+msg(n), i.e. the message together with its direction, + or —.

If s is a strand, we write |s| for its length, i.e. the number of nodes on s. We
use 1-based indexing for strands, writing s@i for its i*" node. Thus, the sequence
of nodes along s is (s@1,...,sQ|s|). A message ¢ originates at a node n = sQj
iff (i) n is a transmission node; (ii) t C msg(n); and (iii) ¢ is not an ingredient of
any earlier msg(m) where m = sQk and k < j.

Protocols. A protocol P is a finite sequence of strands, called the roles of P,
together with possibly some auxiliary assumptions (detailed below) about fresh
values. Regarding PP as a sequence instead of a set will be convenient in Sect. 5.

The messages sent and received on these strands contain parameters, which
are the names, nonces, keys, and other data occurring in the messages. The
parameters account for the variability between different instances of the roles.
More formally, a P-instance is a triple consisting of a role p € P, a natural number
h < |p|, and an environment o that assigns messages to precisely those variables
and names in p that occur in its first A nodes. If ¢ = (p, h, o) is an instance, then
the nodes of ¢ are nodes(t) = {(¢,7): 1 < j < h}. The transmission and reception

{0s Jxca Bowes) {ldlr {Ils Jsxca Bowcmy {ldlrs
A ) y A
e —————> @ o ——————> o

Fig. 4. The SEP protocol.
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nodes of ¢ are denoted nodes™(:) and nodes™ (1) respectively. The message of a
node is msg((p, h, 0),j) = o(msg(p@y)). The idea is that the nodes are the part
that has already happened. When h = 0, then nodes(¢) = 0.

Each P-instance ¢ = (p, h, o) corresponds to a reqular strand s of P by apply-
ing o to p up to height h. That is dmsg(sQi) = o(dmsg(p@i)) for each ¢ < h and
|s| = h. An interesting subtlety arises when two roles have a common instance.
That is (p, h,o) and (p’, h,o’) may satisfy o(dmsg(pQi)) = o’(dmsg(p’ Q1)) for
each 1 < ¢ < h. This can represent a branching role that has a fixed trunk and
alternate continuations. In the present paper we restrict our attention to non-
branching protocols in the sense that no two roles share a common instance.
This eases our connection to the applied 7 semantics later. We leave for future
work the consideration of how to relate results for branching protocols.

P may make role origination assumptions rlunique, stipulating that certain
expressions involving the parameters originate at most once. These assumptions
apply to all instances of the role. Formally, rlunique is a function of the roles of
P and a height, returning a finite set of expressions: rlunique: P x N — P(MSG).
The set rlunique(p, ) gives p its unique origination assumptions for height i. We
require that the image of rlunique consist only of terms in A for the appropriate
sort s, and that all other names in roles are chosen from the sets N.

We will assume that each protocol P contains the listener role, which consists
of a single reception node —e. Each instance witnesses for the fact that the
message instantiating x has been observed unprotected on the network. Thus,
we use the listener role to express confidentiality failures. We also include a kind
of dual to the listener role called a blab role that discloses a basic term to the
adversary for it to use in deriving messages for reception. A blab strand witnesses
for the fact that the adversary has managed to guess a value.

The two roles in Fig. 4 make up a strand-style definition of the SEP protocol
(in which the listener and blab roles have been omitted). In the right-hand role
p2 we assume d to be uniquely originating, i.e. rlunique(ps,2) = {d}. We make
no such assumption about the value s in the left-hand role. This is a subtle point
that is discussed at the end of Sect. 4.

Candidate Strand Runs. For the purposes of this paper, we slightly alter
the notion of execution used for strand spaces. We argue below that this new
notion preserves the semantics of GL(IP). The notion of execution we consider,
called a candidate strand run, or frequently, just a candidate, is a pair Z = (I, <)
where I = (11, ..., k) is a finite sequence of P-instances, and =< is a partial order
extending the strand succession orderings of nodes(:;). We further require that
7 respect the rlunique assumptions of the roles. More formally, if ¢; = (p, h, o)
and ¢ < h, then if a € rlunique(p, i), then o(a) originates at most once in Z. The
nodes of Z are nodes(Z) = {(i,n): 1 <i <k A n € nodes(s;)}.

A reception node of 7 is realized if the adversary is in fact able to deliver
msg(n) in time for each reception node n. This means that msg(n) should be
derivable from previously transmitted messages. More formally, if 7 = (I, <) is
a candidate and n € nodes™ (I), then n is realized in T iff
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{msg(m) € nodes™(I): m < n} I msg(n).

A candidate Z = (I, %) is a strand run, or just a run, iff, for every n € nodes™ (1),
n is realized in Z. We write Runs(IP) for the set of strand runs of P.

Operational Semantics. The operational semantics of strand runs is obtained
by defining an immediate successor relation on candidates and restricting it to
runs. We first rely, however, on a localized notion of successor for instances.

If « = (p,h,0) and / = (p',h’,0’) are instances, then ¢/ is an immediate
successor of ¢ iff (i) p = p'; (i) h+1 = A'; and (iii) o’ restricted to the domain of
o agrees with o. If ¢/ is an immediate successor of ¢, then it extends o to choose
values for any new parameters that occur in msg(p@h + 1), but not in nodes(¢).
This local successor relation lifts to a global successor relation on candidates.

One candidate Z' = (I’, =') is an immediate successor of another candidate
7 = (I,=) when there is one new node n in Z’, and the only change to the
order is that some old nodes may precede n. More formally, Z/ = (I’,<’) is an
immediate successor of T = (I, =) iff, letting T = (t1,..., k),

1. nodes(I’) = nodes(I) U {n}, for a single n & nodes(I), i.e. either
(a) dom(I") = dom(/) and there is a j € dom(I) s.t. I’(j) is an immediate
successor of ¢j, and for all k € dom(I), if k # j then I'(k) = ts; or else
(b) I' = (t1,. -, th,t}4q), and ¢j; has height h = 1; and
2. There is a set of nodes M C nodes(]) such that =" ==<U{(m,n): m € M}.

