Chapter 2
First-Order Logic

Peter H. Schmitt

2.1 Introduction

The ultimate goal of first-order logic in the context of this book, and this applies
to a great extent also to Computer Science in general, is the formalization of and
reasoning with natural language specifications of systems and programs. This chapter
provides the logical foundations for doing so in three steps. In Section 2.2 basic
first-order logic (FOL) is introduced much in the tradition of Mathematical Logic
as it evolved during the 20th century as a universal theory not tailored towards a
particular application area. Already this section goes beyond what is usually found
in textbooks on logic for computer science in that type hierarchies are included
from the start. In the short Section 2.3 two features will be added to the basic logic,
that did not interest the mathematical logicians very much but are indispensable for
practical reasoning. In Section 2.4 the extended basic logic will be instantiated to
Java first-order logic (JFOL), tailored for the particular task of reasoning about Java
programs. The focus in the present chapter is on statements; programs themselves
and formulas talking about more than one program state at once will enter the scene
in Chapter 3.

2.2 Basic First-Order Logic

2.2.1 Syntax

Definition 2.1. A fype hierarchy is a pair 7 = (TSym,C), where

1. TSym is a set of type symbols;

2. C is areflexive, transitive relation on TSym, called the subtype relation;

3. there are two designated type symbols, the empty type L € TSym and the
universal type T € TSym with L TALC T for all A € TSym.
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We point out that no restrictions are placed on type hierarchies in contrast to other
approaches requiring the existence of unique lower bounds.
Two types A, B in 7 are called incomparable if neither A C B nor B C A.

Definition 2.2. A signature, which is sometimes also called vocabulary, X =
(FSym,PSym, VSym) for a given type hierarchy 7 is made up of

1. a set FSym of typed function symbols,
by f:A; x...xA, — A we declare the argument types of f € FSym to be
A1,...,A, in the given order and its result type to be A,

2. a set PSym of typed predicate symbols,
by p(A1,...,A,) we declare the argument types of p € PSym to be Ay, ...,A, in
the given order,
PSym obligatory contains the binary dedicated symbol =(T,T) for equality.
and the two O-place predicate symbols frue and false.

3. aset VSym of typed variable symbols,
by v : A for v € VSym we declare v to be a variable of type A.

All types A, A; in this definition must be different from L. A 0-ary function symbol
¢: — Ais called a constant symbol of type A. A O-ary predicate symbol p() is called
a propositional variable or propositional atom. We do not allow overloading: The
same symbol may not occur in FSym UPSym U VSym with different typing.

The next two definitions define by mutual induction the syntactic categories of terms
and formulas of typed first-order logic.

Definition 2.3. Let 7 be a type hierarchy, and X a signature for 7. The set Trmy
of terms of type A, for A # 1, is inductively defined by

1. v € Trmy for each variable symbol v : A € VSym of type A.

2. f(t1,...,tn) € Trmy for each f: A} X ... x A, — A € FSym and all terms #; €
Trmp, with B; C A; for 1 <i < n.

3. (if ¢ then #; else ;) € Trmy for ¢ € Fmland; € Trmy, such that A, EA; =A
orA; C Ay =A.

If t € Trmy we say that 7 is of (static) type A and write a(¢) = A.

Note, that item (2) in Definition 3 entails ¢ € Trmy for each constant symbol ¢ : —
A € FSym. Since we do not allow overloading there is for every term only one type
A with ¢t € Trmy. This justifies the use of the function symbol .

Terms of the form defined in item (3) are called conditional terms. They are a
mere convenience. For every formula with conditional terms there is an equivalent
formula without them. More liberal typing rules are possible. The theoretically most
satisfying solution would be to declare the type of (if ¢ then 7, else #,) to be the
least common supertype A; LA, of A; and A;. But, the assumption that A| LIA;
always exists would lead to strange consequences in the program verification setting.

Definition 2.4. The set Fml of formulas of first-order logic for a given type hierar-
chy 7 and signature X is inductively defined as:
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L. p(t1,...,t,) € Fmlfor p(Ay,...,A,) € PSym, and t; € Trmg, with B; T A; for all
1<i<n.
As a consequence of item 2 in Definition 2.2 we know
t) = tp € Fml for arbitrary terms ¢; and true and false are in Fml.

2. (=9), (9AW), (dV V), (¢ — ), (¢ < ) are in Fml for arbitrary ¢, v € Fml.
3. Vv; ¢, Jv; ¢ are in Fml for ¢ € Fmland v: A € VSym.

As an inline footnote we remark that the notation for conditional terms can also be
used for formulas. The conditional formula (if ¢; then ¢, else ¢3) is equivalent to
(01 A 2) V(=1 A @3).

If need arises we will make dependence of these definitions on X and 7 explicit
by writing Trmy y, Fmly or Trmy & 5, Fmlz ». When convenient we will also use
the redundant notation V A v; ¢, 3 A v; ¢ for a variable v: A € VSym.

Formulas built by clause (1) only are called atomic formulas.

Definition 2.5. For terms ¢ and formulas ¢ we define the sets var(t), var(¢) of all
variables occurring in ¢ or ¢ and the sets fv(t), fv(¢) of all variables with at least one
free occurrence in 7 or ¢:

var(v) = {v} flv) = {v} for v € VSym

var(t) = UL var(t;) @) = Ui_ifv(®) fort = f(t1,...,tn)

var(t) = var(¢p)U () = f(e)u fort =
var(tl) Uvar(tz) fv(tl) va(tz) (if ¢ then #; else 1)

@)= Ulpvarts)  pO)=  Ulifvle)  ford =pltr,...ot)

var(=¢) = var(¢) fr(=¢) = f(9)

var(9) = var(p1)Uvar(¢z) f(@) = fu(¢1) Ufv(¢2) for ¢ =¢10¢,

where o is any binary Boolean operation

var(Q v.¢) = var(9) (O v.¢)=var(9)\ {v} where Q € {V,3}

A term without free variables is called a ground term, a formula without free variables
a ground formula or closed formula.

It is an obvious consequence of this definition that every occurrence of a variable
v in a term or formula with empty set of free variables is within the scope of a
quantifier Q v.

One of the most important syntactical manipulations of terms and formulas are
substitutions, that replace variables by terms. They will play a crucial role in proofs
of quantified formulas as well as equations.

Definition 2.6. A substitution 7 is a function that associates with every variable v a
type compatible term 7(v), i.e., if v is of type A then 7(v) is a term of type A’ such
that A’ C A.

We write T = [u; /t1,...,u,/t,] to denote the substitution defined by dom(7) =
{ul, c.. ,u,,} and T(M,') =1.

A substitution 7 is called a ground substitution if T(v) is a ground term for all
v € dom(71).
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We will only encounter substitutions 7 such that 7(v) = v for all but finitely many
variables v. The set {v € VSym | T(v) # v} is called the domain of T. It remains to
make precise how a substitution 7 is applied to terms and formulas.

