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Euclidean Space

Euclidean space is a mathematical construct that encompasses the line, the
plane, and three-dimensional space as special cases. Its elements are called
vectors. Vectors can be understood in various ways: as arrows, as quantities
with magnitude and direction, as displacements, or as points. However, along
with a sense of what vectors are, we also need to emphasize how they interact.
The axioms in Section 2.1 capture the idea that vectors can be added together
and can be multiplied by scalars, with both of these operations obeying fa-
miliar laws of algebra. Section 2.2 expresses the geometric ideas of length
and angle in Euclidean space in terms of vector algebra. Section 2.3 discusses
continuity for functions (also called mappings) whose inputs and outputs are
vectors rather than scalars. Section 2.4 introduces a special class of sets in
Euclidean space, the compact sets, and shows that compact sets are preserved
under continuous mappings.

2.1 Algebra: Vectors

Let n be a positive integer. The set of all ordered n-tuples of real numbers,

Rn = {(x1, . . . , xn) : xi ∈ R for i = 1, . . . , n} ,

constitutes n-dimensional Euclidean space. When n = 1, the parentheses
and subscript in the notation (x1) are superfluous, so we simply view the
elements of R1 as real numbers x and write R for R1. Elements of R2 and
of R3 are written (x, y) and (x, y, z) to avoid needless subscripts. These first
few Euclidean spaces, R, R2, and R3, are conveniently visualized as the line,
the plane, and space itself. (See Figure 2.1.)

Elements of R are called scalars, of Rn, vectors. The origin of Rn,
denoted 0, is defined to be

0 = (0, . . . , 0).

© Springer International Publishing AG 2016 
J. Shurman, Calculus and Analysis in Euclidean Space,  
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-49314-5_2

23



24 2 Euclidean Space

Figure 2.1. The first few Euclidean spaces

Sometimes the origin of Rn will be denoted 0n to distinguish it from other
origins that we will encounter later.

In the first few Euclidean spaces R, R2, R3, one can visualize a vector as
a point x or as an arrow. The arrow can have its tail at the origin and its
head at the point x, or its tail at any point p and its head correspondingly
translated to p+ x. (See Figure 2.2. Most illustrations will depict R or R2.)

p+ x

xx
p

Figure 2.2. Various ways to envision a vector

To a mathematician, the word space doesn’t connote volume but instead
refers to a set endowed with some structure. Indeed, Euclidean space Rn comes
with two algebraic operations. The first is vector addition,

+ : Rn × Rn −→ Rn,

defined by adding the scalars at each component of the vectors,

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

For example, (1, 2, 3) + (4, 5, 6) = (5, 7, 9). Note that the meaning of the “+”
sign is now overloaded: on the left of the displayed equality, it denotes the
new operation of vector addition, whereas on the right side it denotes the old
addition of real numbers. The multiple meanings of the plus sign shouldn’t
cause problems, because the meaning of “+” is clear from context, i.e., the
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meaning of “+” is clear from whether it sits between vectors or scalars. (An
expression such as “(1, 2, 3) + 4,” with the plus sign between a vector and a
scalar, makes no sense according to our grammar.)

The interpretation of vectors as arrows gives a geometric description of
vector addition, at least in R2. To add the vectors x and y, draw them as
arrows starting at 0 and then complete the parallelogram P that has x and y
as two of its sides. The diagonal of P starting at 0 is then the arrow depicting
the vector x+ y. (See Figure 2.3.) The proof of this is a small argument with
similar triangles, left to the reader as Exercise 2.1.2.

x+ y

x

y

P

Figure 2.3. The parallelogram law of vector addition

The second operation on Euclidean space is scalar multiplication,

· : R× Rn −→ Rn,

defined by
a · (x1, . . . , xn) = (ax1, . . . , axn).

For example, 2·(3, 4, 5) = (6, 8, 10). We will almost always omit the symbol “·”
and write ax for a · x. With this convention, juxtaposition is overloaded as
“+” was overloaded above, but again this shouldn’t cause problems.

Scalar multiplication of the vector x (viewed as an arrow) by a also has a
geometric interpretation: it simply stretches (i.e., scales) x by a factor of a.
When a is negative, ax turns x around and stretches it in the other direction
by |a|. (See Figure 2.4.)

−3x

2x
x

Figure 2.4. Scalar multiplication as stretching



26 2 Euclidean Space

With these two operations and distinguished element 0, Euclidean space
satisfies the following algebraic laws.

Theorem 2.1.1 (Vector space axioms).

(A1) Addition is associative: (x+ y) + z = x+ (y + z) for all x, y, z ∈ Rn.
(A2) 0 is an additive identity: 0+ x = x for all x ∈ Rn.
(A3) Existence of additive inverses: for each x ∈ Rn there exists y ∈ Rn such

that y + x = 0.
(A4) Addition is commutative: x+ y = y + x for all x, y ∈ Rn.
(M1) Scalar multiplication is associative: a(bx) = (ab)x for all a, b ∈ R, x ∈

Rn.
(M2) 1 is a multiplicative identity: 1x = x for all x ∈ Rn.
(D1) Scalar multiplication distributes over scalar addition: (a+ b)x = ax+ bx

for all a, b ∈ R, x ∈ Rn.
(D2) Scalar multiplication distributes over vector addition: a(x+y) = ax+ay

for all a ∈ R, x, y ∈ Rn.

All of these are consequences of how “+” and “·” and 0 are defined for Rn

in conjunction with the fact that the real numbers, in turn endowed with “+”
and “·” and containing 0 and 1, satisfy the field axioms (see Section 1.1). For
example, to prove that Rn satisfies (M1), take any scalars a, b ∈ R and any
vector x = (x1, . . . , xn) ∈ Rn. Then

a(bx) = a(b(x1, . . . , xn)) by definition of x

= a(bx1, . . . , bxn) by definition of scalar multiplication

= (a(bx1), . . . , a(bxn)) by definition of scalar multiplication

= ((ab)x1, . . . , (ab)xn) by n applications of (m1) in R

= (ab)(x1, . . . , xn) by definition of scalar multiplication

= (ab)x by definition of x.

The other vector space axioms for Rn can be shown similarly, by unwinding
vectors to their coordinates, quoting field axioms coordinatewise, and then
bundling the results back up into vectors (see Exercise 2.1.3). Nonetheless,
the vector space axioms do not perfectly parallel the field axioms, and you
are encouraged to spend a little time comparing the two axiom sets to get a
feel for where they are similar and where they are different (see Exercise 2.1.4).
Note in particular that

For n > 1, Rn is not endowed with vector-by-vector multiplication.

Although one can define vector multiplication on Rn componentwise, this mul-
tiplication does not combine with vector addition to satisfy the field axioms
except when n = 1. The multiplication of complex numbers makes R2 a field,
and in Section 3.10 we will see an interesting noncommutative multiplication
of vectors for R3, but these are special cases.
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One benefit of the vector space axioms for Rn is that they are phrased
intrinsically, meaning that they make no reference to the scalar coordinates
of the vectors involved. Thus, once you use coordinates to establish the vector
space axioms, your vector algebra can be intrinsic thereafter, making it lighter
and more conceptual. Also, in addition to being intrinsic, the vector space
axioms are general. While Rn is the prototypical set satisfying the vector space
axioms, it is by no means the only one. In coming sections we will encounter
other sets V (whose elements may be, for example, functions) endowed with
their own addition, multiplication by elements of a field F , and distinguished
element 0. If the vector space axioms are satisfied with V and F replacing Rn

and R then we say that V is a vector space over F .
The pedagogical point here is that although the similarity between vector

algebra and scalar algebra may initially make vector algebra seem uninspiring,
in fact the similarity is exciting. It makes mathematics easier, because familiar
algebraic manipulations apply in a wide range of contexts. The same symbol-
patterns have more meaning. For example, we use intrinsic vector algebra to
prove a result from Euclidean geometry, that the three medians of a triangle
intersect. (A median is a segment from a vertex to the midpoint of the opposite
edge.) Consider a triangle with vertices x, y, and z, and form the average of
the three vertices,

p =
x+ y + z

3
.

This algebraic average will be the geometric center of the triangle, where
the medians meet. (See Figure 2.5.) Indeed, rewrite p as

p = x+
2

3

(
y + z

2
− x

)
.

The displayed expression for p shows that it is two-thirds of the way from x
along the line segment from x to the average of y and z, i.e., that p lies on
the triangle median from vertex x to side yz. (Again see the figure. The idea
is that (y+ z)/2 is being interpreted as the midpoint of y and z, each of these
viewed as a point, while on the other hand, the little mnemonic

head minus tail

helps us to remember quickly that (y + z)/2− x can be viewed as the arrow-
vector from x to (y + z)/2.) Since p is defined symmetrically in x, y, and z,
and it lies on one median, it therefore lies on the other two medians as well.
In fact, the vector algebra has shown that it lies two-thirds of the way along
each median. (As for how a person might find this proof, it is a matter of
hoping that the geometric center (x + y + z)/3 lies on the median by taking
the form x+ c((y + z)/2− x) for some c and then seeing that indeed c = 2/3
works.)

