Preface

This book came into being as lecture notes for a course at Reed College on
multivariable calculus and analysis. The setting is n-dimensional Euclidean
space, with the material on differentiation culminating in the inverse function
theorem and its consequences, and the material on integration culminating
in the general fundamental theorem of integral calculus (often called Stokes’s
theorem) and some of its consequences in turn. The prerequisite is a proof-
based course in one-variable calculus and analysis. Some familiarity with the
complex number system and complex mappings is occasionally assumed as
well, but the reader can get by without it.

The book’s aim is to use multivariable calculus to teach mathematics as
a blend of reasoning, computing, and problem-solving, doing justice to the
structure, the details, and the scope of the ideas. To this end, I have tried to
write in an informal style that communicates intent early in the discussion of
each topic rather than proceeding coyly from opaque definitions. Also, I have
tried occasionally to speak to the pedagogy of mathematics and its effect on
the process of learning the subject. Most importantly, I have tried to spread
the weight of exposition among figures, formulas, and words. The premise is
that the reader is eager to do mathematics resourcefully by marshaling the
skills of

geometric intuition (the visual cortex being quickly instinctive)

algebraic manipulation (symbol-patterns being precise and robust)

and incisive use of natural language (slogans that encapsulate central ideas
enabling a large-scale grasp of the subject).

Thinking in these ways renders mathematics coherent, inevitable, and fluid.
In my own student days I learned this material from books by Apostol,
Buck, Rudin, and Spivak, books that thrilled me. My debt to those sources
pervades these pages. There are many other fine books on the subject as well,
too many for a short list here to do them justice. Indeed, nothing in these
notes is claimed as new. Whatever effectiveness this exposition has acquired
over time is due to innumerable ideas from my students, and from discussion
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with colleagues, especially Joe Buhler, Paul Garrett, Ray Mayer, and Tom
Wieting. After many years of tuning my presentation of this subject matter
to serve the needs in my classroom, I hope that now this book can serve
other teachers and their students too. I welcome suggestions for improving it,
especially because some of its parts are more tested than others. Comments
and corrections should be sent to jerry@reed.edu.

By way of a warmup, Chapter 1 reviews some ideas from one-variable
calculus, and then covers the one-variable Taylor’s theorem in detail.

Chapters 2 and 3 cover what might be called multivariable precalculus, in-
troducing the requisite algebra, geometry, analysis, and topology of Euclidean
space, and the requisite linear algebra, for the calculus to follow. A pedagogical
theme of these chapters is that mathematical objects can be better understood
from their characterizations than from their constructions. Vector geometry
follows from the intrinsic (coordinate-free) algebraic properties of the vector
inner product, with no reference to the inner product formula. The fact that
passing a closed and bounded subset of Euclidean space through a continuous
mapping gives another such set is clear once such sets are characterized in
terms of sequences. The multiplicativity of the determinant and the fact that
the determinant indicates whether a linear mapping is invertible are conse-
quences of the determinant’s characterizing properties. The geometry of the
cross product follows from its intrinsic algebraic characterization. Further-
more, the only possible formula for the (suitably normalized) inner product,
or for the determinant, or for the cross product, is dictated by the relevant
properties. As far as the theory is concerned, the only role of the formula is
to show that an object with the desired properties exists at all. The intent
here is that the student who is introduced to mathematical objects via their
characterizations will see quickly how the objects work, and that how they
work makes their constructions inevitable.

In the same vein, Chapter 4 characterizes the multivariable derivative as a
well-approximating linear mapping. The chapter then solves some multivari-
able problems that have one-variable counterparts. Specifically, the multivari-
able chain rule helps with change of variable in partial differential equations,
a multivariable analogue of the max/min test helps with optimization, and
the multivariable derivative of a scalar-valued function helps to find tangent
planes and trajectories.

Chapter 5 uses the results of the three chapters preceding it to prove the
inverse function theorem, then the implicit function theorem as a corollary,
and finally the Lagrange multiplier criterion as a consequence of the implicit
function theorem. Lagrange multipliers help with a type of multivariable op-
timization problem that has no one-variable analogue, optimization with con-
straints. For example, given two curves in space, what pair of points—one
on each curve—are closest to each other? Not only does this problem have
six variables (the three coordinates of each point), but furthermore, they are
not fully independent: the first three variables must specify a point on the
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first curve, and similarly for the second three. In this problem, x; through xg
vary though a subset of six-dimensional space, conceptually a two-dimensional
subset (one degree of freedom for each curve) that is bending around in the
ambient six dimensions, and we seek points of this subset where a certain
function of x; through zg is optimized. That is, optimization with constraints
can be viewed as a beginning example of calculus on curved spaces.