Definition 2.7. Let 7 be a substitution and ¢ a term, then 7(¢) is recursively defined

by:
1. 7(x) = x if x & dom(7)
2. 7(x) as in the definition of 7 if x € dom(7)
3.1(f(t,. . 0) = f(T(t),..., () if t = f(t1,..., 1)

Let tbea ground substitution and ¢ a formula, then 7(¢) is recursive defined

T(true) = true, t(false) = false

5 T(p (tl, 1)) = p(T(t1), ..., T(t)) if ¢ is the atomic formula p(zy,..., %)

6. t(h = tk) =1(t1) = 1(%)

7. 1(~¢) = ~(9)

8. (g1 0 ¢2) = t(¢1) o T(¢h) for propositional operators o € {A,V,—,«}

9. 7(Qv.¢) = Ov.7,(9) for Q € {3,V} and dom(7,) = dom(7) \ {v} with 7,(x) =
7(x) forx € dom(7,).

There are some easy conclusions from these definitions:

o If 7 € Trmy then 7(¢) is a term of type A’ with A’ C A. Indeed, if # is not a variable
then 7(¢) is again of type A.
* 7(¢) meets the typing restrictions set forth in Definition 2.4.

Item 9 deserves special attention. Substitutions only act on free variables. So, when
computing 7(Qv.¢), the variable v in the body ¢ of the quantified formula is left
untouched. This is effected by removing v from the domain of 7.

It is possible, and quite common, to define also the application of nonground
substitutions to formulas. Care has to be taken in that case to avoid clashes, see
Example 2.8 below. We will only need ground substitutions later on, so we sidestep
this difficulty.

Example 2.8. For the sake of this example we assume that there is a type symbol
int € TSym, function symbols + : int X int — int, * : int X int — int, — : int — int,
exp : int X int — int and constants O : int, 1 : int, 2 : int, in FSym. Definition 2.3
establishes an abstract syntax for terms. In examples we are free to use a concrete,
or pretty-printing syntax. Here we use the familiar notation a + b instead of +(a,b),
axb or ab instead of *(a,b), and a” instead of exp(a,b). Let furthermore x : int,
y : int be variables of sort int. The following table shows the results of applying the
substitution 7; = [x/0,y/1] to the given formulas

o = ((x‘H’) —x2+2xy+y2) T1(91) = ((x+1) = x>+ 2xxx141?)
¢ = (x+y) = x4+ 2xy+y? T1() = (O—|—1) =02 4+2%0%1412
¢ =3 (x>y) T1(¢3) = x; (x> 1)

Application of the nonground substitution 7, = [y/x] on ¢3 leads to Ix; (x > x).
While Jx; (x > y) is true for all assignments to y the substituted formula 7(¢3) is not.
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Validity is preserved if we restrict to clash-free substitutions. A substitution 7 is said
to create a clash with formula ¢ if a variable w in a term 7(v) for v € dom(7) ends
up in the scope of a quantifier Qw in ¢. For 7, the variable x in 7 (y) will end up in
the scope of Vx;

The concept of a substitution also comes in handy to solve the following notational
problem. Let ¢ be a formula that contains somewhere an occurrence of the term ;.
How should we refer to the formula arising from ¢ by replacing #; by #,? E.g. replace
2xy in ¢, by xy2. The solution is to use a new variable z and a formula @y such that
¢ = [z/t1]¢o. Then the replaced formula can be referred to as [z/#2]¢. In the example
we would have ¢ = (x+y)? = x? +z+y2. This trick will be extensively used in
Figure 2.1 and 2.2.

2.2.2 Calculus

The main reason nowadays for introducing a formal, machine readable syntax for
formulas, as we did in the previous subsection, is to get machine support for logical
reasoning. For this, one needs first a suitable calculus and then an efficient implemen-
tation. In this subsection we present the rules for basic first-order logic. A machine
readable representation of these rules will be covered in Chapter 4. Chapter 15
provides an unhurried introduction on using the KeY theorem prover based on these
rules that can be read without prerequisites. So the reader may want to step through
it before continuing here.

The calculus of our choice is the sequent calculus. The basic data that is ma-
nipulated by the rules of the sequent calculus are sequents. These are of the form
Oy...,0n = Y1,..., Wy. The formulas ¢,..., 9, at the left-hand side of the se-
quent separator = are the antecedents of the sequent; the formulas y1,..., ¥, on
the right are the succedents. In our version of the calculus antecedent and succe-
dent are sets of formulas, i.e., the order and multiple occurrences are not relevant.
Furthermore, we will assume that all ¢; and y; are ground formulas. A sequent
O1,...,0p = W1,..., Yy, is valid iff the formula \7_; ¢; — V’l":j y; is valid.

The concept of sequent calculi was introduce by the German logician Gerhard
Gentzen in the 1930s, though for a very different purpose.

Figures 2.1 and 2.2 show the usual set of rules of the sequent calculus with equality
as it can be found in many text books, e.g. [Gallier, 1987, Section 5.4]. Rules are

written in the form

P.,...P,
ruleName —————

The P, is called the premisses and C the conclusion of the rule. There is no theoretical
limit on n, but most of the time n = 1, sometimes n = 2, and in rare cases n = 3. Note,
that premiss and conclusion contain the schematic variables I", A for set of formulas,
v, ¢ for formulas and ¢, ¢ for terms and constants. We use I', ¢ and y, A to stand for
I'u{¢} and {y} UA. An instance of a rule is obtained by consistently replacing the
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r¢y=—A4 . I'=¢,A TI'=vyA
andLeft ————— andRight
I' = A I''¢=A I'y=A
orRight L=ovd orLeft 12 A4
F:>¢\/I[/,A F7¢VW:>A
I ¢o— ,A I — 7A F7 — A
impRight Loe=va_ impLeft ¢ A4
I'=¢—vyA r¢g—yv=—aAa
I'=¢,A ) r¢=A
notLeft — notRight ————
r-¢=—A I — —9,A
r 1(9),A I'\Vx; ¢, [x/t A
allRight M allLeft ) VX (p [X/ }((p) -

I =Vx;9,A '\vx;0 = A
with ¢ : — A a new constant, if x:A  with t € Trmy/ ground, A’ C A, if x:A

F,[x/c](q)):>A F:>EIX;¢7[X/[](¢)7A
'3 = A I' = 3x;9,A
with ¢ : — A a new constant, if x:A  with t € Trmy/ ground, A’ C A, if x:A

exLeft

exRight

k
close ————
I'¢=¢,A

closeFalse closeTrue

I' false = A I' = true, A

Figure 2.1 First-order rules for the logic FOL

schematic variables in premiss and conclusion by the corresponding entities: sets
of formulas, formulas, etc. Rule application in KeY proceeds from bottom to top.
Suppose we want to prove a sequent s;. We look for a rule R such that there is an
instantiation Inst of the schematic variables in R such that the instantiation of its
conclusion Inst(S) equals s;. After rule application we are left with the task to prove
the sequent Inst(S1). If S} is empty, we succeeded.

Definition 2.9. The rules close, closeFalse, and close True from Figure 2.1 are called
closing rules since their premisses are empty.

Since there are rules with more than one premiss the proof process sketched above
will result in a proof tree.

Definition 2.10. A proof tree is a tree, shown with the root at the bottom, such that

1. each node is labeled with a sequent or the symbol x,

2. if an inner node n is annotated with I' = A then there is an instance of a rule
whose conclusion is I’ = A and the child node, or children nodes of n are
labeled with the premiss or premisses of the rule instance.

A branch in a proof tree is called closed if its leaf is labeled by *. A proof tree is
called closed if all its branches are closed, or equivalently if all its leaves are labeled
with *.
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We say that a sequent I" == A can be derived if there is a closed proof tree whose
root is labeled by I’ = A.

