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Abstract. Performance enhancement of a teaching-learning basedz optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The
method is termed improved teaching-learning based optimization (ITLBO). The
new algorithm is achieved by modifying the teaching phase of the original
TLBO. The design problem is set to find spool geometry and coiling tension in
order to minimize flatness defects during the coiling process. Having imple-
mented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to
the present state-of-the-art methods.

Keywords: Evolutionary algorithm - Flatness defect - Optimization -+ Strip
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1 Introduction

There are several processing stages during the manufacturing of a coil strip, e.g. roughing,
rolling, cooling, and coiling. Based on the previous investigation by Jung and Im [1, 2],
the final strip shape had non-uniform thickness profiles consisting of N, U, M, and W
shapes. Generally, it is difficult to predict the final shape of the strip due to various related
processing parameters in production facilities. The strip crown, while being coiled, may
include imperfections that were initiated during the rolling process resulting in flatness
imperfection taking place on the coil strip [3, 4].

As a result, the strip is normally welded, cut, and recoiled in the recoiling line so as
to satisfy customer strip flatness requirements. However, although adding the recoiling
line to the process, flatness problems sometimes cannot be avoided especially for the
high-strength coil strip. In order to understand the flatness defect formation mechanism
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during the coiling process, Sims and Place [S] proposed a stress model of the coil
assuming that the coil was an axial-symmetry hollow cylinder. Miller and Thornton [6]
and Sarban [7] introduced a finite element method and a semi-analytical model to
calculate the three-dimensional stress distribution within the coil. Nevertheless, in those
models, they did not consider the physical clearance between each coiled wrap due to
the strip crown as a cause of the axial inhomogeneity. Yanagi et al. [8] proposed an
analytical model by wrapping the thick cylinder (the coil) with the thin-walled cylin-
ders (the new coiling strips) to deal with inhomogeneous deformation of the cold-rolled
thin-strip in the axial direction caused by the clearance and the strip crown. Moreover,
Park et al. [9] studied the effect of processing parameters including a strip crown, a
spool geometry, and coiling tension on the stress distribution on the strip during the
coiling process where the analytical elastic model was used. In this study, it was found
that enhancement of strip flatness of the cold-rolled thin-strip could be accomplished by
suppressing the strip crown and lowering the coiling tension intensity compared to the
measured circumferential strain distribution.

To alleviate the undesirable formation of flatness defects, manufacturing the strip
coil without the strip crown is suggested as the best solution for fulfilling the strip
flatness requirement. Nevertheless, suppressing the strip crown during the rolling
process, as illustrated in Fig. 1, is somewhat difficult or even impossible to carry out
due to many processing parameters involved. Therefore, use of optimization to find the
optimum solution for a spool geometry and coiling tension was conducted [10, 11] in
order to improve the strip flatness during the strip coiling process.

Optimization is a special kind of mathematical problem assigned to search for a
design solution optimizing a predefined objective or merit indicator within a given
feasible region. A numerical optimizer is usually employed to find such a solution. It
can be categorized as an optimization method either with and without using function
derivatives. The former is based on hard computing while the latter is based on a
stochastic process and soft computing. The most popular non-gradient optimizer is an
evolutionary algorithm (EAs) or later known as a meta-heuristic (MH). It has been
implemented on a wide range of engineering applications and has shown several
advantages [12-21]. For metal strip manufacturing, optimization by means of
meta-heuristics has been used most commonly in the rolling process so as to control the
flatness problem, whereas their use in the strip coiling process has been rarely reported
[22-27].

In this study, optimization of flatness of the strips has been enhanced by an
improved teaching-learning based algorithm (ITLBO). This method is compared to
several well established EAs, such as simulated annealing (SA) [16], differential
evolution (DE) [28], artificial bee colony optimization (ABC) [29], real code ant colony
optimization (ACOR) [30], original teaching-learning based optimization (TLBO) [31],
league championship algorithm (LCA) [32], charged system search (ChSS) [33],
Opposition-based Differential Evolution Algorithm (OPDE) [10] and Enhanced
teaching-learning based optimization with differential evolution (ETLBO-DE) [11] to
determine the spool geometry and coiling tension where the objective is to minimize
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the axial inhomogeneity of the stress to improve the flatness of the strip. For function
evaluations, the analytical elastic model proposed by Park et al. [9] similar to the one
suggested by Yanagi et al. [8] was employed.

