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Abstract. The number of APIs on the Web has increased rapidly in recent years.
It becomes quite popular for developers to combine different APIs to build
innovative Mashup applications. However, it is challenging to discover the
appropriate ones from enormous APIs for Mashup developers (i.e., APl users). In
order to recommend a set of APIs that most satisfy the users’ requirements, we
propose a multi-relation based manifold ranking approach. The approach exploits
the textual descriptions of existing Mashups and APIs, as well as their composition
relationships. It firstly groups Mashups into different clusters according to their
textual descriptions, then explores multiple relations between Mashup clusters and
between APIs. Finally, it employs a manifold ranking algorithm to recommend
appropriate APIs to the user. Experiments on a real-world dataset crawled from
ProgrammableWeb.com validate the effectiveness of the proposed approach.

Keywords: Mashup clustering - Web API - Multi-relation - Manifold ranking -
API recommendation

1 Introduction

Mashup, as an emerging Web development mode, enables a developer easily com-
bining the content from more than one source on the Web to create new applications for
end-users. For example, a developer can combine the addresses and photographs of
their library branches with a Google map to create a map Mashup [1]. With the spread
of service computing and cloud computing, the past decade has witnesses a tremendous
growth in the Application Programming Interfaces (APIs) published on the Web, which
provide a variety of services such as data, storage, computing, and communication.
How to Mashup APIs to create new applications thus has attracted great attention from
both industry and academia. Although a user can occasionally employ a single API to
meet his/her needs in Mashup creation, more often than not, the fulfilment of his/her
needs relies on a combination of APIs. Therefore, to develop a Mashup, identifying a
set of related APIs rather than a single specific one, becomes a key task.

According to latest statistics, the number of APIs and Mashup applications has been
growing exponentially in recent years [2]. This observation indicates that finding
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appropriate APIs for Mashup developers become increasingly difficult, even for an
experienced developer. For one thing, most APIs only provide a single functionality,
which may not satisfy users’ comprehensive needs. Therefore, APIs are often com-
posed together to build a single application. How to discover and choose the appro-
priate APIs to compose for users’ requirement is critical [3]. For another, only a few
APIs were ever used by the users and the reuse rate of most services is rather low [4].
How to improve the usage rate of the existing APIs is also an important issue.

In order to solve the two problems mentioned above, we propose a multi-relation
based manifold ranking algorithm to assist Mashup developers discovering a list of
suitable APIs. Firstly, we cluster existing Mashups into groups according to their
textual descriptions so that the Mashups within a cluster are similar in functionality.
When a user proposes his/her requirement, we can measure the similarities between the
user’s requirement and the Mashup clusters to identify which cluster matches the best
with the user’s requirement. This can save more time than matching the user’s
requirement with the description of every single Mashup. Secondly, we measure the
similarity relations between Mashup clusters by exploiting cosine similarity according
to TF-IDF (Term Frequency—Inverse Document Frequency) vectors of them so that the
Mashup clusters can associate with each other in a way of similar functionality.
Thirdly, we measure the similarity relation, composition relation and potential com-
position relation between existing APIs so that a set of APIs relevant to the user’s
requirement can be identified. Finally, by integrating the different relations and the
popularity of APIs, we employ a manifold ranking algorithm to recommend top-K most
appropriate APIs to the user. Our approach can not only recommend APIs that are
popular in the Mashups, but also recommend APIs that have similarity relations,
composition relations, and potential composition relations with each other.

The main contributions of this paper are outlined below:

e We propose a multi-relation based manifold ranking algorithm to recommend APIs
for Mashup creation according to the user’s requirement.

e We define several relations between Mashups and between APIs, and present a set
of algorithms to mine the relations.

e We conduct a set of experiments on a real-world dataset, experimental results
validate the effectiveness of the proposed approach and show that our approach
outperforms baseline approaches.