The standard basis of Rn is the set of vectors
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y + z

2

x

y

z

p

Figure 2.5. Three medians of a triangle

{e1, e2, . . . , en}

where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

(Thus each ei is itself a vector, not the ith scalar entry of a vector.) Every
vector x = (x1, x2, . . . , xn) (where the xi are scalar entries) decomposes as

x = (x1, x2, . . . , xn)

= (x1, 0, . . . , 0) + (0, x2, . . . , 0) + · · ·+ (0, 0, . . . , xn)

= x1(1, 0, . . . , 0) + x2(0, 1, . . . , 0) + · · ·+ xn(0, 0, . . . , 1)

= x1e1 + x2e2 + · · ·+ xnen,

or more succinctly,

x =

n∑
i=1

xiei. (2.1)

Note that in equation (2.1), x and the ei are vectors, while the xi are scalars.
The equation shows that every x ∈ Rn is expressible as a linear combination
(sum of scalar multiples) of the standard basis vectors. The expression is
unique, for if also x =

∑n
i=1 x

′
iei for some scalars x′

1, . . . , x
′
n then the equality

says that x = (x′
1, x

′
2, . . . , x

′
n), so that x′

i = xi for i = 1, . . . , n.
(The reason that the geometric-sounding word linear is used here and

elsewhere in this chapter to describe properties having to do with the alge-
braic operations of addition and scalar multiplication will be explained in
Chapter 3.)

The standard basis is handy in that it is a finite set of vectors from which
each of the infinitely many vectors of Rn can be obtained in exactly one way
as a linear combination. But it is not the only such set, nor is it always the
optimal one.
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Definition 2.1.2 (Basis). A set of vectors {fi} is a basis of Rn if every
x ∈ Rn is uniquely expressible as a linear combination of the fi.

For example, the set {f1, f2} = {(1, 1), (1,−1)} is a basis of R2. To see
this, consider an arbitrary vector (x, y) ∈ R2. This vector is expressible as a
linear combination of f1 and f2 if and only if there are scalars a and b such
that

(x, y) = af1 + bf2.

Since f1 = (1, 1) and f2 = (1,−1), this vector equation is equivalent to a pair
of scalar equations,

x = a+ b,

y = a− b.

Add these equations and divide by 2 to get a = (x + y)/2, and similarly
b = (x− y)/2. In other words, we have found that

(x, y) =
x+ y

2
(1, 1) +

x− y

2
(1,−1),

and the coefficients a = (x + y)/2 and b = (x − y)/2 on the right side of
the equation are the only possible coefficients a and b for the equation to
hold. That is, scalars a and b exist to express the vector (x, y) as a linear
combination of {f1, f2}, and the scalars are uniquely determined by the vector.
Thus {f1, f2} is a basis of R2, as claimed.

The set {g1, g2} = {(1, 3), (2, 6)} is not a basis of R2, because every lin-
ear combination ag1 + bg2 takes the form (a + 2b, 3a + 6b), with the second
entry equal to three times the first. The vector (1, 0) is therefore not a linear
combination of g1 and g2.

Nor is the set {h1, h2, h3} = {(1, 0), (1, 1), (1,−1)} a basis of R2, because
h3 = 2h1 − h2, so that h3 is a nonunique linear combination of the hj .

See Exercises 2.1.9 and 2.1.10 for practice with bases.

Exercises

2.1.1. Write down any three specific nonzero vectors u, v, w from R3 and any
two specific nonzero scalars a, b from R. Compute u+v, aw, b(v+w), (a+b)u,
u+ v + w, abw, and the additive inverse to u.

2.1.2. Working in R2, give a geometric proof that if we view the vectors x
and y as arrows from 0 and form the parallelogram P with these arrows as
two of its sides, then the diagonal z starting at 0 is the vector sum x + y
viewed as an arrow.

2.1.3. Verify that Rn satisfies vector space axioms (A2), (A3), (D1).
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2.1.4. Are all the field axioms used in verifying that Euclidean space satisfies
the vector space axioms?

2.1.5. Show that 0 is the unique additive identity in Rn. Show that each vector
x ∈ Rn has a unique additive inverse, which can therefore be denoted −x.
(And it follows that vector subtraction can now be defined,

− : Rn × Rn −→ Rn, x− y = x+ (−y) for all x, y ∈ Rn.)

Show that 0x = 0 for all x ∈ Rn.

2.1.6. Repeat the previous exercise, but with Rn replaced by an arbitrary
vector space V over a field F . (Work with the axioms.)

2.1.7. Show the uniqueness of the additive identity and the additive inverse
using only (A1), (A2), (A3). (This is tricky; the opening pages of some books
on group theory will help.)

2.1.8. Let x and y be noncollinear vectors in R3. Give a geometric description
of the set of all linear combinations of x and y.

2.1.9. Which of the following sets are bases of R3?

S1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)},
S2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},
S3 = {(1, 1, 0), (0, 1, 1)},
S4 = {(1, 1, 0), (0, 1, 1), (1, 0,−1)}.

How many elements do you think a basis for Rn must have? Give (without
proof) geometric descriptions of all bases of R2, of R3.

2.1.10. Recall the field C of complex numbers. Define complex n-space Cn

analogously to Rn:

Cn = {(z1, . . . , zn) : zi ∈ C for i = 1, . . . , n} ,

and endow it with addition and scalar multiplication defined by the same
formulas as for Rn. You may take for granted that under these definitions, Cn

satisfies the vector space axioms with scalar multiplication by scalars from R,
and also Cn satisfies the vector space axioms with scalar multiplication by
scalars from C. That is, using language that was introduced briefly in this
section, Cn can be viewed as a vector space over R and also, separately, as a
vector space over C. Give a basis for each of these vector spaces.
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Brief Pedagogical Interlude

Before continuing, a few comments about how to work with these notes may
be helpful.

The subject-matter of Chapters 2 through 5 is largely cumulative, with
the main theorem of Chapter 5 being proved with main results of Chapters 2,
3, and 4. Each chapter is largely cumulative internally as well. To acquire
detailed command of so much material and also a large-scale view of how it
fits together, the trick is to focus on each section’s techniques while studying
that section and working its exercises, but thereafter to use the section’s
ideas freely by reference. Specifically, after the scrutiny of vector algebra in
the previous section, one’s vector manipulations should be fluent from now
on, freeing one to concentrate on vector geometry in the next section, after
which the geometry should also be light while one is concentrating on the
analytical ideas of the following section, and so forth.

Admittedly, the model that one has internalized all the prior material
before moving on is idealized. For that matter, so is the model that a body of
interplaying ideas is linearly cumulative. In practice, focusing entirely on the
details of whichever topics are currently active while using previous ideas by
reference isn’t always optimal. One might engage with the details of previous
ideas because one is coming to understand them better, or because the current
ideas showcase the older ones in a new way. Still, the paradigm of technical
emphasis on the current ideas and fluent use of the earlier material does help
a person who is navigating a large body of mathematics to conserve energy
and synthesize a larger picture.

2.2 Geometry: Length and Angle

The geometric notions of length and angle in Rn are readily described in terms
of the algebraic notion of inner product.

Definition 2.2.1 (Inner product). The inner product is a function from
pairs of vectors to scalars,

〈 , 〉 : Rn × Rn −→ R,

defined by the formula

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑

i=1

xiyi.

For example,

〈(1, 1, . . . , 1), (1, 2, . . . , n)〉 = n(n+ 1)

2
,

〈x, ej〉 = xj where x = (x1, . . . , xn) and j ∈ {1, . . . , n},
〈ei, ej〉 = δij (this means 1 if i = j, 0 otherwise).
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Proposition 2.2.2 (Inner product properties).

(IP1) The inner product is positive definite: 〈x, x〉 ≥ 0 for all x ∈ Rn, with
equality if and only if x = 0.

(IP2) The inner product is symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ Rn.
(IP3) The inner product is bilinear:

〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉, 〈ax, y〉 = a〈x, y〉,
〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉, 〈x, by〉 = b〈x, y〉

for all a, b ∈ R, x, x′, y, y′ ∈ Rn.

Proof. Exercise 2.2.4. ��
The reader should be aware that:

In general, 〈x+ x′, y + y′〉 does not equal 〈x, y〉+ 〈x′, y′〉.
Indeed, expanding 〈x+ x′, y+ y′〉 carefully with the inner product properties
shows that the cross-terms 〈x, y′〉 and 〈x′, y〉 are present in addition to 〈x, y〉
and 〈x′, y′〉.

Like the vector space axioms, the inner product properties are phrased
intrinsically, although they need to be proved using coordinates. As mentioned
in the previous section, intrinsic methods are neater and more conceptual than
using coordinates. More importantly:

The rest of the results of this section are proved by reference to the
inner product properties, with no further reference to the inner product
formula.

The notion of an inner product generalizes beyond Euclidean space—this will
be demonstrated in Exercise 2.3.4, for example—and thanks to the displayed
sentence, once the properties (IP1) through (IP3) are established for any inner
product, all of the pending results in the section will follow automatically with
no further work. (But here a slight disclaimer is necessary. In the displayed
sentence, the word results does not refer to the pending graphic figures. The
fact that the length and angle to be defined in this section will agree with prior
notions of length and angle in the plane, or in three-dimensional space, does
depend on the specific inner product formula. In Euclidean space, the inner
product properties do not determine the inner product formula uniquely. This
point will be addressed in Exercise 3.5.1.)

Definition 2.2.3 (Modulus). The modulus (or absolute value) of a vec-
tor x ∈ Rn is defined as

|x| =
√
〈x, x〉.