2 Formulation of the Optimization Design Problem

It is known that wavy edges occur during the strip coiling process, when the cir-
cumferential stress at the middle zone of the strip is highly compressed, while two
edges are under tension or slight compression. Also, if the middle strip zone is under
high tension while the two edges are compressed or slightly stretched, center buckle
can happen [8, 9]. Figures 1(a) and (b) display the circumferential stress () distri-
bution along the z direction within the thin strip, which respectively caused the wavy
edge and center buckle.

Generally, it is impossible to obtain a flat strip after finishing a rolling process. The
strip always has a crown shape. When the strips are being coiled, tension loads need to
be applied, the middle zone (z = 0) of the strip at the inner coil will be considerably
compressed in comparison with the two edges because of the coiling tension and the
strip crown. In such a situation, the center buckle defect at the inner coil will not appear
but the wavy edge defect can possibly occur. As such, the wavy edge defect at the inner
coil is the major problem during the coiling process. Figure 2 depicts the circumfer-
ential stress (gg) distribution in the z direction at the radius (r) of the coil (computed by
the Love’s elastic solution proposed by Park et al. [9]) contributing to wavy edge defect
formation during the strip coiling process. It is possible to reduce the wavy edge defect
by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone [10].

In this paper, optimization using the ITLBO and other well-known and newly
developed EAs will be used to find the optimum solution for the processing parameters
including coiling tension (o) and spool geometry, as illustrated in Fig. 3.

- ~ Strip crown .~ Strip crown

A
Te(2)
‘s 0
T Spool 17— Spool
(a) the wavy edge (b) center buckle

Fig. 1. Circumferential stress distributions for (a) the wavy edge and (b) center buckle,
respectively [8, 9]
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Fig. 2. Circumferential stress distribution (gy) in the coil determined by Love’s elastic solution [9]

To decrease the axial inhomogeneity of the stress distribution and the maximum
compressive stress, minimization of the volume of the circumferential stress and
maximum compressive stress (shown in Fig. 2) is defined as an objective function. In
Fig. 2, the volume can only be computed for the coil, where compressive stresses were
higher than 20 MPa, in order to minimize the zone that is likely to have the wavy edge
defect. The objective function of the optimization problem can then be written as:

L VvV max(ag.)
Minimize o )=+ —- 1
f( barllno—TJ) Vo + max(aeco) ( )
minimize
0 S Up § 4,
0 S ’71; S 47
25 <or; <50 MPa; i=1,.. nmax

’GT,i —or,-1| <2 MPa,

where gg. and V are respectively the compressive circumferential stress higher than
20 MPa (refer to Fig. 2) and the approximate volume of the circumferential stress. ag.
and V, are the respective values for the original design of the process. The o7 is the
coiling tension at coil number i. The coiling tension is normally set to be constant for
all coils [34]. The variable ny, is the maximum number of coils, which has been
assigned to be 220 in this paper. 1, and o, in Eq. (2) are spool crown exponent and the

spool crown height, which were used for defining the spool geometry, as described in
Fig. 3:
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Fig. 3. Spool Geometry used in the present investigation

b(z) = by — o (L'> " 2)

<Zmax

where by (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and
the outer radius of the spool along the z direction, respectively. zm.x = 525 mm is the
width of the spool. The inner radius of the spool (a) in Fig. 3 has been assigned to be
300 mm. The total number of design variables, therefore, is 222 (220 for coiling
tensions and 2 for the spool geometry).

3 Improved Teaching-Learning Based Optimization

From the previous section, the optimization problem can be considered being
large-scale. It has been found [10, 11], that TLBO is suitable for this type of design
problem. The teaching-learning based optimization (TLBO) algorithm is an evolu-
tionary algorithm, or an optimizer without using function derivatives, proposed by Rao
et al. [31]. The concept of TLBO searching mechanism is based on mimicking a
teacher on the output of learners in a classroom. Basically, the learners can improve
their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the
learners, however, only some learners can acquire all things presented by the teacher.
Those who can accept what the teacher taught will improve their knowledge. For the
second stage, which is called the learning phase, the learners can improve their
knowledge during discussion with other learners. Based on the different levels of the
learners’ knowledge, the better learners may transfer knowledge to the inferior learners.