The remainder of the paper is organized as follows: Sect. 2 presents the framework
of our approach. Section 3 gives a detailed description of our multi-relation based
manifold ranking algorithm for API recommendation. Section 4 describes the experi-
ments and discusses the results. Section 5 surveys the related work. Section 6 con-
cludes the paper.

2 Framework

In this section, we describe the framework of our approach. The framework contains
two parts: offline part and online part, which is shown in Fig. 1. The offline part
includes the following main steps:
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Fig. 1. The API recommendation framework of our approach

Recommend APIs for Mashup Clusters

e Cluster Mashups into groups so that Mashups within a cluster are closely connected
based on the similarities of their textual descriptions.

e Measure the similarity relations between Mashup clusters by using TF-IDF vectors
generated from their textual descriptions.

e Measure the similarity relation, composition relation, and potential composition
relation between APIs.

e Measure the inclusion relation between Mashup clusters and APIs according to the
number of times that an API included in a Mashup cluster.

e Aggregate the above similarity relation, composition relation, potential composition
relation and apply a manifold ranking algorithm to recommend APIs for every
Mashup clusters.

The online part includes four main steps:

e Input requirement for Mashup creation. The user specifies his/her requirement of
functions that he/she would like to develop for a Mashup creation.

e Match the input requirement with Mashup clusters. We calculate the similarities
between the user’s requirement description and every single Mashup cluster.

e Identify the matched clusters. On the basis of the similarities between Mashup
clusters and the user’s requirement, we choose two most similar clusters.

e Recommend APIs for Mashup creation. After identifying the similar Mashup
clusters, we recommend the user with those APIs that are not only popular in the
Mashups, but also have similarity relation, composition relation and potential
composition relation with each other.

It is worth noting that we choose two most similar Mashup clusters instead of one
single cluster in our approach. This is because the user’s requirement may be
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complicated and needs more than one API to implement. Only one Mashup cluster may
not be able to fulfill the user’s requirement. For example, if a Mashup developer wants
to create a Mashup that has the functions of location and sending messages, both the
map cluster and the message cluster of Mashups may be needed. One can also choose
three or more similar Mashup clusters to cover even more APIs. However, this may
increase the algorithm complexity and reduce the precision of API recommendation.

3 Approach

In this section, we first describe the Mashup clustering algorithm, then introduce how to
mine the relations between Mashup clusters and between APIs. At last, we present our
proposed multi-relation based manifold ranking algorithm for API recommendation.

3.1 Mashup Clustering

Firstly, we collect the textual information of all Mashups. Secondly, we preprocess the
Mashup description data, such as filtering stop words; extracting stem of words, and so
on. Thirdly, we convert the preprocessed textual description of each Mashup into a
TF-IDF vector. Finally, we use the K-Medoids algorithm [5] to cluster Mashups into
similar groups in functionality. Specially, in order to measure the similarity relations
between Mashup clusters, each Mashup cluster is also represented by a TF-IDF vector,
which is computed by simply aggregating the description of each Mashup in it.

K-Medoids is a classical partitioning technique of clustering that clusters the data
set of n objects into k clusters known a prior. A medoid can be defined as the object of a
cluster whose average dissimilarity to all the objects in the cluster is minimal, i.e. it is a
most centrally located point in the cluster. It is more robust to noises and outliers as
compared to K-Means because it minimizes a sum of pair-wise dissimilarities instead of
a sum of squared Euclidean distances [6].

3.2 Relation Definition and Mining

In this section, we define several relations: similarity relation between Mashup clusters
and between APIs, composition & potential composition relations between APIs, and
inclusion relation between Mashup clusters and APIs. We measure the similarity
relations between Mashup clusters so that the similar Mashup clusters can be associated
with each other. We measure the similarity, composition and potential composition
relations between existing APIs so that a set of APIs relevant to a user’s requirement
can be identified. We measure the inclusion relation between Mashup clusters and APIs
so that it will be conducive to recommend APIs that are popular in the Mashups.