Thus the modulus is defined in terms of the inner product, rather than by
its own formula. The inner product formula shows that the modulus formula
is
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|(x1, . . . , xn)| =
√

x2
1 + · · ·+ x2

n,

so that some particular examples are

|(1, 2, . . . , n)| =
√

n(n+ 1)(2n+ 1)

6
,

|ei| = 1.

However, the definition of the modulus in terms of inner product combines
with the inner product properties to show, with no reference to the inner prod-
uct formula or the modulus formula, that the modulus satisfies the following
properties (Exercise 2.2.5).

Proposition 2.2.4 (Modulus properties).

(Mod1) The modulus is positive: |x| ≥ 0 for all x ∈ Rn, with equality if and
only if x = 0.

(Mod2) The modulus is absolute-homogeneous: |ax| = |a||x| for all a ∈ R and
x ∈ Rn.

Like other symbols, the absolute value signs are now overloaded, but their
meaning can be inferred from context, as in property (Mod2). When n is 1, 2,
or 3, the modulus |x| gives the distance from 0 to the point x, or the length
of x viewed as an arrow. (See Figure 2.6.)

|x|
|x|

|x|

x

x

x

Figure 2.6. Modulus as length

The following relation between inner product and modulus will help to
show that distance in Rn behaves as it should, and that angle in Rn makes
sense. Since the relation is not obvious, its proof is a little subtle.

Theorem 2.2.5 (Cauchy–Schwarz inequality). For all x, y ∈ Rn,

|〈x, y〉| ≤ |x| |y|,
with equality if and only if one of x, y is a scalar multiple of the other.
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Note that the absolute value signs mean different things on each side of
the Cauchy–Schwarz inequality. On the left side, the quantities x and y are
vectors, their inner product 〈x, y〉 is a scalar, and |〈x, y〉| is its scalar absolute
value, while on the right side, |x| and |y| are the scalar absolute values of
vectors, and |x| |y| is their product. That is, the Cauchy–Schwarz inequality
says:

The size of the product is at most the product of the sizes.

The Cauchy–Schwarz inequality can be written out in coordinates if we
temporarily abandon the principle that we should avoid reference to formulas,

(x1y1 + · · ·+ xnyn)
2 ≤ (x2

1 + · · ·+ x2
n)(y

2
1 + · · ·+ y2n).

And this inequality can be proved unconceptually as follows (the reader is
encouraged only to skim the following computation). Rewrite the desired in-
equality as (∑

i

xiyi

)2
≤

∑
i

x2
i ·

∑
j

y2j ,

where the indices of summation run from 1 to n. Expand the square to get∑
i

x2
i y

2
i +

∑
i,j
i�=j

xiyixjyj ≤
∑
i,j

x2
i y

2
j ,

and canceling the terms common to both sides reduces it to∑
i�=j

xiyixjyj ≤
∑
i�=j

x2
i y

2
j ,

or ∑
i�=j

(x2
i y

2
j − xiyixjyj) ≥ 0.

Rather than sum over all pairs (i, j) with i �= j, sum over the pairs with
i < j, collecting the (i, j)-term and the (j, i)-term for each such pair, and the
previous inequality becomes∑

i<j

(x2
i y

2
j + x2

jy
2
i − 2xiyjxjyi) ≥ 0.

Thus the desired inequality has reduced to a true inequality,∑
i<j

(xiyj − xjyi)
2 ≥ 0.

So the main proof is done, although there is still the question of when equality
holds.

But surely the previous paragraph is not the graceful way to argue. The
computation draws on the minutiae of the formulas for the inner product and
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the modulus, rather than using their properties. It is uninformative, making
the Cauchy–Schwarz inequality look like a low-level accident. It suggests that
larger-scale mathematics is just a matter of bigger and bigger formulas. To
prove the inequality in a way that is enlightening and general, we should
work intrinsically, keeping the scalars 〈x, y〉 and |x| and |y| notated in their
concise forms, and we should use properties, not formulas. The idea is that the
calculation in coordinates reduces to the fact that squares are nonnegative.
That is, the Cauchy–Schwarz inequality is somehow quadratically hard, and its
verification amounted to completing many squares. The argument to be given
here is guided by this insight to prove the inequality by citing facts about
quadratic polynomials, facts established by completing one square back in
high-school algebra at the moment that doing so was called for. Thus we
eliminate redundancy and clutter. So the argument to follow will involve an
auxiliary object, a judiciously chosen quadratic polynomial, but in return it
will become coherent.

Proof. The result is clear when x = 0, so assume x �= 0. For every a ∈ R,

0 ≤ 〈ax− y, ax− y〉 by positive definiteness

= a〈x, ax− y〉 − 〈y, ax− y〉 by linearity in the first variable

= a2〈x, x〉 − a〈x, y〉 − a〈y, x〉+ 〈y, y〉 by linearity in the second variable

= a2|x|2 − 2a〈x, y〉+ |y|2 by symmetry, definition of modulus.

View the right side as a quadratic polynomial in the scalar variable a, where
the scalar coefficients of the polynomial depend on the generic but fixed vec-
tors x and y,

f(a) = |x|2a2 − 2〈x, y〉a+ |y|2.
We have shown that f(a) is always nonnegative, so f has at most one root.
Thus by the quadratic formula its discriminant is nonpositive,

4〈x, y〉2 − 4|x|2|y|2 ≤ 0,

and the Cauchy–Schwarz inequality |〈x, y〉| ≤ |x| |y| follows. Equality holds
exactly when the quadratic polynomial f(a) = |ax − y|2 has a root a, i.e.,
exactly when y = ax for some a ∈ R. ��

Geometrically, the condition for equality in Cauchy–Schwarz is that the
vectors x and y, viewed as arrows at the origin, are parallel, though perhaps
pointing in opposite directions. A geometrically conceived proof of Cauchy–
Schwarz is given in Exercise 2.2.15 to complement the algebraic argument
that has been given here.

The Cauchy–Schwarz inequality shows that the modulus function satisfies
the triangle inequality.

Theorem 2.2.6 (Triangle inequality). For all x, y ∈ Rn,
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|x+ y| ≤ |x|+ |y|,

with equality if and only if one of x, y is a nonnegative scalar multiple of the
other.

Proof. To show this, compute

|x+ y|2 = 〈x+ y, x+ y〉
= |x|2 + 2〈x, y〉+ |y|2 by bilinearity

≤ |x|2 + 2|x||y|+ |y|2 by Cauchy–Schwarz

= (|x|+ |y|)2,

proving the inequality. Equality holds exactly when 〈x, y〉 = |x||y|, or equiva-
lently when |〈x, y〉| = |x||y| and 〈x, y〉 ≥ 0. These hold when one of x, y is a
scalar multiple of the other and the scalar is nonnegative. ��

While the Cauchy–Schwarz inequality says that the size of the product is
at most the product of the sizes, the triangle inequality says:

The size of the sum is at most the sum of the sizes.

The triangle inequality’s name is explained by its geometric interpretation
in R2. View x as an arrow at the origin, y as an arrow with tail at the head
of x, and x+ y as an arrow at the origin. These three arrows form a triangle,
and the assertion is that the lengths of two sides sum to at least the length of
the third. (See Figure 2.7.)

x+ y

x

y

Figure 2.7. Sides of a triangle

The full triangle inequality says that for all x, y ∈ Rn,

| |x| − |y| | ≤ |x± y| ≤ |x|+ |y|.

The proof is Exercise 2.2.7.
A small argument, which can be formalized as induction if one is painstak-

ing, shows that the basic triangle inequality extends from two vectors to any
finite number of vectors. For example,
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|x+ y + z| ≤ |x+ y|+ |z| ≤ |x|+ |y|+ |z|.

The only obstacle to generalizing the basic triangle inequality in this fashion
is notation. The argument can’t use the symbol n to denote the number of
vectors, because n already denotes the dimension of the Euclidean space where
we are working; and furthermore, the vectors can’t be denoted with subscripts
since a subscript denotes a component of an individual vector. Thus, for now
we are stuck writing something like

|x(1) + · · ·+ x(k)| ≤ |x(1)|+ · · ·+ |x(k)| for all x(1), . . . , x(k) ∈ Rn,

or ∣∣∣∣∣
k∑

i=1

x(i)

∣∣∣∣∣ ≤
k∑

i=1

|x(i)|, x(1), . . . , x(k) ∈ Rn.

As our work with vectors becomes more intrinsic, vector entries will demand
less of our attention, and we will be able to denote vectors by subscripts. The
notation-change will be implemented in the next section.

For every vector x = (x1, . . . , xn) ∈ Rn, useful bounds on the modulus |x|
in terms of the scalar absolute values |xi| are as follows.

Proposition 2.2.7 (Size bounds). For every j ∈ {1, . . . , n},

|xj | ≤ |x| ≤
n∑

i=1

|xi|.

The proof (by quick applications of the Cauchy–Schwarz inequality and
the triangle inequality) is Exercise 2.2.8.

The modulus gives rise to a distance function on Rn that behaves as dis-
tance should. Define

d : Rn × Rn −→ R

by
d(x, y) = |y − x|.

For example, d(ei, ej) =
√
2(1− δij).

Theorem 2.2.8 (Distance properties).

(D1) Distance is positive: d(x, y) ≥ 0 for all x, y ∈ Rn, and d(x, y) = 0 if and
only if x = y.

