
Structured Matrix Problems from Tensors

Charles F. Van Loan

Abstract This chapter looks at the structured matrix computations that arise in
the context of various “svd-like” tensor decompositions. Kronecker products and
low-rank manipulations are central to the theme. Algorithmic details include the
exploitation of partial symmetries, componentwise optimization, and how we might
beat the “curse of dimensionality.” Order-4 tensors figure heavily in the discussion.

1 Introduction

A tensor is a multi-dimensional array. Instead of just A.i; j/ as for matrices we have
A.i; j; k; `; : : :/. High-dimensional modeling, cheap storage, and sensor technology
combine to explain why tensor computations are surging in importance. Here is an
annotated timeline that helps to put things in perspective:

Scalar-Level Thinking

19600s + The factorization paradigm: LU, LDLT , QR, U˙VT ,
etc.

Matrix-Level Thinking

19800s + Memory traffic awareness:, cache, parallel computing,
LAPACK, etc.

Block Matrix-Level Thinking

20000s + Matrix-tensor connections: unfoldings, Kronecker
product, multilinear optimization, etc.

Tensor-Level Thinking
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An important subtext is the changing definition of what we mean by a “big problem.”
In matrix computations, to say that A 2 Rn1�n2is “big” is to say that both n1 and n2
are big. In tensor computations, to say that A 2 Rn1�����nd is “big” is to say that
n1n2 � � � nd is big and this does NOT necessarily require big nk. For example, no
computer in the world (nowadays at least!) can store a tensor with modal dimensions
n1 D n2 D � � � D n1000 D 2: What this means is that a significant part of the tensor
research community is preoccupied with the development of algorithms that scale
with d. Algorithmic innovations must deal with the “curse of dimensionality.” How
the transition from matrix-based scientific computation to tensor-based scientific
computation plays out is all about the fate of the “the curse.”

This chapter is designed to give readers who are somewhat familiar with
matrix computations an idea about the underlying challenges associated with tensor
computations. These include mechanisms by which tensor computations are turned
into matrix computations and how various matrix algorithms and decompositions
(especially the SVD) turn up all along the way. An important theme throughout is
the exploitation of Kronecker product structure.

To set the tone we use Sect. 2 to present an overview of some remarkable “hidden
structures” that show up in matrix computations. Each of the chosen examples
has a review component and a message about tensor-based matrix computations.
The connection between block matrices and order-4 tensors is used in Sect. 3 to
introduce the idea of a tensor unfolding and to connect Kronecker products and
tensor products. A simple nearest rank-1 tensor problem is used in Sect. 4 to
showcase the idea of componentwise optimization, a strategy that is widely used
in tensor computations. In Sect. 5 we show how Rayleigh quotients can be used to
extend the notion of singular values and vectors to tensors. Transposition and tensor
symmetry are discussed in Sect. 6. Extending the singular value decomposition to
tensors can be done in a number of ways. We present the Tucker decomposition in
Sect. 7, the CP decomposition in Sect. 8, the Kronecker product SVD in Sect. 9, and
the tensor train SVD in Sect. 10. Cholesky with column pivoting also has a role to
play in tensor computations as we show in Sect. 11.

We want to stress that this chapter is a high-level, informal look at the kind of
matrix problems that arise out of tensor computations. Implementation details and
rigorous analysis are left to the references. To get started with the literature and for
general background we recommend [6, 10, 15, 16, 18, 27].

2 The Exploitation of Structure in Matrix Computations

We survey five interesting matrix examples that showcase the idea of hidden
structure. By “‘hidden” we mean “not obvious”. In each case the exploitation of
the hidden structure has important ramifications from the computational point of
view.
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2.1 Exploiting Data Sparsity

The n-by-n discrete Fourier transform matrix Fn is defined by

ŒFn�kq D !kq
n !n D cos

�
2�

n

�
� i sin

�
2�

n

�

where we are subscripting from zero. Thus,

F4 D

2
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1 1 1 1

1 !4 !
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1 !24 !
4
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1 !34 !
6
4 !
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3
777775
D

2
666664

1 1 1 1

1 �i �1 i

1 �1 1 �1
1 i �1 �i

3
777775
:

If we carefully reorder the columns of F2m, then copies of Fm magically appear, e.g.,

F4

2
666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
777775
D

2
666664

1 1 1 1

1 �1 �i i

1 1 �1 �1
1 �1 i �i

3
777775
D
"

F2 ˝2F2

F2 �˝2F2

#

where

˝2 D
�
1 0

0 �i

�
:

In general we have

F2m˘2;m D
"

Fm ˝mFm

Fm �˝mFm

#
(1)

where ˘2;m is a perfect shuffle permutation (to be described in Sect. 3.7) and ˝m is
the diagonal matrix

˝m D diag.1; !n; : : : ; !
m�1
n /:
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The DFT matrix is dense, but by exploiting the recursion (1) it can be factored into
a product of sparse matrices, e.g.,

F1024 D A10 � � �A2A1PT :

Here, P is the bit reversal permutation and each Ak has just two nonzeros per row.
It is this structured factorization that makes it possible to have a fast, O.n log n/
Fourier transform, e.g.,

y D PTx
for k D 1 W 10

y D Aky
end

See [29] for a detailed “matrix factorization” treatment of the FFT.
The DFT matrix Fn is data sparse meaning that it can be represented with many

fewer than n2 numbers. Other examples of data sparsity include matrices that have
low-rank and matrices that are Kronecker products. Many tensor problems lead to
matrix problems that are data sparse.

2.2 Exploiting Structured Eigensystems

Suppose A;F;G 2 Rn�nand that both F and G are symmetric. The matrix M defined
by

M D
"

A F

G �AT

#
F D FT ; G D GT

is said to be a Hamiltonian matrix. The eigenvalues of a Hamiltonian matrix come
in plus-minus pairs and the eigenvectors associated with such a pair are related:

M

�
y
z

�
D �

�
y
z

�
) MT

�
z
�y

�
D ��

�
z
�y

�
:

Hamiltonian structure can also be defined through a permutation similarity. If

J2n D
"
0 In

�In 0

#



Structured Matrix Problems from Tensors 5

then M 2 R2n�2nis Hamiltonian if JT
2nMJ2n D �MT . Under mild assumptions we

can compute a structured Schur decomposition for a Hamiltonian matrix M:

QTMQ D
"

Q1 Q2

�Q2 Q1

#T

M

"
Q1 Q2

�Q2 Q1

#
D
"

T11 T12

0 �TT
11

#
:

Here, Q is orthogonal and symplectic (JT
2nQJ2n D Q�T ) and T11 is upper quasi-

triangular. Various Ricatti equation problems can be solved by exploiting this
structured decomposition. See [22].

Tensors with multiple symmetries can be reshaped into matrices with multiple
symmetries and these matrices have structured block factorizations.

2.3 Exploiting the Right Representation

Here is an example of a Cauchy-like matrix:

A D

2
6666666664

r1s1
!1 � �1

r1s2
!1 � �2

r1s3
!1 � �3

r1s4
!1 � �4

r2s1
!2 � �1

r2s2
!2 � �2

r2s3
!2 � �3

r2s4
!2 � �4

r3s1
!3 � �1

r3s2
!3 � �2

r3s3
!3 � �3

r3s4
!3 � �4

r4s1
!4 � �1

r4s2
!4 � �2

r4s3
!4 � �3

r4s4
!4 � �4

3
7777777775
:

For this to be defined we must have f�1; : : : ; �ng [ f�1; : : : ; �ng D ;. Cauchy-like
matrices are data sparse and a particularly clever characterization of this fact is to
note that if ˝ D diag.!i/ and� D diag.�i/, then

˝A� A� D rsT (2)

where r; s 2 Rn. If˝A�A� has rank r, then we say that A has displacement rank r
(with respect to ˝ and �.) Thus, a Cauchy-like matrix has unit displacement rank.

Now let us consider the first step of Gaussian elimination. Ignoring pivoting this
involves computing a row of U, a column of L, and a rank-1 update:

A D

2
66664

1 0 0 0

`21 1 0 0

`31 0 1 0

`41 0 0 1

3
77775

2
66664

1 0 0 0

0 b22 b23 b24

0 b32 b33 b34

0 b42 b43 b44

3
77775

2
66664

u11 u12 u13 u14

0 1 0 0

0 0 1 0

0 0 0 1

3
77775 :
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It is easy to compute the required entries of L and U from the displacement rank
representation (2). What about B? If we represent B conventionally as an array
then that would involve O.n2/ flops. Instead we exploit the fact that B also has
unit displacement rank:

Q̋ B � B Q� D QrQsT :

It turns out that we can transition from A’s representation f˝;�; r; sg to B’s
representation f Q̋ ; Q�; Qr; Qsg with O.n/ work and this enables us to compute the LU
factorization of a Cauchy-like matrix with just O.n2/ work. See [10, p. 682].

Being able to work with clever representations is often the key to having a
successful solution framework for a tensor problem.

2.4 Exploiting Orthogonality Structures

Assume that the columns of the 2-by-1 block matrix

Q D
"

Q1

Q2

#

are orthonormal, i.e., QT
1Q1 C QT

2Q2 D I. The CS decomposition says that Q1 and
Q2 have related SVDs:

"
U1 0

0 U2

#T "
Q1

Q2

#
V D

"
diag.ci/

diag.si/

#
c2i C s2i D 1 (3)

where U1, U2, and V are orthogonal. This truly remarkable hidden structure can be
used to compute stably the generalized singular value decomposition (GSVD) of a
A1 2 Rm1�nand A2 2 Rm2�n. In particular, suppose we compute the QR factorization

"
A1

A2

#
D
"

Q1

Q2

#
R;

and then the CS decomposition (3). By setting X D RTV , we obtain the GSVD

A1 D U1 � diag.ci/ � XT A2 D U2 � diag.si/ � XT :

For a more detailed discussion about the GSVD and the CS decomposition, see [10,
p. 309].

A tensor decomposition can often be regarded as a simultaneous decomposition
of its (many) matrix “layers”.
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2.5 Exploiting a Structured Data layout

Suppose we have a block matrix

A D

2
66664

A11 A12 � � � A1N

A21 A22 � � � A2N
:::

:::
: : :

:::

AM1 AM2 � � � AMN

3
77775

that is stored in such a way that the data in each Aij is contiguous in memory.
Note that there is nothing structured about “A-the-matrix”. However, “A-the-stored-
array” does have an exploitable structure that we now illustrate by considering the
computation of C D AT . We start by transposing each of A’s blocks:

2
66664

B11 B12 � � � B1N

B21 B22 � � � B2N
:::

:::
: : :

:::

BM1 BM2 � � � BMN

3
77775  

2
66664

AT
11 AT

12 � � � AT
1N

AT
21 AT

22 � � � AT
2N

:::
:::
: : :

:::

AT
M1 AT

M2 � � � AT
MN

3
77775 :

These block transpositions involve “local data” and this is important because
moving data around in a large scale matrix computation is typically the dominant
cost. Next, we transpose B as a block matrix:

2
66664

C11 C12 � � � C1M

C21 C22 � � � C2M
:::

:::
: : :

:::

CN1 C2N � � � CNM

3
77775  

2
66664

B11 B21 � � � BM1

B12 B22 � � � BM2
:::

:::
: : :

:::

B1N B2N � � � BMN

3
77775

Again, this is a “memory traffic friendly” maneuver because blocks of contiguous
data are being moved. It is easy to verify that Cij D AT

ji .
What we have sketched is a “2-pass” transposition procedure. By blocking in

a way that resonates with cache/local memory size and by breaking the overall
transposition process down into a sequence of carefully designed passes, one can
effectively manage the underlying dataflow. See [10, p. 711].

Transposition and looping are much more complicated with tensors because
there are typically an exponential number of possible data structures and an ex-
ponential number of possible loop nestings. Software tools that facilitate reasoning
in this space are essential. See [1, 24, 28].
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3 Matrix-Tensor Connections

Tensor computations typically get “reshaped” into matrix computations. To operate
in this venue we need terminology and mechanisms for matricizing the tensor data.
In this section we introduce the notion of a tensor unfolding and we get comfortable
with Kronecker products and their properties. For more details see [10, 16, 18, 25,
27].

3.1 Talking About Tensors

An order-d tensor A 2 Rn1�����nd is a real d-dimensional array

A.1 W n1; : : : ; 1 W nd/

where the index range in the k-th mode is from 1 to nk. Note that

a

8<
:

scalar
vector
matrix

9=
; is an

8<
:

order-0
order-1
order-2

9=
; tensor:

We use calligraphic font to designate tensors e.g., A, B, C, etc. Sometimes we will
write A for matrix A if it makes things clear.

