Structured Matrix Problems from Tensors

Charles F. Van Loan

Abstract This chapter looks at the structured matrix computations that arise in
the context of various “svd-like” tensor decompositions. Kronecker products and
low-rank manipulations are central to the theme. Algorithmic details include the
exploitation of partial symmetries, componentwise optimization, and how we might
beat the “curse of dimensionality.” Order-4 tensors figure heavily in the discussion.

1 Introduction

A tensor is a multi-dimensional array. Instead of just A(i, j) as for matrices we have
A(i,j, k, £, ...). High-dimensional modeling, cheap storage, and sensor technology
combine to explain why tensor computations are surging in importance. Here is an
annotated timeline that helps to put things in perspective:

Scalar-Level Thinking

1960's || Tthe factorization paradigm: LU, LDLT, QR, UX VT,
etc.

Matrix-Level Thinking

, Memory traffic awareness:, cache, parallel computing,
1980 4 | APACK. etc.

Block Matrix-Level Thinking

Matrix-tensor connections: unfoldings, Kronecker
product, multilinear optimization, etc.

2000's ||

Tensor-Level Thinking

C.F. Van Loan (X))
Department of Computer Science, Cornell University, Ithaca, NY, USA
e-mail: cv@cs.cornell.edu

© Springer International Publishing AG 2016 1
M. Benzi, V. Simoncini (eds.), Exploiting Hidden Structure in Matrix Computations:

Algorithms and Applications, Lecture Notes in Mathematics 2173,

DOI 10.1007/978-3-319-49887-4_1

mailto:cv@cs.cornell.edu

2 C.F. Van Loan

An important subtext is the changing definition of what we mean by a “big problem.”
In matrix computations, to say that A € R"*"2is “big” is to say that both n; and n,
are big. In tensor computations, to say that A € R"*"*™js “big” is to say that
niny - --ng is big and this does NOT necessarily require big n;. For example, no
computer in the world (nowadays at least!) can store a tensor with modal dimensions
ny =ny = -+ = nyooo = 2. What this means is that a significant part of the tensor
research community is preoccupied with the development of algorithms that scale
with d. Algorithmic innovations must deal with the “curse of dimensionality.” How
the transition from matrix-based scientific computation to fensor-based scientific
computation plays out is all about the fate of the “the curse.”

This chapter is designed to give readers who are somewhat familiar with
matrix computations an idea about the underlying challenges associated with tensor
computations. These include mechanisms by which tensor computations are turned
into matrix computations and how various matrix algorithms and decompositions
(especially the SVD) turn up all along the way. An important theme throughout is
the exploitation of Kronecker product structure.

To set the tone we use Sect. 2 to present an overview of some remarkable “hidden
structures” that show up in matrix computations. Each of the chosen examples
has a review component and a message about tensor-based matrix computations.
The connection between block matrices and order-4 tensors is used in Sect.3 to
introduce the idea of a tensor unfolding and to connect Kronecker products and
tensor products. A simple nearest rank-1 tensor problem is used in Sect.4 to
showcase the idea of componentwise optimization, a strategy that is widely used
in tensor computations. In Sect. 5 we show how Rayleigh quotients can be used to
extend the notion of singular values and vectors to tensors. Transposition and tensor
symmetry are discussed in Sect. 6. Extending the singular value decomposition to
tensors can be done in a number of ways. We present the Tucker decomposition in
Sect. 7, the CP decomposition in Sect. 8, the Kronecker product SVD in Sect. 9, and
the tensor train SVD in Sect. 10. Cholesky with column pivoting also has a role to
play in tensor computations as we show in Sect. 11.

We want to stress that this chapter is a high-level, informal look at the kind of
matrix problems that arise out of tensor computations. Implementation details and
rigorous analysis are left to the references. To get started with the literature and for
general background we recommend [6, 10, 15, 16, 18, 27].

2 The Exploitation of Structure in Matrix Computations

We survey five interesting matrix examples that showcase the idea of hidden
structure. By “‘hidden” we mean “not obvious”. In each case the exploitation of
the hidden structure has important ramifications from the computational point of
view.

Structured Matrix Problems from Tensors 3
2.1 Exploiting Data Sparsity
The n-by-n discrete Fourier transform matrix F), is defined by

2 2
[Fuleg = wﬁq w, = cos(ﬂ)—isin(n)
n n

where we are subscripting from zero. Thus,

11 11 1 1 1 1

1w4a)§a)2 1 —i—-1 i

B etes | 1 10
4 @4 Wy

1 o] 0 w] 1 i—1—i

If we carefully reorder the columns of F»,,, then copies of F,, magically appear, e.g.,

1000 1 1 1 1
0010 1-1 —i i F, $2,F,
0100 |1 1-1-1| |Fm-2:F
0001 1-1 i —i
where
1 0
2, = .
+= (o]
In general we have
Fm Qn’lF‘l‘ﬂ
F2mH2,m = (1)
Fm _QmFm

where IT, ,, is a perfect shuffle permutation (to be described in Sect.3.7) and £2,, is
the diagonal matrix

2, = diag(1,®,,...,o™").

4 C.F. Van Loan

The DFT matrix is dense, but by exploiting the recursion (1) it can be factored into
a product of sparse matrices, e.g.,

T
Fiops = Ajo---A2A 1P
Here, P is the bit reversal permutation and each A; has just two nonzeros per row.

It is this structured factorization that makes it possible to have a fast, O(nlogn)
Fourier transform, e.g.,

y=Plx
fork=1:10

Yy =Apy
end

See [29] for a detailed “matrix factorization” treatment of the FFT.

The DFT matrix F, is data sparse meaning that it can be represented with many
fewer than n> numbers. Other examples of data sparsity include matrices that have
low-rank and matrices that are Kronecker products. Many tensor problems lead to
matrix problems that are data sparse.

2.2 Exploiting Structured Eigensystems

Suppose A, F, G € R""and that both F and G are symmetric. The matrix M defined
by

A F T T
M = F=F,G=G
G —AT

is said to be a Hamiltonian matrix. The eigenvalues of a Hamiltonian matrix come
in plus-minus pairs and the eigenvectors associated with such a pair are related:

B0 - (-4

Hamiltonian structure can also be defined through a permutation similarity. If

I = 0 I,
2n — —InO

Structured Matrix Problems from Tensors 5

then M € R*>?"is Hamiltonian if JZ MJ, = —M". Under mild assumptions we
can compute a structured Schur decomposition for a Hamiltonian matrix M:

r |: O Q2:|T |: 01 Q2:| |:T11 T12:|
0'MQ = M = .
—0s 01 —0s 01 0 —T7,
Here, Q is orthogonal and symplectic (J2 QJ,, = Q~T) and Ty is upper quasi-
triangular. Various Ricatti equation problems can be solved by exploiting this
structured decomposition. See [22].

Tensors with multiple symmetries can be reshaped into matrices with multiple
symmetries and these matrices have structured block factorizations.

2.3 Exploiting the Right Representation

Here is an example of a Cauchy-like matrix:

- s ris2 ris3 risa 7
a)l—/\l a)l—lz a)l—/\3 a)l—/\4
281 rs2 2583 284
a)z—/\l a)z—/lz a)z—/\3 a)2—14
r3sy r3ss r3s3 r3s4
a)3—/\1 a)3—/\2 a)3—/\3 a)3—l4
481 r4S?2 r4S3 4S84
a)4—/\1 a)4—/\2 a)4—/\3 a)4—l4

For this to be defined we must have {1, ..., A,} U{uy,..., u,} = @. Cauchy-like
matrices are data sparse and a particularly clever characterization of this fact is to

note that if £2 = diag(w;) and A = diag(A;), then
RA—AA = rsT 2)

where r, s € R". If £2A — A A has rank r, then we say that A has displacement rank r
(with respect to £2 and A.) Thus, a Cauchy-like matrix has unit displacement rank.

Now let us consider the first step of Gaussian elimination. Ignoring pivoting this
involves computing a row of U, a column of L, and a rank-1 update:

1 000 10 0 O Uyl Uip U3 Ul
£ 100 0 by brz by 01 0 O
£, 010 0 b3y b33 b3y 0 01 0
4001 0 by baz buy 0 0 0 1

6 C.F. Van Loan

It is easy to compute the required entries of L and U from the displacement rank
representation (2). What about B? If we represent B conventionally as an array
then that would involve O(n?) flops. Instead we exploit the fact that B also has
unit displacement rank:

QB—-BA = 75",

It turns out that we can transition from A’s representation {£2, A,r,s} to B’s
representation {£2, A, 7,5} with O(n) work and this enables us to compute the LU
factorization of a Cauchy-like matrix with just O(n?) work. See [10, p. 682].

Being able to work with clever representations is often the key to having a
successful solution framework for a tensor problem.

2.4 Exploiting Orthogonality Structures

Assume that the columns of the 2-by-1 block matrix

O

0))
are orthonormal, i.e., Q] Q1 + Q40> = I. The CS decomposition says that Q; and
0, have related SVDs:

v, 0] o diag(ci) o
V = i +si=1 3)
0 U, 0> diag(s;)
where Uj, U,, and V are orthogonal. This truly remarkable hidden structure can be

used to compute stably the generalized singular value decomposition (GSVD) of a
A € R™*and A, € R™". In particular, suppose we compute the QR factorization

)= als
Az 10))
and then the CS decomposition (3). By setting X = RV, we obtain the GSVD
A; = U, -diag(c;) - XT Ay = U, - diag(s;) - X”.
For a more detailed discussion about the GSVD and the CS decomposition, see [10,
p- 309].

A tensor decomposition can often be regarded as a simultaneous decomposition
of its (many) matrix “layers”.

Structured Matrix Problems from Tensors 7
2.5 Exploiting a Structured Data layout

Suppose we have a block matrix

Ay Ap oo Ay
Ay Ay --- Agy
A= .)