From the view point of optimization, the algorithm starts with a randomly created
initial population, which is a group of design solutions. Learners are identical to design
solutions whereas the best one is considered a teacher. The objective function is
analogous to the knowledge which needs to be improved towards the optimum solu-
tion. Having identified a teacher and other learners for the current iteration, the pop-
ulation will be updated by two stages including “Teacher Phase” and “Learner Phase”.
In the “Teacher Phase”, an individual (x;) will be updated based on the best individual
(Xteacher) and the mean values of all populations (Xpean) as follows:

Xnew,i = Xold.,i + r{xteacher - (TF . Xmean)} (3)
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Where Tk is a teaching factor, which can be either 1 or 2 and r € [0,1] is a uniform
random number.

For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals x; and x; will be chosen
at random, where i # j. The update of the solutions can then be calculated as:

) Xow,i (X —X; if f(xi) <f(X‘)
Xaew,i = {Xold,i +FEXJ' - ijg if f(x)<f (X]t) )

At both teacher and learner phases, the new solution (X,,..,) Will replace its parent if
it has better knowledge or produces better objective function value, otherwise, it will be
rejected. The two phases are sequentially operated until the termination criterion is
fulfilled.

For the improved teaching-learning based optimization (ITLBO), an opposition-
based approach, binary crossover, and the probability of operating the learning phase
are added to the original TLBO to improve the balance of search exploration and
exploitation. Four random numbers including, rand,, rand,, rands, and rand,, have
been used for performing opposition-based approach, binary crossover, and the
learning phase. The main search procedure starts by generating an initial population,
updating the population at the teaching phase and learning phase similarly to the
original TLBO. However, at the teaching phase, the updating can be done by the
following equation;

Xnew,i = Xold,i T (_l)mndlr{xteacher - (TF . Xmean)} (5>

where rand, is a random value with either O or 1. Then, the binary crossover is applied
if a uniform random number having an interval of 0 and 1 (rand,) is lower than the

crossover probability (P,). For a new individual xfew = [Xnew.1> --+» Xnew,p] and an old
individual X7}, = [Xo1q.1, ---» Xola.p), the binary crossover step can be expressed as

follow;

X . Xold j ifrand3<CR1 ]Z 1, . D (6)
newd Xteacher j if CRy <rand;<CR, j=1,...,D

where the rands is a uniform random number generated from O to 1. The CR; and CR,
are the predefined crossover rates, while D is the number of design variables,
respectively. Thereafter, the learning phase is conducted if a uniform random number
generated from O to 1 (randy) is lower than the probability value (L), otherwise, the
learning phase will be skipped. The search process will be repeated until the termi-
nation criterion is satisfied. The computational steps of the proposed algorithm are
shown in Algorithm 1.
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Algorithm 1 An improved TLBO

Input: Maximum iteration number (maxiter), population
size (np), Crossover probability Crossover rate (CRy and
CR»), learning phase probability (Lp).
Output: Xpest, ILpest
Initialization
l.Generate an initial population randomly.
2.Evaluate objective function values
Main algorithm
3.Fori=1 tomaxiter
3.1 Identify the best solution Xteacher)
(Teacher Phase)
For j=1 to np
3.2 Update the population using equation(5)
If rand, < Py
3.2.1 Applied binary crossover using equa-
tion (6)
End
3.2.1Evaluate the objective function value f
(Xnew, §)
322 If fRnew, i) <fXorg,3)

Replace Xo14,5 bY Znew,s
End
End

If rands < ILp

(Learner Phase)

For j=1 to np

3.3 Update the population using equation4)
3.3.1 Evaluate the objective function value
£ (Xnew, 5)
322 If fRnew,i) <f(Xo1d,5)

Replace Xo14,9 by Xnew,;

End

End

End
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4 Numerical Experiments

In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the
previous section. The EAs used in this study are as follows:

— DE [28]: The DE/best/2/bin strategy was used. DE scaling factor was random from
0.25 to 0.7 in each calculation and crossover probability was 0.7.

— SA [16]: An annealing temperature was reduced exponentially by 10 times from the
value of 10 to 0.001 in the optimization searching process. On each loop 2n children
were created by means of mutation to be compared with their parent. Here, n is the
number of design variables.

— ABC [29]: The number of food sources was set to be 3n,,. A trial counter to discard
a food source was 100.

— ACOR [30]: The parameters used for computing the weighting factor and the
standard deviation in the algorithm were set to be £ = 1.0 and g = 0.2, respectively.

— TLBO [31]: Parameter settings are not required.