As a first simple example, we will derive the sequent = p A g — g A p. The
same formula is also used in the explanation of the KeY prover in Chapter 15. As its
antecedent is empty, this sequent says that the propositional formula pAg — gA p is
a tautology. Application of the rule impRight reduces our proof goal to pAg=-gAp
and application of andLeft further to p,g => g A p. Application of andRight splits
the proof into the two goals p,g = ¢ and p,q = p. Both goals can be discharged
by an application of the close rule. The whole proof can concisely be summarized as

atree
* *

P:q=q P:q==p
P,q==>qNp
PANG==qNAp

= pAq—qAp

Let us look at an example derivation involving quantifiers. If you are puzzled
by the use of substitutions [x/¢] in the formulations of the rules you should refer
back to Example 2.8. We assume that p(A,A) is a binary predicate symbol with
both arguments of type A. Here is the, nonbranching, proof tree for the formula
Fv;Vw; p(v,w) — Yw; v, p(v,w):

*
Vw; p(c,w), p(c,d) = p(c,d),3v; p(v,d)
Yw; p(c,w) = Fv; p(v,d)

)

Av;Yw; p(v,w) = Yw; Iv; p(v,w)

= Jv;Vw; p(v,w) — Yw; Iv; p(v,w)

The derivation starts, from bottom to top, with the rule impRight. The next line above
is obtained by applying exLeft and allRight. This introduces new constant symbols
c:— A and d :— A. The top line is obtained by the rules exRight and allLeft with the
ground substitutions [w/d] and [v/c]. The proof terminates by an application of close
resulting in an empty proof obligation. An application of the rules exLeft, allRight is
often called Skolemization and the new constant symbols called Skolem constants.

The rules involving equality are shown in Figure 2.2. The rules eqleft and eqRight
formalize the intuitive application of equations: if #; = #, is known, we may replace
wherever we want #; by #,. In typed logic the formula after substitution might not
be well-typed. Here is an example for the rule eqleft without restriction. Consider
two types A # B with B C A, two constant symbols a: — A and b: — B, and a
unary predicate p(B). Applying unrestricted eqlLeft on the sequent b = a, p(b) =
would result in b = a, p(b), p(a) =>. There is in a sense logically nothing wrong
with this, but p(a) is not well-typed. This motivates the provisions in the rules eqLeft
and eqRight.
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=1, [2/0](9), [z/0](¢9) = A
Iin=n,lz/n](¢) = A
provided [z/%2](¢) is well-typed
=0 = [z/b](9),[z/n](¢),4
't =n=[z/t](¢),A
provided [z/12](¢) is well-typed

r
eqleft

. r
eqRight

I'th=t,—= A I't=t=A
eqSymmlLeft ————— eqReflLeft ————
I''ti=th=—=A I'—=A

Figure 2.2 Equality rules for the logic FOL

Let us consider a short example of equational reasoning involving the function
symbol + : int X int — int.

7 *
6 (a+(b+c))+d)=a+((b+c)+d),vx,y,z; (x+y)+z=x+(y+2))
(b+c)+d=b+(c+d),a+(b+c))+d)=a+(b+(c+d)) =
(a+(b+c))+d)=a+(b+(c+d))

5(a+(b+c))+d)=a+((b+c)+d),Yx,y,z((x+y)+z=x+(y+2))
(b+c)+d=b+(c+d) =
(a+(b+c))+d)=a+ (b+(c+d))

4 (a+b+c))+d)=a+((b+c)+d),v%,y,z((x+y)+z=x+(y+2)) =
(a+(b+c))+d)=a+ (b+(c+d))

3V, y,z((x+y)+z=x+(+z) = (a+(b+c))+d=a+ (b+(c+d))

2V, y,z((x+y)+z=x+(y+2)) =
Va,y,z,u; (x4 (v +2)) +u) =x+ (v + (z+u)))

1l =V, ((x+y)+z=x+(+2) —
Vx,y,z,u; (x4 (v +2)) +u) =x+ (v + (z+u)))

Line 1 states the proof goal, a consequence from the associativity of +. Line 2 is ob-
tained by an application of impRight while line 3 results from a four-fold application
of allRight introducing the new constant symbol a, b, ¢, d for the universally quanti-
fied variables x, y, z, u, respectively. Line 4 in turn is arrived at by an application of
allLeft with the substitution [x/a,y/(b+c),z/d]. Note, that the universally quantified
formula does not disappear. In Line 5 another application of allLeft, but this time
with the substitution [x/b,y/c,z/d], adds the equation (b+c)+d = b+ (c+d) to the
antecedent. Now, eqleft is applicable, replacing on the left-hand side of the sequent
the term (b+c¢)+din (a+b)+ (c+d) =a+ (b+ (c+d)) by the right-hand side
of the equation (b+c¢) +d = b+ (¢ +d). This results in the same equation as in the
succedent. Rule close can thus be applied.
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Already this small example reveals the technical complexity of equational reason-
ing. Whenever the terms involved in equational reasoning are of a special type one
would prefer to use decision procedures for the relevant specialized theories, e.g., for
integer arithmetic or the theory of arrays.

We will see in the next section, culminating in Theorem 2.20, that the rules from
Figures 2.1 and 2.2 are sufficient with respect to the semantics to be introduced in that
section. But, it would be very inefficient to base proofs only on these first principles.
The KeY system contains many derived rules to speed up the proof process. Let us
just look at one randomly chosen example:

I' =b,A I' = c,A I'd= A
''b—(c—d)y=A

doublelmplLeft

It is easy to see that doublelmpLeft can be derived.
There is one more additional rule that we should not fail to mention:
I'=¢,A I'¢=—A

I'=A
provided ¢ is a ground formula

cut

On the basis of the notLeft rule this is equivalent to

9= A I'¢=A
I'=A
provided ¢ is a ground formula

cut

It becomes apparent that the cut rule allows at any node in the proof tree proceeding
by a case distinction. This is the favorite rule for user interaction. The system might
not find a proof for ' = A automatically, but for a cleverly chosen ¢ automatic
proofs for both I',¢ = A and I' = ¢, A might be possible.

2.2.3 Semantics

So far we trusted that the logical rules contained in Figures 2.1 and 2.2 are self-
evident. In this section we provide further support that the rules and the deduction
system as a whole are sound, in particular no contradiction can be derived. So far
we also had only empirical evidence that the rules are sufficient. The semantical
approach presented in this section will open up the possibility to rigorously prove
completeness.

Definition 2.11. A universe or domain for a given type hierarchy .7 and signature X
consists of

1. asetD,
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2. a typing function 6 : D — TSym \ { L} such that for every A € TSym the set
D" ={d €D|5(d) C A} is not empty.

The set D" = {d € D | §(d) C A} is called the type universe or type domain for A.
Definition 2.11 implies that for different types A, B € TSym\ {_L} there is an element
o € DA N DA only if there exists C € TSym, C # | with C C A and C C B.

Lemma 2.12. The type domains for a universe (D, 8) share the following properties

1.D*=0,D" =D,
2.DACDBIfACB,
3. D€ = DAN DB in case the greatest lower bound C of A and B exists.