One way that tensors arise is through discretization. A.i; j; k; `/ might house the
value of f .w; x; y; z/ at .w; x; y; z/ D .wi; xj; yk; z`/. In multiway analysis the value
of A.i; j; k; `/ could measure the interaction between four variables/factors. See [2]
and [27].

3.2 Tensor Parts: Fibers and Slices

A fiber of a tensor A is a column vector obtained by fixing all but one A’s indices.
For example, if A D A.1W3; 1W5; 1W4; 1W7/ 2 R3�5�4�7, then

A.2; W; 4; 6/ D A.2; 1W5; 4; 6/ D

2
66666664

A.2; 1; 4; 6/
A.2; 2; 4; 6/
A.2; 3; 4; 6/
A.2; 4; 4; 6/
A.2; 5; 4; 6/

3
77777775

is a mode-2 fiber.
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A slice of a tensor A is a matrix obtained by fixing all but two of A’s indices. For
example, if A D A.1W3; 1W5; 1W4; 1W7/, then

A.W; 3; W; 6/ D

2
64
A.1; 3; 1; 6/ A.1; 3; 2; 6/ A.1; 3; 3; 6/ A.1; 3; 4; 6/
A.2; 3; 1; 6/ A.2; 3; 2; 6/ A.2; 3; 3; 6/ A.2; 3; 4; 6/
A.3; 3; 1; 6/ A.3; 3; 2; 6/ A.3; 3; 3; 6/ A.3; 3; 4; 6/

3
75

is a slice.

3.3 Order-4 Tensors and Block Matrices

Block matrices with uniformly-sized blocks are reshaped order-4 tensors. For
example, if

C D

2
66666666664

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

3
77777777775

then matrix entry c45 is entry (2,1) of block (2,3). Thus, we can think of ŒCij�k` as
the .i; j; k; `/ entry of a tensor C, e.g.,

c45 D ŒC23�21 D C.2; 3; 2; 1/:

Working in the other direction we can unfold an order-4 tensor into a block
matrix. Suppose A 2 Rn�n�n�n. Here is its “Œ1; 2� � Œ3; 4�” unfolding:

AŒ1;2��Œ3;4� D

2
66666666666666666664

a1111 a1112 a1113 a1121 a1122 a1123 a1131 a1132 a1133

a1211 a1212 a1213 a1221 a1222 a1223 a1231 a1232 a1233

a1311 a1312 a1313 a1321 a1322 a1323 a1331 a1332 a1333

a2111 a2112 a2113 a2121 a2122 a2123 a2131 a2132 a2133

a2211 a2212 a2213 a2221 a2222 a2223 a2231 a2232 a2233

a2311 a2312 a2313 a2321 a2322 a2323 a2331 a2332 a2333

a3111 a3112 a3113 a3121 a3122 a3123 a3131 a3132 a3133

a3211 a3212 a3213 a3221 a3222 a3223 a3231 a3232 a3233

a3311 a3312 a3313 a3321 a3322 a3323 a3331 a3332 a3333

3
77777777777777777775

:
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If A D AŒ1;2��Œ3;4� then the tensor-to-matrix mapping is given by

A.i1; i2; i3; i4/ ! A.i1 C .i2 � 1/n; i3 C .i4 � 1/n/:

An alternate unfolding results if modes 1 and 3 are associated with rows and modes
2 and 4 are associated with columns:

AŒ1;3��Œ2;4� D

2
66666666666666666664

a1111 a1112 a1113 a1211 a1212 a1213 a1311 a1312 a1313

a1121 a1122 a1123 a1221 a1222 a1223 a1321 a1322 a1323

a1131 a1132 a1133 a1231 a1232 a1233 a1331 a1332 a1333

a2111 a2112 a2113 a2211 a2212 a2213 a2311 a2312 a2313

a2121 a2122 a2123 a2221 a2222 a2223 a2321 a2322 a2323

a2131 a2132 a2133 a2231 a2232 a2233 a2331 a2332 a2333

a3111 a3112 a3113 a3211 a3212 a3213 a3311 a3312 a3313

a3121 a3122 a3123 a3221 a3222 a3223 a3321 a3322 a3323

a3131 a3132 a3133 a3231 a3232 a3233 a3331 a3332 a3333

3
77777777777777777775

:

If A D AŒ1;3��Œ2;4� , then the tensor-to-matrix mapping is given by

A.i1; i2; i3; i4/ ! A.i1 C .i3 � 1/n; i2 C .i4 � 1/n/:

If a tensor A is structured, then different unfoldings reveal that structure in different
ways [31]. The idea of block unfoldings is discussed in [25].

3.4 Modal Unfoldings

A particularly important class of tensor unfoldings are the modal unfoldings. An
order-d tensor has d modal unfoldings which we designate by A.1/; : : : ;A.d/. Let’s
look at the tensor-to-matrix mappings for the case A 2 Rn1�n2�n3�n4 :

A.i1; i2; i3; i4/! A.1/.i1; i2 C .i3 � 1/n2 C .i4 � 1/n2n3/

A.i1; i2; i3; i4/! A.2/.i2; i1 C .i3 � 1/n1 C .i4 � 1/n1n3/

A.i1; i2; i3; i4/! A.3/.i3; i1 C .i2 � 1/n1 C .i4 � 1/n1n2/

A.i1; i2; i3; i4/! A.4/.i4; i1 C .i2 � 1/n1 C .i3 � 1/n1n2/:
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Note that if N D n1 � � � nd, then A.k/ is nk-by-N=nk and its columns are mode-k
fibers. Thus, if n2 D 4 and n1 D n3 D n4 D 2, then

A.2/ D

2
66664

a1111 a1121 a1112 a1122 a2111 a2121 a2112 a2122

a1211 a1221 a1212 a1222 a2211 a2221 a2212 a2222

a1311 a1321 a1312 a1322 a2311 a2321 a2312 a2322

a1411 a1421 a1412 a1422 a2411 a2421 a2412 a2422

3
77775 :

Modal unfoldings arise naturally in many multilinear optimization settings.

3.5 The vec Operation

The vec operator turns tensors into column vectors. The vec of a matrix is obtained
by stacking its columns:

A 2 R3�2 ) vec.A/ D

2
66666664

a11
a21
a31
a12
a22
a32

3
77777775
:

The vec of an order-3 tensor A 2 Rn1�n2�n3 stacks the vecs of the slices
A.W; W; 1/; : : : ;A.W; W; n3/, e.g.,

A 2 R2�2�2 ) vec.A/ D
"

vec.A.W; W; 1//
vec.A.W; W; 2//

#
D

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

:

In general, if A 2 Rn1�����nd and the order d � 1 tensor Ak is defined by Ak D A
.W; : : : ; W; k/, then we have the following recursive definition:

vec.A/ D

2
64

vec.A1/
:::

vec.And /

3
75 :

Thus, vec unfolds a tensor into a column vector.
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3.6 The Kronecker Product

Unfoldings enable us to reshape tensor computations as matrix computations and
Kronecker products are very often part of the scene. The Kronecker product A D
B ˝ C of two matrices B and C is a block matrix .Aij/ where Aij D bijC, e.g.,

A D

2
64

b11 b12 b13

b21 b22 b23

b31 b32 b33

3
75 ˝

"
c11 c12

c21 c22

#
D

2
66664

b11C b12C b13C

b21C b22C b23C

b31C b32C b33C

3
77775 :

Of course, B ˝ C is also a matrix of scalars:

A D

2
666666666666664

b11c11 b11c12 b12c11 b12c12 b13c11 b13c12

b11c21 b11c22 b12c21 b12c22 b13c21 b13c22

b21c11 b21c12 b22c11 b22c12 b23c11 b23c12

b21c21 b21c22 b22c21 b22c22 b23c21 b23c22

b31c11 b31c12 b32c11 b32c12 b33c11 b33c12

b31c21 b31c22 b32c21 b32c22 b33c21 b33c22

3
777777777777775

:

Note that every possible product bijck` “shows up” in B ˝ C.
In general, if A1 2 Rm1�n1and A2 2 Rm2�n2, then A D A1˝A2 is an m1m2-by-n1n2

matrix of scalars. It is also an m1-by-n1 block matrix with blocks that are m2-by-n2.
Kronecker products can be applied in succession. Thus, if

A D

2
664

b11 b12

b21 b22

b31 b32

3
775 ˝

2
666664

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

3
777775
˝

2
664

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

3
775 ;

then A is a 3-by-2 block matrix whose entries are 4-by-4 block matrices whose
entries are 3-by-4 matrices.

It is important to have a facility with the Kronecker product operation because
they figure heavily in tensor computations. Here are three critical properties:

.A ˝ B/.C ˝ D/ D AC ˝ BD

.A ˝ B/�1 D A�1 ˝ B�1

.A ˝ B/T D AT ˝ BT :
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Of course, in these expressions the various matrix products and inversions have to
be defined.

If the matrices A and B have structure, then their Kronecker product is typically
structured in the same way. For example, if Q1 2 Rm1�n1and Q2 2 Rm2�n2 have
orthonormal columns, then Q1 ˝ Q2 has orthonormal columns:

.Q1 ˝ Q2/
T.Q1 ˝ Q2/ D .QT

1 ˝ QT
2 /.Q1 ˝ Q2/

D .QT
1Q1/ ˝ .QT

2Q2/ D In1 ˝ In2 D In1n2 :

Kronecker products often arise through the “vectorization” of a matrix equation,
e.g.,

C D BXAT , vec.C/ D .A ˝ B/ vec.X/:

3.7 Perfect Shuffles, Kronecker Products, and Transposition

In general, A1 ˝ A2 ¤ A2 ˝ A1. However, very structured permutation matrices
P1 and P2 exist so that P1.A1 ˝ A2/P2 D A2 ˝ A1. Define the .p; q/-perfect shuffle
matrix˘p;q 2 Rpq�pq by

˘p;q D
�

Ipq.W; 1 W q W pq/ j Ipq.W; 2 W q W pq/ j � � � j Ipq.W; q W q W pq/
�
:

Here is an example:

˘3;2 D

2
66666664

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

3
77777775
:

In general A1 ˝ A2 ¤ A2 ˝ A1. However, if A1 2 Rm1�n1 and A2 2 Rm2�n2 then

˘m1;m2 .A1 ˝ A2/˘
T
n1;n2

D A2 ˝ A1:
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The perfect shuffle is also “behind the scenes” when the transpose of a matrix is
taken, e.g.,

˘3;2 vec.A/ D

2
66666664

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

3
77777775

2
66666664

a11
a21
a31
a12
a22
a32

3
77777775
D

2
66666664

a11
a12
a21
a22
a31
a32

3
77777775
D vec.AT/:

In general, if A 2 Rm�n then ˘m;nvec.A/ D vec.AT/. See [12]. We return to these
interconnections when we discuss tensor transposition in Sect. 6.

3.8 Tensor Notation

It is often perfectly adequate to illustrate a tensor computation idea using order-3
examples. For example, suppose A 2 Rn1�n2�n3 , X1 2 Rm1�n1, X2 2 Rm2�n2, and
X3 2 Rm3�n3 are given and that we wish to compute

B.i1; i2; i3/ D
n1X

j1D1

n2X
j2D1

n3X
j3D1

A. j1; j2; j3/X1.i1; j1/X2.i2; j2/X1.i3; j3/

where 1 � i1 � m1, 1 � i2 � m2, and 1 � i3 � m3. Here we are using matrix-like
subscript notation to spell out the definition of B. We could probably use the same
notation to describe the order-4 version of this computation. However, for higher-
order cases we have to resort to the dot-dot-dot notation and it gets pretty unwieldy:

B.i1; : : : ; id/ D
n1X

j1D1

n2X
j2D1
� � �

ndX
jdD1

A. j1; : : : ; jd/X1.i1; j1/ � � �Xd.id; jd/:

1 � i1 � m1; 1 � i2 � m2; : : : ; 1 � id � md

One way to streamline the presentation of such a calculation is to “vectorize” the
notation using bold font to indicate vectors of subscripts. Multiple summations can
also be combined through vectorization. Thus, if

i D Œi1; : : : ; id�; j D Œ j1; : : : ; jd�; m D Œm1; : : : ;md�; n D Œn1; : : : ; nd�;

then the B tensor given above can be expressed as follows:

B.i/ D
nX

jD1

A.j/X1.i1; j1/ � � �Xd.id; jd/; 1 � i � m:
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Here, 1 D Œ1; 1; : : : ; 1�. As another example of this notation, if n D Œn1; : : : ; nd �

and A 2 Rn, then

kA kF D
vuut nX

iD1

A.i/2

is its Frobenius norm. We shall make use of this vectorized notation whenever it is
necessary to hide detail and/or when we are working with tensors of arbitrary order.