The empty candidate NullRun = ((), ?) is a strand run, since it has no unre-
alized nodes. We regard it as the initial state in a transition relation, which is
simply the “immediate successor” relation restricted to realized strand runs. We
will write Sp for the immediate successor relation restricted to strand runs of P,
i.e. Sp(Z,7') ift 7,7’ are runs of P and 7’ is an immediate successor of Z.

Definition 1. Let P be a protocol. The operational semantics of P is the state
machine Mp = (Runs(P), NullRun, Sp) where the set of states is Runs(P), the
initial state is NullRun, and the transition relation is Sp.

A sequence of runs (Ry,...,R;) is an Mp-history iff Ry = NullRun and, for
every j such that 1 < j <1, Sp(Rj, Rjt+1).

A run R is P-accessible iff for some Mp-history (Ry,...,R;), R=R;. ///

By induction on the well-founded partial orders <g, we have:

Lemma 1. Every P run is P-accessible. /1]

Syntax and Semantics of GL(P). GL(P)’s protocol-dependent vocabulary
contains one role position predicate P/(-) for each role node p@i of P, and
a collection of role parameter predicates PJ (+,+), one for each parameter p in
role p.

Candidates furnish models for the language GL(P) for security goals
[22,33]. Candidates that are actually runs are the most important: They deter-
mine whether a protocol P achieves a formula I' € GL(P). In particular,
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P achieves I' iff, for every realized run R and assignment 1 of objects in R
to free variables in I', R satisfies I" under 7, typically written R,n = I'. The
details of the semantics, using a slightly different notion of execution than the
one used here, are in [22]. We now show that the semantics for runs is equivalent.

Equivalence of Two Strand Space Semantics. The new operational seman-
tics presented above is only inessentially different from the usual strand space
semantics in terms of realized skeletons. In order to demonstrate this, we now
present the usual notion of execution for strand spaces, and demonstrate the
equivalence of the two semantics.

A skeleton A for P is a structure that provides partial information about a
set of executions of P. It consists of (i) a finite sequence of regular strands (or
equivalently, instances) of P; (ii) a partial ordering <, on the nodes of A extend-
ing the strand succession orderings; and (iii) two sets of terms unique, and nony
representing terms that may originate on at most one node and terms that must
not originate respectively. We assume that A inherits the origination assump-
tions from the roles of the protocol in that the set unique, 2 o(rlunique(p,i)) for
every instance ¢ = (p, h,o) of A and every i < h.

A skeleton A is realized iff, for every reception node n € nodes™ (A), msg(n)
is derivable from previously transmitted messages and guessable values. More
formally, TU (B\ X) F msg(n) where T' = {msg(m) | m € nodes’ (A) Am <4 n},
B is the set of basic values, and X = unique, Unony is the set of all non-guessable
basic values.

We can correlate the realized skeletons of any protocol P (that excluded blab
roles) with the P’-accessible runs, where P’ = PU{blabs}. The idea is to add blab
nodes for all the basic values the adversary is allowed to guess. More formally,
let

By = {b| In € nodes(A) . b is a subterm of msg(n) A b is a basic value}

and let B’ be a set of blab nodes, one for each element of By \ (unique, Unony ). We
say that a realized skeleton A and a run R are related iff nodes(R) = nodes(A)U
B’, and <p==pg N(nodes(A) x nodes(A)).

Lemma 2. Let P’ = P U {blabs}. Every realized P-skeleton A has a related P’
run R. Every P’ run R has a related realized P-skeleton A. ///

Lemma 3. Let P’ = P U {blabs}, and let A be a realized P-skeleton, and R a
related ' run. Then for any atomic formula ¢ and any variable assignment n
of variables to nodes and terms in A, A;n = ¢ iff R,n = ¢. ///

Lemma3 in fact lifts to goal formulas I" as a natural corollary. The set of
goals achieved by P’ is essentially the same as that achieved by P. In particular,
any goal I' true of a skeleton A is also true of some related run R. Similarly,
as long as the I' does not express anything explicitly about the blab nodes, if
the formula is true of R it is also true of A. It is therefore no danger to use the
operational semantics of runs instead of the skeleton semantics when forming a
connection to the applied m semantics.
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4 The Labeled Applied « Calculus

In this section we describe the triangle on the right side of Fig. 1. We introduce a
version of the applied 7 calculus [1]; we define a trace-based execution semantics;
and we show how to extract GL*(P) from a protocol P, giving it a semantics
with respect to the traces. Our process calculus is adapted from the one used by
ProVerif [9]. It differs in several inconsequential ways by adopting a few changes
inspired by Cortier et al. [13]. It also includes a couple new features designed to
aid the connection with strand spaces.

Applied 7w Calculus Syntax. Protocols are modeled as processes built on an
infinite set of channel names Ch, using the following grammar.

P,Q=0 lin(c,z). P |out‘(c,u). P |letz:s=wvin P else Q
[(P]Q) |newn:s.P |sumn':s.P |!new tid.out(c, tid). P
|¢.P

Here c, tid € Ch, x € X, n € N¥, and n’ € N?. We assume u € MSG is a
constructor term; v € 7 (X, N'U X) can be any term.

The free variables, free names, and free channels of P are denoted fu(P),
fn(P), and fc(P) respectively. P is a basic process iff P contains no parallel or
replication operators, and all else branches in P are 0.

We now discuss the main differences from the standard calculus used in
ProVerif. Readers familiar with that calculus will notice we have omitted an
if-then-else construction. As discussed in [13], this is without loss of expressivity
as long as the rewrite theory contains a reduction of the form eq(z,z) — ok
in which eq € Xy. The if-then-else process can then be replaced by let z =
eq(u,v) in P else @, and the operational semantics will ensure P cannot proceed
if eq(u,v)| is not in MSG, that is, if u # v.

This grammar also ties replication to channel restriction new tid. Since the
new channel is always immediately made public, the adversary has no restrictions
on its use. That is, any message that could be sent or received over the public
channel ¢ could also be sent or received over the new channel tid.