Definition 2.13. A first-order structure .# for a given type hierarchy 7 and signa-
ture X consists of

* a domain (D, d),
* an interpretation /

such that

1. I(f) is a function from DA1 x --- x DA into DA for f : A} X ... x A, — A in
FSym,

2. I(p) is a subset of DAt x --- x D4 for p(Ay,...,A,) in PSym,

3.1(=)={(d.,d) |d € D}.

For constant symbols ¢ : — A € FSym requirement (1) reduces to I(c) € D*. It has
become customary to interpret an empty product as the set {0}, where 0 is deemed
to stand for the empty tuple. Thus requirement (2) reduces for n =0 to I(p) C {0}.
Only if need arises, we will say more precisely that .# is a 7 -X-structure.

Definition 2.14. Let .# be a first-order structure with universe D.

A variable assignment is a function B : VSym — D such that B(v) € D for
v:A € VSym.

For a variable assignment 3, a variable v : A € VSym and a domain element
d € D”, the following definition of a modified assignment will be needed later on:

don_ Jd o ifVv =v
ﬁv(v)_{ﬁ(v/)ifvl?év

The next two definitions define the evaluation of terms and formulas with respect
to a structure .# = (D, §,1) for given type hierarchy 7, signature X, and variable
assignment § by mutual recursion.

Definition 2.15. For every term ¢ € Trmy, we define its evaluation val () induc-
tively by:

e val 45(v) = B(v) for any variable v.
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*val 4p (f(t1,...,ty)) = I(f)(valy//ﬁ(tl)w..,Valk//’ﬁ(tn)).

« val 5 (if ¢ then 1, else 1) = {zijﬁ Egg ﬁ Eﬁg; LZ i

Definition 2.16. For every formula ¢ € Fml, we define when ¢ is considered to be
true with respect to .# and 3, which is denoted with (.#, B) = ¢, by:

L (A, B) & true, (A B) |~ false
2(AB) = ptr,... 1) iff (val zp(11),...,val 4p5(tn)) € 1(p)
3(AB)E—9 iff (A,B) ¢
4(AMB) E ¢ Ao iff (4 B) = ¢ and (A, B) = ¢
S5(AB)EV iff (A B) E ¢ or (AB) = ¢
6 (AB)Eo— ¢ iff (AB)FE¢or(AB) = d
T(AB)E ¢ ¢ iff (AB)F ¢1and (AB) = ¢2) or
iff ((4,B) # ¢1 and (A, B) = ¢2)
8 (MB)=YAv,  iff (A, ;’)|=¢fora11deDA
9 (MB)ETAv;¢  iff (A BY) = ¢ for at least one d € DA

For a 0-place predicate symbol p, clause (2) says .# = p iff @ € I(p). Thus the
interpretation / acts in this case as an assignment of truth values to p. This explains
why we have called O-place predicate symbols propositional atoms.

Given the restriction on /(=) in Definition 2.13, clause (2) also says (%, 3) =
1 =1 iff valV//_ﬁ (1) = valy,,_ﬁ ().

For a set @ of formulas, we use (.#, ) = & to mean (4, ) = ¢ forall ¢ € P.

If ¢ is a formula without free variables, we may write .# |= ¢ since the variable
assignment f is not relevant here.

To prepare the ground for the next definition we explain the concept of extensions
between type hierarchies.

Definition 2.17. A type hierarchy % = (TSym,,C5) is an extension of a type hier-
archy 7; = (TSym;,C), in symbols .7} C %, if

1. TSym; € TSym,
2. [, is the smallest subtype relation containing =; UA where A is a set of pairs
(S,T) with T € TSym,; and S € TSym, \ TSym,.

So, new types can only be declared to be subtypes of old types, never supertypes.
Also, 1. Ty AT, T for all new types A.

Definition 2.17 forbids the introduction of subtype chains like A C B C T into the
type hierarchy. However, it can be shown that relaxing the definition in that respect
results in an equivalent notion of logical consequence. We keep the restriction here
since it simplifies reasoning about type hierarchy extensions.

For later reference, we note the following lemma.

Lemma 2.18. Let 95 = (TSym,, Cy) be an extension of 71 = (TSym,,Cy) with T,
the smallest subtype relation containing T U A, for some A C (TSym, \ TSym,) x
TSym,.

Then, for A,B € TSym,, C € TSym, \ TSym|, D € TSym,
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1.LAGBiffAC B
2.CCLAif T C) A for some (C,T) € A.
3. DG, CiffD=CorD=1

Proof. This follows easily from the fact that no supertype relations of the form
A [, C for new type symbols C are stipulated. 0O

Definition 2.19. Let 7 be a type hierarchy and X a signature, ¢ € Fmlz 5 a formula
without free variables, and @ C Fml 7 5 a set of formulas without free variables.

1. ¢ is a logical consequence of @, in symbols @ = ¢, if for all type hierarchies
' with 7 C 7’ and all F'-Z-structures .# such that .# |= ®, also A |= ¢
holds.

2. ¢ is universally valid if it is a logical consequence of the empty set, i.e., if @ = ¢.

3. ¢ is satisfiable if there is a type hierarchy .7/, with .7 € .7’ and a .7”'-X-structure
M with A = ¢.

The extension of Definition 2.19 to formulas with free variables is conceptually not
difficult but technically a bit involved. The present definition covers however all we
need in this book.

The central concept is universal validity since, for finite @, it can easily be seen
that:

* @ = ¢ iff the formula A\ @ — ¢ is universally valid.
* ¢ is satisfiable iff —¢ is not universally valid.

The notion of logical consequence from Definition 2.19 is sometimes called super
logical consequence to distinguish it from the concept @ =5 5 ¢ denoting that for
any 7 -X-structure ./ with .4 |= & also .4 = ¢ is true.

To see the difference, let the type hierarchy .7 contain types A and B such that
the greatest lower bound of A and B is L. For the formula ¢; =V A x; (¥ By; (x £ y))
we have |= 7 ¢;. Let 7 be the type hierarchy extending .77 by a new type D and the
ordering D C A, D C B. Now, |= 7, ¢1 does no longer hold true.

The phenomenon that the tautology property of a formula ¢ depends on symbols
that do not occur in ¢ is highly undesirable. This is avoided by using the logical
consequence defined as above. In this case we have [~ ¢;.

Theorem 2.20 (Soundness and Completeness Theorem). Let 7 be a type hierar-
chy and X a signature, ¢ € Fmlgy 5 without free variables. The calculus for FOL is
given by the rules in Figures 2.1 and 2.2. Assume that for every type A € T there is
a constant symbol of type A’ with A’ C A.

Then:

* ifthere is a closed proof tree in FOL for the sequent = @ then ¢ is universally
valid
i.e., FOL is sound.

* if ¢ is universally valid then there is a closed proof tree for the sequent —> ¢
in FOL.
i.e., FOL is complete.
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For the untyped calculus a proof of the sound- and completeness theorem may be
found in any decent text book, e.g. [Gallier, 1987, Section 5.6]. Giese [2005] covers
the typed version in a setting with additional cast functions and type predicates. His
proof does not consider super logical consequence and requires that type hierarchies
are lower-semi-lattices.

Concerning the constraint placed on the signature in Theorem 2.20, the calculus
implemented in the KeY system takes a slightly different but equivalent approach:
instead of requiring the existence of sufficient constants, it allows one to derive via
the rule ex_unused, for every A € Z the formula Jx(x = x), with x a variable of
type A.