Definition 1 (Similarity relation): Both the similarity relation between Mashup clusters
and between APIs are exploited in this work. Let m be the number of Mashup clusters,
n be the number of APIs. Let M be an m X m matrix representing the similarity relation
between Mashup clusters. Let A be an n x n matrix representing the similarity
relation between APIs. Let V; and V; be the TF-IDF vectors of Mashup clusters or APIs.
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The cosine similarity of two vectors can be calculated by using the following formula:

Vi,

“ Vi W

Sim(v;, vj)

Thus, M;; = Sim(m;, m;) and Afj’m = Sim(a;, a;).

Definition 2 (Composition relation): The composition relation between two APIs
represents that the two APIs have been jointly used by at least one Mashup, i.e., have
been composed for creating at least one Mashup. Let A“”” be an n X n matrix repre-
senting the composition relation between APIs. ¥(q;) be a set of Mashups that invokes
API a;. We employed the idea of resource allocation [7, 8] to measure the composition
relation in this paper.

Given a pair of API a; and a;, which can be used by different Mashups, among
these Mashups, some Mashups may invoke both of the APIs. These Mashups can be
regarded as resources allocated to a; and a;. If a; and a; have common Mashups, they
are considered to have a composition relation between them. In this regard, the com-
position relation between API a; and a; can be calculated with the following formula:

Uai,aj) = Z ch) (2)

ce¥(@)n ¥(a)

where c is the common Mashup that invokes both a; and a;, and k(c) is the number of
APIs that ¢ has used.

The values of ¢(a;, a;) are likely to be greater than 1. So, we normalize the values of
{(a;,a;) into range [0, 1] using the following formula:

Com(a;,a;) = 1 — ¢ @) (3)

where Com (a;, a;) represents the normalized composition relation, A" = Com(a;, ;).
Obviously, the larger of 4(a;, aj), the larger Com (ai, aj) will be, i.e., the stronger is the
composition relation between API a; and a;.

Definition 3 (Potential Composition relation): The composition relation between two
APIs means that the two APIs have not been composed for Mashup creation, but have
potential to be composed. Let AP“" be an n X n matrix representing the potential
composition relation between APIs. Based on the previously calculated similarity
relation and composition relation, we measure the potential composition relation
between APIs through a link prediction ideology.

To infer potential composition relation, we develop two heuristic rules based on our
observations:

e Heuristics 1: If API a; has a composition relation with API a;, and API a; has a
composition relation with API a;, then ¢; and a; are likely to be composed for
Mashup creation. To verify this statement, we analysed the API network based on
the composition relationship and found that the clustering coefficient of the network
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is 0.618, which is quite high, indicating there are many triangle-like structures in the
network. Therefore, Heuristics 1 is reasonable.

e Heuristics 2: If API g; has a composition relation with API a;, and API gy is very
similar (or equivalent) to API a;, then a; and a; are likely to be composed for
Mashup creation. Because API a; and API a; are very similar, a; can be considered
as an alternative of a;. This Heuristics is also reasonable due to our intuition.

The potential composition relations between APIs based on Heuristics 1 can be
formulated as:

P com(a;, a;) = (A“mAT™), = Z Com(ai, ar) x Com(ax,a;)  (4)
" kel(a)NT(q)

where I'(a;) and F(aj) are neighbor set of API a; and g; respectively. The more APIs
acting as the role of , the greater is the value of P*!com(a;, a;).

In a similar manner, to calculate the potential composition relation between APIs
based on Heuristics 2, we adopt the following formula:

P*com(a;,a;) = (A""mA’im)ij = Z Com(a;, ax) x Sim(ay, a;) (5)
kel (a;) NT(a;)

Finally, we combine both Heuristics 1 and Heuristics 2 to infer the potential
composition relation between APIs. The computation formula is:

Pcom(a;,a;) = pP"*com(a;,a;) + (1 — p)P™'com(a;, aj) (6)

where Pcom (ai, aj) represents the final potential composition relation between APIs q;
and a;, and p is a real number in range [0,1] which can be customized according to
specific application scenarios, A" = Pcom(a;, ;).