Ay Amo -+ Aun

that is stored in such a way that the data in each A; is contiguous in memory.
Note that there is nothing structured about “A-the-matrix”. However, “A-the-stored-
array” does have an exploitable structure that we now illustrate by considering the
computation of C = AT. We start by transposing each of A’s blocks:

Bii Biy -+ Biy AT, AL, - Aly
By By -+ Bay Al AL ..o AT
. . e . . .
By Bua - -+ Bun Al Al o Ay

These block transpositions involve “local data” and this is important because
moving data around in a large scale matrix computation is typically the dominant
cost. Next, we transpose B as a block matrix:

Ci Cip -+ Ciu Bi1 By -+ By
Cy Cy -+ Coy Biy By -+ Byp
. . . . -
Cyi Coy -+ Cyu Biy By -+ Byy

Again, this is a “memory traffic friendly” maneuver because blocks of contiguous
data are being moved. It is easy to verify that C;; = A]Tl

What we have sketched is a “2-pass” transposition procedure. By blocking in
a way that resonates with cache/local memory size and by breaking the overall
transposition process down into a sequence of carefully designed passes, one can
effectively manage the underlying dataflow. See [10, p. 711].

Transposition and looping are much more complicated with tensors because
there are typically an exponential number of possible data structures and an ex-
ponential number of possible loop nestings. Software tools that facilitate reasoning
in this space are essential. See [1, 24, 28].

8 C.F. Van Loan
3 Matrix-Tensor Connections

Tensor computations typically get “reshaped” into matrix computations. To operate
in this venue we need terminology and mechanisms for matricizing the tensor data.
In this section we introduce the notion of a tensor unfolding and we get comfortable
with Kronecker products and their properties. For more details see [10, 16, 18, 25,
27].

3.1 Talking About Tensors

An order-d tensor A € R"**" is a real d-dimensional array
A(l B ST | an)

where the index range in the k-th mode is from 1 to n;. Note that

scalar order-0
a 4 vector ; is an 4 order-1 p tensor.
matrix order-2

We use calligraphic font to designate tensors e.g., A, B, C, etc. Sometimes we will
write A for matrix A if it makes things clear.

One way that tensors arise is through discretization. A(i, j, k, £) might house the
value of f(w,x,y,z) at (w,x,y,2) = (Wj, Xj, Yk, 2¢). In multiway analysis the value
of A(i,J, k, £) could measure the interaction between four variables/factors. See [2]
and [27].

3.2 Tensor Parts: Fibers and Slices

A fiber of a tensor A is a column vector obtained by fixing all but one .A’s indices.
For example, if A = A(1:3,1:5, 1:4,1:7) € R¥>>**7 then

[A(2,1,4,6)]
A(2,2,4,6)

A2,:,4,6) = A2,1:5,4,6) = | A(2,3,4,6)
A(2,4,4,6)

| A(2,5,4,6) |

is a mode-2 fiber.

Structured Matrix Problems from Tensors 9

A slice of a tensor A is a matrix obtained by fixing all but two of 4’s indices. For
example, if A = A(1:3,1:5,1:4,1:7), then
A(1,3,1,6) A(1,3,2,6) A(1,3,3,6) A(1,3,4,6)
A(:,3,:1,6) = | A(2,3,1,6) A(2,3,2,6) A(2,3,3,6) A(2,3,4,6)
AQ3,3,1,6) A(3.3,2,6) A(3.3,3,6) A(3,3,4,6)

is a slice.

3.3 Order-4 Tensors and Block Matrices

Block matrices with uniformly-sized blocks are reshaped order-4 tensors. For
example, if

€11 €12 €13 Cl4 €15 Cl6 |
€21 €22 €23 C24 C25 C26
€3] €32 €33 C34 C35 C36
C41 C42 C43 Ca4 C45 Cao
C51 C52 €53 Cs54 C55 Cs6

C61 C62 Co3 Co4 Co5 Co6

then matrix entry cys is entry (2,1) of block (2,3). Thus, we can think of [Cyli as
the (i, /, k, £) entry of a tensor C, e.g.,

ci5 = [Culy = C(2,3,2,1).

Working in the other direction we can unfold an order-4 tensor into a block
matrix. Suppose A € RP"". Here is its “[1, 2] x [3, 4]” unfolding:

airl ari a4z 4zl arez ariz arizl a3z diiss
aipzil aizi2 4213 Aai21 A1z Aai23 4231 A1232 Aai233

aiszin a3z ai313 di3zl a3z Aai33 ai3sl a3z Aaisss

azi1l dz112 dz113 dz121 dz122 Az123 A2131 d2132 42133

An2xpa) = | anii ania aniz axi Gn G203 A231 d03 42233

as3il Aaz312 4313 Az3zl d322 Az323 dz331 d2332 2333

asiil asti2 4silz asizl dsie Aasizz Adsisl dszizz Adsnss

aszil aszl2 Aasz1z Asel A3z Ase3 ds3l d3zz3n d3233

| 43311 43312 d3313 d3321 d3322 43323 43331 d3332 d3333 |

10

If A = A[1 23,4 then the tensor-to-matrix mapping is given by

C.F. Van Loan

An alternate unfolding results if modes 1 and 3 are associated with rows and modes

2 and 4 are associated with columns:

ari diiz diiz 4aizir dizie a1z 4aisil disiz
aigel dii2 di123 41zl diez2 41223 di3zl diz2

a3l diiz2 a3z a1zl dies2 di233 di3sr dizs

azi11 dz112 d2113 4211 Az212 dz213 d2311 d2312
A[l.3]><[2,4] = az121 Az122 Az123 Az221 d2222 2223 d2321 42322

az131 dz132 4133 Az231 d2232 d2233 d2331 42332

asiil dsiiz 4asiiz aszil dszie Adsi3 dszil assie

asizl dsiz2 ds1z3 dszzl dszz2 dse3 dszszl A3z

| d3131 43132 43133 d3231 43232 03233 3331 43332
If A = Api 3x2.4, then the tensor-to-matrix mapping is given by

A(ir, b2, i3, i4) — A(ir + (i3 — Dn, iz + (s — Dn).

aisis
aisn3

ai333

az313
as3n3

as333

assi3

assn3

asssz |

If a tensor A is structured, then different unfoldings reveal that structure in different

ways [31]. The idea of block unfoldings is discussed in [25].

3.4 Modal Unfoldings

A particularly important class of tensor unfoldings are the modal unfoldings. An

order-d tensor has d modal unfoldings which we designate by Ay, . .
look at the tensor-to-matrix mappings for the case A € R >*"2>"3>14.

Ay, ip, i3, i4) = Aay(i1, 2 + (i3 — Dng + (is — Dnanz)
Ay, ip, i3, ia) = A (ia, i1 + (i3 — Dny + (ia — Dnynz)

Ay, iz, i3,i4) = Ay (3, i1 + (i — Dy + (i — Dnyng)

., Aw@. Let’s

Ay, in, i3,i4) = A@y(s, i1 + (i — Dny + (i3 — Dnyny).

Structured Matrix Problems from Tensors 11

Note that if N = ny---ng, then Ay is ng-by-N/ny and its columns are mode-k
fibers. Thus, if n, = 4 and n; = n3 = ny = 2, then

ainil 4izl diilz a2 d2iil A1zl di12 dli122

A azil aizzl diziz A2 A1 Azl d212 d222
@ =

a3l aizl dizlz a3 d3ir dz3zl A3z a2

aig1l diq21 di412 Ai422 A2411 Az421 A2412 A2422

Modal unfoldings arise naturally in many multilinear optimization settings.

3.5 The vec Operation

The vec operator turns tensors into column vectors. The vec of a matrix is obtained
by stacking its columns:

ar

azy

AcR¥ = vecd) = @i

an
ann

asy

The vec of an order-3 tensor A € R"*™*™ gtacks the vecs of the slices
AG, 1), ..., AG, L n3), .8,

a111
ar
ani

ec(A(G, 1
A =]RZXZXZ = VeC(A) — v (()) — anni
vec(A(:, 1, 2)) ai
@12
an

L d222

In general, if A € R">*>" and the order d — 1 tensor Ay is defined by A, = A

(:,..., 1 k), then we have the following recursive definition:
vec(A;)
vec(A) = :
vec(Ay,)

Thus, vec unfolds a tensor into a column vector.

12 C.F. Van Loan

3.6 The Kronecker Product

Unfoldings enable us to reshape tensor computations as matrix computations and
Kronecker products are very often part of the scene. The Kronecker product A =
B ® C of two matrices B and C is a block matrix (A;) where A; = b;C, e.g.,

b11C b1,C bi3C

bi1 bia b3
C C
A= | bybyby| ® |: ! 12:| = | b21C bnC bxC
€21 €2
b31 b3 b33 b31C byC b33C

Of course, B ® C is also a matrix of scalars:

buien biicia bicin biacia bisen biscrs |
biicyr bricny biacar biacxm bizea bizexn
barcit barcrz bycir bxncry byerr bxcin
ba1car barcan bycar bycxn bycar byex
b3ici1 bsiciz bycnr bacin bizcn bycrn

biicar ey baxcar by bazcar bazex

Note that every possible product bjcy “showsup”in B @ C.
In general, if A} € R"*™and A; € R™* "2 then A = A| ® A, is an mymy-by-nin;
matrix of scalars. It is also an m;-by-n; block matrix with blocks that are m;,-by-n,.
Kronecker products can be applied in succession. Thus, if

C11 C12 C13 C14

b1 b1z dii dip diz dis
€21 €22 €23 C24
A= |byuby|® ® | doy dn dp3 doy |,
€31 €32 €33 C34
b3y b3y ds1 d3p dsz diy

C41 C42 €43 C44

then A is a 3-by-2 block matrix whose entries are 4-by-4 block matrices whose

entries are 3-by-4 matrices.
It is important to have a facility with the Kronecker product operation because
they figure heavily in tensor computations. Here are three critical properties:

(A ® B)(C ® D) =AC ® BD
AQ® B '=A"® B!

A®B"'=A" @ B".