Definition 2.21. A rule

It = A I = A
I'—=A

of a sequent calculus is called

* sound if whenever I} = A and I;, = A; are universally valid so is ' = A.
* complete if whenever I' = A is universally valid then also I1 = A and
I; = A; are universally valid.

For nonbranching rules and rules with side conditions the obvious modifications have
to be made.

An inspection of the proof of Theorem 2.20 shows that if all rules of a calculus
are sound then the calculus itself is sound. This is again stated as Lemma 4.7 in
Section 4.4 devoted to the soundness management of the KeY system. In the case of
soundness also the reverse implication is true: if a calculus is sound then all its rules
will be sound.

The inspection of the proof of Theorem 2.20 also shows that the calculus is
complete if all its rules are complete. This criterion is however not necessary, a
complete calculus may contain rules that are not complete.

2.3 Extended First-Order Logic

In this section we extend the Basic First-Order Logic from Section 2.2. First we turn
our attention in Subsection 2.3.1 to an additional term building construct: variable
binders. They do not increase the expressive power of the logic, but are extremely
handy.

An issue that comes up in almost any practical use of logic, are partial functions.
In the KeY system, partial functions are treated via underspecification as explained
in Subsection 2.3.2. In essence this amounts to replacing a partial function by all its
extensions to total functions.
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2.3.1 Variable Binders

This subsection assumes that the type int of mathematical integers, the type LocSet
of sets of locations, and the type Seq of finite sequences are present in TSym. For
the logic JFOL to be presented in Subsection 2.4 this will be obligatory.

A typical example of a variable binder symbol is the sum operator, as in X, k2.
Variable binders are related to quantifiers in that they bind a variable. The KeY system
does not provide a generic mechanism to include new binder symbols. Instead we
list the binder symbols included at the moment.

A more general account of binder symbols is contained in the doctoral thesis
[Ulbrich, 2013, Subsection 2.3.1]. Binder symbols do not increase the expressive
power of first-order logic: for any formula ¢, containing binder symbols there is a
formula ¢ without such that ¢y, is universally valid if and only if ¢ is, see [Ulbrich,
2013, Theorem 2.4]. This is the reason why one does not find binder symbols other
than quantifiers in traditional first-order logic text books.

Definition 2.22 (extends Definition 2.3).

4. If vi is a variable of type int, bo, b1 are terms of type int not containing vi and s

is an arbitrary term in Trmyy,, then bsum{vi}(bo,by,s) is in Trm;,;.
5. If vi is a variable of type int, by, by are terms of type int not containing vi and s

is an arbitrary term in Trm;,,, then bprod{vi}(by,b1,s) is in Trmy,;.
6. If vi is a variable of arbitrary type and s a term of type LocSet,

then infiniteUnion{vi}(s) is in Trmypcser-
7. If vi is a variable of type int, by, b are terms of type int not containing vi and s

is an arbitrary term in Trmg,,, then seqDef{vi}(bo,by,s) is in Trmg,,.

It is instructive to observe the role of the quantified variable vi in the following syntax
definition:

Definition 2.23 (extends Definition 2.5). If ¢ is one of the terms bsum{vi}(bo,b1,s),
bprod{vi}(bo,b1,s), infiniteUnion{vi}(s), and seqDef {vi}(bo,b;,s) we have

var(t) = var(bo) Uvar(by) Uvar(s) and fuv(r) = var(t) \ {vi} .

We trust that the following remarks will suffice to clarify the semantic meaning of the
first two symbols introduced in Definition 2.22. In mathematical notation one would
write Xy <yicp, Svi for bsum{vi}(bo,b1,s) and Il <yi<p, svi for bprod{vi}(bo,by,s).
For the corner case by < by we stipulate Xy, <,i<p, svi = 0 and Iy <yicp, Svi = 1. The
name bsum stands for bounded sum to emphasize that infinite sums are not covered.
The proof rules for bsum and bprod are the obvious recursive definitions plus the
stipulation for the corner cases which we forgo to reproduce here.

For an integer variable vi the term infiniteUnion{vi}(s) would read in mathemati-
cal notation |J_.,.,;<. 5, and analogously for variables vi of type other than integer.
The precise semantics is part of Figure 2.11 in Section 2.4.4 below.

The semantics of segDef {vi}(bg,b1,s) will be given in Definition 5.2 on page 151.
But, it makes an interesting additional example of a binder symbol. The term
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seqDef{vi}(bo,b1,s) is to stand for the finite sequence (s(by),s(bo+ 1),...,s(b; —
1)). For by < by the result is the empty sequence, i.e., seqgDef{vi}(bo,b1,s) = ().
The proof rules related to seqDef are discussed in Chapter 5.

2.3.2 Undefinedness

In KeY all functions are total. There are two ways to interpret a function symbol f in
a structure .# at an argument position a outside its intended range of definition:

1. The value of the function val 4 (f) at position d is set to a default within the
intended range of f. E.g., bsum{vi}(1,0,s) evaluates to O (regardless of s).

2. The value of the function val_,(f) at position a is set to an arbitrary value b
within the intended range of f. For different structures different b are chosen.
When we talk about universal validity, i.e., truth in all structures, we assume that
for every possible choice of b there is a structure .2}, such that val_4, (f)(a) = b.
The prime example for this method, called underspecification, is division by 0
such that, e.g., é is an arbitrary integer.

Another frequently used way to deal with undefinedness is to choose an error element
that is different from all defined values of the function. We do not do this. The
advantage of underspecification is that no changes to the logic are required. But, one
has to know what is happening. In the setting of underspecification we can prove
3 (% = {) for an integer variable i. However, we cannot prove % = %. Also the
formula cast;,(¢) =5 — ¢ = 5 is not universally valid. In case c¢ is not of type int
the underspecified value for cast;,(c) could be 5 for ¢ # 5.

The underspecification method gives no warning when undefined values are used
in the verification process. The KeY system offers a well-definedness check for JML
contracts, details are described in Section 8.3.3.

2.4 First-Order Logic for Java

As already indicated in the introduction of this chapter, Java first-order logic (JFOL)
will be an instantiation of the extended classical first-order logic from Subsection 2.3
tailored towards the verification of Java programs. The precise type hierarchy 7
and signature X will of course depend on the program and the statements to be
proved about it. But we can identify a basic vocabulary that will be useful to have
in almost every case. Figure 2.3 shows the type hierarchy .7; that we require to be
at least contained in the type hierarchy .7 of any instance of JFOL. The mandatory
function and predicate symbols X; are shown in Figure 2.4. Data types are essential
for formalizing nontrival program properties. The data types of the integers and the
theory of arrays are considered so elementary that they are already included here.
More precisely what is covered here are the mathematical integers. There are of
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course also Java integers types. Those and their relation to the mathematical integers
are covered in Section 5.4 on page 161. Also the special data type LocSet of sets of
memory locations will already be covered here. Why it is essential for the verification
of Java programs will become apparent in Chapters 8 and 9. The data type of Seq of
finite sequences however will extensively be treated later in Section 5.2.

2.4.1 Type Hierarchy and Signature

The mandatory type hierarchy 7} for JFOL is shown in Figure 2.3. Between Object
and Null the class and interface types from the Java code to be investigated will
appear. In the future there might be additional data types at the level immediately
below Any besides boolean, int, LocSet and Seq, e.g., maps.