Definition 4 (Inclusion relation): The inclusion relation between a Mashup cluster and
an API means that the API has been used by at least one Mashup in the Mashup cluster.
We use an m X n matrix P to represent the inclusion relation between Mashup clusters
and APIs, where each entry denotes the number of times an API was included in a
Mashup cluster. We can also model the inclusion relations between Mashup clusters
and APIs as a heterogeneous bipartite graph.

3.3 Multi-relation Based Manifold Ranking Algorithm

Manifold ranking, a semi-supervised graph based ranking algorithm, has been widely
applied in information retrieval (such as image retrieval), and shown to have excellent
performance and feasibility on a variety of data types. The core idea of manifold
ranking is to rank the data with respect to the intrinsic structure collectively revealed by
a large number of data [9-11].
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1. Original manifold ranking algorithm description

Given a set of data X = {x;,x2,...,x,} C R" and build a graph on the data. Let
W € R"*" be the adjacency matrix wherein each entry w;; represents the weight of the
edge between point i and j. Let F : X — R be a ranking function which assigns to each
point x; via a ranking score F;. Finally, we define an initial vector ¢ = [q1, . . ., q,l]T, in
which ¢; = 1 if x; is a query and ¢; = O otherwise.

The cost function associated with F' is defined to be

2

2
+v Y lIF — gl (7)
P

1 " 1 1
OF) =5 | S wyl|==Fi - —=F,
2 z]Z:I Dii vV Djj

where v > 0 is the regularization parameter and D is a diagonal matrix with
D; = Z;': 1 wij. The first term in the cost function is a smoothness constraint, which
makes the nearby points in the space have close ranking scores. The second term is a
fitting constraint, which means the ranking result should fit to the initial label
assignment.

2. Our manifold ranking algorithm

In our application scenario, let Mg = [Mpgy, . . .,MR,,T]T and Ag = [Agy, .. .,AR,,]T be
ranking results of Mashup clusters and APIs respectively. Since we are trying to rank

APIs for a given Mashup, we set My = [Mpy, . ..,Mp,]" in which query Mashup

clusters are set to 1 and others are set to 0, and Ap = [Agi, .. .,AQ,,]T in which the
corresponding APIs for the query Mashup cluster are set to 1.

After obtained the above five matrices, namely, M, Asim_ pcom  gpcom P \ye employ
our multi-relation based manifold ranking algorithm to recommend APIs.

By integrating multiple relations (i.e. the similarity relation between Mashup
clusters and between APIs, the composition and potential composition relations
between APIs, and the inclusion relation between Mashup clusters and APIs) into the
original manifold ranking algorithm, our multi-relation based manifold ranking algo-
rithm consists of seven terms, the first five terms are smoothness constraints, and the
last two terms are fitting constraints. Details are as follows:

e The similarity relation between Mashup clusters

2
1 & 1 1
n=7%) Mj| —==Mpi — Mp; (8)
: 2 IJZZI ]< DM“ V DMU !

This term makes the similar Mashup clusters have close ranking scores.

e The similarity relation between APIs
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1
ﬂ Z :j " \/’D“‘ \/—D*“ARJ' )
A;;m A;j!'m

This term makes the similar APIs have close ranking scores.

e The composition relation between APIs

1 1
9 C ﬂ"l ARl _ AR]
z; \/Dagr \/ Dacon

This term makes the composable APIs have close ranking scores.

e The potential composition relation between APIs

2

1 1
pwm
== A E Api — ——Ap
i VDugm " [Dygen

This term makes the potential composable APIs have close ranking scores.

e The inclusion relations between Mashup clusters and APIs

2
1 1
_ P; My — ———Ag; 12
=133t~y )

This term makes the popular APIs in a certain Mashup cluster have close ranking
scores.

e The fitting constraint

to =Y (Myi—Mg)>+n>  (Ari — Agi)’ (13)
i=1

These two terms make the APIs’ ranking results be consistent with the queried
Mashup cluster.