Structured Matrix Problems from Tensors 13

Of course, in these expressions the various matrix products and inversions have to
be defined.

If the matrices A and B have structure, then their Kronecker product is typically
structured in the same way. For example, if Q; € R™*"and Q, € R">" have
orthonormal columns, then Q; ® Q- has orthonormal columns:

Q1 ® 0)7(01 ® Q) = (0] ® 0))(Q1 ® Q)
= (Q{Ql) X (Q%-QZ) = In1 & Inz :Inlnz-

Kronecker products often arise through the “vectorization” of a matrix equation,
e.g.,

C = BXA” & vec(C) = (A ® B) vec(X).

3.7 Perfect Shuffles, Kronecker Products, and Transposition

In general, A}y ® A, # A, ® Aj. However, very structured permutation matrices
P; and P, exist so that P{(A] ® A2)P, = A, ® Aj. Define the (p, g)-perfect shuffle
matrix [T, , € R'?"1 by

My = [LgG.1:q:pq) | Ly 2:q:pg) | -+ | LyC.q:q:pq)].
Here is an example:

[100000]
000100
010000
000010
001000

(000001 |

In general A} ® A; # Ay ® A;. However, if A} € R™>" and A, € R™*" then

My (A1 ® AT = Ay ® Aj.

ny,nz

14 C.F. Van Loan

The perfect shuffle is also “behind the scenes” when the transpose of a matrix is
taken, e.g.,

[100000][an | [ay]
000100 any an
I3, vec(A) = 010000 Bl = |2 = vee AT).
’ 0 O 0 O 1 O ain ann
0 O 1 O 0 O ann asy
0 0000 1 _6132_ _6132_

In general, if A € R™" then IT,, ,vec(A) = vec(AT). See [12]. We return to these
interconnections when we discuss tensor transposition in Sect. 6.

3.8 Tensor Notation

It is often perfectly adequate to illustrate a tensor computation idea using order-3
examples. For example, suppose A € R"*"2X" X, e R™*™, X, € R™*™ and
X; € R™>" are given and that we wish to compute

ni n n3

Blir, iz iz) = Y > Y Alja.j)Xi (i1, j0) X2, j2) X1 (i3, 3)

h=lj=1j3=1

where 1 < i <m, 1 < iy <my,and 1 < i3 < ms. Here we are using matrix-like
subscript notation to spell out the definition of 3. We could probably use the same
notation to describe the order-4 version of this computation. However, for higher-
order cases we have to resort to the dot-dot-dot notation and it gets pretty unwieldy:

ni ny nd

B, via) = Y Y - A i) Xl i) -+ Xalia, ja).

Ji=lp=1 ja=1
Il<ip=m, 1< <m,....1<ig<my
One way to streamline the presentation of such a calculation is to “vectorize” the

notation using bold font to indicate vectors of subscripts. Multiple summations can
also be combined through vectorization. Thus, if

i= [il,...,id], J = [jl,...,jd], m = [ml,...,md], n = [nl,...,nd],

then the 5 tensor given above can be expressed as follows:

BG) = Y A@XGj) - Xaliaja), 1<i<m.

=1

Structured Matrix Problems from Tensors 15

Here, 1 = [1, 1,..., 1]. As another example of this notation, if n = [ny,...,ny]
and A € R", then

TAl = | AG?
i=1

is its Frobenius norm. We shall make use of this vectorized notation whenever it is
necessary to hide detail and/or when we are working with tensors of arbitrary order.

Finally, it is handy to have a MATLAB “reshape” notation. Suppose n =
[n1,...,ng]and m = [my,...,m, . If A € R*and n;---ng = my---m,
then

B = reshape(A,m)

is the my X - -+ x m, tensor defined by vec(A) = vec(B).

3.9 The Tensor Product

On occasion it is handy to talk about operations between tensors without recasting
the discussion in the language of matrices. Supposen = [ny, ..., n4] and that 3,C €
RR™. We can multiply a tensor by a scalar,

A=aB <& Al = aB(), 1<i<n
and we can add one tensor to another,
A=B+C <& A@l) = B@) +C(3), 1<i<n.

Slightly more complicated is the tensor product which is a way of multiplying
two tensors together to obtain a new, higher order tensor. For example if B €
Rm>m2xms = R™ and C € R"*™ = RP", then the tensor product A = B o is
defined by

Ay, iz, 13, j1,j2) = Bli1. 12, 3)C(j1.j2)
ie., A(i,j) = B@i)C(j)foralll <i<mand1l <j<n.
If B € R™and C € R", then there is a connection between the tensor product

A = B o C and its m-by-n unfolding:

Amsn = vec(B)vec(C).

16 C.E. Van Loan

There is also a connection between the tensor product of two vectors and their
Kronecker product:

vec(xoy) = vec(xy!) = y ® x.
Likewise, if B and C are order-2 tensors and A = B o C, then
Apsixpe = B ® C.

The point of all this notation-heavy discussion is to stress the importance of
flexibility and point of view. Whether we write A(i) or A(i}, i, i3) or a;,;,;; depends
on the context, what we are trying to communicate, and what typesets nicely!
Sometimes it will be handy to regard A as a vector such as vec(.4) and sometimes
as a matrix such as A. Algorithmic insights in tensor computations frequently
require an ability to “reshape” how the problem at hand is viewed.

4 A Rank-1 Tensor Problem

Rank-1 matrices have a prominentrole to play in matrix computations. For example,
one step of Gaussian elimination involves a rank-1 update of a submatrix. The
SVD decomposes a matrix into a sum of very special rank-1 matrices. Quasi-
Newton methods for nonlinear systems involve rank-1 modifications of the current
approximate Jacobian matrix.

In this section we introduce the concept of a rank-1 tensor and consider how we
might approximate a given tensor with such an entity. This leads to a discussion
(through an example) of multilinear optimization.

4.1 Rank-1 Matrices

T

If u and v are vectors, then A = uv” is a rank-1 matrix, e.g.,

up T UiV U1V
U1
A = us |: i| = Uuv1 UV

u3 Uzvy Usv2

Structured Matrix Problems from Tensors

17

Note that if A = uv”, then vec(A) = v ® u and so we have

ar uvg
as Urvg
asy _ | 431 _ |:U1i| ®
ap uivy U2
an 1Z51%)
| 432 | | U3V |

4.2 Rank-1 Tensors

ui
Uz
u3

How can we extend the rank-1 idea from matrices to tensors? In matrix computa-
tions we think of rank-1 matrices as outer products,i.e.,A = uvT where 1 and v are
vectors. Thinking of matrix A as tensor A, we see that it is just the tensor product of

uand v: A(iy, in) = u(i;)v(iz). Thus, we have

uj
uy | °© [

u3

U1
U2

i| & vec(A) =

Here is an order-3 example of the same idea:

up
A = uovow =

vec(A) =

uz
us

Uz vz

131051
Uz v
Uz v ® u
Uiy

U2

urowq
Urviwq
Uuzviwq
uivawg
Uy Vrwq
uzsvw | = wQuu.
urviwy
Urviwy
Uui1vowy
125X %1%

Uzvwr

Each entry in A is a product of entries from u, v, and w: A(p,q,7) = u,vaw,.
In general, a rank-1 tensor is a tensor product of vectors. To be specific, if x) €

R fori=1,...,d, then

A =D o.nnox@

18 C.F. Van Loan

M

is a rank-1 tensor whose entries are defined by A®i) = x; - 'xl(.j) . In terms of the

Kronecker product we have vec(x(V 0 --- 0 x¥) = x@ @ ... @ x(1).

4.3 The Nearest Rank-1 Problem for Matrices

Given a matrix A € R™" consider the minimization of
¢(O-v u, U) = ” A— UMUT ”F

where u € R™ and v € R" have unit 2-norm and o is a nonnegative scalar. This is an
SVD problem forif UTAV = X = diag(o;) is the SVDof Aando; > --- > 0, > 0,
then ¢ (o, u, v) is minimized by setting 0 = o1, u = U(:, 1), and v = V(:, 1).

Instead of explicitly computing the entire SVD, we can compute o7 and its
singular vectors using an alternating least squares approach. The starting point is to
realize that

| A—ouv” ||12F = tr(ATA) — 20u’Av + o2.

where tr(M) indicates the trace of a matrix M, i.e., the sum of its diagonal entries.
Note that

$u(y) = w(ATA) =2y Av + |y |I3
is minimized by setting y = Av and that
¢o(x) = tr(ATA) — 2uTAx + | x |3

is minimized by setting x = ATu. This suggests the following iterative framework
for minimizing | A — ouv” ||z

Nearest Rank-1 Matrix

Given: A e R veR, v, =1
Repeat:
Fix v and choose ¢ and u to minimize || A — ouv? || :
y=Av; o=|yliu=y/o
Fix u and choose o and v to minimize || A — ouv? || :
x=ATu; o= | x|; v=x/o

Oope = 05 Uy = U5 Vg =V

Structured Matrix Problems from Tensors 19

This is basically just the power method applied to the matrix

0 A
sym(A) = |:AT 0 :|

The reason for bringing up this alternating least squares framework is that it readily
extends to tensors.

4.4 A Nearest Rank-1 Tensor Problem

Given A € R™"*P we wish to determine unit vectors u € R”, v € R", and w € R
and a scalar o so that the following is minimized:

m n p
lA=o-uovowly = | DD (ag — uvmw)?.

i=1 j=1 k=1
Noting that
[A—oc-uovowl|r = |[vec(Ad) —o-w ® v ® ul,

we obtain the following alternating least squares framework:

Nearest Rank-1 Tensor

Given: A € R™" and unit vectors v € R" and w € R,
Repeat:
Determine x € R that minimizes || vec(4) — w ® v ® x ||,
andseto = || x || and u = x/0.
Determine y € R” that minimizes || vec(4A) — w ® y ® u |,
andseto = || y||and v = y/o.
Determine z € R that minimizes || vec(4) — z @ v ® ull,
andseto = || z| and w = z/0.

g,

opt = O, Uy = U, VUopy = UV, Wope =W

20

C.F. Van Loan

It is instructive to examine some of the details associated with this iteration for the
case m = n = p = 2. The objective function has the form

¢(0,01,0,,0s)

where
_ | cos(6h)
| sin(6)

-

C1
S1

ar
aii
apni
ani
aie
a2

ain

L d222 |

)

— o w®vQu

cos(6;)
sin(6,)

(2]

€2
52

]

ain
arli
apg
ani
apz
azin
ann

azn

L $38281 |

[cos(63)
| sin(63)

€3C2C
C3C281
C352C1
C38281
§3C2Cq
$3C281

§382C1

3

53

J-[5]

Let us look at the three structured /inear least squares problems that arise during

each iteration.