— LCA [32]: The default parameter settings provided by the authors were used.

— ChSS [33]: The number of solutions in the charge memory was 0.2n,,. Here, nj, is
the population size. The charged moving considering rate and the parameter PAR
were set to be 0.75 and 0.5, respectively.

— OPDE [10]: The DE/best/2/bin strategy was used. DE scaling factor was random
from 0.25 to 0.5 in each calculation and crossover probability used was 0.7.

— ETLBO-DE [11]: Used the DE parameter setting and Latin hypercube sampling
(LHS) technique to generate an initial population.

— ITLBO (Algorithm 1): The P, CR,, CR, and L, were set to be 0.5, 0.33, 0.66 and
0.75, respectively.

Each optimizer was employed to solve the problem for 5 optimization runs. Both
the maximum number of iterations and population size were set to be 100. For the
optimizers using different population sizes, such as simulated annealing, their search
processes were stopped with the total number of function evaluations as 100 x 100.
The optimal results of the various optimizers from using this limited number of
function evaluations were compared. The best optimizer was used to find the optimal
processing parameters of the strip coiling process.

5 Results and Discussion

After applying each optimization algorithm to solve the problem for 5 runs, the results
are given in Table 1. The mean values (Mean) are used to measure the convergence
rate while the standard deviation (STD) determines search consistency. The lower the
mean objective function value the better, and the lower the standard deviation the more
consistent. In the table, max and min stand for the maximum and minimum values of
the objective function, respectively.
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For the measure of convergence speed based on the mean objective value, the best
method is ITLBO while the second best and the third best performers are ETLBO-DE
and OPDE, respectively. The worst results came from ABC. For the measure of search
consistency based on STD, the best was also ITLBO while the worst was ABC, which
was similar to the measure of the search convergence. The second best and the third
best for consistency were ETLBO-DE and ACOR, respectively. The minimum
objective function value was obtained by the ITLBO.

Based on the results obtained, it was clearly indicated that the proposed ITLBO by
adding opposition based method, binary crossover, and learning phase probability can
improve the search performance of the original TLBO for solving the optimization
design problem of the strip coiling process.

The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers
is shown in Fig. 4. The results reveal that the coiling tensions start with the highest
value initially and then decrease when the number of coils increases. After a few series
of coiling, the tension levels become almost constant, converging to the lower bound at
the end of the process. Figure 5 shows the plot of the circumferential stress distribu-
tions along the z and r directions of the original and optimum design solutions in that
order. The comparison of the maximum compressive stresses and the standard devia-
tion of stresses at the inner strip between the original and optimal designs is given in
Table 2. The results show that the optimal processing parameters obtained by the
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause unde-
sirable wavy edge defects during the strip coiling process.

Table 1. Objective function values calculated

Evolutionary algorithms | Mean |STD |Max. |Min.

DE 0.9700 | 0.0275 | 1.0096 | 0.9354
ABC 1.7637 | 0.0787 | 1.8800 | 1.6751
ACOR 1.0621 | 0.0070 | 1.0705 | 1.0546
ChSS 1.4026 | 0.0289 | 1.4448 | 1.3678
LCA 1.7116 | 0.0408 | 1.7580 | 1.6473
SA 1.5451|0.0645 | 1.6323 | 1.4841
TLBO 0.9915|0.0132 | 1.0066 | 0.9766
OPDE 0.953910.0179 | 0.9715 | 0.9297
ETLBO-DE 0.8850 | 0.0047 | 0.8897 | 0.8784
ITLBO 0.8740 | 0.0025 | 0.8783 | 0.8720
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Fig. 4. Coiling tension levels as a function of number of coils
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Fig. 5. Comparison of circumferential stresses along the z and r directions for the original
design and optimal design, respectively

Table 2. Maximum compressive stress and the standard deviation of stresses at the inner coil

Original design | Optimal design
Maximum compressive stress [MPa] | 111.546 68.0270
Standard deviation of stresses 48.375 29.3703

6 Conclusions

The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been pro-
posed. The search performance of the method was compared to various established
evolutionary algorithms. The numerical results show that the new optimizer ITLBO is
the best performer for both convergence rate and consistency. With this, the new
parameters including the spool geometry and the coiling tension distribution have been
obtained and can be used in the real strip coiling process. Further studies will be made
to enhance the mathematical model of the strip coiling process. A self-adaptive version
of ITLBO will be investigated for search performance enhancement.
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