(D2) Distance is symmetric: d(x, y) = d(y, x) for all x, y ∈ Rn.
(D3) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Rn.

(D1) and (D2) are clearly desirable as properties of a distance function.
Property (D3) says that you can’t shorten your trip from x to z by making a
stop at y.
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Proof. Exercise 2.2.9. ��
The Cauchy–Schwarz inequality also lets us define the angle between two

nonzero vectors in terms of the inner product. If x and y are nonzero vectors
in Rn, define their angle θx,y by the condition

cos θx,y =
〈x, y〉
|x||y| , 0 ≤ θx,y ≤ π. (2.2)

The condition is sensible because −1 ≤ 〈x,y〉
|x||y| ≤ 1 by the Cauchy–Schwarz

inequality. For example, cos θ(1,0),(1,1) = 1/
√
2, and so θ(1,0),(1,1) = π/4. In

particular, two nonzero vectors x and y are orthogonal when 〈x, y〉 = 0.
Naturally, we would like θx,y to correspond to the usual notion of angle, at least
in R2, and indeed it does—see Exercise 2.2.10. For convenience, define any
two vectors x and y to be orthogonal if 〈x, y〉 = 0, thus making 0 orthogonal
to all vectors.

Rephrasing geometry in terms of intrinsic vector algebra not only extends
the geometric notions of length and angle uniformly to any dimension, it also
makes some low-dimensional geometry easier. For example, vectors show in a
natural way that the three altitudes of every triangle must meet. Let x and y
denote two sides of the triangle, making the third side x−y by the head minus
tail mnemonic. Let q be the point where the altitudes to x and y meet. (See
Figure 2.8, which also shows the third altitude.) Thus

q − y ⊥ x and q − x ⊥ y.

We want to show that q also lies on the third altitude, i.e., that

q ⊥ x− y.

To rephrase matters in terms of inner products, we want to show that{
〈q − y, x〉 = 0

〈q − x, y〉 = 0

}
=⇒ 〈q, x− y〉 = 0.

Since the inner product is linear in each of its arguments, a further rephrasing
is that we want to show that{

〈q, x〉 = 〈y, x〉
〈q, y〉 = 〈x, y〉

}
=⇒ 〈q, x〉 = 〈q, y〉.

And this is immediate because the inner product is symmetric: 〈q, x〉 and 〈q, y〉
both equal 〈x, y〉, and so they equal each other as desired. The point q where
the three altitudes meet is called the orthocenter of the triangle. In general,
the orthocenter of a triangle is not the geometric center that we considered
in the previous section.
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x− y

x

y

q

Figure 2.8. Three altitudes of a triangle

Exercises

2.2.1. Let x = (
√
3
2 ,− 1

2 , 0), y = ( 12 ,
√
3
2 , 1), z = (1, 1, 1). Compute 〈x, x〉,

〈x, y〉, 〈y, z〉, |x|, |y|, |z|, θx,y, θy,e1 , θz,e2 .
2.2.2. Show that the points x = (2,−1, 3, 1), y = (4, 2, 1, 4), z = (1, 3, 6, 1)
form the vertices of a triangle in R4 with two equal angles.

2.2.3. Explain why for all x ∈ Rn, x =
∑n

j=1〈x, ej〉ej .
2.2.4. Prove the inner product properties.

2.2.5. Use the inner product properties and the definition of the modulus in
terms of the inner product to prove the modulus properties.

2.2.6. In the text, the modulus is defined in terms of the inner product. Prove
that this can be turned around by showing that for every x, y ∈ Rn,

〈x, y〉 = |x+ y|2 − |x− y|2
4

.

2.2.7. Prove the full triangle inequality: for every x, y ∈ Rn,

| |x| − |y| | ≤ |x± y| ≤ |x|+ |y|.

Do not do this by writing three more variants of the proof of the triangle in-
equality, but by substituting suitably into the basic triangle inequality, which
is already proved.

2.2.8. Let x = (x1, . . . , xn) ∈ Rn. Prove the size bounds: for every j ∈
{1, . . . , n},

|xj | ≤ |x| ≤
n∑

i=1

|xi|.

(One approach is to start by noting that xj = 〈x, ej〉 and recalling equa-
tion (2.1).) When can each “≤” be an “=”?
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2.2.9. Prove the distance properties.

2.2.10. Working in R2, depict the nonzero vectors x and y as arrows from the
origin and depict x − y as an arrow from the endpoint of y to the endpoint
of x. Let θ denote the angle (in the usual geometric sense) between x and y.
Use the law of cosines to show that

cos θ =
〈x, y〉
|x||y| ,

so that our notion of angle agrees with the geometric one, at least in R2.

2.2.11. Prove that for every nonzero x ∈ Rn,
∑n

i=1 cos
2 θx,ei = 1.

2.2.12. Prove that two nonzero vectors x, y are orthogonal if and only if
|x+ y|2 = |x|2 + |y|2.
2.2.13. Use vectors in R2 to show that the diagonals of a parallelogram are
perpendicular if and only if the parallelogram is a rhombus.

2.2.14. Use vectors to show that every angle inscribed in a semicircle is right.

2.2.15. Let x and y be vectors, with x nonzero. Define the parallel component
of y along x and the normal component of y to x to be

y(‖x) =
〈x, y〉
|x|2 x and y(⊥x) = y − y(‖x).

(a) Show that y = y(‖x)+y(⊥x); show that y(‖x) is a scalar multiple of x; show
that y(⊥x) is orthogonal to x. Show that the decomposition of y as a sum of
vectors parallel and perpendicular to x is unique. Draw an illustration.

(b) Show that
|y|2 = |y(‖x)|2 + |y(⊥x)|2.

What theorem from classical geometry does this encompass?
(c) Explain why it follows from (b) that

|y(‖x)| ≤ |y|,

with equality if and only if y is a scalar multiple of x. Use this inequality to
give another proof of the Cauchy–Schwarz inequality. This argument gives the
geometric content of Cauchy–Schwarz: the parallel component of one vector
along another is at most as long as the original vector.

(d) The proof of the Cauchy–Schwarz inequality in part (c) refers to parts
(a) and (b), part (a) refers to orthogonality, orthogonality refers to an angle,
and as explained in the text, the fact that angles make sense depends on the
Cauchy–Schwarz inequality. And so the proof in part (c) apparently relies on
circular logic. Explain why the logic is in fact not circular.
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2.2.16. Given nonzero vectors x1, x2, . . . , xn in Rn, the Gram–Schmidt
process is to set

x′
1 = x1

x′
2 = x2 − (x2)(‖x′

1)

x′
3 = x3 − (x3)(‖x′

2)
− (x3)(‖x′

1)

...

x′
n = xn − (xn)(‖x′

n−1)
− · · · − (xn)(‖x′

1)
.

(a) What is the result of applying the Gram–Schmidt process to the vectors
x1 = (1, 0, 0), x2 = (1, 1, 0), and x3 = (1, 1, 1)?

(b) Returning to the general case, show that x′
1, . . . , x

′
n are pairwise or-

thogonal and that each x′
j has the form

x′
j = aj1x1 + aj2x2 + · · ·+ aj,j−1xj−1 + xj .

Thus every linear combination of the new {x′
j} is also a linear combination

of the original {xj}. The converse is also true and will be shown in Exer-
cise 3.3.13.

2.3 Analysis: Continuous Mappings

A mapping from Rn to Rm is some rule that assigns to each point x in Rn a
point in Rm. Generally, mappings will be denoted by letters such as f , g, h.
When m = 1, we usually say function instead of mapping.

For example, the mapping

f : R2 −→ R2

defined by
f(x, y) = (x2 − y2, 2xy)

takes the real and imaginary parts of a complex number z = x+iy and returns
the real and imaginary parts of z2. By the nature of multiplication of complex
numbers, this means that each output point has modulus equal to the square
of the modulus of the input point and has angle equal to twice the angle of
the input point. Make sure that you see how this is shown in Figure 2.9.

Mappings expressed by formulas may be undefined at certain points (e.g.,
f(x) = 1/|x| is undefined at 0), so we need to restrict their domains. For
a given dimension n, a given set A ⊂ Rn, and a second dimension m,
let M(A,Rm) denote the set of all mappings f : A −→ Rm. This set forms a
vector space over R (whose points are functions) under the operations

+ : M(A,Rm)×M(A,Rm) −→ M(A,Rm),
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− 11

1

1

2

Figure 2.9. The complex square as a mapping from R2 to R2

defined by
(f + g)(x) = f(x) + g(x) for all x ∈ A,

and
· : R×M(A,Rm) −→ M(A,Rm),

defined by
(a · f)(x) = a · f(x) for all x ∈ A.

As usual, “+” and “·” are overloaded: on the left they denote operations
on M(A,Rm), while on the right they denote the operations on Rm de-
fined in Section 2.1. Also as usual, the “·” is generally omitted. The origin
in M(A,Rm) is the zero mapping, 0 : A −→ Rm, defined by

0(x) = 0m for all x ∈ A.

For example, to verify that M(A,Rm) satisfies (A1), consider any mappings
f, g, h ∈ M(A,Rm). For every x ∈ A,

((f + g) + h)(x) = (f + g)(x) + h(x) by definition of “+” in M(A,Rm)

= (f(x) + g(x)) + h(x) by definition of “+” in M(A,Rm)

= f(x) + (g(x) + h(x)) by associativity of “+” in Rm

= f(x) + (g + h)(x) by definition of “+” in M(A,Rm)

= (f + (g + h))(x) by definition of “+” in M(A,Rm).