/ A \ - .

boolean int Object LocSet Seq

/N

class types
from Java code,

Figure 2.3 The mandatory type hierarchy 7 of JFOL

The mandatory vocabulary X; of JFOL is shown in Figure 2.4 using the same
notation as in Definition 2.2. In the subsections to follow we will first present the
axioms that govern these data types one by one and conclude with their model-
theoretic semantics in Subsection 2.4.5.

As mentioned above, in the verification of a specific Java program the signature
X~ may be a strict superset of X;. To mention just one example: for every model
field m of type T contained in the specification of a Java class C an new symbol
fm :Heap x C — T is introduced. We will in Definition 9.7 establish the terminology
that function symbols with at least one, usually the first, argument of type Heap are
called observer function symbols.
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int and boolean  all function and predicate symbols for int, e.g., +,*,<,...
boolean constants TRUE, FALSE
Java types null : Null
length : Object — int
casty : Object — A for any A in J with L C A C Object.
instance, : Any — boolean for any type A C Any
exactlnstance, : Any — boolean for any type A C Any
Field created : Field
arr : int — Field
f : Field for every Java field f
Heap selecty : Heap x Object x Field — A for any type A C Any
store : Heap x Object x Field x Any — Heap
create : Heap x Object — Heap
anon : Heap x LocSet x Heap — Heap
wellFormed(Heap)
LocSet €(Object, Field, LocSet)
empty,allLocs : LocSet
singleton : Object x Field — LocSet
subset(LocSet,LocSet)
disjoint(LocSet, LocSet)
union, intersect, setMinus : LocSet X LocSet — LocSet
allFields : Object — LocSet, allObjects : Field — LocSet
arrayRange : Object X int X int — LocSet
unusedLocs : Heap — LocSet

Figure 2.4 The mandatory vocabulary X; of JFOL

2.4.2 Axioms for Integers

polySimp_addCommO0 k+i=i+k add_zero_right i+0=i
polySimp_addAssoc  (i+j)+k=i+ (j+k) add_sub_elim_right i+ (—i) =0
polySimp_elimOne  ix1 =i mul_distribute_4  ix(j+k)=(ixj)+ (ixk)
mul_assoc (i*j)xk=1ix(j*k) mul_comm JRi=ixj

less_trans I<jANj<k—i<k less_is_total_heu i< jVi=jVj<i
less_is_alternative_1 —(i < jAj<i) less_literals 0<1

add_less i<j—i+k<j+k multiply_inEq I<jJANO<k—ixk<jxk

I'=¢(0),A I'=Vn;(0<nA$p(n)—¢(n+1)),A

int_induction
I' = Vn;(0<n— ¢(n)),A

Figure 2.5 Integer axioms and rules

Figure 2.5 shows the axioms for the integers with +, * and <. Occasionally we
use the additional symbol < which is, as usual, defined by x <y < (x <yVx=y).
The implication multiply_inEq does in truth not occur among the KeY taclets. Instead
multiply_inEq0 i < jAO <k — ixk < j*kis included. But, multiply_inEq can be
derived from , multiply_inEqO although by a rather lengthy proof (65 steps) based
on a normal form transformation. The reverse implication is trivially true.
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Figure 2.5 also lists in front of each axiom the name of the taclet that implements
it. The KeY system not only implements the shown axioms but many useful conse-
quences and defining axioms for further operations such as those related to integer
division and the modulo function. How the various integer data types of the Java
language are handled in the KeY system is explained in Section 5.4.

Incompleteness

Mathematically the integers (Z,+,*,0, 1, <) are a commutative ordered ring
satisfying the well-foundedness property: every nonempty subset of the positive
integers has a least element. Well-foundedness is a second-order property. It is
approximated by the first-order induction schema, which can be interpreted to say
that every nonempty definable subset of the positive integers has a least element.
The examples known so far of properties of the integers that can be proved in
second-order logic but not in its first-order approximation, see e.g. [Kirby and
Paris, 1982] are still so arcane that we need not worry about this imperfection.

2.4.3 Axioms for Heap

The state of a Java program is determined by the values of the local variables and
the heap. A heap assigns to every pair consisting of an object and a field declared
for this object an appropriate value. As a first step to model heaps, we require that
a type Field be present in JFOL. This type is required to contain the field constant
created and the fields arr(i) for array access for natural numbers 0 < i. In a specific
verification context there will be constants f for every field f occurring in the Java
program under verification. There is no assumption, however, that these are the only
elements in Field; on the contrary, it is completely open which other field elements
may occur. This feature is helpful for modular verification: when the contracts for
methods in a Java class are verified, they remain true when new fields are added.
The data type Heap allows us to represent more functions than can possibly occur as
heaps in states reachable by a Java program:

1. Values may be stored for arbitrary pairs (o, f) of objects o and fields f regardless
of the question if f is declared in the class of o.

2. The value stored for a pair (o, f) need not match the type of f.

3. A heap may assign values for infinitely many objects and fields.

On one hand our heap model allows for heaps that we will never need, on the
other hand this generality makes the model simpler. Relaxation 2 in the above list
is necessary since JFOL does not use dependent types. To compensate for this
shortcoming there has to be a family of observer functions selects, where A ranges
over all subtypes of Any.
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The axiomatization of the data type Heap, shown in Figure 2.6, follows the pattern
well known from the theory of arrays. The standard reference is [McCarthy, 1962].
There are some changes however. One would expect the following rule
selecta(store(h, 0, f,x),02, f2) ~if 0 =02 A\ f = f2 then x else selects(h,02, f2).
Since the type of x need not be A this easily leads to an ill-typed formula. Thus
we need casta(x) in place of x. In addition the implicit field created gets special
treatment. The value of this field should not be manipulated by the store function. This
explains the additional conjunct fcreated in the axiom. The rule selectOfStore as
it is shown below implies selecta (store(h, o0, created,x),02, f2) = selecta(h,02, f2).
Assuming extensionality of heaps this entails store(h, o, created,x) = h. The created
field of a heap can only be changed by the create function as detailed by the rule
selectOfCreate. This ensures that the value of the created field can never be changed
from TRUE to FALSE. Note also, that the object null is considered to be created from
the start, so it can be excepted from rule selectOfCreate.

selectOfStore  selecty(store(h,o, f,x),02, f2) ~
if 0= 02 A f = f2A f#created then casts(x) else selecty(h,02, f2)

selectOfCreate selects(create(h,0),02, f) ~
if 0 = 02 Ao#null A f = created then casty(TRUE) else selecta(h,02, f)

selectOfAnon  selecty(anon(h,s,h'),0, f) ~
if(e(0, f,5) A f#created) V €(o, f,unusedLocs(h))
then selects (I ,0, f) else selecta(h, o, f)

with the typing 0,01,02 : Object, f, f2 : Field,h,h' : Heap,s : LocSet

Figure 2.6 Rules for the theory of arrays.