(1) To improve 8; and o, we fix 6, and 63 and minimize

ain
asl
ay
ang
ape
an
ain

with respect to x; and y;. We then set 0 =

| a222 |

c3cacr | [ain
C3C281 anii
C352C1 ang
C3525] — anng
§3C2C1 are
§3C281 a1z
8§382C1 a2
L $385281 | | a222 |

(2) To improve 6, and o, we fix 6; and 653 and minimize

ain
ari
ay
ang
aine
a2
ain

L a222 |

302t | [a1
C3C281 anii
C3852C1 ang
C35281 . axn
§3C2C1 arn
§3C281 asi2
8§382C1 a2
L $385281 | | a222 |

0
0 C3C)
C382 0
0 C382
$3C2 0
0 §3C2
0

[302

§352

0

$382 |

0
C3S51 0
0 C3Cq
0 C3S81
0
0

$3€1

[c3c9

§3C1
§381
0
0

53851 |

M

\/x% +ylandu = [x; y1]" /0.

]

with respect to x, and y,. We then set 0 = \/ X3+ y3and v = [xp y2]7 /0.

Structured Matrix Problems from Tensors 21

(3) To improve 65 and o, we fix 6; and 6, and minimize

ani €362€1 ani e 0 X3
a1 C3C281 i cs1 0 [y3 i|
an €382C1 ai spcr 0
ant | _ | 3281 _ (@ | _ | s O
ain 53C2C1 ain 0 cas1
as1n 53C281 a1 0 cas1
a1z 53852C1 an 0 s2c1
| axn | | s3s251 | axn | L 0 s251 |

with respect to x3 and y;. We then set o = \/xg +ytand w = [x3 y3]7 /o.

Componentwise optimization is a common framework for many tensor-related
computations. The basic idea is to choose a subset of the unknowns and (temporar-
ily) freeze their value. This leads to a simplified optimization problem involving the
other unknowns. The process is repeated using different subsets of unknowns each
iteration until convergence. The framework is frequently successful, but there is a
tendency for the iterates to get trapped near an uninteresting local minima.

5 The Variational Approach to Tensor Singular Values

If 442 is a zero of the characteristic polynomial p(A) = det(ATA — AI), then is a
singular value of A and the associated left and right singular vectors are eigenvectors
for AAT and AT A respectively. How can we extend these notions to tensors? Is there
a version of the characteristic polynomial that makes sense for tensors? What would
be the analog of the matrices AA” and AT A? These are tough questions. Fortunately,
there is a constructive way to avoid these difficulties and that is to take a variational
approach. Singular values and vectors are solutions to a very tractable optimization
problem.

5.1 Rayleigh Quotient/Power Method Ideas: The Matrix Case

The singular values and singular vectors of a general matrix A € R"™" are the
stationary values and vectors of the Rayleigh quotient

yTAx
Fx fla 0l y 1l

22 C.F. Van Loan

It is slightly more convenient to pose this as a constrained optimization problem:
singular values and singular vectors of a general matrix A € R™*" are the stationary
values and vectors of

Yaley) = x"Ay = D> ayxiy;

i=1 j=1

subject to the constraints || x|, = ||y |, = 1. To connect this “definition” to the
SVD we use the method of Lagrange multipliers and that means looking at the
gradient of

- A
Paey) = vy = 6T == 0Ty - 1),

Using the rearrangements

m n n m
Yalx,y) = in Zaijyj = Zyj (Z dijxi) ,
i=1 j=1 =1 i=1

it follows that

- Ay — Ax
Vialx,y) = : “4)
ATx — py
From the vector equation V4 (x,y) = 0 we conclude that A = p = xTAy =

Ya(x,y) and that x and y satisfy Ay = (x"Ay)x and ATx = (x"TAy)y. That is to
say, x is an eigenvector of ATA and y is an eigenvector of AA” and the associated
eigenvalue in each case is (y'Ax)?. These are exactly the conclusions that can be
reached by equating columns in the SVD equation AV = UX'. Indeed, from

Alvy] -+ |v,] = [w | -+ | ua) diag(oy,...,0n)

we see that Av; = oju;, ATu; = oyv;, and 0; = ul Av;, fori =1 : n.

Structured Matrix Problems from Tensors 23

The power method for matrices can be designed to go after the largest singular
value and associated singular vectors:

Power Method for Matrix Singular
Values and Vectors

Given A € R™" and unit vector y € R".

X = Ay, x=X/| x|
=A

T y=53/1I31

= Yalxy) = y'Ax

Oopt = O, Uppt = Y, Uopr = X

This can be viewed as an alternating procedure for finding a zero for the gradient (4).
Under mild assumptions, {Ogps, Ugps, Vop: Will approximate the largest singular value
of A and the corresponding left and right singular vectors. In principle, deflation can
be used to find other singular value triplets. Thus, by applying the power method to
A— olulvlT we could obtain an estimate of {0, us, v3}.

5.2 Rayleigh Quotient/Power Method Ideas: The Tensor Case

Let us extend the Rayleigh quotient characterization for matrix singular values and
vectors to tensors. We work out the order-3 situation for simplicity.

If A e R x e R", y € R™, and z € R™, then the singular values and
vectors of A are the stationary values and vectors of

ni n n3

Yal,y,2) = D) D apxiiu &)

i=1 j=1 k=1

subject to the constraints || x ||, =| ¥ ||, = z ||, = 1. Before we start taking gradi-
ents we present three alternative formulations of this summation. Each highlights a
different unfolding of the tensor A.

The Mode-1 Formulation:

ny n3

ny
Yalx,y,z) = in Zzaijk)’jzk = XAz ® y (6)
i=1

j=1 k=1

24 C.F. Van Loan
where A1) (i,j + (k — 1)ny) = ay. For the case n = [4, 3, 2] we have

ain dizr a3l diz diz2 4is2
A(l) — azil dz21 Az31 A1z Az 432
asil dszl Ads3l dsiz dsz Aasz
aqqnl a421 a431 d4q12 422 4432

Ly @n 6Gn 12 22 62

The Mode-2 Formulation:

ny n3

)
Yalxy.z) = Z)’j (Z Zaijkxizk) = yT.A(z)Z ® x @)
J=1

i=1 k=1

where A)(j,i + (k— 1)n1) = a. For the case n = [4, 3, 2] we have

apil a1 dsil d411 ariz a2 dsiz d412
A(Z) = | G121 G221 A321 4421 4122 4222 4322 4422
a3l dz31 Aaszl d431 a13z a3z a3z d432

Ly @1n G @G (12 (22 G2 42

The Mode-3 Formulation:

m n

17
Yalx,y,z) = ZZk Zzaijkxiyj =7 Agy ® x (8)

k=1 i=1 j=1
where A)(k, i + (j — 1)n1) = aj. For the case n = [4, 3,2] we have

~A(3) :|:a111 dz11 dszil dqi1 dizl 4zl Aaszr Aaqz1 A3l Aaz3r Adssi a431i|
aire dz12 4asiz d412 4iz2 dz A3z 4422 d132 A3 A3z 4432

1y @ Gn @1 (1,2 22 G2 *2) (13) (23) (B3 43)

The matrices A1), A(2), and A(3) are the mode-1, mode-2, and mode-3 unfoldings of
A that we introduced in Sect. 3.4. It is handy to identify columns with multi-indices
as we have shown.

We return to the constrained minimization of the objective function ¥ 4(x, y, z))
that is defined in (5). Using the method of Lagrange multipliers we set the gradient
of

~ A
Pateyd) = vaty.) - @r—1)- *2‘ Oy —1)— ;(sz— 1

Structured Matrix Problems from Tensors 25

to zero. Using (6)—(8) we get

Az ® y) — Ax 0
Vi = Az ® x) —puy | = [0]. 9)
Ap(y ® x) — 12 0

Since x, y, and z are unit vectors it follows that A = & = 7 = ¥/ (x,y, z). In this case
we say that 0 = ¥ (x, y, z) is a singular value of A and x, y, and 7 are the associated
singular vectors. How might we solve this (highly structured) system of nonlinear
equations? The triplet of matrix-vector products:

Ay @Z®y =0x Ap-@®x) =0y Ag -V ®x) =02

suggests a componentwise solution strategy:

Power Method for Tensor Singular
Values and Vectors

Given: A € R"*"*" and unit vectors y € R™ and z € R™.

Repeat:
¥=Ane®y, o=|x|,x=%/o
y=Ape®x), o=|yl.y=5/o
1=Ap®x, o=|zl.z=2%/0

Oopt = O, Xopt = X, Yopt = Y> Zopt = X
See [7, 17] for details.
For matrices, the SVD expansion
rank(A)

A=U0zV = Y own]
i=1

has an important optimality property. In particular, the Eckhart-Young theorem tells
us that

A = ZoiuiviT r < rank(A)
i=1

is the closest rank-» matrix to A in either the 2-norm or Frobenius norm. Moreover,
the closest rank-1 matrix to A,—; is U,u,v,T. Thus, it would be possible (in principle)
to compute the full SVD by solving a sequence of closest rank-1 matrix problems.