In the above seven terms, 0 < a, 3, 8, 4, y, i, n < 1 are the regularization parameters
and weseta + S+ 6+ 1+ y+u+n=1 Wherein, a controls the similarity relation
between Mashup clusters, £ controls the similarity relation between APIs, 8 controls
the composition relation between APIs, A controls the potential composition relation
between APIs, y controls the inclusion relation between Mashup clusters and APIs.
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Based on the above seven terms, we model our objective function as follows:

6
D(Mg,Ar) = ZX; (14)

Our goal is to minimize the objective function and infer Ag from M, Asim - pcom
APom P, My, Ap. By minimizing it, we can get the ranking of Mashup clusters and
APIs as close as possible to the given training data.

In order to simplify the objection function, we symmetrically normalize M, AS™, A<™,
APeom Py the form like S = D~'/2 W D~'/2 [12]. With simple derivations, each part can
be transformed to vector representation form as ME(I — Sy)Mg, AL (I — S5™)Ag,
AR (I — 8™ AR, AR (I — Si™)Ag, MEMg + AFAg — 2MESpAg [13].

Then we can rewrite the objective function in the equivalent matrix-vector form:

&(Mg, Ag) = aME(I — Sy )My + BAR(I — S5™)Ag + 0AL (I — SY™Ag + JAL (I — S Ag (15)
+9(MgMg + AfAr — 2MSpAR) + (Mg — Mo)" (Mg — Mo) +1(Ar — Ag)" (Ar — Ag)
Where [ is the corresponding identity matrix.
We minimize the objective function with respect to M and Ay by differentiating it
and set the corresponding derivatives to 0. Namely,

oP )
a—[wR:[(1—ﬁ—@—/u—l’])]—(%SM]MR—))SRAR—,LIMQ:O (16)
o9 sim com pCom T
v [(1— o — )T = S — OS5 — ASE" |Ag — 9SpMr — 19 =0 (17)

Letop = (1 —a— )l — BS5E™ — 0S¢ — K" and p = (1 — B— 0 — 2 — )l — oSy,
then we can obtain Ay.

Ap=¢" [VS;T)(qﬁ — 72 Spo'Sh) " (uMg +7Spe ' nAg) + nAg (18)

After computing Ag, we can employ it to recommend APIs for mashup clusters.
3. Recommend APIs for Mashup creation

Through our multi-relation based manifold ranking algorithm, we can obtain the
recommended APIs for Mashup clusters. Now we can recommend APIs for Mashup
developers according to his/her requirement specification. Firstly, we calculate the
cosine similarities between the user’s requirement and the Mashup clusters to identify
which clusters match best with the user’s requirement. Secondly, we choose two most
similar Mashup clusters, because the developer may have a variety of requirements.
Thirdly, after matching the two Mashup cluster, we recommend top-K APIs for
Mashup creation. What’s more, we can recommend APIs are not only popular in the
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mashups, but also have similarity relation, composition relation, and potential com-
position relation with each other.

4. General expression

For the ease of understanding, we use pseudo code to describe our multi-relation
based manifold ranking algorithm in Table 1. Line 00 clusters Mashups into groups
according to their textual description and aggregates the Mashup descriptions of each
clusters as the whole description of the Mashup cluster; Lines 01-05 compute the
similarity relation between Mashup clusters; Lines 06—-11 compute the similarity and
composition relations between APIs; Lines 15-23 compute the potential composition
relation between APIs; Line 25 builds the bipartite graph between Mashup clusters and
APIs which is based on the number of times APIs are invoked by Mashups in a certain
Mashup cluster; Line 26 integrates M, Asim_ pcom - ppcom  p My, Ap and employs the
manifold ranking algorithm to recommend APIs for Mashup clusters; Line 27 obtains
the top-K APIs recommendation list for Mashup clusters.