There is another operator, named anon(h,s,k’), that returns a Heap object. Its
meaning is described by the rule selectOfAnon in Figure 2.6: at locations (o, f) in
the location set s the resulting heap coincides with /' under the proviso f+created,
otherwise it coincides with 4. To get an idea when this operator is useful imaging
that £ is the heap reached at the beginning of a while loop that at most changes
locations in a location set s and that /’ is a totally unknown heap. Then anon(h, s, h)
represents a heap reached after an unknown number of loop iterations. This heap may
have more created objects than the initial heap 4. Since location sets are not allowed
to contain locations with not created objects, see onlyCreatedObjectsArelnLocSets
in Figure 2.7, this has to be added as an addition case in rule selectOfAnon. This
application scenario also accounts for the name which is short for anonymize.

A patiently explained example for the use of store and select functions can be
found in Subsection 15.2.3 on page 526. While SMT solvers can handle expressions
containing many occurrences of store and select quite efficiently, they are a pain in
the neck for the human reader. The KeY interface therefore presents those expressions
in a pretty printed version, see explanations in Section 16.2 on page 544.
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The taclets in Figure 2.6 are called rewriting taclets. We use the ~~ notation
to distinguish them from the other sequent rules as, e.g., in Figures 2.1 and 2.2. A
rewriting rule s ~~ ¢ is shorthand for a sequent rule 1;22/ where I'' = A’ arises
from I" = A by replacing one or more occurrences of the term s by 7. Rewriting

rules will again be discussed in Subsection 4.2.3, page 116.

onlyCreatedObjectsAreReferenced
wellFormed(h) — selecta(h,o, ) = nullV selectpopiean(h, selecta(h, o0, f), created) = TRUE

onlyCreatedObjectsArelnLocSets
wellFormed(h) N\ €(02, f2,selectppeser (M0, f)) — 02 = null V
selectpooien(h, 02, created) = TRUE

narrowSelectType
wellFormed(h) A selectg(h, o, f) — selecta(h,o, f) where type of fisAand AC B

narrowSelectArray Type
wellFormed(h) A o#null A selectg(h,0,arr(i)) — selecty (h,0,arr(i))
where type of 0 is A[] and A C B

wellFormedStoreObject
wellFormed(h) A (x = null V (selectpooiean (h,x, created) = TRUE A instances (x) = TRUE))
— wellFormed(store(h,o, f,x))  where type of fis A

wellFormedStoreArray
wellFormed(h) A (x = nullV (selectpopiean(h, X, created) = TRUE A arrayStoreValid(o,x)))
— wellFormed(store(h,o0,arr(idx),x)))

wellFormedStoreLocSet
wellFormed(h) ANov;Y fv; (€(ov, fv,y) — ov = null \V/ selectpoorean(h, ov, created) = TRUE)
— wellFormed(store(h,o, f,y)) ~ where type of f is A and LocSet C A

wellFormedStorePrimitive
wellFormed(h) — wellFormed(store(h,o, f,x))
provided f is a field of type A, x is of type B, and BT A,B [Z Object,B | LocSet

wellFormedStorePrimitiveArray
wellFormed(h) — wellFormed(store(h,o0,arr(idx),x))
provided o is of sort A, x is of sort B,B [Z Object,B L LocSet,BC A

wellFormedCreate
wellFormed(h) — wellFormed (create(h,o0))

wellFormedAnon
wellFormed(h) A wellFormed(h2) — wellFormed(anon(h,y,h2))

In the above formulas the following implicitly universally quantified variables are used: /,h2 : Heap,
0,x: Object, f : Field, i : int, y : LocSet

Figure 2.7 Rules for the predicate wellFormed
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Our concept of heap is an overgeneralization. Most of the time this does no harm.
But, there are situations where it is useful to establish and depend on certain well-
formedness conditions. The predicate wellFormed(heap) has been included in the
vocabulary for this purpose. No effort is made to make the wellFormed(h) predicate
so strong that it only is true of heaps A that can actually occur in Java programs. The
axioms in Figure 2.7 were chosen on a pragmatic basis. There is e.g., no axiom that
guarantees for a created object o of type A with select(h, o0, f) defined that the field
f is declared in class A.

The first four axioms in Figure 2.7 formalize properties of well-formed heaps
while the rest cover situations starting out with a well-formed heap, manipulate it
and end up again with a well-formed heap. The formulas are quite self-explanatory.
Reading though them you will encounter the auxiliary predicate arrayStoreValid:
arrayStoreValid(o,x) is true if o is an array object of exact type A[] and x is of
type A.

The meaning of the functions symbols instancea (x), exactInstances (x), cast(x),
and /ength(x) is given by the axioms in Figure 2.8. This time we present the axioms
in mathematical notation for conciseness. The axiom scheme, (Ax-I) and (Ax-C)
show that adding instances and cast, does not increase the expressive power. These
functions can be defined already in the basic logic plus underspecification. The
formulas (Ax-E7) and (Ax-E;) completely axiomatize the exactInstance, functions,
see Lemma 2.24 on page 47. The function length is only required to be not negative.
Axioms (Ax-E}), (Ax-E>), and (Ax-L) are directly formalized in the KeY system as

VObject x; (instancep (x) = TRUE < Jy; (y =x)) with y: A (Ax-T)
VObject x; (exactInstance, (x) = TRUE — instancey (x) = TRUE) (Ax-Ey)
VObject x; (exactInstances (x) = TRUE — instanceg(x) = FALSE) withAIZB  (Ax-Ep)
VObject x; (instancea (x) = TRUE — casta(x) = x) (Ax-C)
VObject x; (length(x) > 0) (Ax-L)

Figure 2.8 Axioms for functions related to Java types

taclets instance_known_dynamic_type, exact_instance_known_dynamic_type and
arrayLengthNotNegative. The other two axioms families have no direct taclet coun-
terpart. But, they can easily be derived.

2.4.4 Axioms for Location Sets

The data type LocSet is a very special case of the set type in that only sets of heap
locations are considered, i.e., sets of pairs (o, f) with o0 an object and f a field. This
immediately guarantees that the is-element-of relation € is well-foundedfor LocSet.
Problematic formulas such as a€a are already syntactically impossible.
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The rules for the data type LocSet are displayed in Figure 2.9. The only constraint
on the membership relation € is formulated in rule equality ToElementOf. One could
view this rule as a definition of equality for location sets. But, since equality is a
built in relation in the basic logic it is in fact a constraint on €. All other rules in this
figure are definitions of the additional symbols of the data type, such as, e.g., allLocs,
union, intersect, and infiniteUnion{av}(s1).

elementOfEmpty g(ol, f1,empty) ~» FALSE

elementOfAllLocs g(ol, f1,allLocs) ~~ TRUE

equalityToElementOf  s1 =52 ~ Yo;Vf;(g(o, f,s1) < €(o, f,s2))
elementOfSingleton e(ol, f1,singleton(02, f2) ~ o0l =02Nf1=f2
elementOfUnion €(ol, f1,union(1,12)) ~ g(ol, f1,t1)Ve(ol, f1,12)
subsetToElementOf  subset(r1,12) ~ Yo;Vf;(g(o, f,11) — €(o, f,12))
elementOfintersect €(ol, f1,intersect(t1,12)) ~ g(ol, f1,e1) Ne(ol, f1,12)
elementOfAllFields g(ol, f1,allFields(02) ~ ol =02

elementOfSetMinus  g(ol, f1,setMinus(t1,12)) ~ g(ol, f1,t1) A—e(ol, f1,12)
elementOfAllObjects  €(ol, f1,allObjects(f2) ~ fl1=f2

elementOfinfiniteUnion g(ol, f1,infiniteUnion{av}(s1)) ~ Jav;e(ol, f1,s1)
with the typing o0,01,02 : Object, f, f1 : Field,s1,s2,t1,t2 : LocSet, av of arbitrary type.