26 C.E. Van Loan

This idea does not work for tensors. In other words, if oju; o v; o wy is the closest
rank-1 tensor to A and o,u; o v, o wy is the closest rank-1 tensor to

A=A — ojuyovyowy,
then
Ay = oju ovi owy + GaUp 0 U3 0 Wy

is not necessarily the closest rank-2 tensor to .A. We need an alternative approach to
formulating a “tensor SVD”.

5.3 A First Look at Tensor Rank

Since matrix rank ideas do not readily extend to the tensor setting, we should look
more carefully at tensor rank to appreciate the “degree of difficulty” associated with
the formulation of illuminating low-rank tensor expansions.

We start with a definition. Suppose the tensor .A can be written as the sum of r
rank-1 tensors and that r is minimal in this regard. In this case we say that rank(4) =
r. Let us explore this concept in the simplest possible setting: A € R****?. For this
problem the goal is to find three thin-as-possible matrices X, Y, Z € R?*" so that

A=Y "Xk oY(.k) o Z(.K), (10)

k=1

i.e.,

arn
anii
ain ,
vec(A) = Z?i =" Z(.h ® Y.k ® X(.h).
k=1
a2
ain
annn

Structured Matrix Problems from Tensors 27

This vector equation can also be written as a pair of matrix equations:

[a1 aro | d
Ay = [T =Y 20X G Y E T
| d211 A221 | o
61112 61122 d T
AL2) = = Y ZQ.DXCRY(D
| 212 A222 | k=1

Readers familiar with the generalized eigenvalue problem should see a connection
to our 2-by-2-by-2 rank(A) problem. Indeed, it can be shown that

ani a an a
det mdin || a2 di — 0
a1y an| a2 axn
has real distinct roots with probability 0.79 and complex conjugate roots with
probability 0.21 when the matrix entries are randomly selected using the MATLAB

randn function. If this 2-by-2 generalized eigenvalue problem has real distinct
eigenvalues, then it is possible to find nonsingular matrices S and 7 so that

G din | 0 7T
azy axni 0 a

an @ | B 0 7
az12 a»» 0 B>

This shows that the rank-1 expansion (10) for A holds withr =2, X =S, Y =T

and
z=]""1
Bi B2
Thus, for 2-by-2-by-2 tensors, rank equals two with probability about 0.79. A
similar generalized eigenvalue analysis shows that the rank is three with probability
0.21. This is a very different situation than with matrices where an n-by-n matrix has

rank n with probability 1. The subtleties associated with tensor rank are discussed
further in Sect. 8.3.

28 C.F. Van Loan
6 Tensor Symmetry

Symmetry for a matrix is defined through transposition: A = A”. This is a nice
shorthand way of saying that A(i,j) = A(j, i) for all possible i and j that satisfy
l<i<nandl <j<n.

How do we extend this notion to tensors? Transposition moves indices around so
we need a way of talking about what happens when we (say) interchange A(i, , k)
with A(j, i, k) or A(k, j, i) or A(i, k,j) or A(j, k, i) or A(k, i,j). It looks like we will
have to contend with an exponential number of transpositions and an exponential
number of partial symmetries.

6.1 Tensor Transposition

If C € R then there are 3! = 6 possible transpositions identified by the
notation C<"/81> where [i j k] is a permutation of [I 2 3]:

Cc< [123]> bijk

C< [132]> bikj

5 — c< 213]> bjik
- C<[231]> = b = Cik

jki

c< [312]> bkij

c< [321]> bkji

f0ri=12n1,j=12n2, k:l:n3.
For order-d tensors there are d! possibilities. Suppose v = [vy, v2,...,04] is a
permutation of the integer vector 1 : d = [1,2,...,d]. If C € R"*"*"_then

B=C" = B(i(v) =Cli 1<i<n

6.2 Symmetric Tensors

An order-d tensor C € R™™" is symmetric if C<¥> = C for all permutations v of
1:d.If d = 3 this means that

Cijk = Cikj = Cjik = Cjki = Ckij = Ckji-

Structured Matrix Problems from Tensors 29

To get a feel for the level of redundancy in a symmetric tensor, we see that a
symmetric C € R**3*3 has at most ten distinct values:

C111
Cl12 = C121 = €211
C113 = C131 = €311
€222
€221 = €212 = C122
€223 = (€232 = €322
€333

€331 = €313 = (133
€332 = (€323 = (233
C123 C132 C213 = (€231 = C312 = (321

The modal unfoldings of a symmetric tensor are all the same. For example, the (2,3)
entry in each of the matrices

C111 C121 €131 C112 C122 €132 C113 €123 C133
C(l) = | €211 €221 €231 €212 €222 €232 €213 €223 (233

L C311 €321 €331 C312 €322 €332 C113 €323 €333 |

C111 €211 €311 Cr12 €212 €312 C113 €213 C313
C(z) = | C121 €221 €321 C122 €222 €322 C123 €223 €323

L C131 €231 €331 C132 €232 €332 C113 €233 (€333 |

Ci11 €211 €311 Ci121 €221 €321 C131 €231 €331

C(3) = | C112 C212 €312 C122 €222 €322 C132 (€232 (332

L C113 €213 €313 C123 €223 €323 C133 €233 (333 |

are equal: ¢31 = ¢321 = C312.

6.3 Symmetric Rank

An order-d symmetric rank-1 tensor C € R™*" has the form

C = xo---0x
\v-/
d times

30 C.F. Van Loan

where x € R”. In this case we clearly have

C(il, ey id) = XjXip " Xiy
and
veelC) = x® -+ @ x .
- _— -
dtimes
An order-3 symmetric tensor C has symmetric rank r if there exists x;,...,x, € R"

and o € R” such that
-
C = Zak “ Xj O Xj O Xy
k=1

and no shorter sum of symmetric rank-1 tensors exists. Symmetric rank is denoted
by ranks(C). Note, in contrast to what we would expect for matrices, there may be
a shorter sum of general rank-1 tensors that add up to C:

"r‘.
C =) G-Tofiok
k=1
The symmetric rank of a symmetric tensor is more tractable than the (general) rank

of a general tensor. For example, if C € C ™" is an order-d symmetric tensor,
then with probability one we have

f(d,m)+ 1if (d,n)= (3,5), (4,3),(4,4),0r(4,5)

rankg(C) =
fd,n) otherwise
where
n+d—1)
. d
f(d,n) = ceil
n

See [4, 5] for deeper discussions of symmetric rank.

Structured Matrix Problems from Tensors 31
6.4 The Eigenvalues of a Symmetric Tensor

For a symmetric matrix C the stationary values of ¢c(x) = x7Cx subject to the
constraint that || x ||, = 1 are the eigenvalues of C. The associated stationary vectors
are eigenvectors. We extend this idea to symmetric tensors and the order-3 case is

good enough to illustrate the main ideas.
If C € R™"" is a symmetric tensor, then we define the stationary values of

ge@) = DY Y cpxinm = x Cay(x ® x)
i=1 j=1 k=1

subject to the constraint that || x ||, = 1 to be the eigenvalues of C. The associated
stationary vectors are eigenvectors. Using the method of Lagrange multipliers it can
be shown that if x is a stationary vector for ¢¢ then

x = ¢c)Cyx ® x)

This leads to an iteration of the following form:

Power Method for Tensor Eigenvalues
and Eigenvectors

Given: Symmetric C € R and unit vector x € R".

Repeat
X = Colx ® x)
A=xl,
x=Xx/A

A‘()p[== A«, .xopr = X.

There are some convergence results for this iteration, For example, it can be shown
that if the order of C is even and M is a square unfolding, then the iteration converges
if M is positive definite [14].

6.5 Symmetric Embeddings

In the matrix case there are connections between the singular values and vectors of
A € R"*™ and the eigenvalues and vectors of

sym(A) = 04 e Rimtm)x(n+n)
Y AT 0

32 C.F. Van Loan

IfA = U - diag(c;) - VT is the SVD of A € R"*™, then for k = 1 : rank(A)

0 A Uy U
= :bCTk
AT 0 :bvk :|:Uk

where uy = U(:, k) and vy = V(:, k).

It turns out that symmetric tensor sym(.4) can be “built” from of a general tensor
A by judiciously positioning A and all of its transposes. Here is a depiction of the
order-3 case:

C(:3)

C(:,:2)

A<[123]>

C .1

A<[l32]> A<[213]>

A<[23|]> A<[312]>

A<[321]>

We can think of sym(.A) as a 3-by-3-by-3 block tensor. As a tensor of scalars, it
is N-by-N-by-N where N = njnyn;3. If

is a stationary pair for sym(.A4), then so are

u u
o, | —v , -0, | —v , —0,
—z Z —z

This is a nice generalization of the result for matrices. There are interesting
connections between power methods with .4 and power methods with sym(.A).
There are also connections between the rank of A and the symmetric rank of

Structured Matrix Problems from Tensors 33

sym(A):
d! rank(A) < rankg(sym(A)).

It is not clear if the inequality can be replaced by equality. See [26].

7 The Tucker Decomposition

We have seen that it is possible to extend the definition of singular values and vectors
to tensors by using variational principles. However, these insights did not culminate
in the production of a tensor SVD and that is disappointing when we consider the
power of the matrix SVD:

1. It can turn a given problem into an equivalent easy-to-solve problem. For
example, the min | Ax—b |, problem can be converted into an equivalent
diagonal least squares problem using the SVD.

2. It can uncover hidden relationships that exist in matrix-encoded data. For
example, the SVD can show that a data matrix has a low rank structure.

In the next several sections we produce various SVD-like tensor decompositions.
We start with the Tucker decomposition because it involves orthogonality and has a
strong resemblance to the matrix SVD. We use order-3 tensors to illustrate the main
ideas.

7.1 Tucker Representations: The Matrix Case

Given a matrix A € R">*"2, the Tucker representation problem involves finding a
core matrix S € R and matrices U; € R"*" and U, € IR"*"2 such that

rl 2

Aliri) = Y S3j1j2) - Ui(irjn) - Uaia. o).