Finally, it is handy to have a MATLAB “reshape” notation. Suppose n D
Œ n1; : : : ; nd � and m D Œ m1; : : : ; me �. If A 2 Rn and n1 � � � nd D m1 � � �me,
then

B D reshape.A;m/

is the m1 � � � � � me tensor defined by vec.A/ D vec.B/:

3.9 The Tensor Product

On occasion it is handy to talk about operations between tensors without recasting
the discussion in the language of matrices. Suppose n D Œn1; : : : ; nd� and that B; C 2
Rn. We can multiply a tensor by a scalar,

A D ˛B , A.i/ D ˛B.i/; 1 � i � n

and we can add one tensor to another,

A D BC C , A.i/ D B.i/C C.i/; 1 � i � n:

Slightly more complicated is the tensor product which is a way of multiplying
two tensors together to obtain a new, higher order tensor. For example if B 2
Rm1�m2�m3 D Rm and C 2 Rn1�n2 D Rn, then the tensor product A D B ı C is
defined by

A.i1; i2; i3; j1; j2/ D B.i1; i2; i3/C. j1; j2/

i.e., A.i; j/ D B.i/ C.j/ for all 1 � i � m and 1 � j � n.
If B 2 Rm and C 2 Rn, then there is a connection between the tensor product

A D B ı C and its m-by-n unfolding:

Am�n D vec.B/vec.C/T :
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There is also a connection between the tensor product of two vectors and their
Kronecker product:

vec.x ı y/ D vec.xyT/ D y ˝ x:

Likewise, if B and C are order-2 tensors and A D B ı C, then

AŒ1;3��Œ2;4� D B ˝ C:

The point of all this notation-heavy discussion is to stress the importance of
flexibility and point of view. Whether we write A.i/ or A.i1; i2; i3/ or ai1i2i3 depends
on the context, what we are trying to communicate, and what typesets nicely!
Sometimes it will be handy to regard A as a vector such as vec.A/ and sometimes
as a matrix such as A.3/. Algorithmic insights in tensor computations frequently
require an ability to “reshape” how the problem at hand is viewed.

4 A Rank-1 Tensor Problem

Rank-1 matrices have a prominent role to play in matrix computations. For example,
one step of Gaussian elimination involves a rank-1 update of a submatrix. The
SVD decomposes a matrix into a sum of very special rank-1 matrices. Quasi-
Newton methods for nonlinear systems involve rank-1 modifications of the current
approximate Jacobian matrix.

In this section we introduce the concept of a rank-1 tensor and consider how we
might approximate a given tensor with such an entity. This leads to a discussion
(through an example) of multilinear optimization.

4.1 Rank-1 Matrices

If u and v are vectors, then A D uvT is a rank-1 matrix, e.g.,

A D
2
4 u1

u2
u3

3
5�v1

v2

�T

D
2
4 u1v1 u1v2

u2v1 u2v2
u3v1 u3v2

3
5 :
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Note that if A D uvT , then vec.A/ D v ˝ u and so we have

2
66666664

a11
a21
a31
a12
a22
a32

3
77777775
D

2
66666664

u1v1
u2v1
u3v1
u1v2
u2v2
u3v2

3
77777775
D
�
v1

v2

�
˝
2
4 u1

u2
u3

3
5 :

4.2 Rank-1 Tensors

How can we extend the rank-1 idea from matrices to tensors? In matrix computa-
tions we think of rank-1 matrices as outer products, i.e., A D uvT where u and v are
vectors. Thinking of matrix A as tensor A, we see that it is just the tensor product of
u and v: A.i1; i2/ D u.i1/v.i2/. Thus, we have

A D u ı v D
2
4u1

u2
u3

3
5 ı

�
v1
v2

�
, vec.A/ D

2
66666664

u1v1
u2v1
u3v1
u1v2
u2v2
u3v2

3
77777775
D v ˝ u:

Here is an order-3 example of the same idea:

A D uıvıw D
2
4 u1

u2
u3

3
5ı
�
v1
v2

�
ı
�

w1
w2

�
, vec.A/ D

2
6666666666666666664

u1v1w1
u2v1w1
u3v1w1
u1v2w1
u2v2w1
u3v2w1
u1v1w2
u2v1w2
u1v2w2
u2v2w2
u3v2w2

3
7777777777777777775

D w˝v˝u:

Each entry in A is a product of entries from u, v, and w: A.p; q; r/ D upvqwr.
In general, a rank-1 tensor is a tensor product of vectors. To be specific, if x.i/ 2

Rni for i D 1; : : : ; d, then

A D x.1/ ı � � � ı x.d/
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is a rank-1 tensor whose entries are defined by A.i/ D x.1/i1
� � � x.d/id

. In terms of the
Kronecker product we have vec.x.1/ ı � � � ı x.d// D x.d/ ˝ � � � ˝ x.1/.

4.3 The Nearest Rank-1 Problem for Matrices

Given a matrix A 2 Rm�n, consider the minimization of

�.�; u; v/ D k A � �uvT kF

where u 2 Rm and v 2 Rn have unit 2-norm and � is a nonnegative scalar. This is an
SVD problem for if UTAV D ˙ D diag.�i/ is the SVD of A and �1 � � � � � �n � 0,
then �.�; u; v/ is minimized by setting � D �1, u D U.W; 1/, and v D V.W; 1/.

Instead of explicitly computing the entire SVD, we can compute �1 and its
singular vectors using an alternating least squares approach. The starting point is to
realize that

k A � �uvT k2F D tr.ATA/� 2�uTAv C �2:

where tr.M/ indicates the trace of a matrix M, i.e., the sum of its diagonal entries.
Note that

�u.y/ D tr.ATA/ � 2yTAv C k y k22
is minimized by setting y D Av and that

�v.x/ D tr.ATA/� 2uTAxC k x k22
is minimized by setting x D ATu. This suggests the following iterative framework
for minimizing k A � �uvT kF:

Nearest Rank-1 Matrix

Given: A 2 Rm�n, v 2 Rn, k v k2 D 1
Repeat:

Fix v and choose � and u to minimize k A � �uvT kF W
y D AvI � D k y kI u D y=�

Fix u and choose � and v to minimize k A � �uvT kF W
x D ATuI � D k x kI v D x=�

�opt D � I uopt D uI vopt D v
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This is basically just the power method applied to the matrix

sym.A/ D
"
0 A

AT 0

#
:

The reason for bringing up this alternating least squares framework is that it readily
extends to tensors.

4.4 A Nearest Rank-1 Tensor Problem

Given A 2 Rm�n�p, we wish to determine unit vectors u 2 Rm, v 2 Rn, and w 2 Rp

and a scalar � so that the following is minimized:

kA � � � u ı v ı w kF D
vuut mX

iD1

nX
jD1

pX
kD1
.aijk � uivjwk/2:

Noting that

kA � � � u ı v ı w kF D k vec.A/ � � � w ˝ v ˝ u k2
we obtain the following alternating least squares framework:

Nearest Rank-1 Tensor

Given: A 2 Rm�n�p and unit vectors v 2 Rn and w 2 Rp.

Repeat:

Determine x 2 Rm that minimizes k vec.A/ � w ˝ v ˝ x k2
and set � D k x k and u D x=�:

Determine y 2 Rn that minimizes k vec.A/ � w ˝ y ˝ u k2
and set � D k y k and v D y=�:

Determine z 2 Rp that minimizes k vec.A/ � z ˝ v ˝ u k2
and set � D k z k and w D z=�:

�opt D �; uopt D u; vopt D v; wopt D w
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It is instructive to examine some of the details associated with this iteration for the
case m D n D p D 2. The objective function has the form

�.�; 	1; 	2; 	3/ D

�������������������

2
66666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
77777777777775

� � � w ˝ v ˝ u

�������������������

D

�������������������

2
66666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
77777777777775

� � �

2
66666666666664

c3c2c1
c3c2s1
c3s2c1
c3s2s1
s3c2c1
s3c2s1
s3s2c1
s3s2s1

3
77777777777775

�������������������
where

u D
�

cos.	1/
sin.	1/

�
D
�

c1
s1

�
; v D

�
cos.	2/
sin.	2/

�
D
�

c2
s2

�
; w D

�
cos.	3/
sin.	3/

�
D
�

c3
s3

�
:

Let us look at the three structured linear least squares problems that arise during
each iteration.

(1) To improve 	1 and � , we fix 	2 and 	3 and minimize
�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

� � �

2
666666666664

c3c2c1
c3c2s1
c3s2c1
c3s2s1
s3c2c1
s3c2s1
s3s2c1
s3s2s1

3
777777777775

�����������������

D

�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

�

2
666666666664

c3c2 0

0 c3c2
c3s2 0

0 c3s2
s3c2 0

0 s3c2
s3s2 0

0 s3s2

3
777777777775

�
x1
y1

������������������
with respect to x1 and y1. We then set � D

q
x21 C y21 and u D Œx1 y1�T=�:

(2) To improve 	2 and � , we fix 	1 and 	3 and minimize

�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

� � �

2
666666666664

c3c2c1
c3c2s1
c3s2c1
c3s2s1
s3c2c1
s3c2s1
s3s2c1
s3s2s1

3
777777777775

�����������������

D

�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

�

2
666666666664

c3c1 0

c3s1 0

0 c3c1
0 c3s1

s3c1 0

s3s1 0

0 s3c1
0 s3s1

3
777777777775

�
x2
y2

������������������

with respect to x2 and y2. We then set � D
q

x22 C y22 and v D Œx2 y2�T=�:
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(3) To improve 	3 and � , we fix 	1 and 	2 and minimize

�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

� � �

2
666666666664

c3c2c1
c3c2s1
c3s2c1
c3s2s1
s3c2c1
s3c2s1
s3s2c1
s3s2s1

3
777777777775

�����������������

D

�����������������

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

�

2
666666666664

c2c1 0

c2s1 0

s2c1 0

s2s1 0

0 c2s1
0 c2s1
0 s2c1
0 s2s1

3
777777777775

�
x3
y3

������������������

with respect to x3 and y3. We then set � D
q

x23 C y23 and w D Œx3 y3�T=�:

Componentwise optimization is a common framework for many tensor-related
computations. The basic idea is to choose a subset of the unknowns and (temporar-
ily) freeze their value. This leads to a simplified optimization problem involving the
other unknowns. The process is repeated using different subsets of unknowns each
iteration until convergence. The framework is frequently successful, but there is a
tendency for the iterates to get trapped near an uninteresting local minima.

5 The Variational Approach to Tensor Singular Values

If �2 is a zero of the characteristic polynomial p.�/ D det.ATA � �I/, then � is a
singular value of A and the associated left and right singular vectors are eigenvectors
for AAT and ATA respectively. How can we extend these notions to tensors? Is there
a version of the characteristic polynomial that makes sense for tensors? What would
be the analog of the matrices AAT and ATA? These are tough questions. Fortunately,
there is a constructive way to avoid these difficulties and that is to take a variational
approach. Singular values and vectors are solutions to a very tractable optimization
problem.

5.1 Rayleigh Quotient/Power Method Ideas: The Matrix Case

The singular values and singular vectors of a general matrix A 2 Rm�n are the
stationary values and vectors of the Rayleigh quotient

yTAx

k x k2k y k2
:
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It is slightly more convenient to pose this as a constrained optimization problem:
singular values and singular vectors of a general matrix A 2 Rm�n are the stationary
values and vectors of

 A.x; y/ D xTAy D
mX

iD1

nX
jD1

aijxiyj

subject to the constraints k x k2 D k y k2 D 1. To connect this “definition” to the
SVD we use the method of Lagrange multipliers and that means looking at the
gradient of

Q A.x; y/ D  .x; y/ � �
2
.xTx � 1/� �

2
.yTy � 1/:

Using the rearrangements

 A.x; y/ D
mX

iD1
xi

0
@ nX

jD1
aijyj

1
A D

nX
jD1

yj

 
mX

iD1
aijxi

!
;

it follows that

r Q A.x; y/ D
"

Ay � �x

ATx � �y

#
: (4)

From the vector equation r Q A.x; y/ D 0 we conclude that � D � D xTAy D
 A.x; y/ and that x and y satisfy Ay D .xTAy/x and ATx D .xTAy/y. That is to
say, x is an eigenvector of ATA and y is an eigenvector of AAT and the associated
eigenvalue in each case is .yTAx/2. These are exactly the conclusions that can be
reached by equating columns in the SVD equation AV D U˙ . Indeed, from

AŒ v1 j � � � j vn � D Œ u1 j � � � j un � diag.�1; : : : ; �n/

we see that Avi D �iui, ATui D �ivi, and �i D uT
i Avi, for i D 1 W n.
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The power method for matrices can be designed to go after the largest singular
value and associated singular vectors:

Power Method for Matrix Singular
Values and Vectors

Given A 2 Rm�n and unit vector y 2 Rn.