Since x is arbitrary, (f + g) + h = f + (g + h).

Let A be a subset of Rn. A sequence in A is an infinite list of vectors
{x1, x2, x3, . . . } in A, often written {xν}. (The symbol n is already in use,
so its Greek counterpart ν—pronounced nu—is used as the index-counter.)
Since a vector has n entries, each vector xν in the sequence takes the form
(x1,ν , . . . , xn,ν).

Definition 2.3.1 (Null Sequence). The sequence {xν} in Rn is null if for
every ε > 0 there exists some ν0 such that
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if ν > ν0 then |xν | < ε.

That is, a sequence is null if for every ε > 0, all but finitely many terms of
the sequence lie within distance ε of 0n.

Quickly from the definition, if {xν} is a null sequence in Rn and {yν} is a
sequence in Rn such that |yν | ≤ |xν | for all ν then also {yν} is null.

Let {xν} and {yν} be null sequences in Rn, and let c be a scalar. Then the
sequence {xν + yν} is null because |xν + yν | ≤ |xν |+ |yν | for each ν, and the
sequence {cxν} is null because |cxν | = |c||xν | for each ν. These two results
show that the set of null sequences in Rn forms a vector space.

For every vector x ∈ Rn the absolute value |x| is a nonnegative scalar, and
so no further effect is produced by taking the scalar absolute value in turn,

| |x| | = |x|, x ∈ Rn,

and so a vector sequence {xν} is null if and only if the scalar sequence {|xν |}
is null.

Lemma 2.3.2 (Componentwise nature of nullness). The vector sequence
{(x1,ν , . . . , xn,ν)} is null if and only if each of its component scalar sequences
{xj,ν} (j ∈ {1, . . . , n}) is null.

Proof. By the observation just before the lemma, it suffices to show that
{|(x1,ν , . . . , xn,ν)|} is null if and only if each {|xj,ν |} is null. The size bounds
give for every j ∈ {1, . . . , n} and every ν,

|xj,ν | ≤ |(x1,ν , . . . , xn,ν)| ≤
n∑

i=1

|xi,ν |.

If {|(x1,ν , . . . , xn,ν)|} is null then by the first inequality, so is each {|xj,ν |}. On
the other hand, if each {|xj,ν |} is null then so is {∑n

i=1 |xi,ν |}, and thus by
the second inequality, {|(x1,ν , . . . , xn,ν)|} is null as well. ��

We define the convergence of vector sequences in terms of null sequences.

Definition 2.3.3 (Sequence convergence, sequence limit). Let A be a
subset of Rn. Consider a sequence {xν} in A and a point p ∈ Rn. The sequence
{xν} converges to p (or has limit p), written {xν} → p, if the sequence
{xν−p} is null. When the limit p is a point of A, the sequence {xν} converges
in A.

If a sequence {xν} converges to p and also converges to p′ then the constant
sequence {p′−p} is the difference of the null sequences {xν−p} and {xν−p′},
hence null, forcing p′ = p. Thus a sequence cannot converge to two distinct
values.

Many texts define convergence directly rather than by reference to nullness,
the key part of the definition being
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if ν > ν0 then |xν − p| < ε.

In particular, a null sequence is a sequence that converges to 0n. However, in
contrast to the situation for null sequences, for p �= 0n it is emphatically false
that if {|xν |} converges to |p| then necessarily {xν} converges to p or even
converges at all. Also, for every nonzero p, the sequences that converge to p
do not form a vector space.

Vector versions of the sum rule and the constant multiple rule for con-
vergent sequences follow immediately from the vector space properties of null
sequences:

Proposition 2.3.4 (Linearity of convergence). Let {xν} be a sequence
in Rn converging to p, let {yν} be a sequence in Rn converging to q, and let c
be a scalar. Then the sequence {xν + yν} converges to p+ q, and the sequence
{cxν} converges to cp.

Similarly, since a sequence {xν} converges to p if and only if {xν − p}
is null, we have the following corollary in consequence of the componentwise
nature of nullness (Exercise 2.3.5):

Proposition 2.3.5 (Componentwise nature of convergence). The vec-
tor sequence {(x1,ν , . . . , xn,ν)} converges to the vector (p1, . . . , pn) if and only
if each component scalar sequence {xj,ν} (j = 1, . . . , n) converges to the
scalar pj.

Continuity, like convergence, is typographically indistinguishable in R

and Rn.

Definition 2.3.6 (Continuity). Let A be a subset of Rn, let f : A −→ Rm

be a mapping, and let p be a point of A. Then f is continuous at p if for
every sequence {xν} in A converging to p, the sequence {f(xν)} converges
to f(p). The mapping f is continuous on A (or just continuous when A is
clearly established) if it is continuous at each point p ∈ A.

For example, the modulus function

| | : Rn −→ R

is continuous on Rn. To see this, consider any point p ∈ Rn and consider any
sequence {xν} in Rn that converges to p. We need to show that the sequence
{|xν |} in R converges to |p|. But by the full triangle inequality,

| |xν | − |p| | ≤ |xν − p|.
Since the right side is the νth term of a null sequence, so is the left, giving
the result.

For another example, let a ∈ Rn be any fixed vector and consider the
function defined by taking the inner product of this vector with other vectors,
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T : Rn −→ R, T (x) = 〈a, x〉.
This function is also continuous on Rn. To see this, again consider any p ∈ Rn

and any sequence {xν} in Rn converging to p. Then the definition of T , the
bilinearity of the inner product, and the Cauchy–Schwarz inequality combine
to show that

|T (xν)− T (p)| = |〈a, xν〉 − 〈a, p〉| = |〈a, xν − p〉| ≤ |a| |xν − p|.
Since |a| is a constant, the right side is the νth term of a null sequence,
whence so is the left, and the proof is complete. We will refer to this example
in Section 3.1. Also, note that as a special case of this example we may take
any j ∈ {1, . . . , n} and set the fixed vector a to ej , showing that the jth
coordinate function map,

πj : R
n −→ R, πj(x1, . . . , xn) = xj ,

is continuous.

Proposition 2.3.7 (Vector space properties of continuity). Let A be a
subset of Rn, let f, g : A −→ Rm be continuous mappings, and let c ∈ R. Then
the sum and the scalar multiple mappings

f + g, cf : A −→ Rm

are continuous. Thus the set of continuous mappings from A to Rm forms a
vector subspace of M(A,Rm).

The vector space properties of continuity follow immediately from the
linearity of convergence and from the definition of continuity. Another conse-
quence of the definition of continuity is as follows.

Proposition 2.3.8 (Persistence of continuity under composition). Let
A be a subset of Rn, and let f : A −→ Rm be a continuous mapping. Let B
be a superset of f(A) in Rm, and let g : B −→ R� be a continuous mapping.
Then the composition mapping

g ◦ f : A −→ R�

is continuous.

The proof is Exercise 2.3.7.

Let A be a subset of Rn. Every mapping f : A −→ Rm decomposes as m
functions f1, . . . , fm, with each fi : A −→ R, by the formula

f(x) = (f1(x), . . . , fm(x)).

For example, if f(x, y) = (x2−y2, 2xy) then f1(x, y) = x2−y2 and f2(x, y) =
2xy. The decomposition of f can also be written
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f(x) =

m∑
i=1

fi(x)ei,

or equivalently, the functions fi are defined by the condition

fi(x) = f(x)i for i = 1, . . . ,m.

Conversely, given m functions f1, . . . , fm from A to R, each of the preceding
three displayed formulas assembles a mapping f : A −→ Rm. Thus, each map-
ping f determines and is determined by its component functions f1, . . . , fm.
Conveniently, to check continuity of the vector-valued mapping f we only need
to check its scalar-valued component functions.

Theorem 2.3.9 (Componentwise nature of continuity). Let A ⊂ Rn,
let f : A −→ Rm have component functions f1, . . . , fm, and let p be a point
in A. Then

f is continuous at p ⇐⇒ each fi is continuous at p.

The componentwise nature of continuity follows from the componentwise
nature of convergence and is left as Exercise 2.3.6.

Let A be a subset of Rn, let f and g be continuous functions from A to R,
and let c ∈ R. Then the familiar sum rule, constant multiple rule, product
rule, and quotient rule for continuous functions hold. That is, the sum f + g,
the constant multiple cf , the product fg, and the quotient f/g (at points
p ∈ A such that g(p) �= 0) are again continuous. The first two of these facts
are special cases of the vector space properties of continuity. The proofs of
the other two are typographically identical to their one-variable counterparts.
With the various continuity results obtained thus far in hand, it is clear that
a function such as

f : R3 −→ R, f(x, y, z) =
sin(

√
x2 + y2 + z2)

exy+z

is continuous. The continuity of such functions, and of mappings with such
functions as their components, will go without comment from now on.

However, the continuity of functions of n variables also has new, subtle
features when n > 1. In R, a sequence {xν} can approach the point p in only
two essential ways: from the left and from the right. But in Rn for n ≥ 2, {xν}
can approach p along a line from infinitely many directions, or not approach
along a line at all, and so the convergence of {f(xν)} can be trickier. For
example, consider the function f : R2 −→ R defined by

f(x, y) =

⎧⎨⎩
2xy

x2 + y2
if (x, y) �= 0,

b if (x, y) = 0.