J1=1 =1

Part of the “deal” involves choosing the integers r; and r, and perhaps replacing the
“=" with “~”. Regardless, it is possible to reformulate the right hand side as a sum
of rank-1 matrices,

r 2

A= Z Zs(jlajz)'Ul(i,jl)'Uz(i,jz)T, (a1

=1 p=1

34 C.F. Van Loan

or as a sum of vector Kronecker products,

rl ¥

vec(d) = Y D S(j1j)Ua(jn) ® Ui(:.jo)s

s1=1 =1
or as a single matrix-vector product,
vec(A) = (U, ® Uy) - vec(S).

The tensor versions of these reformulations get us to think the right way about how
we might generalize the matrix SVD.

7.2 Tucker Representations: The Tensor Case

Given a tensor A € R the Tucker representation problem involves finding
a core tensor S € R'"2*"3 and matrices U; € R, U, € R™*"2 and Uz €
R™>"3 such that

r rn 3
Al iz, i3) = Y " > 8(rjads) - Ur(in.jn) - Uslia.ja) - Us(is. ja).-
ji=1 p=1 j3=I

As in the matrix case above, we can rewrite this as a sum of rank-1 tensors,

r rn r3
A =33 Y SGjads) - Uroji) 0 Ua(,ja) 0 Us (i, ja),

=l p=1 j3=1
or as the sum of vector Kronecker products,

r 2

veeld) = 30 30 3 S(inans) - UsCiaf) ® UnCiafa) ® UiGeaft)

=1 p=1 j3=I1
or as a single matrix-vector product,
vec(A) = (Us ® Uy ® Uy)-vec(S).

The challenge is to design the representation so that it is illuminating and com-
putable.

Before we proceed it is instructive to revisit the matrix case. If we set rj = ny
and r, = n in (11) and assume the U matrices are orthogonal, then the Tucker

Structured Matrix Problems from Tensors 35

representation has the form

ni ny

A = UUTAU)UY = ZZS(jl7j2)U1(:sjl)U2(:vj2)T

Ji=1jx=1

where § = U] AU,. To make this an “illuminating” representation of A we strive for
a diagonal core matrix S and that, of course, leads to the SVD:

rank(A)

A= > SkUU(. K
k=1

From there we prove various optimality theorems and conclude that

A, =Y Sk OUI(. KUK r < rank(A)
k=1

is the closest rank-r matrix to A in (say) the Frobenius norm.

On the algorithmic front methods typically determine U; and U, through a
sequence of updates. Thus, if A = U;SU} is the “current” representation of A we
proceed to compute orthogonal A; and A, so that § = ATS A, is “more diagonal”
than S. We then update the representation:

S(—AlTSAz, Ul <—U1A1, U2<—U2A2.

Our plan is to mimic this sequence of events for tensors focusing first on the
connection between the core tensor S and the U matrices.

7.3 The Mode-k Product

Updating a Tucker representation involves updating the current core tensor S and
the associated U-matrices. Regarding the former we anticipate the need to design
a relevant tensor-matrix product. The mode-k product turns out to be that operation
and we motivate the main idea with an example. Suppose S € R*¥**? and consider
its mode-2 unfolding:

S111 S211 8311 S411 S112 $212 $312 S412
8(2) = S121 8221 $321 S421 S122 8222 §322 S422

S131 $231 $331 S$431 S132 8232 §332 §432

36 C.E. Van Loan

Its columns are the mode-2 fibers of S. Suppose we apply a 5-by-3 matrix M to each
of those fibers:

it i B 411 bz iz B2 412
21 121 1321 ta21 N2 122 1322 1422
131 131 1331 1431 N32 1232 1332 1432

Hal a1 1341 l441 tigp Dao 1342 l442

L1151 251 1351 las1 152 D252 1352 la52 |

mjyp m mp3

ma1 mMa3 Ma3 S111 $211 S311 S411 S112 $212 312 S412
= | M31 M3z M33 S121 $221 S321 S421 S122 $222 322 S422
M4y M4z M43 S131 $231 $331 S431 S132 S232 §332 S432

| 751 N5y ms3 |
This defines a new tensor 7 € R**>*? that is totally specified by the equation

Ty = M-Sp
and referred to as the mode-2 product of a tensor S with a matrix M. In general, if

Sisann; x---xny tensor and M € IR"™>" for some k that satisfies 1 < k < d, then
the mode-k product of S with M is a new tensor 7 defined by

Ty = M- Sp.
To indicate this operation we use the notation
T = Sx M.

Note that 7 is an n; X -+ X nmg—; X my X g1 X ng tensor. To illustrate more
characterizations of the mode-k product we drop down to the order-3 case.

— Mode-1 Product. If S € R">*m>*" and M; € R™>™ then 7 = Sx, M, is an
mj X ny X n3 tensor that is equivalently defined by

nj
T ia.iz) = Y Mi(i1.)S(k. in. i3)

k=1

vec(T) = (I, ® I,, ® My)vec(S). (12)

Structured Matrix Problems from Tensors 37

— Mode-2 Product. If S € R">*™>*" and M, € R™*™ then T = Sx, M, is an
ny X my X n3 tensor that is equivalently defined by

ny
T (i1, 02, 13) = ZMz(iz,k)S(il,k, i3)
k=1
vec(T) = (I, ® My ® I,))vec(S) (13)
— Mode-3 Product. If S € R"*™*" and M3 € R™*™, then T = Ax; M3 is an
ny X np x ms tensor that is is equivalently defined by
n3
Tt ia,i3) = Y Ma(is, K)S(in, in, k)
k=1
vee(T) = (M3 ® I, ® I,,)vec(S) 14)
The modal products have two important properties that we will be using later. The
first concerns successive products in the same mode. If S € R"**" and M|, M, €
R*>" then

(Sxy M) x, My = Sx (M{M).

The second property concerns successive products in different modes. If S €
R My € R, M; € R, and k # j, then

(Sxi Mi)x; Mj = (8 >; Mj)x, My

The order is not important so we just write S x; Mjx, My or S x, My x; M;.

7.4 The Core Tensor

Suppose we have a Tucker representation

AG) =) 8G) - Ur(in.n) - Ualia. j2) - Us(is. ja).

j=1

where A € R, n = [n1, ny, n3], and Uy € R, U, € R, and Uz € R 1t
follows that

vec(A) = (Us ® Ur, ® Up)vec(S)

=U; ® I, ® L)), @ Uz ® 1I,))(Ly; ® I, ® Ujp)vec(S).

38 C.F. Van Loan

This factored product enables us to relate the core tensor S to A via a triplet of
modal products. Indeed, if

vee(SY) = (I, ® I, ® Uyj)vec(S)

vee(8?) = (I, ® Uy ® I,,)vec(SV)

vec(SP) = (Us ® L, ® Inl)vec(S(z))
then A = S®. But from (12), (13), and (14) this means that

S — Sx, U; S@ — S(l)xz U, S® — 5(2)x3 Us
and so
A = Sx,Uix, Uyx; Us.
If the U’s are nonsingular then
A= Ax, (UT' U, (Uy ' Ua) % (U ' Us)
= (Ax, Uy, Uy ' U3 1) %, Uy x, Uaxs Us
andso S = Ax, Uy'x, Uy'x, Us .
If the U’s are orthogonal and A € R">*"2*" and U, € R"*™", U, € R™?*"™, and

U; € R are orthogonal, then

A = Sx,U1x,Uyx; Us

where
S = Ax, Ul'x, Urx, UT. (15)
or equivalently
Agy = UiSoy(Us ® Ux)" (16)
Apy = UsSp)(Us ® Up)" (17)
Ay = UsSp) (U, ® Up)T (18)

With this choice we are representing .4 as a Tucker product of a core tensor S and
three orthogonal matrices. Things are beginning to look “SVD-like”.

Structured Matrix Problems from Tensors 39
7.5 The Higher-Order SVD

How do we choose the U matrices in (15) so that the core tensor S reveals things
about the structure of A? It is instructive to look at the matrix case where we know
the answer to this question. Suppose we have the SVDs

UIT.A(l)Vl = X, UzTA(z)Vz = .

Since A1 = A and A = AT it follows that we may set V| = U,. In other words,
we can (in principle) compute the SVD of A by computing the SVD of the modal
unfoldings A1y and A(y). The U matrices from the modal SVDs are the “right”
choice.

This suggests a strategy for picking good U matrices for the tensor case A €
R Namely, compute the SVD of the modal unfoldings

Agy = U SV Ap) = LhEVE Ap) = U Z3V! (19)
and set
S = Ax, Ul x, U3 Uj.
The resulting decomposition
A = Sx, Uyx, Uyx; Us,

is the higher-order SVD (HOSVD) of A. If A = Sx, Uy %, Uyx; Uz is the HOSVD
of A € R">*"2X"3 then

r
A = "83) - UiG.ji) 0 Us(e.ji) © Us(:.j3) (20)
=1
where r; = rank(A(;)), r» = rank(A(z)), and r3 = rank(A(3)). The triplet of modal
ranks [ry, rp, r3] is called the multilinear rank of A.

The core tensor in the HOSVD has important properties. By combining (16)—(19)
we have

Suy =21Vi(Us ® Uy)
Sp) = LW (Us ® Uy)

Sa) = X3V3(U2 ® Uy)

40 C.F. Van Loan

from which we conclude that
ISG.) lr = 0i(Awy) j=1:m
ISCL) I = 0i(Ap) j=1:n
ISCuDllr = 0i(Ag) j=1:n3.

Here, 0j(C) denotes the jth largest singular value of the matrix C. Notice that the
norms of the tensor’s slices are getting smaller as we “move away” from A(1, 1, 1).
This suggests that we can use the grading in S to truncate the HOSVD:

A~ A =Y 83G) - Ui(.j1) o Uaja) © Us(:.ja)
j=1

where ¥ < r,ie., 7 < r, 7 < rp,and i3 < r;. As with SVD-based low-rank
approximation in the matrix case, we simply need a tolerance to determine how to
abbreviate the summation in (20. For a deeper discussion of the HOSVD, see [8].