Labels ¢ appear in two ways. As standalone prefixes, they implement the
begin-end events in ProVerif and many other approaches, e.g. [20,34]. They sig-
nal the occurrence of steps mentioned in security goals such as authentication
properties. In ProVerif these begin-end events come equipped with explicit argu-
ments representing some subset of values seen so far. This is then used to express
protocol goals in a tool-dependent manner. Since we will be able to infer the full
set of values seen so far, we omit the explicit arguments to these labels. The
labels also decorate transmissions out’(c, u). The operational semantics reduces
the label and the transmission simultaneously. As we will see below, this is
designed to ensure the goal language semantics of origination is sensible on the
applied 7 side.

Finally, the most notable difference is in our inclusion of the operator sumn’ : s.
This is essentially an infinite, non-deterministic choice operator (see e.g. [21]).
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Whereas P 4+ @ represents a (non-deterministic) choice between processes P
and @, sum n’ : s. P acts by choosing a binding [n/ + n;] for any n; € N2 and
continuing as P using this binding. This choice does not preclude another process
from choosing the same value at another time. Such choices arise frequently in
protocols. For example, a role that may be run by any agent might start by
choosing the name of the agent that is inhabiting the role in the current local
session. It might also be used to represent non-random data that two peers of a
protocol must agree on such as the name or price of a product in an e-commerce
protocol, or when we do not want to assume every agent has access to a good
source of randomness.

The inclusion of this operator is important for our purposes. In later sections
when we describe a bisimulation between strands and processes, we need to
ensure that for any P-instance that can occur there is also some corresponding
local trace of a process that can occur. Without the sum operator the 7 calculus
has no way of accessing the infinitude of the carrier sets for the various sorts.
In practice, this can be approximated by pre-pending the protocol with some
finite number of new-bound names, sending them to the adversary if they are
not meant to remain secret. This is the typical style of modeling protocols in
ProVerif. Indeed, since any counterexample to a security goal only uses finitely
many values, then given a particular attack there is some number of values
that one could create at the beginning of the protocol that will suffice to find
the attack. Even more promising is the existence of results such as Comon and
Cortier’s [12] which establishes an a priori finite bound on the number of agents
necessary to discover an attack if there is one. Thus, although ProVerif’s input
language does not contain a sum operator, we will continue to use it in this paper
with the understanding that there may be principled ways of using ProVerif to
verify finite approximations to our translations.

Modeling Protocols. The roles of protocols are formalized as replicated
processes new tid . out(c, tid) . P where P is a basic process. It is no restric-
tion to assume that every role uses the same channel tid since each replicated
session will instantiate tid with a distinct fresh channel. Any parameters p : s

assumed to be freshly chosen during every local session of a role will be bound
new p : sin P. Other parameters of the local session will be bound sum p : sin P.

A:=suma:agt.sumb:agt.sum s : skey. out™ " (tid, {|[ s Jo(a) [} okcr)) -
in(tid, z) . let d : data = dec’(z, s) in InitDone. 0

B :=suma:agt.sumb: agt.in(tid,2).letz: T = dec’(z,sk(b)) in
let s : skey = ver(z, pk(a)) in RespStart . new d : data.
out™***" (tid, {|d}3) . 0

P :=lnew tid . out(c, tid) . A |Inew tid . out(c, tid) . B |

Inew tid . out(c, tid) . sum v : s. out®™* (tid,v). 0 | ...

Fig. 5. Applied 7 representation of SEP.
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The effects of this choice between new and sum bindings is discussed in more
detail at the end of this section.

Each protocol includes blab roles, namely replicated processes
'new tid. sum v : s. out®!®(tid,v). We must also include versions that send
f(v) for each f € Xy. The representation of SEP is shown in Fig.5, where the
remaining blab processes are elided.

Operational Semantics. Our operational semantics includes traces, namely
sequences of events, i.e. triples (¢, a, &) consisting of the label ¢ being reduced,
the network action a (i.e. in(c,z) or out(c,u)) being reduced, and the environ-
ment £ that results from the reduction. Not every prefix in the grammar above
contributes to the trace when it is reduced. Only labels and message trans-
missions/receptions do. We denote the absence of a label or network action by
the symbol L in the appropriate position. The trace joins together the begin-
end events that the ProVerif semantics use with the message events in other
semantics such as Cortier et al.’s [13]. The labels help to provide semantics for
role position predicates and parameter predicates, much as ProVerif etc. express
authentication properties. Transmission and reception events reconstruct the
semantics of origination.
The operational semantics acts on configurations C, which are triples:

S is a trace, namely a sequence of triples of a label, a network action, and an
environment. It records the successive prefixes that have undergone reduction,
and the environment in force when each reduction had occurred.

PE is a multiset of pairs (P, &) of a process and an environment. Each process
is a subexpression of the original process expression, and represents possible
future behavior. The environment records the bindings in force for its names
and variables. We use it to remember the association of these values with the
names and variables occurring in the original expression.

The multiset operator is essentially the parallel operator, which obeys the
usual associative-commutative structural rules, with unit 0.

¢ is a frame. It associates variables w € W to transmitted messages. It indicates

which messages from the regular participants the adversary is acting on.

The operational semantics (see Fig.6) is a transition relation — on configu-
rations. In the IN rule, we do not substitute the new binding into the process
expression, but simply accumulate it in the environment. An analogous environ-
ment update occurs in the rules for SESS, NEW, SUM, and LET. In the OUT
rule, the environment is consulted, producing the same effect the substitution
would have had. Notice also that while NEW ensures the environment is updated
with a fresh value, the SUM rule has no such restriction. To avoid the SUM rule
binding to a previously chosen random number, we choose the values from dif-
ferent sets (VY vs. N?). As usual, we assume that ! P is structurally equivalent
to P |!P.