2.3 Analysis: Continuous Mappings 47

Can the constant b be specified to make f continuous at 0?
It can’t. Take a sequence {(xν , yν)} approaching 0 along the line y = mx

of slope m. For every point (xν , yν) of this sequence,

f(xν , yν) = f(xν ,mxν) =
2xνmxν

x2
ν +m2x2

ν

=
2mx2

ν

(1 +m2)x2
ν

=
2m

1 +m2
.

Thus, as the sequence of inputs {(xν , yν)} approaches 0 along the line of
slope m, the corresponding sequence of outputs {f(xν , yν)} holds steady
at 2m/(1 +m2), and so f(0) needs to take this value for continuity. Taking
input sequences {(xν , yν)} that approach 0 along lines of different slope shows
that f(0) needs to take different values for continuity, and hence f cannot be
made continuous at 0. The graph of f away from 0 is a sort of spiral staircase,
and no height over 0 is compatible with all the stairs. (See Figure 2.10. The
figure displays only the portion of the graph for slopes between 0 and 1 in the
input plane.) The reader who wants to work a virtually identical example can
replace the formula 2xy/(x2 + y2) in f by (x2 − y2)/(x2 + y2) and run the
same procedure as in this paragraph.

Figure 2.10. A spiral staircase

The previous example was actually fairly simple in that we only needed to
study f(x, y) as (x, y) approached 0 along straight lines. Consider the function
g : R2 −→ R defined by

g(x, y) =

⎧⎨⎩
x2y

x4 + y2
if (x, y) �= 0,

b if (x, y) = 0.

For a nonzero slope m, take a sequence {(xν , yν)} approaching 0 along the
line y = mx. Compute that for each point of this sequence,

g(xν , yν) = g(xν ,mxν) =
mx3

ν

x4
ν +m2x2

ν

=
mxν

x2
ν +m2

.
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This quantity tends to 0 as xν goes to 0. That is, as the sequence of inputs
{(xν , yν)} approaches 0 along the line of slope m, the corresponding sequence
of outputs {g(xν , yν)} approaches 0, and so g(0) needs to take the value 0
for continuity. Since g is 0 at the nonzero points of either axis in the (x, y)-
plane, this requirement extends to the cases that {(xν , yν)} approaches 0 along
a horizontal or vertical line. However, next consider a sequence {(xν , yν)}
approaching 0 along the parabola y = x2. For each point of this sequence,

g(xν , yν) = g(xν , x
2
ν) =

x4
ν

x4
ν + x4

ν

=
1

2
.

Thus, as the sequence of inputs {(xν , yν)} approaches 0 along the parabola,
the corresponding sequence of outputs {g(xν , yν)} holds steady at 1/2, and so
g(0) needs to be 1/2 for continuity as well. Thus g cannot be made continuous
at 0, even though approaching 0 only along lines suggests that it can. The
reader who wants to work a virtually identical example can replace the formula
x2y/(x4 + y2) in g by x3y/(x6 + y2) and run the same procedure as in this
paragraph but using the curve y = x3.

Thus, given a function f : R2 −→ R, letting {(xν , yν)} approach 0 along
lines can disprove continuity at 0, but it can only suggest continuity at 0, not
prove it. To prove continuity, the size bounds may be helpful. For example,
let

h(x, y) =

⎧⎨⎩
x3

x2 + y2
if (x, y) �= 0,

b if (x, y) = 0.

Can b be specified to make h continuous at 0? The estimate |x| ≤ |(x, y)| gives
for every (x, y) �= 0,

0 ≤ |h(x, y)| = |x3|
x2 + y2

=
|x|3

|(x, y)|2 ≤ |(x, y)|3
|(x, y)|2 = |(x, y)|,

so as a sequence {(xν , yν)} of nonzero input vectors converges to 0, the cor-
responding sequence of outputs {h(xν , yν)} is squeezed to 0 in absolute value
and hence converges to 0. Setting b = 0 makes h continuous at 0. The reader
who wants to work a virtually identical example can replace the formula
x3/(x2 + y2) in h by x2y2/(x4 + y2) and run the same procedure as in this
paragraph but applying the size bounds to vectors (x2

ν , yν).
Returning to the spiral staircase example,

f(x, y) =

⎧⎨⎩
2xy

x2 + y2
if (x, y) �= 0,

b if (x, y) = 0,

the size bounds show that that for every (x, y) �= 0,

0 ≤ |f(x, y)| = 2|x| |y|
|(x, y)|2 ≤ 2|(x, y)|2

|(x, y)|2 = 2.



2.3 Analysis: Continuous Mappings 49

The display tells us only that as a sequence of inputs {(xν , yν)} approaches 0,
the sequence of outputs {f(xν , yν)} might converge to some limit between −2
and 2. The outputs needn’t converge to 0 (or converge at all), but according
to this diagnostic they possibly could. Thus the size bounds tell us only that
f could be discontinuous at (0, 0), but they give no conclusive information.

In sum, these examples illustrate three ideas.

• The straight line test can prove that a limit does not exist, or it can
determine the only candidate for the value of the limit, but it cannot
prove that the candidate value is the limit.

• When the straight line test determines a candidate value of the limit,
approaching along a curve can further support the candidate, or it can
prove that the limit does not exist by determining a different candidate as
well.

• The size bounds can prove that a limit does exist, but they can only suggest
that a limit does not exist.

The next proposition is a handy encoding of an intuitively plausible prop-
erty of continuous mappings. The result is so natural that it often is tacitly
taken for granted, but it is worth stating and proving carefully.

Proposition 2.3.10 (Persistence of inequality). Let A be a subset of Rn

and let f : A −→ Rm be a continuous mapping. Let p be a point of A, let b be
a point of Rm, and suppose that f(p) �= b. Then there exists some ε > 0 such
that

for all x ∈ A such that |x− p| < ε, f(x) �= b.

Proof. Assume that the displayed statement in the proposition fails for ev-
ery ε > 0. Then in particular, it fails for ε = 1/ν for ν = 1, 2, 3, . . . . So there
is a sequence {xν} in A such that

|xν − p| < 1/ν and f(xν) = b, ν = 1, 2, 3, . . . .

Since f is continuous at p, this condition shows that f(p) = b. But in fact
f(p) �= b, and so our assumption that the displayed statement in the propo-
sition fails for every ε > 0 leads to a contradiction. Therefore the statement
holds for some ε > 0, as desired. ��

Exercises

2.3.1. For A ⊂ Rn, partially verify that M(A,Rm) is a vector space over R

by showing that it satisfies vector space axioms (A4) and (D1).

2.3.2. Define multiplication ∗ : M(A,R)×M(A,R) −→ M(A,R). IsM(A,R)
a field with “+” from the section and this multiplication? Does it have a sub-
space that is a field?
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2.3.3. For A ⊂ Rn and m ∈ Z+ define a subspace of the space of mappings
from A to Rm,

C(A,Rm) = {f ∈ M(A,Rm) : f is continuous on A}.

Briefly explain how this section has shown that C(A,Rm) is a vector space.

2.3.4. Define an inner product and a modulus on C([0, 1],R) by

〈f, g〉 =
∫ 1

0

f(t)g(t) dt, |f | =
√

〈f, f〉.

Do the inner product properties (IP1), (IP2), and (IP3) (see Proposition 2.2.2)
hold for this inner product on C([0, 1],R)? How much of the material from
Section 2.2 on the inner product and modulus in Rn carries over to C([0, 1],R)?
Express the Cauchy–Schwarz inequality as a relation between integrals.

2.3.5. Use the definition of convergence and the componentwise nature of
nullness to prove the componentwise nature of convergence. (The argument is
short.)

2.3.6. Use the definition of continuity and the componentwise nature of con-
vergence to prove the componentwise nature of continuity.

2.3.7. Prove the persistence of continuity under composition.

2.3.8. Define f : Q −→ R by the rule

f(x) =

{
1 if x2 < 2,

0 if x2 > 2.

Is f continuous?

2.3.9. Which of the following functions on R2 can be defined continuously
at 0?

f(x, y) =

⎧⎨⎩
x4 − y4

(x2 + y2)2
if (x, y) �= 0,

b if (x, y) = 0,

g(x, y) =

⎧⎨⎩
x2 − y3

x2 + y2
if (x, y) �= 0,

b if (x, y) = 0,

h(x, y) =

⎧⎨⎩
x3 − y3

x2 + y2
if (x, y) �= 0,

b if (x, y) = 0,
k(x, y) =

⎧⎨⎩
xy2

x2 + y6
if (x, y) �= 0,

b if (x, y) = 0.

2.3.10. Let f(x, y) = g(xy), where g : R −→ R is continuous. Is f continuous?

2.3.11. Let f, g ∈ M(Rn,R) be such that f + g and fg are continuous. Are
f and g necessarily continuous?
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2.4 Topology: Compact Sets and Continuity

The extreme value theorem from one-variable calculus states:

Let I be a nonempty closed and bounded interval in R, and let f :
I −→ R be a continuous function. Then f takes a minimum value
and a maximum value on I.

This section generalizes the theorem from scalars to vectors. That is, we want
a result that if A is a set in Rn with certain properties, and if f : A −→ Rm

is a continuous mapping, then the output set f(A) will also have certain
properties. The questions are, for what sorts of properties do such statements
hold, and when they hold, how do we prove them?