Figure 2.9 Rules for data type LocSet

2.4.5 Semantics

As already remarked at the start of Subsection 2.2.3, a formal semantics opens up the
possibility for rigorous soundness and relative completeness proofs. Here we extend
and adapt the semantics provided there to cover the additional syntax introduced for
JFOL (see Section 2.4.1).

We take the liberty to use an alternative notion for the interpretation of terms.
While we used val 4 p(¢) in Section 2.2.3 to emphasize also visually that we are
concerned with evaluation, we will write +P for brevity here.

The definition of a FOL structure .# for a given signature in Subsection 2.2.3
was deliberately formulated as general as possible, to underline the universal nature
of logic. The focus in this subsection is on semantic structures tailored towards the
verification of Java programs. To emphasize this perspective we call these structures
JFOL structures.

A decisive difference to the semantics from Section 2.2.3 is that now the interpre-
tation of some symbols, types, functions, predicates, is constrained. Some functions
are completely fixed, e.g., addition and multiplication of integers. Others are almost
fixed, e.g., integer division n/m that is fixed except for n/0 which may have different
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interpretations in different structures. Other symbols are only loosely constrained,
e.g., length is only required to be nonnegative.

The semantic constraints on the JFOL type symbols are shown in Figure 2.10.
The restriction on the semantics of the subtypes of Object is that their domains
contain for every n € N infinitely many elements o with length? (0) = n. The reason
for this is the way object creation is modeled. When an array object is created an
element o in the corresponding type domain is provided whose created field has
value FALSE. The created field is then set to TRUE. Since the function length is
independent of the heap it cannot be changed in the creation process. So, the element
picked must already have the desired length. This topic will be covered in detail in
Subsection 3.6.6. The semantics of Seq will be given in Chapter 5.

. Dim‘ =7,

o pboolean — {117.ﬁ}7

o DObiectTipe s an infinite set of elements for every ObjectType with Null T ObjectType C Object,
subject to the restriction that for every positive integer n there are infinitely many elements o
in DObectTyPe wyith length? (0) = n.

DN = Lnull},

DHear — the set of all functions h : DOPect x pField _, pAny.

DFocSet — the set of all subsets of {(o, f) | 0 € DO%¢! and f € DFeld},

DFeld ig an infinite set.

Figure 2.10 Semantics on type domains

Constant Domain

Let T be a theory, that does not have finite models. By definition 7 - ¢ iff
A = ¢ for all models .# of T. The Léwenheim-Skolem Theorem, which by
the way follows easily from the usual completeness proofs, guarantees that
T+ ¢ iff 4 = ¢ for all countably infinite models .# of T. Let S be an arbitrary
countably infinite set, then we have further T' = ¢ iff .# |= ¢ for all models .# of
T such that the universe of .7 is S. To see this assume there is a countably infinite
model 4" of T with universe N such that 4" = —¢. For cardinality reasons
there is a bijection b from N onto S. So far, S is just a set. It is straightforward
to define a structure .# with universe S such that b is an isomorphism from .4/
onto .7 . This entails the contradiction .# |= —¢.

The interpretation of all the JFOL function and predicate symbols listed in Fig-
ure 2.4 is at least partly fixed. All JFOL structures .# = (M, 3,I) are required to
satisfy the constraints put forth in Figure 2.11.

Some of these constraints are worth an explanation. The semantics of the store
function, as stated above, is such that it cannot change the implicit field created. Also
there is no requirement that the type of the value x should match with the type of the
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1. TRUE” =it and FALSE” = ff
2. select‘é/{(h,o,f) = cast{ (h(o, f))
3. store”(h,o0, f,x) = h*, where the function 4* is defined by

w1 oey if o’ =o,f=f and f # created”
W (0. f) = {h(()’,f’) otherwise

4. create(h,0) = h*, where the function i* is defined by
(o, f) = it if o/ = 0,0 # null and f = created”
7 k(o f) otherwise
arr# is an injective function from Z into Field" 4
6. created” and f+# for each Java field f are elements of Field”, which are pairwise different
and also not in the range of arr”.
7. null” = null

8. cast{(o)

b

_ ifoeA?
" | arbitrary element in A/ otherwise
9. instancep(0)” =1t <0 €A & §(0) CA
10. exactlnstance! = 1t & §(0) = A
11. length"”(0) € N
12. {o,f,s) € e”iff (o,f) €s
13. empry®? =0
14. allLocs” = Object” x Field”
15. singleton? (o0, f) = {(0, )}
16. (s1,52) € subset” iff s; C 55
17. (s1,%2) € disjoint” iff sy Ns, =0
18. union”(sy,s7) = 51 Uso
19. infiniteUnion{av}(s)¥ = {(a € DT | s#[a/av]} with T type of av
20. intersect?(s1,sy) = 51 Nsy
21. selMinus“//(sl ,82) =81\ 52
22. allFields” (0) = {(o,f) | f € Field"}
23. allObjects” (f) = {(0,f) | 0 € Object”}
24. arrayRange”” (0,i,j) = {(0,arr?(x) | x € Z,i <x < j}
25. unusedLocs”(h) = {(o0,f) | 0 € Object”  f € Field” 0 # null, h(o, created ™) = false}
26. anon”(hy,s,hy) = h*, where the function h* is defined by:
hy(o, f) if (0,f) € s and f # created” , or
h*(o,f) = (0, f) € unusedLocs™ (hy)
hi (o, f) otherwise

Figure 2.11 Semantics for the mandatory JFOL vocabulary (see Figure 2.4)

field f. This liberality necessitates the use of the cast, functions in the semantics of
selecty.

It is worth pointing out that the /ength function is defined for all elements in
DOPJect not only for elements in DT where OT is an array type.

Since the semantics of the wellFormed predicate is a bit more involved we put it
separately in Figure 2.12

The integer operations are defined as usual with the following versions of integer
division and the modulo function:
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h € wellFormed™ iff (a) if h(o, f) € D% then h(o, f) = null or h(h(o, f),created™) = 1t
(b) if h(o, f) € DHcS¢! then nh(o, f) NunusedLocs™ (h) = 0

(¢) if 8(0) = T] then §(h(o,arr?(i))) E T for all 0 < i < length* (o)
(d) there are only finitely many o € DO%¢! for which h(o, created™®) = 1t

Figure 2.12 Semantics for the predicate wellFormed

the uniquely defined & such that
|m|*|k| < |n| and |m| * (|k| +1) > |n| and

o k > 0 if m,n are both positive or both negative and
n/“m= . .
k < 0 otherwise ifm#0
unspecified otherwise

Thus integer division is a total function with arbitrary values for x/-# 0. Division is
an example of a partially fixed function. The interpretation of / in a JFOL structure
A is fixed except for the values x/ /(). These may be different in different JFOL
structures. The modulo function is defined by

mod(n,d) =n—(n/d)*d

Note, that this implies mod(n,0) = n as / is — due to using underspecification — a
total function.

Lemma 2.24. The axioms in Figure 2.8 are sound and complete with respect to the
given semantics.

For a proof see [Schmitt and Ulbrich, 2015].
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