The rules IN,OUT, and LB also append (4, a, &) to the end of the trace. By
recording the environment £ we retain the particular value to which a variable
or name is bound when each prefix is reduced. The role parameter predicates
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IN : S; (in(e,z: T).PEYWPE, ¢ —  S.(L,in(c,z:T),&);
(P,EYWPE; ¢
OuT : S; (out’(c,u).P,E)WPE; ¢ —  S.(L out(c,u),E);

(P,E)WPE; dlw— E(u)]

LB : S; (L.PEYYPE; ¢ — S.(4,L,E); (P,E)WPE; ¢
SESS : S; (Inew tid .out(c, tid).P,E)WPE; ¢ —  S; (P,EYWPE; ¢

NEW : S;(newn :s.PE)WPE ¢ — S;(P,EYUPE; ¢

SUM : S;(sumn:s.P,EYWPE ¢ — S;(PE)WPE; ¢

LET : S;(letz:s=vinPelseQ,E)WPE; ¢ — S;(P,ENWPE; ¢
LET-FAIL: S;(letz:s=vinPelse Q,E)WPE; ¢ — S;(Q,E)WPE;

NULL : S:(0,6) W PE D — S;PE: D

PAR : S:(P|Q,E)WPE D — S;(P.E)W(Q,E)WPE;d
where, in IN: & = E[z — ¢(R)]] for some R € T (Xpup, W);

OUT: w € Wis fresh;
SESS: &' = E[tid — ch] where ch € Ch is fresh
NEW: & = E&[n— n'] wheren’ € N is fresh
SUM: &' = En > n]withn' € VY
LET: & =&z v]]withv]:s € Mx
LET-FAIL: v]¢ Mx or —w]:s

Fig. 6. Reduction rules

get their semantics from the bindings in £, and the role position predicates get
theirs from the label ¢. The origination predicates get their semantics from the
information contained in the network actions a.

Goal Language Syntax. The goal language GL*(P) for a process P contains
the same protocol-independent vocabulary as shown in Tablel. Its protocol-
dependent vocabulary consists of event predicates, which are like role-position
predicates of GL(IP), and environment predicates, which are akin to parameter
predicates.

Event predicates are one-place predicates. For each non-_L label ¢ occurring
in P, £(-) will be a (one-place) event predicate; it holds true of index i in trace S
if the event S() = e is of the form (¢, a, &) for some a and €. The value a may be
L here; we will write (£, ,&) where e indicates that the existentially quantified
value may be L as well as a normal value.

The environment predicates are two-place predicates. For each name or vari-
able u occurring in P, u(-,-) will be a (two-place) environment predicate. It will
be true of pairs ¢,v when e is an event (£,a,€) at index i in the trace, v is a
message in normal form, and £(u) = ¢ maps the name or variable u to t. When
u is not bound in &, u(-,-) is false for ¢ and every ¢.

Goal Language Semantics. Suppose that (); P;0 —* S;Q; ¢, so that S is
a trace of P. The semantics of the atomic predicates of GL*(P) is presented
in Fig.7. The clauses are particularly simple, because we arranged for S to
hold just the information needed to express them. In particular, retaining the
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S, = 4(m) i S(m) = (e,

S,n = u(m,v) iff S(n(m)) = (e,0,&) and E(u) = n(v)

SnEv=1 it n(v) =n()

S, n = Preceq(m,n) iff n(m) < n(n)

S,n = Coll(m,n) iff S(n(m)) = (o7 0, Em),S(n(n)) = (e,0,&,) and
Em(tid) = En(tid)

S,n = Unq(v) iff n(v) uniquely originates in S

S,n E UngAt(m,v) iff 1(v) uniquely originates at S(n(m))

S, n = Non(v) iff n(v) does not originate in S

Fig. 7. Formal semantics of GL*(P), when (); P;) —* S;Q; ¢. In the first clause,
label £ # L.

environments £ in § makes the semantics of the environment predicates very
easy.

The predicate Coll(-,-) says that two events belong to the same instance
(“session”) of a role. By tying process replication to channel restriction, we
ensure that £(tid) identifies the session that an event belongs to.

The final three predicates Unq(-), UnqAt(-, ), and Non(-) rely on origination,
which thus must be determined by S. This is why we include network actions a
as elements of events in our traces.

Message t originates at S(i) = (¢,a,€) if a = out(tid,u), t T E(u) and for
all j < i, if S(j) = (¢',a', &) with &'(tid) = E(tid) and a’ = out(tid,u’) or
a’ = in(tid,u’) then ¢t Z &' (u'). A message t uniquely originates at S(i) if ¢
originates at S(i) and for all j # 4, t does not originate at S(j). Similarly, we
say t originates uniquely in S if it originates at S(i) for some unique 1.

Name Restriction vs. Unique Origination. Before proceeding we briefly
discuss a subtle point about how freshness is modeled in the two formalisms.
The typical way of modeling a random choice in the applied 7 calculus is to use
a new binding to create a fresh random name. When this occurs in a replicated
role then the result is that every instance of that role will generate a fresh random
number at that point. This guarantees that when the value is later transmitted
by out®*(tid,u), then it will be uniquely originating in the trace at the event
resulting from reducing that transmission. That is, the protocol will satisfy the
following formula:

evt(m) A Nonce(m,v) = UngAt(m,v)

The same effect can be achieved in strand spaces by equipping the role with a
rlunique unique origination assumption for the value.

Interestingly, most protocols do not rely on every instance of a role making
random choices. The SEP protocol provides a nice example. From the initia-
tor’s perspective, the secrecy of d relies on the initiator choosing a fresh random
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key, but it does not rely on other initiators (who are not involved in this session)
choosing fresh random keys. Omitting the rlunique assumption does not preclude
us from assuming that the relevant value is uniquely originating for a particu-
lar, chosen session. The unaltered applied 7w calculus does not have this same
flexibility. Our introduction of the sum operator together with the semantics of
origination for traces equips the applied 7 calculus with the flexibility necessary
to ensure goals are faithfully preserved when we translate from strand spaces to
applied 7.

5 Compiling Strand Protocols to the Applied 7w Calculus

The previous two sections described the left and right triangles of Fig. 1. Each
triangle makes sense in isolation: given a security goal and a protocol description,
we can choose to use either formalism to validate that the protocol achieves the
goal. However, we want goals verified in one formalism to hold in the other also.
We thus expect to receive the same answer when evaluating the same protocol
in either formalism. This of course requires a useful notion of sameness for
descriptions of protocols in the two formalisms. However, a syntactic criterion
for this would be difficult.

