Preface

Wer hat an der Uhr gedreht? Ist es wirklich schon so spdt?—Every child growing up
in the 1970s in Germany (like the author of this text) is familiar with these lines. They
are from a theme song played during the closing credits of the German version of the
Pink Panther Show. The ditty conveys the utter bafflement (“Who advanced the
clock?”) of the listener about 30 minutes of entertainment having passed in what
seemed to be mere seconds. And it is exactly this feeling that we editors have now:
What? Ten years since the first book about KeY [Beckert et al., 2007] was published?
Impossible! But of course it is possible, and there are good reasons for a new book
about KeY, this time simply called The KeY Book.

What Is New in The KeY Book?

In short: almost everything! This is not merely an overhaul of the previous book, but a
completely different volume: only eight of 15 chapters from the previous edition are
still around with a roughly similar function, while there are 11 completely new
chapters. But even most of the chapters retained were rewritten from scratch. Only
three chapters more or less kept their old structure. What happened?

First of all, there were some major technical developments in the KeY system that
required coverage as well as changes in the theoretical foundations:

e With KeY 2.x we moved from a memory model with an implicit heap to one with
explicit heaps, i.e., heaps have a type in our logic, can be quantified over, etc. As a
consequence, it was possible to:

e Implement better support for reasoning about programs with heaps [Weil3, 2011,
Schmitt et al., 2010], essentially with a variant of dynamic frames [Kassios, 2011].

e We dropped support for specification with the Object Constraint Language
(OCL) and drastically improved support for the Java Modeling Language
(JML) [Leavens et al., 2013].

e Rules and automation heuristics for a number of logical theories were added,
including finite sequences, strings [Bubel et al., 2011], and bitvectors.

e Abstract interpretation was tightly integrated with logic-based symbolic execution
[Bubel et al., 2009].

In addition, the functionality of the KeY was considerably extended. This concerns
not merely the kind of analyses that are possible, but also usability.

e Functional verification is now only one of many analyses that can be performed
with the KeY system. In addition, there is support for debugging and visualization
[Hentschel et al., 2014a,b], test case generation [Engel and Hahnle, 2007, Gladisch,
2008], information flow analysis [Darvas et al., 2005, Grahl, 2015, Do et al., 2016],
program transformation [Ji et al., 2013], and compilation [Ji, 2014].

e Preface

e There are IDEs for KeY, including an Eclipse extension, that make it easy to keep
track of proof obligations in larger projects [Hentschel et al., 2014c].

e A stripped down version of KeY, specifically developed for classroom exercises
with Hoare logic, was provided [Hiahnle and Bubel, 2008].

Finally, the increased maturity and coverage of the KeY system permitted us to
include much more substantial case studies than in the first edition.

Inevitably, some of the research strands documented in the first edition did not reach
the maturity or importance we hoped for and, therefore, were dropped. This is the case
for specification patterns, specification in natural language, induction, and proof reuse.
There is also no longer a dedicated chapter about Java integers: The relevant material is
now, in much condensed form, part of the ‘chapters on “First-Order Logic” and
“Theories.”

A number of topics that are actively researched have not yet reached sufficient
maturity to be included: merging nodes in symbolic execution proof trees, KeY for Java
bytecode, certification, runtime verification, regression verification, to name just a few.
Also left out is a variant of the KeY system for the concurrent modeling language ABS
called KeY-ABS, which allows one to prove complex properties about unbounded
programs and data structures. We are excited about all these developments, but we feel
that they have not yet reached the maturity to be documented in the KeY book. We refer
the interested reader to the research articles available from the KeY website at www.
key-project.org.

Also not covered in this book is KeYmaera, a formal verification tool for hybrid,
cyber-physical systems developed in André Platzer’s research group at CMU and that
has KeY as an ancestor. It deserves a book in its own right, which in fact has been
written [Platzer, 2010].

The Concept Behind This Book

Most books on foundations of formal specification and verification orient their pre-
sentation along traditional lines in logic. This results in a gap between the foundations
of verification and its application that is too wide for most readers. The main pre-
sentation principles of the KeY book is something that has not been changed between
the first book about KeY and this volume:

e The material is presented on an advanced level suitable for graduate (MSc level)
courses, and, of course, active researchers with an interest in verification.

e The dependency graph on the chapters in the book is not deep, such that the reader
does not have to read many chapters before the one (s)he is most interested in.
Moreover, the dependencies are not all too strong. More advanced readers may not
have to strictly follow the graph, and less advanced readers may decide to follow up
prerequisites on demand. The graph shows that the chapters on First-Order Logic,
the Java Modeling Language, and Using the KeY Prover are entirely self-contained.
The same holds for each chapter not appearing in the following graph.

http://www.key-project.org/
http://www.key-project.org/

Preface X1

10 Java Card k— |08 Proof Obl. | | 13 Inf. Flow |

12 Test Gen. 09 Modularity 15 Using KeY
14 Compilation 16 Tutorial

e The underlying verification paradigm is deductive verification in an expressive
program logic.

e As a rule, the proofs of theoretical results are not contained here, but we give
pointers on where to find them.

e The logic used for reasoning about programs is not a minimalist version suitable for
theoretical investigations, but an industrial-strength version. The first-order part is
equipped with a type system for modeling of object hierarchies, with underspeci-
fication, and with various built-in theories. The program logic covers full Java Card
and substantial parts of Java. The main omissions are: generics (a transformation
tool is available), floating-point types, threads, lambda expressions.

e Much emphasis is on specification, including the widely used JML. The generation
of proof obligations from annotated source code is discussed at length.

e Two substantial case studies are included and presented in detail.