Repeat:

Qx D Ay; x D Qx=k Qx k
Qy D ATx; y D Qy=k Qy k
� D  A.x; y/ D yTAx

�opt D � , uopt D y, vopt D x

This can be viewed as an alternating procedure for finding a zero for the gradient (4).
Under mild assumptions, f�opt; uopt; voptgwill approximate the largest singular value
of A and the corresponding left and right singular vectors. In principle, deflation can
be used to find other singular value triplets. Thus, by applying the power method to
A � �1u1vT

1 we could obtain an estimate of f�2; u2; v2g.

5.2 Rayleigh Quotient/Power Method Ideas: The Tensor Case

Let us extend the Rayleigh quotient characterization for matrix singular values and
vectors to tensors. We work out the order-3 situation for simplicity.

If A 2 Rn1�n2�n3 , x 2 Rn1 , y 2 Rn2 , and z 2 Rn3 , then the singular values and
vectors of A are the stationary values and vectors of

 A.x; y; z/ D
n1X

iD1

n2X
jD1

n3X
kD1

aijk xiyjzk (5)

subject to the constraints k x k2Dk y k2Dk z k2D 1. Before we start taking gradi-
ents we present three alternative formulations of this summation. Each highlights a
different unfolding of the tensor A.

The Mode-1 Formulation:

 A.x; y; z/ D
n1X

iD1
xi

0
@ n2X

jD1

n3X
kD1

aijk yjzk

1
A D xTA.1/z ˝ y (6)
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where A.1/.i; jC .k � 1/n2/ D aijk. For the case n D Œ4; 3; 2� we have

A.1/ D

2
664

a111 a121 a131 a112 a122 a132
a211 a221 a231 a212 a222 a232
a311 a321 a331 a312 a322 a332
a411 a421 a431 a412 a422 a432

3
775 :

.1;1/ .2;1/ .3;1/ .1;2/ .2;2/ .3;2/

The Mode-2 Formulation:

 A.x; y; z/ D
n2X

jD1
yj

 
n1X

iD1

n3X
kD1

aijk xizk

!
D yTA.2/z ˝ x (7)

where A.2/. j; iC .k � 1/n1/ D aijk. For the case n D Œ4; 3; 2� we have

A.2/ D
2
4 a111 a211 a311 a411 a112 a212 a312 a412

a121 a221 a321 a421 a122 a222 a322 a422

a131 a231 a331 a431 a132 a232 a332 a432

3
5 :

.1;1/ .2;1/ .3;1/ .4;1/ .1;2/ .2;2/ .3;2/ .4;2/

The Mode-3 Formulation:

 A.x; y; z/ D
pX

kD1
zk

0
@ mX

iD1

nX
jD1

aijk xiyj

1
A D zTA.3/y ˝ x (8)

where A.3/.k; iC . j� 1/n1/ D aijk. For the case n D Œ4; 3; 2� we have

A.3/ D
�

a111 a211 a311 a411 a121 a221 a321 a421 a131 a231 a331 a431

a112 a212 a312 a412 a122 a222 a322 a422 a132 a232 a332 a432

�
:

.1;1/ .2;1/ .3;1/ .4;1/ .1;2/ .2;2/ .3;2/ .4;2/ .1;3/ .2;3/ .3;3/ .4;3/

The matrices A.1/, A.2/, and A.3/ are the mode-1, mode-2, and mode-3 unfoldings of
A that we introduced in Sect. 3.4. It is handy to identify columns with multi-indices
as we have shown.

We return to the constrained minimization of the objective function  A.x; y; z/)
that is defined in (5). Using the method of Lagrange multipliers we set the gradient
of

Q A.x; y; z/ D  A.x; y; z/ � �
2
.xTx � 1/� �

2
.yTy � 1/� 


2
.zTz � 1/
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to zero. Using (6)–(8) we get

r Q A D

2
664
A.1/.z ˝ y/ � � x

A.2/.z ˝ x/ � � y

A.3/.y ˝ x/ � 
 z

3
775 D

2
664
0

0

0

3
775 : (9)

Since x, y, and z are unit vectors it follows that � D � D 
 D  .x; y; z/. In this case
we say that � D  .x; y; z/ is a singular value of A and x, y, and z are the associated
singular vectors. How might we solve this (highly structured) system of nonlinear
equations? The triplet of matrix-vector products:

A.1/ � .z ˝ y/ D � � x A.2/ � .z ˝ x/ D � � y A.3/ � .y ˝ x/ D � � z

suggests a componentwise solution strategy:

Power Method for Tensor Singular
Values and Vectors

Given: A 2 Rn1�n2�n3 and unit vectors y 2 Rn2 and z 2 Rn3 .

Repeat:

Qx D A.1/.z ˝ y/; � D k Qx k; x D Qx=�
Qy D A.2/.z ˝ x/; � D k Qy k; y D Qy=�
Qz D A.3/.y ˝ x/; � D k Qz k; z D Qz=�

�opt D � , xopt D x, yopt D y, zopt D z

See [7, 17] for details.
For matrices, the SVD expansion

A D U˙VT D
rank.A/X

iD1
�iuiv

T
i

has an important optimality property. In particular, the Eckhart-Young theorem tells
us that

Ar D
rX

iD1
�iuiv

T
i r � rank.A/

is the closest rank-r matrix to A in either the 2-norm or Frobenius norm. Moreover,
the closest rank-1 matrix to Ar�1 is �rurv

T
r . Thus, it would be possible (in principle)

to compute the full SVD by solving a sequence of closest rank-1 matrix problems.
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This idea does not work for tensors. In other words, if �1u1 ı v1 ı w1 is the closest
rank-1 tensor to A and �2u1 ı v2 ı w2 is the closest rank-1 tensor to

QA D A � �1u1 ı v1 ı w1;

then

A2 D �1u1 ı v1 ı w1 C �2u2 ı v2 ı w2

is not necessarily the closest rank-2 tensor to A. We need an alternative approach to
formulating a “tensor SVD”.

5.3 A First Look at Tensor Rank

Since matrix rank ideas do not readily extend to the tensor setting, we should look
more carefully at tensor rank to appreciate the “degree of difficulty” associated with
the formulation of illuminating low-rank tensor expansions.

We start with a definition. Suppose the tensor A can be written as the sum of r
rank-1 tensors and that r is minimal in this regard. In this case we say that rank.A/ D
r. Let us explore this concept in the simplest possible setting: A 2 R2�2�2. For this
problem the goal is to find three thin-as-possible matrices X;Y;Z 2 R2�r so that

A D
rX

kD1
X.W; k/ ı Y.W; k/ ı Z.W; k/; (10)

i.e.,

vec.A/ D

2
666666666664

a111
a211
a121
a221
a112
a212
a122
a222

3
777777777775

D
rX

kD1
Z.W; k/ ˝ Y.W; k/ ˝ X.W; k/:
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This vector equation can also be written as a pair of matrix equations:

A.W; 1/ D
"

a111 a121

a211 a221

#
D

rX
kD1

Z.1; k/X.W; k/Y.W; k/T

A.W; 2/ D
"

a112 a122

a212 a222

#
D

rX
kD1

Z.2; k/X.W; k/Y.W; k/T :

Readers familiar with the generalized eigenvalue problem should see a connection
to our 2-by-2-by-2 rank.A/ problem. Indeed, it can be shown that

det

 "
a111 a121

a211 a221

#
� �

"
a112 a122

a212 a222

#!
D 0

has real distinct roots with probability 0.79 and complex conjugate roots with
probability 0.21 when the matrix entries are randomly selected using the MATLAB

randn function. If this 2-by-2 generalized eigenvalue problem has real distinct
eigenvalues, then it is possible to find nonsingular matrices S and T so that

"
a111 a121

a211 a221

#
D S

"
˛1 0

0 ˛2

#
TT

"
a112 a122

a212 a222

#
D S

"
ˇ1 0

0 ˇ2

#
TT :

This shows that the rank-1 expansion (10) for A holds with r D 2, X D S, Y D T
and

Z D
"
˛1 ˛2

ˇ1 ˇ2

#
:

Thus, for 2-by-2-by-2 tensors, rank equals two with probability about 0.79. A
similar generalized eigenvalue analysis shows that the rank is three with probability
0.21. This is a very different situation than with matrices where an n-by-n matrix has
rank n with probability 1. The subtleties associated with tensor rank are discussed
further in Sect. 8.3.
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6 Tensor Symmetry

Symmetry for a matrix is defined through transposition: A D AT . This is a nice
shorthand way of saying that A.i; j/ D A. j; i/ for all possible i and j that satisfy
1 � i � n and 1 � j � n.

How do we extend this notion to tensors? Transposition moves indices around so
we need a way of talking about what happens when we (say) interchange A.i; j; k/
with A. j; i; k/ or A.k; j; i/ or A.i; k; j/ or A. j; k; i/ or A.k; i; j/. It looks like we will
have to contend with an exponential number of transpositions and an exponential
number of partial symmetries.

6.1 Tensor Transposition

If C 2 Rn1�n2�n3 , then there are 3Š D 6 possible transpositions identified by the
notation C< Œi j k� > where Œi j k� is a permutation of Œ1 2 3�:

B D

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

C< Œ1 2 3� >

C< Œ1 3 2� >

C< Œ2 1 3� >

C< Œ2 3 1� >

C< Œ3 1 2� >

C< Œ3 2 1� >

9>>>>>>>>>>>=
>>>>>>>>>>>;

H)

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

bijk

bikj

bjik

bjki

bkij

bkji

9>>>>>>>>>>>=
>>>>>>>>>>>;

D cijk

for i D 1 W n1; j D 1 W n2; k D 1 W n3:
For order-d tensors there are dŠ possibilities. Suppose v D Œv1; v2; : : : ; vd� is a

permutation of the integer vector 1 W d D Œ1; 2; : : : ; d �. If C 2 Rn1�����nd , then

B D C<v> ) B.i.v// D C.i/ 1 � i � n:

6.2 Symmetric Tensors

An order-d tensor C 2 Rn�����n is symmetric if C<v> D C for all permutations v of
1 W d. If d D 3 this means that

cijk D cikj D cjik D cjki D ckij D ckji:
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To get a feel for the level of redundancy in a symmetric tensor, we see that a
symmetric C 2 R3�3�3 has at most ten distinct values:

c111
c112 D c121 D c211
c113 D c131 D c311
c222
c221 D c212 D c122
c223 D c232 D c322
c333
c331 D c313 D c133
c332 D c323 D c233
c123 D c132 D c213 D c231 D c312 D c321:

The modal unfoldings of a symmetric tensor are all the same. For example, the (2,3)
entry in each of the matrices

C.1/ D

2
64

c111 c121 c131 c112 c122 c132 c113 c123 c133

c211 c221 c231 c212 c222 c232 c213 c223 c233

c311 c321 c331 c312 c322 c332 c113 c323 c333

3
75

C.2/ D

2
64

c111 c211 c311 c112 c212 c312 c113 c213 c313

c121 c221 c321 c122 c222 c322 c123 c223 c323

c131 c231 c331 c132 c232 c332 c113 c233 c333

3
75

C.3/ D

2
64

c111 c211 c311 c121 c221 c321 c131 c231 c331

c112 c212 c312 c122 c222 c322 c132 c232 c332

c113 c213 c313 c123 c223 c323 c133 c233 c333

3
75

are equal: c231 D c321 D c312.

6.3 Symmetric Rank

An order-d symmetric rank-1 tensor C 2 Rn�����n has the form

C D x ı � � � ı x„ ƒ‚ …
d times



30 C.F. Van Loan

where x 2 Rn. In this case we clearly have

C.i1; : : : ; id/ D xi1xi2 � � � xid

and

vec.C/ D x ˝ � � � ˝ x„ ƒ‚ …
d times

:

An order-3 symmetric tensor C has symmetric rank r if there exists x1; : : : ; xr 2 Rn

and � 2 Rr such that

C D
rX

kD1
�k � xk ı xk ı xk

and no shorter sum of symmetric rank-1 tensors exists. Symmetric rank is denoted
by rankS.C/. Note, in contrast to what we would expect for matrices, there may be
a shorter sum of general rank-1 tensors that add up to C:

C D
QrX

kD1
Q�k � Qxk ı Qyk ı Qzk:

The symmetric rank of a symmetric tensor is more tractable than the (general) rank
of a general tensor. For example, if C 2 C n�����n is an order-d symmetric tensor,
then with probability one we have

rankS.C/ D
8<
:

f .d;m/C 1 if (d,n)D .3; 5/; .4; 3/; .4; 4/; or.4; 5/

f .d; n/ otherwise

where

f .d; n/ D ceil

0
BBB@

�
nC d � 1

d

�

n

1
CCCA :

See [4, 5] for deeper discussions of symmetric rank.
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6.4 The Eigenvalues of a Symmetric Tensor

For a symmetric matrix C the stationary values of �C.x/ D xTCx subject to the
constraint that k x k2 D 1 are the eigenvalues of C. The associated stationary vectors
are eigenvectors. We extend this idea to symmetric tensors and the order-3 case is
good enough to illustrate the main ideas.