Instead, in this section we will briefly summarize a compiler (written in Pro-
log) that translates strand protocols P = (p1,...,px) to processes P in the
applied 7 calculus. Details of the compiler can be found in Appendix A. We
designed it to correlate the goal languages GL(P) and GL*(P) smoothly, when
P is an output from input P.

Inew tid . out(c, tid).

OUt(le) (tid’ {| [[ S ﬂsk(a) |};k(b))'
in(tid, z1).letxo : T = dec®(x1,s)inletd : D = 22in(2,2).0

Fig. 8. Translation of SEP initiator

We implement labels £ by pairs of natural numbers (i, 7), and also use each
label £ as a one place role position predicate ¢(z) in GL*(P). The compiler asso-
ciates each label used in the output with a node by constructing an injective
function A: Labs(P) — nodes(P) where A(4,j) = p;@j. The action of the func-
tion f: GL(P) — GL*(P) on role position predicates (see Fig. 1) is inverse to A.
More precisely,

A(f (1 (piQf))) = ps@j, (1)

for all roles p; and nodes p;@j on it. We have written 7. here for the map
from role nodes to role position predicates, which partly determines the function
P — GL(P). Thus, A is essentially inverse to f o 7.
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The compiler also translates each parameter u of p;, which may be either
a name or a variable, to the same name or variable u in its target output. We
use u as a two-place parameter predicate in GL*(P), where in this case f must
satisfy:

f(TP(pia u)) =u, (2)

where we write 7, for the map from roles p; and parameters u to parameter pred-
icates in GL(IP). The function f is the identity function on protocol-independent
vocabulary, so Eqs. 1-2 characterize the translation f. There will also be other
names and variables used in the process output by the compiler, which is why
the map f: GL(P) — GL*(P) is an embedding in this direction.

For simplicity, our compiler makes an assumption: It is designed to compile
protocols whose roles are disjoint, in the sense that there are no strands that are
common instances of distinct roles. Roles with overlapping instances are used
to represent branching protocols, in which choices are made by principals or
determined by the messages they receive. We have not refined our compiler to
emit corresponding if-then-else expressions in the target 7 calculus. Throughout
the remainder of this paper, we will assume that each strand-based protocol P
has disjoint roles.

Compiler Sketch. If the compiler translates the tail n; 1 = ... = ny of role
pi to a process P, then it prepends some code to P to translate n; = n;y; =
... = ny. In particular, if dmsg(n;) = +t, then it emits a labeled output as:

out® (¢, t). P.

If ¢t has a parameter that is not previously bound by a reception, the compiler
should wrap this parameter in a new-binding if the role declares it as uniquely
originating. Otherwise it should be wrapped in a sum-binding. The current imple-
mentation of the compiler does not yet add these bindings.

If dmsg(n;) = —t, then the situation is more complicated. It must emit
an input in(c,z) with a fresh variable x followed by a sequence of let bind-
ings that destructure the received message. We insert the label (i, ) after this
destructuring sequence. This is because its presence in a trace should imply that
the expected message structure was present in the message bound to x. It also
explains why message receptions do not carry their own label while message
transmissions do. Message components that must equal known values will be
checked, and previously unknown message components will be bound to fresh
variables. When one of these components is represented by a parameter d in —t,
the compiler re-uses d. Thus, parameters in p; will also appear in its translation.

Having translated the content of a role p to a process Fy, the compiler wraps
this and emits Inewtid . out(c, tid) . Py. The compiler does not rebind t¢id inside
Py, although it is convenient to use it as the public channel for input and output.
As an example, the initiator role of SEP (left side of Fig.4) yields the process
expression shown in Fig.8. The first line shows the wrapping; the second line,
the label and output for the first node of the role (omitting the new and sum
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bindings since the compiler does not yet compute these); the third line, the
input, destructuring, and label for the second node, and the null termination.
The tricky part of the compiler is computing the sequence of destructurings
and checks. For this we use a simple flow analysis to determine choices for the
participant’s initial knowledge, followed by a backtracking analysis to explore
the feasible combinations of destructuring input components vs. building known
terms and checking equality with input components. This backtracking made
the compiler convenient to implement in Prolog.

In the output case, the code emitted by the compiler adds one entry to the
trace when it is reduced. In the input case, the code emitted adds two entries
to the trace for each single reception node of the source role p. Thus, we will
correlate a single transmission node of p to a labeled output in the target process
P, and we will correlate a single reception node of p to an input followed by a
label (confirming that destructuring has succeeded) in the target process P.

We codify this in a transition relation on configurations C. We say that a
configuration Co = (Sa;PE2;¢2) is an immediate successor of a configuration
C1 = (81;PE1; ¢1) iff C; —T C3 and for some values of the remaining variables,
either

Sy = 81.(4,out (c,u),E) orelse Sy =38;1.(L,in(c,x),E).(¢, L,E).

Semantic Correctness Criterion. Intuitively, a role p and a (replicated)
process term P represent the “same” activity if they can produce corresponding
sequences of observable events. This suggests a kind of local bisimulation between
role instances ¢ and basic processes P. However, we will correlate nodes on the
strand side with pairs on the process side, whether a label-out pair or a in-label
pair. We use the map A from labels back to nodes to define the correspondence.

Now, because basic processes retain only their future events, whereas
instances contain both their past and their potential future, we actually cor-
relate ¢ with a basic process and its environment, together with the trace S
which retains information about the past.

We begin by defining an auxiliary predicate Bg‘, parameterized by the func-
tion A above, which captures the notion that the instance and the process have
the same past. This predicate uses only the labeled entries in the trace, and
ignores the inputs and outputs that it also contains.