Table 1. The multi-relation based manifold ranking algorithm

Algorithm: multi-relation based manifold ranking

Input:

A set of APIs a;, ay,...,a,; a set of Mashups M;M,,....M,; the textual
descriptions of Mashups and APIs; the user’s requirement for Mashup creation.

Output:

A set of APIs to a Mashup user’s specific requirement description.

00:Cluster all Mashups into groups according to their textual description

01:For each Mashup cluster m; do

02:  For each Mashup cluster m; do

03:Sim(m;,m;)<similarity degree between m, and m;

04:  End for

05:End for

06:For each API a;do

07:  For each API a; do

08:Sim(a;,a;)~similarity degree between a; and a;

09:Com(a;,a;)<—composition ability between a; and a;

10:  End for

11:End for

12:M;~store Sim(m;,m;) to similarity relation matrix

13: 4™ < store Sim(a;,a;) to similarity relation matrix

14: 47 <store Com(a;a;) to composition relation matrix
15:For each element 4" do

16:  For each element 4™ do

17:P" com(a,a)<multiply 4™ by A"

18:  End for

19:  For each element 4" do
ZO:PHjcom(a,,uj)&multiply 4" by A"

21:  End for

22:End for

23: Pcom(a;,a;)<combine P"'com(a,,a,) and P"Z(:am(a,,a,)
24: Apem <store Pcom(a;,a;) to potential composition relation matrix

25:Build the inclusion relation P between mashup clusters and APIs according to
the popularity of APIs

26:Assemble M, 4™, A", A"", P, My, A to recommend APIs for Mashup
clusters by using (18).

27:For each Mashup cluster save top-K ranking APIs in 4
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4 Experiment

In this section, we present a set of experiments to validate our approach on a real
dataset and give an analysis of experimental results.

4.1 Dataset Description

In our experiments, the dataset used is crawled from ProgrammableWeb.com website
in the range from June 2005 to December 2013. We remove Mashups that are of the
same name and contain no more information except its name. After manually pre-
processing the dataset, we obtain a collection of 5955 Mashups and 1069 APIs. An
overview of the APIs information and Mashups information are shown in Tables 2 and
3 respectively. Moreover, an overview of the dataset is shown in Table 4. We use this
dataset to recommend APIs for Mashup developers. All of the experiments are con-
ducted on computer with Intel(R) Core(TM) i3 CPU(3.2 GHz and 6.0 GB RAM) and
all algorithms are implemented in Matlab 2014.

Table 2. The information of APIs

APIID | APIName APIDescription
1 Cloudmade CloudMade provides application developers with tools and APIs
Leaflet for creating unique location based applications across all major

web and mobile platforms. Leaflet is a modern, lightweight
BSD-licensed JavaScript library for making tile-based interactive
map

2 Acapela Acapela is a Voice as a Service provider. The service offers text to
speech solutions to give voice to content in up to 25 languages and
up to 50 voices. The Acapela API lets developers integrate speech
into their application and control the voice generat

3 Cohuman Cohuman is a task-centric, team productivity tool that helps users
coordinate and plan their daily tasks to effectively complete
projects on time. The Cohuman API allows anyone to develop
applications for the web, mobile devices and the desktop. With the
API users can make a new task, assign the task to a person or to a
team of people, and add content to the task by starting a
conversation thread, attaching a file, or scheduling a due date.
The API uses RESTful protocol and responses are formatted in
XML and JSON.