If C 2 Rn�n�n is a symmetric tensor, then we define the stationary values of

�C.x/ D
nX

iD1

nX
jD1

nX
kD1

cijkxixjxk D xTC.1/.x ˝ x/

subject to the constraint that k x k2 D 1 to be the eigenvalues of C. The associated
stationary vectors are eigenvectors. Using the method of Lagrange multipliers it can
be shown that if x is a stationary vector for �C then

x D �C.x/C.1/.x ˝ x/

This leads to an iteration of the following form:

Power Method for Tensor Eigenvalues
and Eigenvectors

Given: Symmetric C 2 Rn�n�n and unit vector x 2 Rn.

Repeat:

Qx D C.1/.x ˝ x/

� D k Qx k2
x D Qx=�

�opt D �, xopt D x.

There are some convergence results for this iteration, For example, it can be shown
that if the order of C is even and M is a square unfolding, then the iteration converges
if M is positive definite [14].

6.5 Symmetric Embeddings

In the matrix case there are connections between the singular values and vectors of
A 2 Rn1�n2 and the eigenvalues and vectors of

sym.A/ D
"
0 A

AT 0

#
2 R.n1Cn2/�.n1Cn2/
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If A D U � diag.�i/ � VT is the SVD of A 2 Rn1�n2, then for k D 1 W rank.A/

"
0 A

AT 0

#"
uk

˙vk

#
D ˙�k

"
uk

˙vk

#

where uk D U.W; k/ and vk D V.W; k/.
It turns out that symmetric tensor sym.A/ can be “built” from of a general tensor

A by judiciously positioning A and all of its transposes. Here is a depiction of the
order-3 case:

We can think of sym.A/ as a 3-by-3-by-3 block tensor. As a tensor of scalars, it
is N-by-N-by-N where N D n1n2n3. If

8<
: �;

2
4 u
v

z

3
5
9=
;

is a stationary pair for sym.A/, then so are

8<
: �;

2
4 u
�v
�z

3
5
9=
; ;

8<
: ��;

2
4 u
�v

z

3
5
9=
; ;

8<
: ��;

2
4 u

v

�z

3
5
9=
; :

This is a nice generalization of the result for matrices. There are interesting
connections between power methods with A and power methods with sym.A/.
There are also connections between the rank of A and the symmetric rank of
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sym.A/:

dŠ rank.A/ � rankS.sym.A//:

It is not clear if the inequality can be replaced by equality. See [26].

7 The Tucker Decomposition

We have seen that it is possible to extend the definition of singular values and vectors
to tensors by using variational principles. However, these insights did not culminate
in the production of a tensor SVD and that is disappointing when we consider the
power of the matrix SVD:

1. It can turn a given problem into an equivalent easy-to-solve problem. For
example, the min k Ax � b k2 problem can be converted into an equivalent
diagonal least squares problem using the SVD.

2. It can uncover hidden relationships that exist in matrix-encoded data. For
example, the SVD can show that a data matrix has a low rank structure.

In the next several sections we produce various SVD-like tensor decompositions.
We start with the Tucker decomposition because it involves orthogonality and has a
strong resemblance to the matrix SVD. We use order-3 tensors to illustrate the main
ideas.

7.1 Tucker Representations: The Matrix Case

Given a matrix A 2 Rn1�n2, the Tucker representation problem involves finding a
core matrix S 2 Rr1�r2 and matrices U1 2 Rn1�r1 and U2 2 Rn2�r2 such that

A.i1; i2/ D
r1X

j1D1

r2X
j2D1

S. j1; j2/ � U1.i1; j1/ � U2.i2; j2/:

Part of the “deal” involves choosing the integers r1 and r2 and perhaps replacing the
“=” with “�”. Regardless, it is possible to reformulate the right hand side as a sum
of rank-1 matrices,

A D
r1X

j1D1

r2X
j2D1

S. j1; j2/ � U1.W; j1/ � U2.W; j2/T ; (11)
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or as a sum of vector Kronecker products,

vec.A/ D
r1X

j1D1

r2X
j2D1

S. j1; j2/U2.W; j2/ ˝ U1.W; j2/;

or as a single matrix-vector product,

vec.A/ D .U2 ˝ U1/ � vec.S/:

The tensor versions of these reformulations get us to think the right way about how
we might generalize the matrix SVD.

7.2 Tucker Representations: The Tensor Case

Given a tensor A 2 Rn1�n2�n3 , the Tucker representation problem involves finding
a core tensor S 2 Rr1�r2�r3 and matrices U1 2 Rn1�r1 , U2 2 Rn2�r2 , and U3 2
Rn3�r3 such that

A.i1; i2; i3/ D
r1X

j1D1

r2X
j2D1

r3X
j3D1

S. j1; j2; j3/ � U1.i1; j1/ � U2.i2; j2/ � U3.i3; j3/:

As in the matrix case above, we can rewrite this as a sum of rank-1 tensors,

A D
r1X

j1D1

r2X
j2D1

r3X
j3D1

S. j1; j2; j3/ � U1.W; j1/ ı U2.W; j2/ ı U3.W; j3/;

or as the sum of vector Kronecker products,

vec.A/ D
r1X

j1D1

r2X
j2D1

r3X
j3D1

S. j1; j2; j3/ � U3.W; j3/ ˝ U2.W; j2/ ˝ U1.W; j1/

or as a single matrix-vector product,

vec.A/ D .U3 ˝ U2 ˝ U1/ � vec.S/:

The challenge is to design the representation so that it is illuminating and com-
putable.

Before we proceed it is instructive to revisit the matrix case. If we set r1 D n1
and r2 D n2 in (11) and assume the U matrices are orthogonal, then the Tucker
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representation has the form

A D U1.U
T
1 AU2/U

T
2 D

n1X
j1D1

n2X
j2D1

S. j1; j2/U1.W; j1/U2.W; j2/T

where S D UT
1AU2. To make this an “illuminating” representation of A we strive for

a diagonal core matrix S and that, of course, leads to the SVD:

A D
rank.A/X

kD1
S.k; k/U1.W; k/U2.W; k/T :

From there we prove various optimality theorems and conclude that

Ar D
rX

kD1
S.k; k/U1.W; k/U2.W; k/T r � rank.A/

is the closest rank-r matrix to A in (say) the Frobenius norm.
On the algorithmic front methods typically determine U1 and U2 through a

sequence of updates. Thus, if A D U1SUT
2 is the “current” representation of A we

proceed to compute orthogonal �1 and �2 so that QS D �T
1S�2 is “more diagonal”

than S. We then update the representation:

S �1
TS�2; U1  U1�1; U2  U2�2:

Our plan is to mimic this sequence of events for tensors focusing first on the
connection between the core tensor S and the U matrices.

7.3 The Mode-k Product

Updating a Tucker representation involves updating the current core tensor S and
the associated U-matrices. Regarding the former we anticipate the need to design
a relevant tensor-matrix product. The mode-k product turns out to be that operation
and we motivate the main idea with an example. Suppose S 2 R4�3�2 and consider
its mode-2 unfolding:

S.2/ D

2
64

s111 s211 s311 s411 s112 s212 s312 s412

s121 s221 s321 s421 s122 s222 s322 s422

s131 s231 s331 s431 s132 s232 s332 s432

3
75 :
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Its columns are the mode-2 fibers of S. Suppose we apply a 5-by-3 matrix M to each
of those fibers:

2
66666664

t111 t211 t311 t411 t112 t212 t312 t412

t121 t221 t321 t421 t122 t222 t322 t422

t131 t231 t331 t431 t132 t232 t332 t432

t141 t241 t341 t441 t142 t242 t342 t442

t151 t251 t351 t451 t152 t252 t352 t452

3
77777775

D

2
66666664

m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53

3
77777775

2
664

s111 s211 s311 s411 s112 s212 s312 s412

s121 s221 s321 s421 s122 s222 s322 s422

s131 s231 s331 s431 s132 s232 s332 s432

3
775 :

This defines a new tensor T 2 R4�5�2 that is totally specified by the equation

T.2/ D M � S.2/
and referred to as the mode-2 product of a tensor S with a matrix M. In general, if
S is an n1� � � � � nd tensor and M 2 Rmk�nk for some k that satisfies 1 � k � d, then
the mode-k product of S with M is a new tensor T defined by

T.k/ D M � S.k/:

To indicate this operation we use the notation

T D S�k M:

Note that T is an n1 � � � � � nk�1 � mk � nkC1 � nd tensor. To illustrate more
characterizations of the mode-k product we drop down to the order-3 case.

– Mode-1 Product. If S 2 Rn1�n2�n3 and M1 2 Rm1�n1, then T D S�1 M1 is an
m1 � n2 � n3 tensor that is equivalently defined by

T .i1; i2; i3/ D
n1X

kD1
M1.i1; k/S.k; i2; i3/

vec.T / D .In3 ˝ In2 ˝ M1/vec.S/: (12)
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– Mode-2 Product. If S 2 Rn1�n2�n3 and M2 2 Rm2�n2, then T D S�2 M2 is an
n1 �m2 � n3 tensor that is equivalently defined by

T .i1; i2; i3/ D
n2X

kD1
M2.i2; k/S.i1; k; i3/

vec.T / D .In3 ˝ M2 ˝ In1 /vec.S/ (13)

– Mode-3 Product. If S 2 Rn1�n2�n3 and M3 2 Rm3�n3, then T D A�3 M3 is an
n1 � n2 � m3 tensor that is is equivalently defined by

T .i1; i2; i3/ D
n3X

kD1
M3.i3; k/S.i1; i2; k/

vec.T / D .M3 ˝ In2 ˝ In1 /vec.S/ (14)

The modal products have two important properties that we will be using later. The
first concerns successive products in the same mode. If S 2 Rn1�����nd and M1;M2 2
Rnk�nk, then

.S�k M1/�k M2 D S�k .M1M2/:

The second property concerns successive products in different modes. If S 2
Rn1�����nd , Mk 2 Rnk�nk, Mj 2 Rnj�nj, and k ¤ j, then

.S�k Mk/�j Mj D .S �j Mj/�k Mk

The order is not important so we just write S �j Mj�k Mk or S �k Mk�j Mj.

7.4 The Core Tensor

Suppose we have a Tucker representation

A.i/ D
nX

jD1

S.j/ � U1.i1; j1/ �U2.i2; j2/ � U3.i3; j3/;

where A 2 Rn, n D Œn1; n2; n3�, and U1 2 Rn1�n1, U2 2 Rn2�n2, and U3 2 Rn3�n3. It
follows that

vec.A/ D .U3 ˝ U2 ˝ U1/vec.S/

D .U3 ˝ In2 ˝ In1/.In3 ˝ U2 ˝ In1 /.In3 ˝ In2 ˝ U1/vec.S/:
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This factored product enables us to relate the core tensor S to A via a triplet of
modal products. Indeed, if

vec.S.1// D .In3 ˝ In2 ˝ U1/vec.S/

vec.S.2// D .In3 ˝ U2 ˝ In1 /vec.S.1//

vec.S.3// D .U3 ˝ In2 ˝ In1 /vec.S.2//

then A D S.3/. But from (12), (13), and (14) this means that

S.1/ D S�1 U1 S.2/ D S.1/�2 U2 S.3/ D S.2/�3 U3

and so

A D S�1 U1�2 U2�3 U3:

If the U’s are nonsingular then

A D A�1 .U�11 U1/�2 .U�12 U2/�3 .U�13 U3/

D 	
A�1 U�11 �2 U�12 �3 U�13


�1 U1�2 U2�3 U3

and so S D A�1 U�11 �2 U�12 �3 U�13 .
If the U’s are orthogonal and A 2 Rn1�n2�n3 and U1 2 Rn1�n1, U2 2 Rn2�n2, and

U3 2 Rn3�n3 are orthogonal, then

A D S�1 U1�2 U2�3 U3

where

S D A�1 UT
1�2 UT

2�3 UT
3 : (15)

or equivalently

A.1/ D U1S.1/.U3 ˝ U2/
T (16)

A.2/ D U2S.2/.U3 ˝ U1/
T (17)

A.3/ D U3S.3/.U2 ˝ U1/
T (18)

With this choice we are representing A as a Tucker product of a core tensor S and
three orthogonal matrices. Things are beginning to look “SVD-like”.
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7.5 The Higher-Order SVD

How do we choose the U matrices in (15) so that the core tensor S reveals things
about the structure of A? It is instructive to look at the matrix case where we know
the answer to this question. Suppose we have the SVDs

UT
1A.1/V1 D ˙1; UT

2A.2/V2 D ˙2:

Since A1 D A and A.2/ D AT it follows that we may set V1 D U2. In other words,
we can (in principle) compute the SVD of A by computing the SVD of the modal
unfoldings A.1/ and A.2/. The U matrices from the modal SVDs are the “right”
choice.