Definition 2. 1. If S = ((¢1,a1,&1), ..., (Uk,ak, Ek)), then let S, ,t be the sub-
sequence of S which contains (£;,a;,&;) iff b; # L and &;(tid) = t.
2. Let 1 be an instance, and let S be a trace and € an environment. B (1; S, &)
holds iff, letting v = (p, h,0) and T = S|,,,E(tid),
(a) & restricts to o, i.e. dom(o) C dom(E), and E(x) = o(x) for all x €
dom(o); and
(b) for all j such that 1 < j < h, letting T (j) = (¢;,a;,&;),

dmsg(s, j) = €;(dmsg(A(4;)))- /1



Cross-Tool Semantics for Protocol Security Goals 51

Condition (a) of Item 3 ensures that the parameters common to both formaliza-
tions have been bound in the same way by the two environments. Condition (b)
ensures that if we apply A to the label of the j** event and then apply the
environment in effect at that event, we get the same directed message as the j™*
node of the instance ¢. Thus the successive messages sent and received in S that
are attributable to tid match the messages that « has sent and received so far.
Thus, given A, the input and output events in the trace are effectively redun-
dant. We include them so that the GL* semantics of Sect. 4 may be defined using
only the intrinsic content of P and its reduction sequences. We would not want
the semantics to be well-defined only for processes in the range of the compiler.

Lemma 4. Let B (1;8,€), T = S|,;,E(tid), and 0 be an order-preserving bijec-
tion between nodes(t) and events of T. Then for any atomic formula ¢ with a
role position predicate, or parameter predicate, v, = ¢ iff S,0 on = . ///

We next need to describe what it means for an instance and a process to
have the same possible futures. We thus define B! to be the largest bisimulation
that respects B{'. We use the immediate successor relation on configurations by
injecting P, £ to the singleton multiset PE = {P, £}.

Definition 3. Let B{! be the most inclusive relation such that B{(1;S, P, )
implies Bg\(1; S, E), and moreover:

1. for all V' such that (' is an immediate successor of v with new node n, there
exist §', P, &' ¢, @ such that S';{P',E'}; ¢’ is an immediate successor of
S;{P,E}; ¢, and B{(/;S', P E).

2. forallS', P& ¢,¢, if S’ {P',E'}; ¢ is an immediate successor of S;{P,E};
®, then there is an immediate successor i of v and B{(//;S', P',&"). ///

We can also lift the B! relation from an individual instance and basic process
to a relation between a protocol P and a fully replicated process expression. In
particular, we will assume that the roles in IP are ordered, so that we can correlate
them with parts of a process expression.

Definition 4. Let og be the empty environment; let [tid — v] be the environment
with domain {tid} and range v; and let Sy = () be the empty trace.
Suppose that P = (p1,...,px), and let P be of the form:

ljeq1,... ky!newtid . out(c, tid) . P;.

Then P represents P via A iff, for each j such that 1 < j < k, B{*(¢;, So, P}, &;),
where 1; = (p;,0,00), and &; is of the form [tid — v] for some v. ///

The above definition serves as a semantic correctness criterion for a compiler
that takes a strand space protocol P and produces an applied 7 process P. We
have not proved that our compiler meets this condition, although we believe
that it does for role-disjoint IP. The hard part of writing the compiler is handling
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message receptions, which must be destructured by explicit operations in applied
7 to match the pattern matching in the source protocol P. We then emit a label
that corresponds to the role position predicate governing the source reception
in P. This suggests a proof strategy: We would argue by induction on source
protocols. We say that one protocol Py precedes Py, P; < Py if, for every role
p1 € Py, there exists a role ps € Py such that either:

— p1 is an initial segment of po; or
— p1 and po are identical up until their last node, which is a reception in both
cases, and the pattern matching in p, refines the pattern matching in p;.

In the latter case, the compiler emits code for p, that extends the code for p;. If
the code for p; is correct, then, by checking only that the additional destructuring
code for py will behave correctly, one can be sure that the latter will again be
correct. The relation P; < P, is well-founded, so correctness would follow by
induction.

The next section shows why Definition 4’s represents is the right relation by
lifting the local bisimulations to a global bisimulation and demonstrating that
goal satisfaction is preserved when Definition 4 is met.

6 Bisimulation and Preserving Goals

Correctness: The Idea. A, as generated by the compiler, and f : GL(P) —
GL*(P) are closely related, as shown in Sect. 5 (Eqs. 1-2). Hence, the behavioral
match between compiler input P and output P carries over to ensure that the
goal formulas of GL(P) are preserved in GL*(P). We will not in fact prove that
the compiler is correct—in the semantic sense of Def. 4—that its output P
represents its input P via A, although we believe it. What we do prove is that if
P represents P, and the runs of P all achieve a security goal I, then the traces
generated by P achieve f(I").

The Bisimulation. To do so, we demonstrate a weak bisimulation between the
strand space operational semantics and the applied 7 reduction semantics. The
bisimulation is between run-protocol pairs (R,P) on the one hand and trace-
configuration pairs (S, PE) on the other.

The initial configuration of |1<;<k P;j is (), {(P1,€0);- -+ (P, &)}, 0, and it
evolves only to configurations S, PE, ¢ where PE splits into two parts:

{(Phg()), ey (Pk,go)} (] {(BPl,gl), ey (B.P],gj)},

The latter is a multiset of pairs where each BP; is a basic process. That is,
the initially given replicated processes always remain unchanged, and all the
additional processes can correspond to individual strand instances ¢. We now
formalize this correspondence via a bijection 6 between labeled events and the
nodes of these instances.
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Definition 5. B{(R,P;S,PE) iff 0 is an bijection between nodes(R) and labeled
events (¢,a,€) of S (i.e. where £ # 1) that preserves the orderings of R such
that the following both hold:

1. 0 induces a bijection between P-instances v of R and basic processes P, & of
PE such that B{*(;S, P, ).

2. There is a bijection ¢ between roles p of P and replicated members of PE such
that, for some fresh channel v, letting . = (p, 0, 00), B{(1; So,¢(p), [tid — v]).

We write BA(R,P; S, PE) iff, for some 0, B{(R,P;S, PE). 7]/

Lemma 5. Suppose BA(R,P;S,PE), andlet Ryt = {msg(m) : m € nodes™ (R)}
and Sour = {E(u) : S(i) = (L,out(tid,u),E) for some i.}. Then Rour F t iff
Sout F t.

Proof (Sketch). Being in the B relation ensures that R,u; = Sout- O
Lemma 6. BA(R,P;S,PE) is a bisimulation.