For another example, let n be a positive integer, and let ey,...,e, be
positive numbers with e; 4+ - -+ + e, = 1. Maximize the function

flz, .. xn) =2 - apr,  x; >0 for all 4,
subject to the constraint that
eir1+---+e,ry =1,

As in the previous paragraph, since this problem involves one condition on
the variables z; through z,, it can be viewed as optimizing over an (n — 1)-
dimensional space inside n dimensions. The problem may appear unmotivated,
but its solution leads quickly to a generalization of the arithmetic-geometric
mean inequality vab < (a + b)/2 for all nonnegative a and b,

ait---apr <ejpay + -+ epa, for all nonnegative aq, ..., ap.

Moving to integral calculus, Chapter 6 introduces the integral of a scalar-
valued function of many variables, taken over a domain of its inputs. When the
domain is a box, the definitions and the basic results are essentially the same as
for one variable. However, in multivariable calculus we want to integrate over
regions other than boxes, and ensuring that we can do so takes a little work.
After this is done, the chapter proceeds to two main tools for multivariable
integration: Fubini’s theorem and the change of variable theorem. Fubini’s
theorem reduces one n-dimensional integral to n one-dimensional integrals,
and the change of variable theorem replaces one n-dimensional integral with
another that may be easier to evaluate. Using these techniques, one can show,
for example, that the ball of radius r in n dimensions has volume
n/2

T pn=1,2,3,4,....

vol (B, (r)) = WT ,

The meaning of the (n/2)! in the display when n is odd is explained by a
function called the gamma function. The sequence begins

Chapter 7 discusses the fact that continuous functions, or differentiable
functions, or twice-differentiable functions, are well approximated by smooth
functions, meaning functions that can be differentiated endlessly. The approx-
imation technology is an integral called the convolution. One point here is that
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the integral is useful in ways far beyond computing volumes. The second point
is that with approximation by convolution in hand, we feel free to assume in
the sequel that functions are smooth. The reader who is willing to grant this
assumption in any case can skip Chapter 7.

Chapter 8 introduces parametrized curves as a warmup for Chapter 9
to follow. The subject of Chapter 9 is integration over k-dimensional parame-
trized surfaces in n-dimensional space, and parametrized curves are the special
case k = 1. Aside from being one-dimensional surfaces, parametrized curves
are interesting in their own right. Chapter 8 focuses on the local description
of a curve in an intrinsic coordinate system that continually adjusts itself as
it moves along the curve, the Frenet frame.

Chapter 9 presents the integration of differential forms. This subject poses
the pedagogical dilemma that fully describing its structure requires an in-
vestment in machinery untenable for students who are seeing it for the first
time, whereas describing it purely operationally is unmotivated. The approach
here begins with the integration of functions over k-dimensional surfaces in
n-dimensional space, a natural tool to want, with a natural definition suggest-
ing itself. For certain such integrals, called flow and flux integrals, the inte-
grand takes a particularly workable form consisting of sums of determinants
of derivatives. It is easy to see what other integrands—including integrands
suitable for n-dimensional integration in the sense of Chapter 6, and includ-
ing functions in the usual sense—have similar features. These integrands can
be uniformly described in algebraic terms as objects called differential forms.
That is, differential forms assemble the smallest coherent algebraic structure
encompassing the various integrands of interest to us. The fact that differen-
tial forms are algebraic makes them easy to study without thinking directly
about the analysis of integration. The algebra leads to a general version of
the fundamental theorem of integral calculus that is rich in geometry. The
theorem subsumes the three classical vector integration theorems: Green’s
theorem, Stokes’s theorem, and Gauss’s theorem, also called the divergence
theorem.

The following two exercises invite the reader to start engaging with some
of the ideas in this book immediately.

Exercises

0.0.1. (a) Counsider two surfaces in space, each surface having at each of its
points a tangent plane and therefore a normal line, and consider pairs of
points, one on each surface. Conjecture a geometric condition, phrased in
terms of tangent planes and/or normal lines, about the closest pair of points.

(b) Consider a surface in space and a curve in space, the curve having at
each of its points a tangent line and therefore a normal plane, and consider
pairs of points, one on the surface and one on the curve. Make a conjecture
about the closest pair of points.

(¢) Make a conjecture about the closest pair of points on two curves.
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0.0.2. (a) Assume that the factorial of a half-integer makes sense, and grant
the general formula for the volume of a ball in n dimensions. Explain why
it follows that (1/2)! = \/7/2. Further assume that the half-integral factorial
function satisfies the relation

l=x-(zx—1)! forx=3/2,5/2,7/2,....

Subject to these assumptions, verify that the volume of the ball of radius r
in three dimensions is %m"?’ as claimed. What is the volume of the ball of
radius 7 in five dimensions?

(b) The ball of radius r in n dimensions sits inside a circumscribing box
with sides of length 2r. Draw pictures of this configuration for n = 1,2, 3.
Determine what portion of the box is filled by the ball in the limit as the
dimension n gets large. That is, find

lim vol (B, (1)) '

n—o00 (27‘)"
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