This suggests a strategy for picking good U matrices for the tensor case A 2
Rn1�n2�n3 . Namely, compute the SVD of the modal unfoldings

A.1/ D U1˙1V
T
1 A.2/ D U2˙2V

T
2 A.3/ D U3˙3V

T
3 (19)

and set

S D A�1 UT
1�2 UT

2�3 UT
3 :

The resulting decomposition

A D S�1 U1�2 U2�3 U3;

is the higher-order SVD (HOSVD) ofA. IfA D S�1 U1�2 U2�3 U3 is the HOSVD
of A 2 Rn1�n2�n3 , then

A D
rX

jD1

S.j/ � U1.W; j1/ ı U2.W; j2/ ıU3.W; j3/ (20)

where r1 D rank.A.1//, r2 D rank.A.2//, and r3 D rank.A.3//. The triplet of modal
ranks Œr1; r2; r3 � is called the multilinear rank of A.

The core tensor in the HOSVD has important properties. By combining (16)–(19)
we have

S.1/ D ˙1V1.U3 ˝ U2/

S.2/ D ˙2V2.U3 ˝ U1/

S.3/ D ˙3V3.U2 ˝ U1/



40 C.F. Van Loan

from which we conclude that

k S. j; W; W/ kF D �j.A.1// j D 1 W n1

k S.W; j; W/ kF D �j.A.2// j D 1 W n2

k S.W; W; j/ kF D �j.A.3// j D 1 W n3:

Here, �j.C/ denotes the jth largest singular value of the matrix C. Notice that the
norms of the tensor’s slices are getting smaller as we “move away” from A.1; 1; 1/.

This suggests that we can use the grading in S to truncate the HOSVD:

A � AQr D
QrX

jD1

S.j/ � U1.W; j1/ ı U2.W; j2/ ı U3.W; j3/

where Qr � r, i.e., Qr1 � r1, Qr2 � r2, and Qr3 � r3. As with SVD-based low-rank
approximation in the matrix case, we simply need a tolerance to determine how to
abbreviate the summation in (20. For a deeper discussion of the HOSVD, see [8].

7.6 The Tucker Nearness Problem

Suppose we are given A 2 Rn1�n2�n3 and r D Œr1; r2; r3� � Œn1; n2; n3� D n.
In the Tucker nearness problem we determine S 2 Rr1�r2�r3 and matrices U1 2
Rn1�r1, U2 2 Rn2�r2, and U3 2 Rn3�r3 with orthonormal columns such that

�.U1;U2;U3/ D
������ A �

rX
jD1

S.j/ � U1.W; j1/ ı U2.W; j2/ ı U3.W; j3/
������

F

is minimized. It is easy to show that

�.U1;U2;U3/ D k vec.A/ � .U3 ˝ U2 ˝ U1/vec.S/ k2
and so from using normal equations we see that

S D 	UT
3 ˝ UT

2 ˝ UT
1


 � vec.A/:
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This is why the objective function � does not have S as an argument: the “best S”
is determined by U1, U2, and U3. The goal is to minimize

�.U1;U2;U3/ D k
	
I � .U3 ˝ U2 ˝ U1/

	
UT
3 ˝ UT

2 ˝ UT
1




vec.A/ k

2
:

Since U3 ˝ U2 ˝ U1 has orthonormal columns, it follows that minimizing this
norm is the same as maximizing

�.U1;U2;U3/ D k
	
UT
3 ˝ UT

2 ˝ UT
1


 � vec.A/ k
2
:

The reformulations

�.U1;U2;U3/ D

8̂
ˆ̂<
ˆ̂̂:

k UT
1 � A.1/ � .U3 ˝ U2/ kF

k UT
2 � A.2/ � .U3 ˝ U1/ kF

k UT
3 � A.3/ � .U2 ˝ U1/ kF

set the stage for a componentwise optimization approach:

Fix U2 and U3 and choose U1 to maximize k UT
1 � A.1/ � .U3 ˝ U2/ kF:

Fix U1 and U3 and choose U2 to maximize k UT
2 � A.2/ � .U3 ˝ U1/ kF:

Fix U1 and U2 and choose U3 to maximize k UT
3 � A.3/ � .U2 ˝ U1/ kF:

These optimization problems can be solved using the SVD. Consider the problem
of maximizing k QTM kF where Q 2 Rm�r has orthonormal columns and M 2
Rm�n is given. If

M D U˙VT

is the SVD of M, then

kQTM k2F D kQTU˙VT k2F D kQTU˙ k2F D
rX

kD1
�2k k QTU.W; k/ k22:

It is clear that we can maximize the summation by setting Q D U.W; 1 W r/. Putting
it all together we obtain the following framework.
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The Tucker Nearness Problem

Given A 2 Rn1�n2�n3

Compute the HOSVD of A and determine r D Œr1; r2; r3� � n.

Set U1 D U1.W; 1 W r1/, U2 D U2.W; 1 W r2/, and U3 D U3.W; 1 W r3/.
Repeat:

Compute the SVD A.1/ � .U3 ˝ U2/ D QU1˙1VT
1

and set U1 D QU1.W; 1 W Qr1/.

Compute the SVD A.2/ � .U3 ˝ U1/ D QU2˙2VT
2

and set U2 D QU2.W; 1 W Qr2/.

Compute the SVD A.3/ � .U2 ˝ U1/ D QU3˙3VT
3

and set U3 D QU3.W; 1 W Qr3/.
U.opt/
1 D U1, U.opt/

2 D U2, U.opt/
3 D U3

Using the HOSVD to generate an initial guess makes sense given the discussion in
Sect. 7.5. The matrix-matrix products, e.g., A.1/ � .U3 ˝ U2/, are rich in exploitable
Kronecker structure. See [27] for further details.

7.7 A Jacobi Approach

Solving the Tucker Nearness problem is not equivalent to maximizing the “diagonal
mass” of the core tensor S. We briefly describe a Jacobi-like procedure that does.
To motivate the main idea, consider the problem of maximizing tr.UT

1 AU2/ where
A 2 Rn1�n2 is given, U1 2 Rn1�n1 is orthogonal, and U2 2 Rn2�n2 is orthogonal. It is
easy to show that the optimum U1 and U2 have the property that UT

1 AU2 is diagonal
with nonnegative diagonal entries. Thus, the SVD solves this particular “max trace”
problem.

Now suppose C is n-by-n-by-n and define

 .C/ D
nX

iD1
ciii:
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Given A 2 Rn1�n2�n3 , our goal is to compute orthogonal U1 2 Rn1�n1, U2 2 Rn2�n2,
and U3 2 Rn3�n3 so that if the tensor S is defined by

vec.S/ D .U3 ˝ U2 ˝ U1/
Tvec.A/

then �.S/ is maximized. Here is a Jacobi-like strategy for updating the “current”
orthogonal triplet fU1; U2; U3 g so that new core tensor has a larger trace.

A Jacobi Framework for Computing a
Compressed Tucker Representation

Given: A 2 Rn1�n2�n3

Set U1 D In, U2 D In, U3 D In , and S D A:
Repeat:

Find “simple” orthogonal QU1, QU2, and QU3 so that

tr.S�1 QU1�2 QU2�3 QU3/ > tr.S/
Update:

S D S�1 QU1�2 QU2�3 QU3

U1 D U1
QU1, U2 D U2

QU2, U3 D U3
QU3

U.opt/
1 D U1, U.opt/

2 D U2, U.opt/
3 D U3.

We say that this iteration strives for a “compressed” Tucker representation because
there is an explicit attempt to compress the information in A into a relatively small
number of near-the-diagonal entries in S . One idea for QU3 ˝ QU2 ˝ QU1 is to use
carefully designed Jacobi rotations, e.g.,

QU3 ˝ QU2 ˝ QU1 D

8̂
ˆ̂̂<
ˆ̂̂̂
:

In ˝ Jpq.ˇ/ ˝ Jpq.˛/

Jpq.ˇ/ ˝ In ˝ Jpq.˛/

Jpq.ˇ/ ˝ Jpq.˛/ ˝ In

:

Here, Jpq.	/ is a Jacobi rotation in planes p and q. These updates modify only
two diagonal entries: sppp and sqqq. Sines and cosines can be chosen to increase
the resulting trace and their determination leads to a 2-by-2-by-2 Jacobi rotation
subproblem.

For example, determine c˛ D cos.˛/, s˛ D sin.˛/, cˇ D cos.ˇ/, and sˇ D
sin.ˇ/, so that if

"
�ppp �pqp

�qpp �qqp

#
D

"
c˛ s˛

�s˛ c˛

#T "
sppp spqp

sqpp sqqp

#"
cˇ sˇ

�sˇ cˇ

#
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and

"
�ppq �pqq

�qpq �qqq

#
D

"
c˛ s˛

�s˛ c˛

#T "
sppq spqq

sqpq sqqq

#"
cˇ sˇ

�sˇ cˇ

#

then �ppp C �qqq is maximized. See [19].

8 The CP Decomposition

As with the Tucker representation, the CP representation of a tensor expresses the
tensor as a sum-of-rank-one tensors. However, it does not involve orthogonality and
the core tensor is truly diagonal, e.g., sijk D 0 unless i D j D k.

A note about terminology before we begin. The ideas behind the CP de-
composition are very similar to the ideas behind the CANDECOMP (Canonical
Decomposition) and the PARAFAC (Parallel Factors Decomposition). Thus, “CP”
is an effective way to acknowledge the connections.

8.1 CP Representations: The Matrix Case

For matrices, the SVD

A D U1˙UT
2 D

X
i

�iU1.W; i/U2.W; i/T

is an example of a CP decomposition. But an eigenvalue decomposition also
qualifies. If A is diagonalizable, then we have

A D U1diag.�i/U
T
2 D

X
i

�iU1.W; i/U2.W; i/T

where UT
2 D U�11 . Of course orthogonality is part of the SVD and biorthogonality

(UT
2U1 D I) figures in eigenvalue diagonalization. This kind of structure falls by the

wayside when we graduate to tensors.
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8.2 CP Representation: The Tensor Case

We use the order-3 situation to expose the key ideas. The CP representation for an
n1 � n2 � n3 tensor A has the form

A D
rX

kD1
�kU1.W; k/ ı U2.W; k/ ı U3.W; k/

where �’s are real scalars and U1 2 Rn1�r, U2 2 Rn2�r, and U3 2 Rn3�r have unit
2-norm columns. Alternatively, we have

A.i1; i2; i3/ D
rX

jD1
�j � U1.i1; j/ � U2.i2; j/ �U3.i3; j// (21)

vec.A/ D
rX

jD1
�j � U3.W; j/ ˝ U2.W; j/ ˝ U1.W; j/ (22)

In contrast to the Tucker representation,

A D
r1X

j1D1

r2X
j2D1

r3X
j3D1

S. j1; j2; j3/ � U1.W; j1/ ı U2.W; j2/ ı U3.W; j3/;

we see that the CP representation involves a diagonal core tensor. The Tucker
representation gives that up in exchange for orthonormal U matrices.

8.3 More About Tensor Rank

As we mentioned in Sect. 5.3, the rank of a tensorA is the minimum number of rank-
1 tensors that sum to A. Thus, the length of the shortest possible CP representation
of a tensor is its rank. Our analysis of the 2-by-2-by-2 situation indicates that there
are several fundamental differences between tensor rank and matrix rank. Here are
some more anomalies:

Anomaly 1. The largest rank attainable for an n1-by-. . . -nd tensor is called the
maximum rank. It is not a simple formula that depends on the dimensions
n1; : : : ; nd. Indeed, its precise value is only known for small examples. Maximum
rank does not equal minfn1; : : : ; ndg unless d � 2.

Anomaly 2. If the set of rank-k tensors in Rn1�����nd has positive Lebesgue
measure, then k is a typical rank. Here are some examples where this quantity
is known:
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Size Typical ranks

2� 2� 2 2,3

3� 3� 3 4

3� 3� 4 4,5

3� 3� 5 5,6

For n1-by-n2 matrices, typical rank and maximal rank are both equal to the
smaller of n1 and n2.

Anomaly 3. The rank of a particular tensor over the real field may be different
than its rank over the complex field.

Anomaly 4. It is possible for a tensor with a given rank to be arbitrarily close to a
tensor with lesser rank. Such a tensor is said to be degenerate.