Proof. We begin by showing that S, PE simulates R,P. By assumption, there is
some 6 that matches the instances ¢ of R to the unreplicated process environ-
ment pairs P, & of PE so that B{{(1;S, P,&). Let ¢ = ¢(S) be the environment
associated with trace S. The run R can advance in one of two ways, (a) some
current instance is extended to a successor instance, or (b) some new instance is
created from a role of P. In the first case, since Bi'(1; S, P,£), the configuration
S;PE; ¢ can evolve similarly if either the new node in the extended instance is
a transmission, or, in case it is a reception —m, if S,z = m. But since the run R
could only have advanced with a reception if R,y = m, Lemmab ensures that
Sout M, as required.

In the second case, we note that we can first silently create a new unreplicated
basic process BP;;1 with environment £;1 = [tid — v] for some fresh channel
v by performing a SESS reduction. Condition 2 of Definition5 ensures that
B{(;8,BPj41,Ej11) where ¢/ is the O-height prefix of the new instance 1. We
can thus proceed to argue as in the first case above. The proof of the reverse
simulation is similar. O

Theorem 1. Suppose that |1<;<i P; represents P via A, and let 6 be the bijec-
tion with empty domain. Then B (0,P; (), {(P1,&0), - -, (P, &) })-

Proof. Condition 1 of Definition 5 is vacuously satisfied. Since |1<;<y P; repre-
sents P via A, Definition4 applies which ensures Condition 2 holds. O

Lemma 7. Suppose that Bj\(R,P; S, PE), where 0: nodes(R) — Labs(S). Let 0
extend 0 to MSG also by acting as the identity. Let ¢ be an atomic formula of
GL(P).

1. IfRn k= ¢, then S,001 = f(9).
2. If ¢ does not contain Preceq, then S,0 0n = f(¢) implies R,n = ¢.
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Proof (Sketch). Lemma4 takes care of the cases for role position predicates
and parameter predicates. The bisimulation relation ensures that origination,
message equality, and local session orderings are preserved. Since 6 only preserves
orders from R to S, we must exclude Preceq for Condition 2. O

Theorem 2. If P represents P via A and P achieves VT . & = W, where only
V, A, 3 appear in @ and ¥, then P achieves f(Vz . P = V). ///

The converse is false, since the execution model of P is linear, while the runs of
P are partially ordered. In particular, the formula Vn,m.n <m Vv m < n holds
of P, but need not hold of P. However, we conjecture that P achieves a security
goal VT . & = W, where @, ¥ use only V, A, 3, if P satisfies f(VZ. P = ¥) and
either

1. < does not appear in ¥; or else
2. V does not appear in ¥.

In the first case, we transport satisfying instances from traces of P back to
corresponding runs of P, as in Clause 2. The second appears to be true because
if ¥ is V-free, its Preceg-containing atomic formulas are satisfied in all traces
of P. Thus, they hold in all interleavings, whence they must be true in the
corresponding partially ordered P run.

7 Conclusion

In this paper, we studied a particular case of the cross-tool security goal problem
for protocol standardization. We showed how to correlate statements in a goal lan-
guage for a strand space tool with statements in a related language for applied 7.
We proved that if a strand-based protocol achieves a security goal, then related
protocols in applied 7 achieve the corresponding goal. We conjecture that the con-
verse is true for a large set of security goals also. We provided a compiler to produce
a related applied 7 protocol.

These technical contributions support the protocol verification framework
codified in ISO/IEC 29128. A goal language that does not depend on the under-
lying verification tool allows for greater transparency for published standards:
it allows practitioners to independently verify the same results using the tool of
their choice.

We view this paper as a start on a program to which many hands may con-
tribute, adapting the semantics of different tools to this or a comparable security
goal language. Although the languages GL(IP) express only safety properties,
rather than indistinguishability properties also, it seems likely that a similar
program could equally apply to indistinguishability properties.

Acknowledgments. We are grateful to Kelley Burgin, Dan Dougherty, and Moses
Liskov. We also benefited from the comments of the anonymous referees.



Cross-Tool Semantics for Protocol Security Goals 55

A Compilation

In this section we describe our translation of a strand space role into a labeled
applied 7-calculus process term.

At a high level, the translation takes a transmission event +m to out(tid, m),
and it takes a reception event —m to in(tid, z).P where P is a sequence of let
bindings that attempt to parse the received term according to the structure of
the expected term. The complexity of the latter translation is due to the use of
pattern matching for receptions in strand spaces that is absent in processes. If
we are to preserve the semantics of the goal language under this translation to
the process calculus, we must ensure that receptions based on pattern matching
succeed on a given message m if and only if the corresponding sequence of let
bindings succeeds on the same message. This requires some care.

One issue is that there may be several sequences that can be used to verify
the structure of a message. Since the parsing process binds some values and
requires others already to be bound, some sequences are sensible with respect to
some initial input and others are not.

We start with a strand space trace (a sequence of events) constructed from
message terms derived from the order-sort signature in Fig. 9. We compute the
relation between a strand space trace and a process calculus term two steps.

1. Perform a flow analysis to find a set of input basic values (See Fig. 10).
2. Translate the trace into a process calculus expression relative to a given set
of inputs (See Fig. 13).

The algorithm has been simplified by ignoring role unique origination assump-
tions, but their processing is sketched near the end of this section. Most of the
algorithm described here has been implemented in Prolog. The Prolog implemen-
tation operates on a many-sorted algebra isomorphic to the order-sorted algebra
as described in [19, Sect. 4]. We leave that translation implicit in this document.

The signature in Fig. 9 is a simplification of the one used by cPSA. The Simple
Example Protocol initiator role using this signature is:

init(a,b: N,s: S, d: D) = [+{{lsl}pr(a) -1 [Fprce)» —{ldl}s]- 3)
Sorts: T,D,S,A N
Subsorts: D < T,S<T,A<T,N<T
Operations: (-,-) : T x T — T Pairing
{-¢y: TxS— T Symmetric encryption

{-F¢y: TxA— T Asymmetric encryption

()" CASA Asymmetric key inverse

pk :N—A Public key for name
Equation: (z )" '=xforz:A

Fig. 9. Simple crypto algebra signature
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A.1 Flow Analysis

The aim of the flow analysis C > I (see Fig.11) is to find a set of basic values
that allow a procedural interpretation of a trace, in particular, a procedural
interpretation of the implied pattern matching that is part of a strand space
reception event.