7.6 The Tucker Nearness Problem

Suppose we are given A € R"*"2" and r = [r, 1y, 13] < [n1, 2, 3] = n.
In the Tucker nearness problem we determine S € R'"2*"3 and matrices U; €
Rm>1 U, € R™*™2, and Uz € IR™*"? with orthonormal columns such that

dUL U, U3) = | A — ZSG)'Ul(i,jl)oU2(17j2)°U3(1,J'3)

j=1 F

is minimized. It is easy to show that
¢ (U1, Uz, Us) = || vec(A) — (Us @ Ux ® Up)vee(S) |l
and so from using normal equations we see that

S=(U; ® Uy ® U[)-vec(A).

Structured Matrix Problems from Tensors 41

This is why the objective function ¢ does not have S as an argument: the “best S”
is determined by U, U,, and Us. The goal is to minimize

(UL, UsUs) = | (I — (Us ® Us ® Up) (U ® UL @ UT))vec(A) |,.

Since Us @ U, ® U, has orthonormal columns, it follows that minimizing this
norm is the same as maximizing

p(U1. U, Us) = || (U] ® Uy ® U{)-vec(A) |,

The reformulations

I U -Agy - (Us ® U2) Iy
PULU2U) =\ | U -Agy-(Us ® 1Y) |,
I U3 -Ag - (U2 ® U1) Iy
set the stage for a componentwise optimization approach:
Fix U, and U3 and choose U; to maximize || U] -Aqy - (Us ® Up) ||
Fix U, and U3 and choose U, to maximize || U <Ay - (Us @ Uy) |l
Fix U, and U, and choose U3 to maximize || U -Ag) - (Ur ® Uy) |

These optimization problems can be solved using the SVD. Consider the problem
of maximizing || Q"M ||, where Q € R™ has orthonormal columns and M €
R™"is given. If

M=UxVv"

is the SVD of M, then
2 2 2 : 2
IO"™M ||l = | Q"UEV" ||z = |1Q"UX ||z = ZG;?II QU k) ||5-
k=1

It is clear that we can maximize the summation by setting Q = U(:, 1 : r). Putting
it all together we obtain the following framework.

42 C.F. Van Loan

The Tucker Nearness Problem
Given A € RM>"m2xm
Compute the HOSVD of A and determine r = [ry, 12, r3] < n.
Set Uy =U,(;,1:r), U =Uy(;,1: 1), and U3 = Us(:, 1 : r3).

Repeat:

Compute the SVD Ay - (Us ® Uy) = U X,V
andset U; = l~]1(:,1 1F1).

Compute the SVD A(z) (U3 @ Uy = 0222V2T
andset U, = f]z(:,l 1 7).

Compute the SVD A(3) (U, @ Uy = 0323V3T
andset Uz = 03(2,1 1 73).

Uiopt) — Ul, Uéopt) — UZ, U;oﬁt) — U3

Using the HOSVD to generate an initial guess makes sense given the discussion in
Sect. 7.5. The matrix-matrix products, e.g., A1) - (U3 ® U,), are rich in exploitable
Kronecker structure. See [27] for further details.

7.7 A Jacobi Approach

Solving the Tucker Nearness problem is not equivalent to maximizing the “diagonal
mass” of the core tensor S. We briefly describe a Jacobi-like procedure that does.
To motivate the main idea, consider the problem of maximizing tr(UT AU,) where
A € R is given, U; € R" ™" is orthogonal, and U, € R'>*™ is orthogonal. It is
easy to show that the optimum U; and U, have the property that UT AU, is diagonal
with nonnegative diagonal entries. Thus, the SVD solves this particular “max trace”
problem.
Now suppose C is n-by-n-by-n and define

v(C) = Z Ciii -
i=1

Structured Matrix Problems from Tensors 43

Given A € R"*"2*" our goal is to compute orthogonal U; € R"*™, U, € R"™2*"2,
and Uz € R so that if the tensor S is defined by

vee(S) = (Uy ® Uy ® Up)'vec(A)

then ¢ (S) is maximized. Here is a Jacobi-like strategy for updating the “current”
orthogonal triplet { U;, U, Us } so that new core tensor has a larger trace.

A Jacobi Framework for Computing a
Compressed Tucker Representation

Given: A € Rm>*m>xm
SetU;=1,,U,=1,Us=1,,and S = A.
Repeat:
Find “simple” orthogonal U 1, (~]2, and (~]3 so that
tr(Sx, Uy x, Upyx; Uz) > tr(S)
Update:
S = Sx, Uy x, Uyxs Us
Ui = U0, Uy = U, Us, Us = UsUs
vl = uy, US = U,, U = Us.

We say that this iteration strives for a “compressed” Tucker representation because
there is an explicit attempt to compress the information in A into a relatively small
number of near-the-diagonal entries in S . One idea for U'; ® U2 ® U | 1S to use
carefully designed Jacobi rotations, e.g.,

I, ®Jpq(:3) ®Jpq(a)
U; ® U, ® U = Ig(B) ® L @ Jpyle) -

Jpq(ﬁ) ® Jpq(a) ® 1,

Here, J,4(0) is a Jacobi rotation in planes p and g. These updates modify only
two diagonal entries: sp,, and s, Sines and cosines can be chosen to increase
the resulting trace and their determination leads to a 2-by-2-by-2 Jacobi rotation
subproblem.

For example, determine ¢, = cos(a), s, = sin(a), cg = cos(fB), and sg =
sin(f), so that if

T
|:Uppp qup:| . |: Ca Sa :| |:sppp Spqp:| |: Cp Sp :|
Oapp Oqqp —Sa Ca Sqpp Sqqp —Sg Cp

44 C.F. Van Loan

T
|:‘7ppq quq:| . |: Ca Sa] |:Sppq Spqq:| |: Cp 5B]
O4pq Oqqq —Sa Ca Sapq Sqqq —Sg Cp

then oy, + 0444 18 maximized. See [19].

and

8 The CP Decomposition

As with the Tucker representation, the CP representation of a tensor expresses the
tensor as a sum-of-rank-one tensors. However, it does not involve orthogonality and
the core tensor is truly diagonal, e.g., s;x = O unless i = j = k.

A note about terminology before we begin. The ideas behind the CP de-
composition are very similar to the ideas behind the CANDECOMP (Canonical
Decomposition) and the PARAFAC (Parallel Factors Decomposition). Thus, “CP”
is an effective way to acknowledge the connections.

8.1 CP Representations: The Matrix Case
For matrices, the SVD
A=UZU] = Y oiUiGiUa (i)'

is an example of a CP decomposition. But an eigenvalue decomposition also
qualifies. If A is diagonalizable, then we have

A = Udiag(\)U] = Y LU G iUa (i)
where U2T =U 1_1. Of course orthogonality is part of the SVD and biorthogonality

(UZT U, = I) figures in eigenvalue diagonalization. This kind of structure falls by the
wayside when we graduate to tensors.

Structured Matrix Problems from Tensors 45
8.2 CP Representation: The Tensor Case

We use the order-3 situation to expose the key ideas. The CP representation for an
ny X ny X ns tensor A has the form

A =Y WU k) o Us(:. k) o Us(:.k)
k=1

where A’s are real scalars and U; € R"*", U, € R?*’, and Uy € R®* have unit
2-norm columns. Alternatively, we have

Aliria,i3) = Y - Urlir,) - Ualin,) - Us(is.))) @1)
j=1

vec(A) = Y A Us(.j) ® Ua(ej) ® Ui(e.)) (22)
j=1

In contrast to the Tucker representation,

A =330 Y SGjads) - Ur,ji) 0 Ua(,ja) 0 Us (i, ja),

1=l jp=1 jz=1

we see that the CP representation involves a diagonal core tensor. The Tucker
representation gives that up in exchange for orthonormal U matrices.

8.3 More About Tensor Rank

As we mentioned in Sect. 5.3, the rank of a tensor A is the minimum number of rank-
1 tensors that sum to A. Thus, the length of the shortest possible CP representation
of a tensor is its rank. Our analysis of the 2-by-2-by-2 situation indicates that there
are several fundamental differences between tensor rank and matrix rank. Here are
some more anomalies:

Anomaly 1. The largest rank attainable for an n;-by-...-n, tensor is called the
maximum rank. It is not a simple formula that depends on the dimensions
ny,...,ny. Indeed, its precise value is only known for small examples. Maximum
rank does not equal min{n;,...,n,} unless d < 2.

Anomaly 2. If the set of rank-k tensors in R™>">" has positive Lebesgue
measure, then k is a typical rank. Here are some examples where this quantity
is known:

46 C.E. Van Loan

Size Typical ranks
2x2x2 23

3x3x3 4

3x3x4 45
3x3x5 56

For n;-by-n, matrices, typical rank and maximal rank are both equal to the
smaller of n; and n,.

Anomaly 3. The rank of a particular tensor over the real field may be different
than its rank over the complex field.

Anomaly 4. It is possible for a tensor with a given rank to be arbitrarily close to a
tensor with lesser rank. Such a tensor is said to be degenerate.

For more on the issue of tensor rank, see [9] and [13].

8.4 The Nearest CP Problem

Suppose A € R">*"2*" and r are given. The nearest CP approximation problem
involves finding a vector A € R" and matrices U; € R"*", U, € R™?*, and U; €
RR">*" (with unit 2-norm columns) so that

¢(U1, Uy, U3, A) = |A— le <UL,)) o Ua(2,)) o Us(s,))

j=1 F

is minimized. The objective function for this multilinear optimization problem has
three different formulations:

A = Y X UiG)) ® (Us()) ® Ua(j)!

j=1

¢ (U1, U, U3, M) = Apy — le'Uz(i,j) ® (Us(:,)) ® Ui(j))"

Jj=1

Aa) — le'Us(iJ) ® (U2(.j) ® Ui(j))"

Jj=1

F
(23)

Structured Matrix Problems from Tensors 47

The summations in these expressions are highly structured matrix-matrix prod-
ucts. To facilitate the discussion we introduce a special variant of the Kronecker
product.