For more on the issue of tensor rank, see [9] and [13].

8.4 The Nearest CP Problem

Suppose A 2 Rn1�n2�n3 and r are given. The nearest CP approximation problem
involves finding a vector � 2 Rr and matrices U1 2 Rn1�r, U2 2 Rn2�r, and U3 2
Rn3�r (with unit 2-norm columns) so that

�.U1;U2;U3; �/ D
������A �

rX
jD1

�j � U1.W; j/ ı U2.W; j/ ı U3.W; j/
������

F

is minimized. The objective function for this multilinear optimization problem has
three different formulations:

�.U1;U2;U3; �/ D

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

������A.1/ �
rX

jD1
�j � U1.W; j/ ˝ .U3.W; j/ ˝ U2.W; j//T

������
F

������A.2/ �
rX

jD1
�j � U2.W; j/ ˝ .U3.W; j/ ˝ U1.W; j/ /T

������
F

������A.3/ �
rX

jD1
�j � U3.W; j/ ˝ .U2.W; j/ ˝ U1.W; j/ /T

������
F

:

(23)
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The summations in these expressions are highly structured matrix-matrix prod-
ucts. To facilitate the discussion we introduce a special variant of the Kronecker
product.

8.5 The Khatri-Rao Product

If B D � b1 � � � br

� 2 Rn1�r and C D � c1 � � � cr

� 2 Rn2�r , then the Khatri-Rao
product of B and C is given by

Bˇ C D �
b1 ˝ c1 � � � br ˝ cr

� 2 Rn1n2�r:

Thus, the kth column of B ˇ C is B.W; k/ ˝ C.W; k/ The Khatri-Rao product is a
submatrix of the Kronecker product. To see this, observe that
h

b1 b2 b3
i
˝
h

c1 c2 c3
i

D
h

b1 ˝ c1 b1 ˝ c2 b1 ˝ c3 b2 ˝ c1 b2 ˝ c2 b2 ˝ c3 b3 ˝ c1 b3 ˝ c2 b3 ˝ c3
i
:

In general, if B 2 Rn1�r, C 2 Rn2�r, and A D Bˇ C, then A D QA.W; 1 W r C 1 W r2/
where QA D B ˝ C.

The Khatri-Rao least square problem

min k .Bˇ C/x D d k2 d 2 Rn1n2

can be solved very fast if we use the method of normal equations:

.Bˇ C/T.Bˇ C/x D .Bˇ C/T d:

To see this, observe that the matrix of coefficients is a pointwise product of r-by-r
matrices:

.Bˇ C/T.Bˇ C/ D .BTB/: � .CTC/:

This is an O..n1C n2/r2/ operation. The structure of the right hand side can also be
exploited. Indeed

.Bˇ C/Td D

2
64

cT
1Db1
:::

cT
r Dbr

3
75

where D D reshape.z; Œn2; n1�/. This can be computed with O..n1Cn2/r2/ work.
Overall it requires O..n1C n2/r2/ work to set up the r-by-r normal equation system
and O.r3/ flops to solve it. The naive method would involve O..n1n2/r2/ work.
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8.6 Equivalent Formulations

We are now ready to formulate an alternating least squares framework for solving
the nearest CP problem. Combining our discussion of the Khatri-Rao product
with (23) we see that

�.U1;U2;U3; �/ D

8̂
ˆ̂<
ˆ̂̂:

kAT
.1/ � .U3 ˇ U2/ � .diag.�j/ � UT

1 / kF

kAT
.2/ � .U3 ˇ U1/ � .diag.�j/ � UT

2 / kF

kAT
.3/ � .U2 ˇ U1/ � .diag.�j/ � UT

3 / kF

:

Repeatedly minimizing these expressions with respect to U1, U2, and U3 gives rise
to the following framework for solving the nearest CP problem:

The Nearest CP Problem

Given:A 2 Rn1�n2�n3 and a positive integer r

Set U1 D In1.W; 1 W r/, U2 D In2.W; 1 W r/, U3 D In3 .W; 1 W r/
Repeat:

Let X minimize kAT
.1/ � .U3 ˇ U2/X kF

.

for j D 1 W r
�j D k X. j; W/ k2 ; U1.W; j/ D X. j; W/T=�j

Let Y minimize kAT
.2/ � .U3 ˇ U1/Y kF

for j D 1 W r
�j D k Y. j; W/ k2 ; U2.W; j/ D Y. j; W/T=�j:

Let Z minimize kAT
.3/ � .U2 ˇ U1/Z kF

for j D 1 W r
�j D k Z. j; W/ k2 ; U3.W; j/ D Z. j; W/T=�j:

U.opt/
1 D U1, U.opt/

2 D U2, U.opt/
3 D U3, and �.opt/ D �.

Notice that the least squares problems for X, Y, and Z are each multiple right hand
side Khatri-Rao least squares problems. See [27] for more details.
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9 The Kronecker Product SVD

Suppose A is a block matrix with uniformly sized blocks. The Kronecker product
SVD expresses A as an “optimal” sum of Kronecker products [23, 30]. Recalling
that a block matrix A with uniformly sized blocks is a reshaped order-4 tensor, the
KSVD can essentially be used to produce an exact representation for order-4 tensors
that is a sum of tensor products between matrices.

9.1 The Nearest Kronecker Product Problem

Suppose A D .Aij/ is an m1-by-n1 block matrix whose blocks are m2-by-n2, i.e.,

A D

2
64

A11 � � � A1;n1
:::

: : :
:::

Am1;1 � � � Am1;n1

3
75 ; Aij 2 Rm2�n2: (24)

The nearest Kronecker product problem with respect to this blocking involves
finding B 2 Rm1�n1 and C 2 Rm2�n2 such that

�A.B;C/ D k A � B ˝ C kF

is minimized. This problem can be reshaped into an equivalent nearest-rank-1
problem. Here is an example:

�A.B;C/ D

�������������

2
66666664

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
a51 a52 a53 a54
a61 a62 a63 a64

3
77777775
�

2
64

b11 b12
b21 b22
b31 b32

3
75 ˝

�
c11 c12
c21 c22

�
�������������

F

D

���������������

2
666666664

a11 a21 a12 a22
a31 a41 a32 a42
a51 a61 a52 a62
a13 a23 a14 a24
a33 a43 a34 a44
a53 a63 a54 a64

3
777777775
�

2
6666666664

b11

b21

b31

b12

b22

b32

3
7777777775

�
c11 c21 c12 c22

� ���������������
F

D �� QA � vec.B/ � vec.C/T
��

F :
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This is a believable result since in both formulations every aij is uniquely differenced
with a product of some B-entry and some C-entry.

There is a method behind the set-up of QA. The rows of QA are vec’s of the blocks
stacked in the “vec order”, e.g.,

QA D

2
6666666664

a11 a21 a12 a22

a31 a41 a32 a42

a51 a61 a52 a62

a13 a23 a14 a24

a33 a43 a34 a44

a53 a63 a54 a64

3
7777777775
D

2
6666666664

vec.A11/T

vec.A21/T

vec.A31/T

vec.A12/T

vec.A22/T

vec.A32/T

3
7777777775
:

Since the closest rank-1 matrix to QA 2 Rm1n1�m2n2 is given by its largest singular
value and vectors, we obtain the following solution framework:

The min k A � B ˝ C kF Problem

Given: A 2 Rm1m2�n1n2.

Compute the SVD QA D U˙VT D
rKPX
kD1

�kukv
T
k :

Define Bopt 2 Rm1�n1 by vec(B/ D p�1 u1

Define Copt 2 Rm2�n2 by vec(C/ D p�1 v1

There is no need to actually compute the full SVD of QA since we only require �1,
u1, and v1. The Lanczos SVD process can be applied to compute these quantities
[10, p. 571]. This is a particularly attractive strategy if A (and hence QA) is large and
sparse.

There are important special cases where the Kronecker factor matrices B and C
inherit properties of A. For example, if A is symmetric and positive definite, then
the same can be said of both B and C. If A is block banded with uniformly banded
blocks, then B and C are banded. If A has positive entries, then B and C have positive
entries, etc.

We mention that the same “tilde-matrix technology” can be applied to the
minimization of

�.X/ D k A � X ˝ X kF

and

�.X/ D k A � .X ˝ Y C Y ˝ X/ kF
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provided QA is square. The Schur decomposition is involved in the corresponding
“tilde” optimization problem.

9.2 The Kronecker Product SVD (KPSVD)

We can obtain a complete Kronecker product representation of A is we use the
complete SVD of QA 2 Rm1n1�m2n2:

QA D U˙VT D
rKPX
kD1

�kukv
T
k :

If we define the matrices Bk and Ck by vec.Bk/ D uk and vec.Ck/ D vk, then

A D
rKPX
kD1

�kBk ˝ Ck:

We refer to rKP as the Kronecker rank of A with respect to the chosen blocking (24).
If r � rKP, then in the Frobenius norm the matrix

Ar D
rX

kD1
�kBk ˝ Ck

is the nearest matrix to A that has Kronecker rank r.

9.3 Order-4 Tensor Approximation Using the KPSVD

If we unfold A 2 Rn�n�n�n into an n2-by-n2 matrix A and compute its KPSVD,
then we obtain an expansion of A that is a sum of matrix-matrix tensor products.
For example, if

AŒ1;3��Œ2;4� D
rKPX
kD1

�k Bk ˝ Ck Bk;Ck 2 Rn�n

then

A D
rKPX
kD1

�k Ck ı Bk;
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i.e.,

A.i1; i2; j1; j2/ D
rKPX
kD1

�k Ck.i1; i2/Bk. j1; j2/:

The summations in the above can be abbreviated to obtain best approximations using
the optimality features of the KPSVD.

Is it possible to extend this “order-4 technology” to higher order tensors?
Preliminary thinking on this leads to various alternating least squares frameworks.
For example, suppose A 2 Rn where n D Œn; n; n; n; n; n� and that we wish to
minimize

�A.B;C;D/ D k A � B ˝ C ˝ D kF

where B;C;D 2 Rn�n and

A D AŒ1 3 5��Œ2 4 6� 2 Rn3�n3:

If we regard A D .Aij/ as an n-by-n block matrix with n2-by-n2 blocks, then

�A.B;C;D/
2 D

nX
iD1

nX
jD1
k Aij � bij.C ˝ D/ k2F:

If we fix C and D then we can minimize �A by setting

bij D tr..C ˝ D/TAij/

k C k2Fk D k2F
:

Similar expressions can be given for the optimum C given that B and D are fixed
and for the optimum D given that B and C are fixed. Thus, we could approach
the minimization of �A with a framework that cycles through these componentwise
optimizations.

10 The Tensor Train SVD

The idea behind the tensor train representation is to approximate a high-order tensor
with a collection of low-order tensors that are linked together through simple,
‘nearest neighbor” summations [20, 21]. It is a topic worth discussing because it
addresses directly the “curse of dimensionality”, see [2, 3, 11].
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A tensor train is a special case of a tensor network. In a general tensor network
the nodes are low-order tensors and each edge represents a single-index summation
between the two nodes that it connects The notation associated with a general tensor
network is a major challenge but is quite tractable tensor trains.