There are two ways to interpret the reception of a pair, either the left part
is matched first or the right part. A decryption key might or might not become
available based on this choice.

There are two ways to interpret the reception of an encryption. If its decryp-
tion key in known at the point of the match, the contents of the encryption can
be extracted. Alternatively, if the encryption has been seen previously or can be
constructed, then an equality check implements the match.

Figure 12 explores the various possibilities. The flow analysis for the initiator
trace is:

I = {{pk(b),pk(a)~", s},{d, pk(b), pk(a) ™", s}}, (4)

where b,a : N, s : S, and d : D. Notice the second solution makes little sense. It
assumes that the initiator’s initial knowledge includes d, the data it is seeking from
aresponder. We rely on human intervention to choose sensible sets of input terms.

0,0,C>1,A
c>1

LA[]>1,A

11,141,]\4|>+ IQ,AQ IQ,AQ,CDIg,Ag
Il,A17+M 2O > 13,A3

Il,Al,MD7 ]2,142 IQ,AQ,C[>137A3
11,A1,*M 2O > 13,143

Fig. 10. Flow analysis

MeA
ILAMBSTIA

I1,A1,MD+ I2,A2 IQ,AQ,N|>+ 13,143
I, Ay, (M, N) > I3, As

]-1,141,]\4l>7L Iz, Ao IQ,A27N>+ Is,

As
N : N:A
Il,Al,{|M|}N |>+ [3,A3 L Sor ]

M is a basic value and not in A
LAM>T {M}UILL{M}UA

Fig. 11. Send flow analysis
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Li,Ai, M >~ Iz, A Iz, Aa, N > I3, Az
117A17<M7N> > 137143

I, A1, N>~ I, Az Iy, Ao, M >7 I3, A3
I1,A1, <M, N> > 13,A3

L {{M}n}UAL N I, Ay 1o, Ao, M >~ I,

A3[
N : N: A
L, Ay, {M[fn 7 I3, As IN:Sor ]

L, AL IMyn 7 I, Ay
I, Ay, {{Mfn >~ Iz, Ao

M is a basic value
LAM>-I,{M}UA

Fig. 12. Receive flow analysis

Code Generation

57

Code generation has the form C, F1, N,¢ > P, Ey, where C is a strand space
trace, 1 and F, are maps from strand space terms to process calculus terms,
and we are translating the £** send or receive in the trace of the N* role of the
protocol.

An analysis begins with an environment Fy mapping each input term com-
puted by the flow analysis to itself. To compute the process calculus term P for
a given strand space trace C and role number N, find P such that C, Ey, N, 1>
P, E; (See Figs.13,14,15 and 16).

Z,

T,(N,f).P1,E1 > P, Fs C,EQ,N,£/>>P1,E3

[]7E17N3Z>>05E2

T1,E1 >>Jr Ts C,El,N,E’ > P,EQ
+T1 :: C, E1, N1, £ > out™9 (¢, T2). P, E»

[0 =0+ 1]

—T:C,E1,N,{>in(c,z).Ps, E3

Fig. 13. Code generation

(T,z) e E

T.E>"x

Ty, E>>T a; To, E>>T a9
<T15T2>7E >>+ <$1,l‘2>

Ty, E>>T a2 To, B >>T 2o
{1}y, E > {lz1]}a,

[TQZSOFTQZA}

Fig. 14. Send code generation

[ : T fresh, ¢’ := ¢+ 1]
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To handle role unique origination assumptions, the send code generator in
Fig. 14 must prefix the code with a new form for each name that uniquely origi-
nates in the transmitted message.

A.3 Translation Relation

The relation comp(N, C, P) relates a role number and the role’s strand space
trace with a process calculus term if

1. O 1,
2. Ej is an environment generated from I, and

3. C,Ey,N,1>> P, Es.

Note that a translation is interesting only if I induces a sensible interpretation
of C.

Blanchet Lnitiator Example. Assume the initiator is the second role in
the protocol. The initiator trace C' is defined in Eq. 3. The initial environment
generated from the first input set in Eq. 4 is:

Eqo = {(pk(b), pk(b)), (pk(a)~", pk(a)~), (s, )},

(T,y) e E
z, T, P, >~ letok = eq(z,y)in P, E

y, 11, P, E1 > P, E» 2,12, Pa, B2 >~ P3, E3
z,(Th,T2), P1, E1 > let{y,z) = xin P3, E3

2,15, P1,E1 > P>, F» y,Th, Po, E2 >~ P3, 3
x, <T1,T2>,P1,E1 > Iet<y7z> =xin P, E3

(T27y) GEl ZaT17P17{({|T1|}T25x)}UEl>>P27E1
z, {11} 1o, P1, E1 > letz = dec(z,y) in Pa, Es

EH{Ti[r
2, {T1}ry, P, E > letok = eq(x, {{Til[tr,) in P, {({{Ti[}ry, 2)} U E

Analogous cases for asymmetric encryption omitted.

ly,z : T fresh]

[y, z : T fresh]

[z : T fresh, To : S]

T : sisavariable
2, T,P,E>let T:s=zinP,{(T\T)}UE

Fig. 15. Receive code generation
(T,z) e E
Er-T

Er-T EFT,
EF{11,Ts)

ErT Er-T,
E+ {‘T1|}T2

Fig. 16. Term synthesis
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where b,a : N and s: S.
The process term P that satisfies C, Fy,2,1 > P, Es, is:

out® (¢, {{Isltpray-1 Fprr))-
in(c,x1).

letzo : T = dec(xq,s)in

letd : D = 2in (2,2). 0

Blanchet Responder Example. Assume the responder is the first role in the
protocol. The responder trace is the one in Eq. 3 after interchanging sends and
receives. A sensible set of input basic values is {d, pk(a), pk(b)~'}. After inserting
the new form by hand, the process term is:

in(c,x1).

letzo : T = dec(x1, pk(b)~1)in
letzs : T = dec(xa, pk(a))in
lets : S = xgin (1,1).

newd : D.

out2) (¢, {d[}5). 0
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