The one-variable theorem hypothesizes two data, the nonempty closed and
bounded interval I and the continuous function f . Each of these is described
in its own terms—I takes the readily recognizable but static form [a, b] where
a ≤ b, while the continuity of f is a dynamic assertion about convergence
of sequences. Because the two data have differently phrased descriptions, a
proof of the extreme value theorem doesn’t suggest itself immediately: no
ideas at hand bear obviously on all the given information. Thus the work of
this section is not only to define the sets to appear in the pending theorem, but
also to describe them in terms of sequences, compatibly with the sequential
description of continuous mappings. The theorem itself will then be easy to
prove. Accordingly, most of the section will be spent describing sets in two
ways—in terms that are easy to recognize, and in sequential language that
dovetails with continuity.

We begin with a little machinery to quantify the intuitive notion of near-
ness.

Definition 2.4.1 (ε-ball). For every point p ∈ Rn and every positive real
number ε > 0, the ε-ball centered at p is the set

B(p, ε) = {x ∈ Rn : |x− p| < ε} .
(See Figure 2.11.)

Figure 2.11. Balls in various dimensions

With ε-balls it is easy to describe the points that are approached by a
set A.
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Definition 2.4.2 (Limit point). Let A be a subset of Rn, and let p be a
point of Rn. The point p is a limit point of A if every ε-ball centered at p
contains some point x ∈ A such that x �= p.

A limit point of A need not belong to A (Exercise 2.4.2). On the other
hand, a point in A need not be a limit point of A (Exercise 2.4.2 again); such
a point is called an isolated point of A. Equivalently, p is an isolated point
of A if p ∈ A and there exists some ε > 0 such that B(p, ε) ∩ A = {p}. The
next lemma justifies the nomenclature of the previous definition: limit points
of A are precisely the (nontrivial) limits of sequences in A.

Lemma 2.4.3 (Sequential characterization of limit points). Let A be
a subset of Rn, and let p be a point of Rn. Then p is the limit of a sequence
{xν} in A with each xν �= p if and only if p is a limit point of A.

Proof. ( =⇒ ) If p is the limit of a sequence {xν} in A with each xν �= p then
every ε-ball about p contains an xν (in fact, infinitely many), so p is a limit
point of A.

( ⇐= ) Conversely, if p is a limit point of A then B(p, 1/2) contains some
x1 ∈ A, x1 �= p. Let ε2 = |x1 − p|/2. The ball B(p, ε2) contains some x2 ∈ A,
x2 �= p. Let ε3 = |x2 − p|/2 and continue defining a sequence {xν} in this
fashion with |xν − p| < 1/2ν for all ν. This sequence converges to p, and
xν �= p for each xν . ��

The lemma shows that Definition 2.4.2 is more powerful than it appears—
every ε-ball centered at a limit point of A contains not only one but infinitely
many points of A.

Definition 2.4.4 (Closed set). A subset A of Rn is closed if it contains
all of its limit points.

For example, the x1-axis is closed as a subset of Rn, because every point
off the axis is surrounded by a ball that misses the axis—that is, every point
off the axis is not a limit point of the axis, i.e., the axis is not missing any
of its limit points, i.e., the axis contains all of its limit points. The interval
(0, 1) is not closed because it does not contain the limit points at its ends.
These examples illustrate the fact that with a little practice it becomes easy
to recognize quickly whether a set is closed. Loosely speaking, a set is closed
when it contains all the points that it seems to want to contain.

Proposition 2.4.5 (Sequential characterization of closed sets). Let A
be a subset of Rn. Then A is closed if and only if every sequence in A that
converges in Rn in fact converges in A.

Proof. ( =⇒ ) Suppose that A is closed, and let {xν} be a sequence in A
converging in Rn to p. If xν = p for some ν then p ∈ A because xν ∈ A; and
if xν �= p for all ν then p is a limit point of A by “ =⇒ ” of Lemma 2.4.3, and
so p ∈ A because A is closed.
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( ⇐= ) Conversely, suppose that every convergent sequence in A has its
limit in A. Then all limit points of A are in A by “ ⇐= ” of Lemma 2.4.3,
and so A is closed. ��

The proposition equates an easily recognizable condition that we can un-
derstand intuitively (a set being closed) with a sequential characterization
that we can use in further arguments. Note that the sequential characteriza-
tion of a closed set A refers not only to A but also to the ambient space Rn

in which A lies. We will return to this point later in this section.

Closed sets do not necessarily have good properties under continuous map-
pings. So next we describe another class of sets, the bounded sets. Bounded-
ness is again an easily recognizable condition that also has a characterization
in terms of sequences. The sequential characterization will turn out to be
complementary to the sequential characterization of closed sets, foreshadow-
ing that the properties of being closed and bounded will work well together.

Definition 2.4.6 (Bounded set). A set A in Rn is bounded if A ⊂
B(0, R) for some R > 0.

Thus a bounded set is enclosed in some finite corral centered at the origin,
possibly a very big one. For example, every ball B(p, ε), not necessarily cen-
tered at the origin, is bounded, by a nice application of the triangle inequality
(Exercise 2.4.5). On the other hand, the Archimedean property of the real
number system says that Z is an unbounded subset of R. The size bounds
show that a subset of Rn is bounded if and only if the jth coordinates of its
points form a bounded subset of R for each j ∈ {1, . . . , n}. The geometric
content of this statement is that a set sits inside a ball centered at the origin
if and only if it sits inside a box centered at the origin.

Blurring the distinction between a sequence and the set of its elements
allows the definition of boundedness to apply to sequences. That is, a sequence
{xν} is bounded if there is some R > 0 such that |xν | < R for all ν ∈ Z+. The
proof of the next fact in Rn is symbol-for-symbol the same as in R (or in C),
so it is only sketched.

Proposition 2.4.7 (Convergence implies boundedness). If the sequence
{xν} converges in Rn then it is bounded.

Proof. Let {xν} converge to p. Then there exists a starting index ν0 such that
xν ∈ B(p, 1) for all ν > ν0. Consider any real number R such that

R > max{|x1|, . . . , |xν0
|, |p|+ 1}.

Then clearly xν ∈ B(0, R) for ν = 1, . . . , ν0, and the triangle inequality shows
that also xν ∈ B(0, R) for all ν > ν0. Thus {xν} ⊂ B(0, R) as a set. ��
Definition 2.4.8 (Subsequence). A subsequence of the sequence {xν} is
a sequence consisting of some (possibly all) of the original terms, in ascending
order of indices.
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Since a subsequence of {xν} consists of terms xν only for some values of ν,
it is often written {xνk

}, where now k is the index variable. For example, given
the sequence

{x1, x2, x3, x4, x5, . . .} ,
a subsequence is

{x2, x3, x5, x7, x11, . . . },
with ν1 = 2, ν2 = 3, ν3 = 5, and generally νk = the kth prime.

Lemma 2.4.9 (Persistence of convergence). Let {xν} converge to p.
Then every subsequence {xνk

} also converges to p.

Proof. The hypothesis that {xν} converges to p means that for every given
ε > 0, only finitely many sequence-terms xν lie outside the ball B(p, ε). Con-
sequently, only finitely many subsequence-terms xνk

lie outside B(p, ε), which
is to say that {xνk

} converges to p. ��
The sequence property that characterizes bounded sets is called the

Bolzano–Weierstrass property. Once it is proved in R, the result follows
in Rn by arguing one component at a time.

Theorem 2.4.10 (Bolzano–Weierstrass property in R). Let A be a
bounded subset of R. Then every sequence in A has a convergent subsequence.

Proof. Let {xν} be a sequence in A. Call a term xν of the sequence a max-
point if it is at least as big as all later terms, i.e., xν ≥ xμ for all μ > ν.
(For visual intuition, draw a graph plotting xν as a function of ν, with line
segments connecting consecutive points. A max-point is a peak of the graph at
least as high as all points to its right.) If there are infinitely many max-points
in {xν} then these form a decreasing sequence. If there are only finitely many
max-points then {xν} has an increasing sequence starting after the last max-
point—this follows almost immediately from the definition of max-point. In
either case, {xν} has a monotonic subsequence that, being bounded, converges
because the real number system is complete. ��
Theorem 2.4.11 (Bolzano–Weierstrass property in Rn: sequential
characterization of bounded sets). Let A be a subset of Rn. Then A
is bounded if and only if every sequence in A has a subsequence that converges
in Rn.

Proof. ( =⇒ ) Suppose that A is bounded. Consider any sequence {xν}
in A, written as {(x1,ν , . . . , xn,ν)}. The real sequence {x1,ν} takes values in
a bounded subset of R and thus has a convergent subsequence, {x1,νk

}. The
subscripts are getting out of hand, so keep only the νkth terms of the orig-
inal sequence and relabel it. In other words, we may as well assume that
the sequence of first components, {x1,ν}, converges. The real sequence of
second components, {x2,ν}, in turn has a convergent subsequence, and by
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Lemma 2.4.9 the corresponding subsequence of first components, {x1,ν}, con-
verges too. Relabeling again, we may assume that {x1,ν} and {x2,ν} both
converge. Continuing in this fashion n− 2 more times exhibits a subsequence
of {xν} that converges at each component.