4.2 Determination of the Number of Clusters

Because the number of Mashup categories is unknown in our dataset, we firstly con-
duct an experiment to determine the number of clusters, which is necessary in the
following experiments.
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Table 3. The information of Mashups

MashupID | Name APIs Tags Description
1 5th Bar Phone Amazon auction, 5th Bar is a new way to
Reviews Product mobile, avoid getting the wrong
Advertising, shopping, phone again. Find and
CNET, eBay, video share reviews and
YouTube information about mobile
phones, cell phone
carriers, and accessories.
Mashup content from
YouTube, eBay, Amazon,
and CNET.
2 A World of Google Maps, mapping, Dynamic tribute to Kurt
Nirvana YouTube music, Cobain, showing Nirvana
nirvana, live concerts on a Google
video map by year. Search for
videos directly by
keywords.
3 a.placebetween. | Google Maps events, a.placebetween.us aims to
us mapping, simplify the task of
social, finding a place to meet
travel your friends. Provide your

addresses and the type of
place you want to meet at,
such as coffee, diner, or
movie and
a.placebetween.us does
the rest.

Table 4. Overview of the dataset

The total number of Mashups
The total number of APIs used by Mashups
The average number of APIs invoked by per Mashup | 2.017

The minimum number of APIs in a Mashup

The maximum number of APIs in a Mashup

5955
1069

1
17

We select 85 % Mashups as training data and the rest as testing data. We then
cluster these Mashups into multiple Mashup clusters with a number from 10 to 100 at a
step 10 and employ the manifold ranking algorithm to recommend APIs. Finally, we
evaluate the performance of the recommendation list using F-measure. The result is
shown in Fig. 2.

Figure 2 shows a trend of decrease after an initial increase. When the cluster
number reaches 40, F-measure obtains the maximal value. Therefore, in the following
experiments, we set the number of clusters to be 40.
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Fig. 3. Statistical analysis of the dataset

4.3 Evaluation Metrics

Before evaluating the quality of our approach, we make some statistical analysis on the
dataset that we use. Figure 3 presents the relationship between the number of APIs in
each Mashup and the rate of Mashups.

As we can see, over 88.9 % Mashups invoke few than 3 APIs. In the whole dataset,
the average number of API used by Mashups is 2. It turns out that the usage of APIs is
considerable low. Therefore, it is essential to recommend a list of APIs for Mashup
developers.

Herein, we use the three measures of precision, recall, F-measure to evaluate the
performance of our approach. The evaluation metrics are defined as follows.

e Precision:

 TiNE,

P 19)

where, T4 is the API recommendation result list, E4 is the testing Mashup actually
used APIs, |Ty| is the size of the API recommendation result list.
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e Recall:
TANE,
_TaNEs (20)
|Eal
where, |E4| is the number of APIs the testing Mashup actually used.
e F-measure:
2
Focrpxr (21)
pt+r

It is a comprehensive evaluation on the precision and recall.

4.4 Performance of Our Approach

The API recommendation performance is likely to be influenced by data density. Data
density means how many records in the matrix can be employed. In order to study the
impact of training data density, in this experiment, we randomly remove 10 % to 90 %
data from the original data as the training dataset, and use the rest data as testing
dataset. There are a few parameters in our multi-relation based manifold ranking
algorithm (i.e. DMRrank). These parameters control the weight of different terms in the
manifold ranking formula. By adjusting these parameters, the approach can generate
different recommendation lists. In our approach, we set p = 0.1, a = 0.1; f=0.1;
6=0.1; 1=0.2; y=0.3; £ =0.1; n =0.1. With these settings, our approach can
perform better than other settings. We compare our approach with one of the
state-of-the-art approaches, i.e. GMrank [13], which used manifold learning as well.
We set the parameters of GMrank as oo = 0.4, = 0.1,y = 0.1, u = 0.1, n = 0.3, so that
GMrank can get the best performance on our dataset. Moreover, in order to compare
the impact on the number of selected Mashup clusters, we compare DMRrank with
another approach (i.e. MRrank) which is just like DMRrank but simply selects the most
similar Mashup cluster according to the user’s requirement. Namely, DMRrank
chooses one more similar Mashup cluster than MRrank and other settings are just
keeping the same.