10.1 Tensor Trains and Data Sparsity

Suppose we are given the following matrices and tensors:

G1 W n1 � r1

G2 W r1 � n2 � r2

G3 W r2 � n3 � r3

G4 W r3 � n4 � r4

G5 W r4 � n5:

Define the integer vectors n and r by

n D Œn1; n2; n3; n4; n5�

and

r D Œr1; r2; r3; r4�:

The tensor T 2 Rn defined by

T .i/ D
rX

kD1

G1.i1; k1/ � G2.k1; i2; k2/ � G3.k2; i3; k3/ � G4.k3; i4; k4/ � G5.k4; i5/

is a tensor train with carriages G1, G2, G3, G4, and G5. Note that if Nn D
maxfn1; n2; n3; n4; n5g and

.r1 C r1r2 C r2r3 C r3r4 C r4/Nn << n1n2n3n4n5

then T is data sparse. Under what circumstances can we approximate a given
tensor A with a data sparse tensor train? We need a mechanism that exposes the
redundancies in A and which determines the parameters r1; : : : ; r4 along the way.
The procedure involves a sequence of matrix SVDs and careful unfoldings. The
carriages turn out to be reshapings of SVD U-matrices.
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10.2 Computing an SVD-Based Tensor Train Representation

We outline a framework that can be used to construct a data sparse tensor train
approximation to a given tensor A 2 Rn1�����n5 . There are four steps:

Step 1. Set M1 D reshape.A; Œn1; n2n3n4n5�/ and compute the SVD

M1 D U1˙1V
T
1 D U1Z1

where U1 2 Rn1�r1, Z1 D ˙1VT
1 2 Rr1�n2n3n4n5 and r1 D rank.M1/. Define

G1 D U1:

Step 2. Set M2 D reshape.Z1; Œr1n2; n3n4n5�/ and compute the SVD

M2 D U2˙2V
T
2 D U2Z2

where U2 2 Rr1n2�r2, Z2 D ˙2VT
2 2 Rr2�n3n4n5 and r2 D rank.M2/. Define

G2 D reshape.U2; Œr1; n2; r2�/

Step 3. Set M3 D reshape.Z2; Œr2n3; n4n5�/ and compute the SVD

M3 D U3˙3V
T
3 D U3Z3

where U3 2 Rr2n3�r3, Z3 D ˙3VT
3 2 Rr3�n4n5 and r3 D rank.M3/. Define

G3 D reshape.U3; Œr2; n3; r3�/

Step 4. Set M4 D reshape.Z3; Œr3n4; n5�/ and compute the SVD

M4 D U4˙4V
T
4 D U4Z4

where U4 2 Rr3n4�r4, Z4 2 Rr4�n5 and r4 D rank.M4/. Define

G4 D reshape.U4; Œr3; n4; r4�/ G5 D Z4

Verification that the G’s form a tensor train for A is somewhat involved and we
refer the reader to [10, p.742]. However, to acquire some insight, let us assume that
n1 D � � � D n5 D n and tabulate the sizes of the various matrices that arise in the
tensor train computation:
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i Size.Mi/ ri D rank.Mi/ Size.Ui/ Size.Zi/ Size.Gi/

1 n -by- n4 r1 � n n -by- r1 r1 -by- n4 n -by- r1
2 r1n -by- n3 r2 � r1n � n2 n2 -by- r2 r2 -by- n3 r1 -by- n -by- r2
3 r2n -by- n2 r3 � minfr2n; n2g n3 -by- r3 r3 -by- n2 r2 -by- n -by- r3
4 r3n -by- n r4 � n n4 -by- r4 r4 -by- n r3 -by- n -by- r4
5 � � � � r4 -by- n

Notice that the “rate” at which the Mi get thinner and thinner depends upon the
rank deficiencies that the SVDs discover along the way. This is important since the
amount of work in step i depends upon the dimensions of Mi. The amount of data in
the Mi depend upon the ri:

If N D n5 then the amount of data in

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

M1

M2

M3

M4

9>>>>>=
>>>>>;

is

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

N

.r1=n/N

.r2=n2/N

.r3=n3/N

9>>>>>=
>>>>>;

.

There are important applications for which the factors ri=ni are very small.

11 Tensor Problems with Multiple Symmetries

In dense matrix computations, the presence of symmetry (A D AT/ usually means
that work and storage requirements are halved. Further economies can be realized
if additional symmetries are around. For example, a centrosymmetric matrix is
symmetric about both its diagonal and antidiagonal. It turns out that this can reduce
work and storage requirements by a factor of four.

Matrix problems with multiple symmetries arise in tensor problems when the
tensor in question has multiple symmetries. For example, if A 2 Rn�n�n�n and

A.i1; i2; i3; i4/ D A.i2; i1; i3; i4/ D A.i1; i2; i4; i3/ D A.i3; i4; i1; i2/;

then certain unfoldings give rise to n2 -by- n2 matrices that possess multiple
symmetries. This creates interesting challenges. For example, can we efficiently
compute structured low-rank approximations to A by computing structured low-
rank approximations to its structured unfoldings? The answer is “yes”.
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11.1 A First Look at Multiple Symmetries

A matrix A 2 Rn�n is centrosymmetric if A D AT and A D EnAEn where En D In

.W; n W �1 W 1/. For example,

E4 D

2
664
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3
775 A D

2
664

a b c d
b e f c
c f e b
d c b a

3
775 :

Suppose n D 2m. It can be shown that

QE D 1p
2

"
Im Im

Em �Em

#

is orthogonal and

QT
E

"
A11 A12

A21 A22

#
QE D D

"
A11 C A12Em 0

0 A11 � A12Em

#
:

This kind of “free” block diagonalization is at the heart of all structure-exploiting
algorithms for centrosymmetric matrix problems. The original problem is basically
replaced by a pair of half-sized problems, one for the (1,1) block A11 C A12Em

and the other for the (2,2) block A11 � A12Em. Thus, we could compute the Schur
decomposition of A by computing two half-sized Schur decompositions. Since the
complexity of such a calculation is cubic, work will be reduced by a factor of four.

11.2 A Tensor Problem with Multiple Symmetries

We now consider a quantum chemistry problem that gives rise to an order-4 tensor
that has several different symmetries. Given a basis f�i.r/gniD1 of atomic orbital
functions, we consider the following order-4 tensor:

A.i1; i2; i3; i4/ D
Z
R3

Z
R3

�i1 .r1/�i2 .r1/�i3 .r2/�i4 .r2/
kr1 � r2k dr1dr2: (25)

This is called the TEI tensor and it plays an important role in electronic structure
theory and ab initio quantum chemistry. By looking at the integrand it is easy to
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show that

A.i1; i2; i3; i4/ D

8̂
<̂
ˆ̂:

A.i2:i1:i3; i4/
A.i1; i2; i4; i3/
A.i3; i4:i1; i2/

:

We say that A is ((12)(34))-symmetric.
A common calculation involves switching from the atomic orbital basis to a

molecular orbital basis f i.r/gniD1. If

 i.r/ D
nX

kD1
X.i; k/�k.r/ i D 1; 2; : : : ; n

then the molecular orbital basis tensor

B. j1; j2; j3; j4/ D
Z
R3

Z
R3

 j1 .r1/ j2 .r1/ j3 .r2/ j4 .r2/
kr1 � r2k dr1dr2

is given by

B.j/ D
nX

i1D1

nX
i2D1

nX
i3D1

nX
i4D1

A.i/ � X.i1; j1/ � X.i2; j2/ � X.i3; j3/ � X.i4; j4/:

It can be shown that B is also ((12)(34))-symmetric.
The computation of B from A is neatly expressed in terms of the Œ1 3� � Œ2 4�

unfolding:

BŒ1;3��Œ2;4� D .X ˝ X/TAŒ1;3��Œ2;4�.X ˝ X/:

This unfolding is based on the tensor-to-matrix mapping

A.i1; i2; i3; i4/ ! A.i1 C .i3 � 1/n; i2 C .i4 � 1/n/

and has a nice block-level interpretation. If we regard A D AŒ1;3��Œ2;4� as an n -by- n
block matrix .Ars/ with n -by- n blocks, then

A.p; q; r; s/ $ Œ Ars �pq :

It follows from the symmetries in tensor A that the blocks of matrix A are symmetric
(AT

rs D Ars) and that A is block-symmetric (Ars D Asr). Less obvious is that the
submatrices

QAij D A.i W n W n2; j W n W n2/
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are also symmetric. Here is an n D 3 example that showcases the three symmetries:

A D

2
6666666666666666664

11 12 13 12 17 18 13 18 22

12 14 15 17 19 20 18 23 24

13 15 16 18 20 21 22 24 25

12 17 18 14 19 23 15 20 24

17 19 20 19 26 27 20 27 29

18 20 21 23 27 28 24 29 30

13 18 22 15 20 24 16 21 25

18 23 24 20 27 29 21 28 30

22 24 25 24 29 30 25 30 31

3
7777777777777777775

:

Also of interest is the Œ1; 2��Œ3; 4� unfolding A D AŒ1;2��Œ3;4� defined by the mapping

A.i1; i2; i3; i4/ ! A.i1 C .i2 � 1/n; i3 C .i4 � 1/n/:

Here is an example:

A D

2
6666666666666666664

11 12 13 12 14 15 13 15 16

12 17 18 17 19 20 18 20 21

13 18 22 18 23 24 22 24 25

12 17 18 17 19 20 18 20 21

14 19 23 19 26 27 23 27 28

15 20 24 20 27 29 24 29 30

13 18 22 18 23 24 22 24 25

15 20 24 20 27 29 24 29 30

16 21 25 21 28 30 25 30 31

3
7777777777777777775

:

This unfolding of a ..1; 2/; .3; 4// symmetric tensor is symmetric and has the
property that each column reshapes to a symmetric matrix, e.g.,

reshape.A.W; 1/; Œ3 3�/ D

2
64
11 12 13

12 14 15

13 15 16

3
75

We call this perfect shuffle symmetry.
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11.3 Perfect Shuffle Symmetry

An n2 -by- n2 matrix A is PS-symmetric if it is symmetric and satisfies

A D ˘n;nA˘n;n

where˘n;n is the perfect shuffle permutation

˘n;n D In2 .W; v/; v D Œ 1 W n W n2 j 2 W n W n2 j � � � j n W n W n2 �:

Here is an example:

˘3;3 D

2
66666666666664

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

3
77777777777775

:

Because ˘n;n is symmetric it has just two eigenvalues: C1 and �1. Consider the
eigenvector equation

˘3;3x D

2
66666666666664

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

3
77777777777775

2
66666666666664

x11
x21
x31
x12
x22
x32
x13
x23
x33

3
77777777777775

D ˙

2
66666666666664

x11
x12
x13
x21
x22
x23
x31
x32
x33

3
77777777777775

:

If ˘n;nx D x, then reshape.x; Œn; n�/ is symmetric. If ˘n;nx D �x, then
reshape.x; Œn; n�/ is skew-symmetric.

11.4 Block Diagonalization

Suppose A 2 Rn2�n2 is PS-symmetric and � is a distinct eigenvalue. Thus,

Ax D �x ) A.˘n;nx/ D �.˘n;nx/
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from which we may conclude that either ˘n;nx D x or ˘n;nx D �x. The first case
says that x reshapes to an n -by- n symmetric matrix while the second case says that
x reshapes to an n -by- n skew-symmetric matrix. From this we may conclude that
the subspaces

Ssym D fx 2 Rn2 j reshape.x; Œn n�/ is symmetric g

Sskew D fx 2 Rn2 j reshape.x; Œn n�/ is skew-symmetric g

are invariant for A. Moreover, Ssym D S?skew. Here is an orthogonal matrix whose
columns span these subspaces:

Q3;3 D 1p
2

2
66666666666664

p
2 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 �1 0 0

0
p
2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 �1 �1
0 0

p
2 0 0 0 0 0 0

3
77777777777775

D Œ Qsym j Qskew � (26)

Here are a pair of column reshapings taken from this matrix:

Q3;3.W; 4/ 	
2
4 0 1 0

1 0 0

0 0 0

3
5 Q3;3.W; 7/ 	

2
4 0 �1 0

1 0 0

0 0 0

3
5 :

It follows that if A 2 Rn2�n2 is PS-symmetric, then

QT
n;nAQn;n D

2
66666666666664

� � � � � � 0 0 0
� � � � � � 0 0 0
� � � � � � 0 0 0
� � � � � � 0 0 0
� � � � � � 0 0 0
� � � � � � 0 0 0
0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �

3
77777777777775

D
"

Asym 0

0 Askew

#
: (27)

This “free” block diagonalization can be effectively exploited as we now show.
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11.5 Low-Rank PS-Symmetric Approximation

In certain important quantum chemistry applications, the n2-by-n2 matrix A in (27)
is positive definite and very near a rank-n matrix. Our plan is to approximate the
diagonal blocks Asym and Askew using Cholesky with diagonal pivoting.

Recall that pivoted LDL can be used to compute an approximate rank-r
approximation to a positive definite matrix:

PAPT � LDLT

8̂
<̂
ˆ̂:

P is a permutation

L 2 Rn2�ris unit lower triangular

D D diag.di/; d1 � d2 � � � � � dr > 0

e.g.,

PAPT �

2
66666666666664

� 0 0
� � 0
� � �
� � �
� � �
� � �
� � �
� � �
� � �

3
77777777777775

2
4 d1 0 0

0 d2 0
0 0 d3

3
5
2
4� � � � � � � � �0 � � � � � � � �
0 0 � � � � � � �

3
5

See [10, p.167].
It follows from (26) and (27) that if we compute the low-rank LDL decomposi-

tions

Asym � PT
symLsymDsymLT

symPsym

Askew � PT
skewLskewDskewLT

skewPskew

then

A � VsymDsymVT
sym C VskewDskewVT

skew (28)

where

Vsym D QsymPT
symLsym

and

Vskew D QskewPT
skewLskew



62 C.F. Van Loan

It is easy to verify that these low-rank matrices are also PS-symmetric. When the
structured approximation (28) to A D AŒ1;2��Œ3;4� is substituted into

BŒ1;2��Œ3;4� D .X ˝ X/TAŒ1;2��Œ3;4�.X ˝ X/:

then the volume of work is greatly reduced. See [31].
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