Nevertheless, we cannot and do not claim to have fully covered formal reasoning
about (object-oriented) software in this book. One reason is that the choice of topics is
dependent on our research agenda. As a consequence, important topics in formal
verification, such as specification refinement or model checking, are out of our scope.

Typographic Conventions

We use a number of typesetting conventions to give the text a clearer structure.
Occasionally, we felt that a historical remark, a digression, or a reference to material
outside the scope of this book is required. In order to not interrupt the text flow we use
gray boxes, such as the one on page 40, whenever this is the case.

In this book a considerable number of specification and programming languages are
referred to and used for illustration. To avoid confusion we usually typeset multiline
expressions from concrete languages in a special environment that is set apart from the

X1I Preface

main text with horizontal lines and that specifies the source language as, for example,
on page 14.

Expressions from concrete languages are written in typewriter font with keywords
highlighted in boldface, the exception being UML class and feature names. These are
set in sans serif, unless class names correspond to Java types. Mathematical meta
symbols are set in math font and the rule names of logical calculi in sans serif.

Companion Website

This book has its own website at www.key-project.org/thebook2, where additional
material is provided: most importantly, the version of the KeY tool that was used to run
all the examples in the book (except for Chaps. 10,19) including all source files, for
example, programs and specifications (unless excluded for copyright reasons), various
teaching materials such as slides and exercises, and the electronic versions of papers on
KeY.

Acknowledgments We are very grateful to all researchers and students who con-
tributed with their time and expertise to the KeY project. We would like to acknowl-
edge in particular the editorial help of Dr. Daniel Grahl and Dr. Vladimir Klebanov
during the production of this book.

Many current and former KeY project members made valuable contributions to the
KeY project, even though they are not directly involved as chapter authors: Prof.
Thomas Baar (HTW Berlin), Dr. Thorsten Bormer, Dr. Adam Darvas, Dr. Crystal Din,
Huy Qouc Do, Dr. Christian Engel, Dr. Tobias Gedell, Dr. Elmar Habermalz, Dr.
Kristofer Johannisson, Michael Kirsten, Daniel Larsson, Prof. Wolfram Menzel (KIT;
emeritus, co-founder of the KeY project), Gabriele Paganelli, Prof. Aarne Ranta
(Gothenburg University), Dr. Andreas Roth, Prof. Ina Schaefer (TU Braunschweig),
Dominic Scheurer, Prof. Steffen Schlager (HS Offenburg), Prof. Shmuel Tyszberowicz
(The Academic College Tel Aviv-Yaffo), Dr. Bart van Delft, Dr. Isabel Tonin, Angela
Wallenburg, and Dr. Dennis Walter.

Besides the current and former project members and the chapter authors of this
book, many students helped with implementing the KeY system, to whom we extend
our sincere thanks: Gustav Andersson, Dr. Marcus Baum, Hans-Joachim Daniels,
Marco Drebing, Marius Hillenbrand, Eduard Kamburjan, Stefan Késdorf, Dr. Bastian
Katz, Uwe Keller, Stephan Konn, Achim Kuwertz, Denis Lohner, Moritz von Looz,
Martin Moller, Dr. Ola Olsson, Jing Pan, Sonja Pieper, Prof. André Platzer (CMU
Pittsburgh), Friedemann RoBler, Bettina Sasse, Dr. Ralf Sasse, Prof. Gabi Schmithiisen
(Universitat des Saarlandes), Max Schroder, Muhammad Ali Shah, Alex Sinner,
Hubert Schmid, Holger Stenger, Kai Wallisch, Claus Wonnemann, and Zhan
Zengrong.

The authors acknowledge support by the Deutsche Forschungsgemeinschaft
(DFG) under projects “Program-level Specification and Deductive Verification of
Security Properties” (DeduSec) and “ Fully Automatic Logic-Based Information Flow”
within Priority Programme 1496 “Reliably Secure Software Systems — RS®” and under

http://www.key-project.org/thebook2

Preface XIII

project “Deductive Regression Verification for Evolving Object-Oriented Software”
within Priority Programme 1593 “Design for Future: Managed Software Evolution,” as
well as support by the German Federal Ministry of Education and Research (Bun-
desministerium fiir Bildung und Forschung, BMBF) for project “Formale Informa-
tionsflussspezifikation und -analyse in komponentenbasierten Systemen” as part of
Software Campus. We also acknowledge support by the European Commission
(EC) under FP7 Integrated Project “Highly Adaptable & Trustworthy Software using
Formal Methods” and STREP “Engineering Virtualized Services.”

The authors have done their job. The success of the result of their toil will now be
judged by the readers. We hope they will find the text easily accessible, illuminating,
stimulating and, yes, fun to read. What can be more fun than gaining insight into what
was nebulous before or solving a problem at hand that defied a solution so far? We will
not fail to admit that besides all the labor, writing this book was fun. Putting in words
often helped us reach a better understanding of what we were writing about. Thus, it is
not easy to say who profits more, the authors in writing the book or the readers from
reading it. In the end this may be irrelevant, authors and readers together constitute the
scientific community and together they advance the state of the art. It would be the
greatest reward for us to see this happening and perhaps after another ten years, or even
earlier, a return of the pink panther.

August 2016 Wolfgang Ahrendt
Bernhard Beckert

Richard Bubel

Reiner Héhnle

Peter H. Schmitt

Mattias Ulbrich

2 Springer
http://www.springer.com/978-3-319-49811-9

Deductive Software Verification - The KeY Book

From Theory to Practice

shrendt, W.; Beckert, B.; Bubel, R.; Hahnle, R.; Schmitt,
P.H.; Ulbrich, M. (Eds.)

2016, XX, 702 p. 110 illus., Softcover

ISBM: 878-3-319-458811-58