Figures 4, 5 and 6 present the precision, recall and F-measure comparisons on the
training data with different density. As we can see, with the increasing density of training
data, the precision, recall and F-measure values also grow. This observation means that
larger density data is better for recommending APIs. Moreover, our approach outper-
forms the Gmrank and MRrank approach in all cases. The results also show, DMRrank is
better than MRrank, and MRrank is better than GMrank. It means that considering the
composition and potential composition relations between APIs and selecting the two
most similar Mashup clusters is indeed helpful for recommending APIs.
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5 Related Work

In this section, we survey related work on service ranking and recommendation.

There are several research work focusing on service ranking. Almulla et al. [14]
presented a new Web services selection model based on fuzzy logic and proposed a
new fuzzy ranking algorithm based on the dependencies between proposed qualities
attributes. Jeh and Widom [15] designed a general similarity measure called SimRank,
which is based on a simple and intuitive graph-theoretic model and defines the simi-
larity between two vertices in a graph by their neighbourhood similarity. Mei et al. [16]
proposed a ranking approach called DivRank, which is based on a reinforced random
walk in an information network. It can automatically balance the prestige and the
diversity of the top ranked vertices in a principled way. Tong et al. [17] proposed a
goodness measure for a given top-K ranking list. It can capture both the relevance and
the diversity for a given ranking list. Zhou et al. [18] proposed a unified neighborhood
random walk distance measure called ServiceRank, which integrates various types of
links and vertex attributes by a local optimal weight assignment to tightly integrate
ranking and clustering by mutually and simultaneously enhancing each other.

With the increasing number of services in the Internet, service recommendation has
become a hot topic in recent years. Li et al. [19] proposed a relational topic model to
characterize the relationship among Mashups, APIs and their links to assist Mashup
creators by recommending a list of APIs that may be used to compose a required
Mashup given descriptions of the Mashup. Gao et al. [13] designed a manifold ranking
framework for API recommendation. They recommend APIs for each Mashup cluster
using manifold ranking algorithm which incorporates the relationships between
Mashups, between APIs and between Mashups and APIs. Huang et al. [20] developed a
novel approach for recommending developers in terms of navigation and completion of
Mashup components with a large-scale components repository. They model the rela-
tionships between Mashup components by a generic layered-graph model. Huang et al.
[21] presented a service recommendation method that suggests both services and their
compositions, in a time-sensitive manner. Xu et al. [22] proposed a novel social-aware
service recommendation approach, where multi-dimensional social relationships
among potential users, topics, Mashups, and services are described by a coupled matrix
model. Zheng et al. [23] presented a collaborative filtering approach for predicting QoS
values of Web services and making Web service recommendation by taking advantages
of past usage experiences of service users.

6 Conclusion

In this paper, we study the problem of recommending suitable APIs satisfying users’
need for Mashup creation. We present a multi-relation based manifold ranking algo-
rithm to assist Mashup developers by recommending a list of APIs that may be used to
compose a required Mashup by giving a description of a Mashup. We firstly cluster
existing Mashups into groups according to their textual descriptions. Then, we consider
multiple relations between Mashup clusters and between APIs. Next, we associate
Mashup clusters with APIs based on the popularity of APIs. Finally, we employ
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manifold ranking algorithm to recommend APIs that the user may be need for Mashup
creation and perform a set of experiments to validate our approach on a realistic dataset.
Experimental results validate the effectiveness of the proposed approach in terms of
precision, recall, and F-measure and show that our approach outperformed the baseline
approach for this particular dataset.

In future work, we would like to take the information of services providers and
services users into consideration, and along with their potential relationships. Matrix
factorization is a well-known service recommend method, so we will incorporate
matrix factorization to our manifold ranking algorithm to get better recommendation
performance.
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