( ⇐= ) Conversely, suppose that A is not bounded. Then there is a se-
quence {xν} in A with |xν | > ν for all ν. This sequence has no bounded subse-
quence, and hence it has no convergent subsequence by Proposition 2.4.7. ��

Note how the sequential characterizations in Proposition 2.4.5 and in the
Bolzano–Weierstrass property complement each other. The proposition char-
acterizes every closed set in Rn by the fact that if a sequence converges in the
ambient space then it converges in the set. The Bolzano–Weierstrass property
characterizes every bounded set in Rn by the fact that every sequence in the
set has a subsequence that converges in the ambient space but not necessarily
in the set. Both the sequential characterization of a closed set and the sequen-
tial characterization of a bounded set refer to the ambient space Rn in which
the set lies. We will return to this point once more in this section.

Definition 2.4.12 (Compact set). A subset K of Rn is compact if it is
closed and bounded.

Since the static notions of closed and bounded are reasonably intuitive, we
can usually recognize compact sets on sight. But it is not obvious from how
compact sets look that they are related to continuity. So our program now
has two steps: first, combine Proposition 2.4.5 and the Bolzano–Weierstrass
property to characterize compact sets in terms of sequences, and second, use
the characterization to prove that compactness is preserved by continuous
mappings.

Theorem 2.4.13 (Sequential characterization of compact sets). Let
K be a subset of Rn. Then K is compact if and only if every sequence in K
has a subsequence that converges in K.

Proof. ( =⇒ ) We show that the sequential characterizations of closed and
bounded sets together imply the claimed sequential characterization of com-
pact sets. Suppose that K is compact and {xν} is a sequence in K. Then K is
bounded, so by “ =⇒ ” of the Bolzano–Weierstrass property, {xν} has a con-
vergent subsequence. But K is also closed, so by “ =⇒ ” of Proposition 2.4.5,
this subsequence converges in K.

( ⇐= ) Conversely, we show that the claimed sequential characterization of
compact sets subsumes the sequential characterizations of closed and bounded
sets. Thus, suppose that every sequence inK has a subsequence that converges
in K. Then in particular, every sequence in K that converges in Rn has a sub-
sequence that converges in K. By Lemma 2.4.9 the limit of the sequence is
the limit of the subsequence, so the sequence converges in K. That is, every
sequence in K that converges in Rn converges in K, and hence K is closed
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by “ ⇐= ” of Proposition 2.4.5. Also in consequence of the claimed sequen-
tial property of compact sets, every sequence in K has a subsequence that
converges in Rn. Thus K is bounded by “ ⇐= ” of the Bolzano–Weierstrass
Property. ��

By contrast to the sequential characterizations of a closed set and of a
bounded set, the sequential characterization of a compact set K makes no
reference to the ambient space Rn in which K lies. A set’s property of being
compact is innate in a way that a set’s property of being closed or of being
bounded is not.

The next theorem is the main result of this section. Now that all of the
objects involved are described in the common language of sequences, its proof
is natural.

Theorem 2.4.14 (The continuous image of a compact set is com-
pact). Let K be a compact subset of Rn and let f : K −→ Rm be continuous.
Then f(K), the image set of K under f , is a compact subset of Rm.

Proof. Let {yν} be any sequence in f(K); by “ ⇐= ” of Theorem 2.4.13, it
suffices to exhibit a subsequence converging in f(K). Each yν has the form
f(xν), and this defines a sequence {xν} in K. By “ =⇒ ” of Theorem 2.4.13,
sinceK is compact, {xν} necessarily has a subsequence {xνk

} converging inK,
say to p. By the continuity of f at p, the sequence {f(xνk

)} converges in f(K)
to f(p). Since {f(xνk

)} is a subsequence of {yν}, the proof is complete. ��
Again, the sets in Theorem 2.4.14 are defined with no direct reference to

sequences, but the theorem is proved entirely using sequences. The point is
that with the theorem proved, we can easily see that it applies in particular
contexts without having to think any longer about the sequences that were
used to prove it.

A corollary of Theorem 2.4.14 generalizes the theorem that was quoted to
begin the section:

Theorem 2.4.15 (Extreme value theorem). Let K be a nonempty com-
pact subset of Rn and let the function f : K −→ R be continuous. Then f
takes a minimum and a maximum value on K.

Proof. By Theorem 2.4.14, f(K) is a compact subset of R. As a nonempty
bounded subset of R, f(K) has a greatest lower bound and a least upper
bound by the completeness of the real number system. Each of these bounds
is an isolated point or a limit point of f(K), since otherwise some ε-ball about
it would be disjoint from f(K), giving rise to greater lower bounds or lesser
upper bounds of f(K). Because f(K) is also closed, it contains its limit points,
so in particular it contains its greatest lower bound and its least upper bound.
This means precisely that f takes a minimum and a maximum value on K.

��
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Even when n = 1, Theorem 2.4.15 generalizes the extreme value theorem
from the beginning of the section. In the theorem here, K can be a finite union
of closed and bounded intervals in R rather than only one interval, or K can
be a more complicated set, provided only that it is compact.

A topological property of sets is a property that is preserved under continu-
ity. Theorem 2.4.14 says that compactness is a topological property. Neither
the property of being closed nor the property of being bounded is in itself
topological. That is, the continuous image of a closed set need not be closed,
and the continuous image of a bounded set need not be bounded; for that
matter, the continuous image of a closed set need not be bounded, and the
continuous image of a bounded set need not be closed (Exercise 2.4.8).

The nomenclature continuous image in the slogan-title of Theorem 2.4.14
and in the previous paragraph is, strictly speaking, inaccurate: the image of
a mapping is a set, and the notion of a set being continuous doesn’t even
make sense according to our grammar. As stated correctly in the body of the
theorem, continuous image is short for image under a continuous mapping.

The property that students often have in mind when they call a set continu-
ous is in fact called connectedness. Loosely, a set is connected if it has only one
piece, so that a better approximating word from everyday language is contigu-
ous. To define connectedness accurately, we would have to use methodology
exactly opposite that of this section: rather than relate sets to continuous
mappings by characterizing the sets in terms of sequences, the idea is to turn
the whole business around and characterize continuous mappings in terms of
sets, specifically in terms of open balls. However, the process of doing so, and
then characterizing compact sets in terms of open balls as well, is trickier
than characterizing sets in terms of sequences; and so we omit it because we
do not need connectedness. Indeed, the remark after Theorem 2.4.15 points
out that connectedness is unnecessary even for the one-variable extreme value
theorem.

However, it deserves passing mention that connectedness is also a topologi-
cal property: again using language loosely, the continuous image of a connected
set is connected. This statement generalizes another theorem that underlies
one-variable calculus, the intermediate value theorem. For a notion related
to connectedness that is easily shown to be a topological property, see Exer-
cise 2.4.10.

The ideas of this section readily extend to broader environments. The first
generalization of Euclidean space is a metric space, a set with a well-behaved
distance function. Even more general is a topological space, a set with some
of its subsets designated as closed. Continuous functions, compact sets, and
connected sets can be defined meaningfully in these environments, and the
theorems remain the same: the continuous image of a compact set is compact,
and the continuous image of a connected set is connected.
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Exercises

2.4.1. Are the following subsets of Rn closed, bounded, compact?
(a) B(0, 1),
(b) {(x, y) ∈ R2 : y − x2 = 0},
(c) {(x, y, z) ∈ R3 : x2 + y2 + z2 − 1 = 0},
(d) {x : f(x) = 0m}, where f ∈ M(Rn,Rm) is continuous (this generalizes

(b) and (c)),
(e) Qn where Q denotes the rational numbers,
(f) {(x1, . . . , xn) : x1 + · · ·+ xn > 0}.

2.4.2. Give a set A ⊂ Rn and limit point b of A such that b /∈ A. Give a set
A ⊂ Rn and a point a ∈ A such that a is not a limit point of A.

2.4.3. Let A be a closed subset of Rn and let f ∈ M(A,Rm). Define the
graph of f to be

G(f) = {(a, f(a)) : a ∈ A},
a subset of Rn+m. Show that if f is continuous then its graph is closed.

2.4.4. Prove the closed set properties: (1) the empty set ∅ and the full space
Rn are closed subsets of Rn; (2) every intersection of closed sets is closed; (3)
every finite union of closed sets is closed.

2.4.5. Prove that every ball B(p, ε) is bounded in Rn.

2.4.6. Show that A is a bounded subset of Rn if and only if for each j ∈
{1, . . . , n}, the jth coordinates of its points form a bounded subset of R.

2.4.7. Show by example that a closed set need not satisfy the sequential char-
acterization of bounded sets, and that a bounded set need not satisfy the
sequential characterization of closed sets.

2.4.8. Show by example that the continuous image of a closed set need not
be closed, that the continuous image of a closed set need not be bounded,
that the continuous image of a bounded set need not be closed, and that the
continuous image of a bounded set need not be bounded.

2.4.9. A subset A of Rn is called discrete if each of its points is isolated.
(Recall that the term isolated was defined in this section.) Show or take for
granted the (perhaps surprising at first) fact that every mapping whose do-
main is discrete must be continuous. Is discreteness a topological property?
That is, need the continuous image of a discrete set be discrete?

2.4.10. A subset A of Rn is called path-connected if for every two points
x, y ∈ A, there is a continuous mapping

γ : [0, 1] −→ A

such that γ(0) = x and γ(1) = y. (This γ is the path that connects x and y.)
Draw a picture to illustrate the definition of a path-connected set. Prove that
path-connectedness is a topological property.
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