8.5 The Khatri-Rao Product
If B= [bl b,] € R and C = [cl c,] € R™*" | then the Khatri-Rao
product of B and C is given by

BoC = [bl ®c b ® Cr] € Rmmxr

Thus, the kth column of B ©® Cis B(:,k) ® C(:, k) The Khatri-Rao product is a
submatrix of the Kronecker product. To see this, observe that

|:b1 bz b3i| ® [Cl (&) C3i|
=|:b1 ® c1 by ® 3 by ®C3bz®c1bz®Czbz®c'3b3®Clb3®czb3®63]-

In general, if B € R*r C e R?* andA = B® C, then A = A(:, l:r+1:7%)
where A =B ® C.
The Khatri-Rao least square problem

min || BO COx=d |, d e R"™
can be solved very fast if we use the method of normal equations:
BoCOTBOCOX = BOO)d.

To see this, observe that the matrix of coefficients is a pointwise product of r-by-r
matrices:

(BOCO)'BOC) = (B'B). % (CT0).

This is an O((n; + n,)r?) operation. The structure of the right hand side can also be
exploited. Indeed

ClTDbl
BoOd = ;
cI'Db,
where D = reshape(z, [n2, n]). This can be computed with O((n; + ny)r?) work.

Overall it requires O((n; + ny)r?) work to set up the r-by-r normal equation system
and O(r*) flops to solve it. The naive method would involve O((n1n,)r?) work.

48 C.F. Van Loan
8.6 Equivalent Formulations

We are now ready to formulate an alternating least squares framework for solving
the nearest CP problem. Combining our discussion of the Khatri-Rao product
with (23) we see that

| AL — (Us © Ua) - (diag(hy) - U |,
¢(U1’ Uz, U3,A) _ “ A(Tz) _ (U3 0} Ul) . (dlag(kj) . U{) “F .

I A(T3) — (U, 0 U)) - (diag(})) - UF) I

Repeatedly minimizing these expressions with respect to Uy, U,, and U; gives rise
to the following framework for solving the nearest CP problem:

The Nearest CP Problem
Given:. A € R">"2*™ and a positive integer r
SetUy =1,,¢:,1:7), Uy =1,,(c,1 : 1), Us =1,,,(:, 1 : r)
Repeat:
Let X minimize || A(Tl) —(Us 0 U)X ||F
forj=1:r

L= 1XG) s Uity = X0/

Let Y minimize || A(Tz) —(UsoUu)Y |,
forj=1:r

L=1YG) N, UaC)) = Y)T /A

Let Z minimize || Afy — (U> © U1)Z I
forj=1:r
Ai=1ZG.) . UsCy) = Z(j.)" /A

U™ = Uy, US™ = Uy, U™ = Us, and A@P) = 1,

Notice that the least squares problems for X, Y, and Z are each multiple right hand
side Khatri-Rao least squares problems. See [27] for more details.

Structured Matrix Problems from Tensors 49
9 The Kronecker Product SVD

Suppose A is a block matrix with uniformly sized blocks. The Kronecker product
SVD expresses A as an “optimal” sum of Kronecker products [23, 30]. Recalling
that a block matrix A with uniformly sized blocks is a reshaped order-4 tensor, the
KSVD can essentially be used to produce an exact representation for order-4 tensors
that is a sum of tensor products between matrices.

9.1 The Nearest Kronecker Product Problem

Suppose A = (A;) is an m;-by-n; block matrix whose blocks are m,-by-n,, i.e.,

Ayp oo A
A=| ¢ ot | AjeR™™ 24)
Aml,l Aml,nl

The nearest Kronecker product problem with respect to this blocking involves
finding B € R"> and C € R such that

$a(B.C) = |[A-B Q Clly

is minimized. This problem can be reshaped into an equivalent nearest-rank-1
problem. Here is an example:

ap apn aiz ais
a a a a
21 A2 A3 A24 by b
as1 asp assz ds4 C11 C12
¢4(B,C) = — | b by | ® [}
Q41 A42 Q43 A44 bt b €21 €22
31 D32
as) asp ds3 dsq
| de1 A2 Ae3 A4 | F
apy az apz an b [Cn €21 C12 622]
az| asq) az ag b2y
_ as) ae) ds de b3
aiz as a4 Az b1
az3 a43 az4 das by
as3 de3 As4 Aes
- - _b32_ F

= |A — vec(B) - vec(O)| ..

50 C.F. Van Loan

This is a believable result since in both formulations every a;; is uniquely differenced
with a product of some B-entry and some C-entry.

There is a method behind the set-up of A. The rows of A are vec’s of the blocks
stacked in the “vec order”, e.g.,

ap az apz axn [vec(Ai1)"]
asy as1 az dg vec(Az)”
o |sraeanan | vec(As)
| azasagan | vec(A)T
a33 a43 A34 a4 vec(Ap)T

| das3 ae3 ass des | | vec(Ax)T |

Since the closest rank-1 matrix to A € R™"*"2" is given by its largest singular
value and vectors, we obtain the following solution framework:

The min|A—B ® C ||y Problem

Given: A € Rmm2xmm,
kP

Compute the SVDA = US VT = Z o vy .
=1

Define B,,, € R™*™ by vec(B) = /o1 u
Define C,,; € R™*™ by vec(C) = /01 i

There is no need to actually compute the full SVD of A since we only require oy,
uy, and v;. The Lanczos SVD process can be applied to compute these quantities
[10, p. 571]. This is a particularly attractive strategy if A (and hence A)is large and
sparse.

There are important special cases where the Kronecker factor matrices B and C
inherit properties of A. For example, if A is symmetric and positive definite, then
the same can be said of both B and C. If A is block banded with uniformly banded
blocks, then B and C are banded. If A has positive entries, then B and C have positive
entries, etc.

We mention that the same “tilde-matrix technology” can be applied to the
minimization of

X)) = [A-X ® X||f
and

PX) = [A-X®@Y+Y ®X)|F

Structured Matrix Problems from Tensors 51

provided A is square. The Schur decomposition is involved in the corresponding
“tilde” optimization problem.

9.2 The Kronecker Product SVD (KPSVD)
We can obtain a complete Kronecker product representation of A is we use the
complete SVD of A € R™">m2m;

T'KP

A=uUxVl = ZGkMkUkT.
k=1

If we define the matrices By and Cy by vec(By) = uy and vec(Cy) = vy, then

T'KP

A = ZUkBk ® Cy.
k=1

We refer to rgp as the Kronecker rank of A with respect to the chosen blocking (24).
If » < rgp, then in the Frobenius norm the matrix

A = ZUkBk ® Ci
k=1

is the nearest matrix to A that has Kronecker rank r.

9.3 Order-4 Tensor Approximation Using the KPSVD

If we unfold A € R™™™" into an n’-by-n> matrix A and compute its KPSVD,
then we obtain an expansion of A that is a sum of matrix-matrix tensor products.
For example, if

TKP
Apsixpg = Zak By ® Cy By, Gy € R™™"
=1

then

52 C.F. Van Loan

i.e.,

T'KP

A(iy, i, j1,)2) = ZUk Ci (i1, i2) Bk (j1.j2)-
k=1

The summations in the above can be abbreviated to obtain best approximations using
the optimality features of the KPSVD.

Is it possible to extend this “order-4 technology” to higher order tensors?
Preliminary thinking on this leads to various alternating least squares frameworks.
For example, suppose A € R" where n = [n, n, n, n, n, n] and that we wish to
minimize

$a(B.C.D) = |[A-B® C® D],
where B, C,D € R""and
3 xn

A = Apssixpag € RV

If we regard A = (A;) as an n-by-n block matrix with n>-by-n? blocks, then
¢a(B,C.D)> = > "> " ||Aj—by(C ® D) ;.
i=1 j=1
If we fix C and D then we can minimize ¢4 by setting
_ u((C ® D)TAy)
v 2 2
I ClEND |

Similar expressions can be given for the optimum C given that B and D are fixed
and for the optimum D given that B and C are fixed. Thus, we could approach
the minimization of ¢4 with a framework that cycles through these componentwise
optimizations.

10 The Tensor Train SVD

The idea behind the tensor train representation is to approximate a high-order tensor
with a collection of low-order tensors that are linked together through simple,
‘nearest neighbor” summations [20, 21]. It is a topic worth discussing because it
addresses directly the “curse of dimensionality”, see [2, 3, 11].

Structured Matrix Problems from Tensors 53

A tensor train is a special case of a fensor network. In a general tensor network
the nodes are low-order tensors and each edge represents a single-index summation
between the two nodes that it connects The notation associated with a general tensor
network is a major challenge but is quite tractable tensor trains.

10.1 Tensor Trains and Data Sparsity

Suppose we are given the following matrices and tensors:

gl:nlxrl

Gr:rp Xny X
Gy i Xn3Xr3
Ga:r3 X ng Xry

gs .4 X ns.
Define the integer vectors n and r by
n = [n, na, n3, na, ns
and
r = [rls r27 r37 r4]'
The tensor 7 € R" defined by
r
T = Zgl(il,kl) Galky, in, ko) - Ga(ka, i3, k3) - Ga(ks, ia, ka) - Gs(ka, i5)
k=1

is a temnsor train with carriages Gi, G», G3, G4, and Gs. Note that if n =
max{ny, ny, n3, ng, ns} and

(r1 + rir 4+ rary + r3rg + ryn << nynynzngns

then 7 is data sparse. Under what circumstances can we approximate a given
tensor A with a data sparse tensor train? We need a mechanism that exposes the
redundancies in A and which determines the parameters rq, ..., r4 along the way.
The procedure involves a sequence of matrix SVDs and careful unfoldings. The
carriages turn out to be reshapings of SVD U-matrices.

54 C.F. Van Loan
10.2 Computing an SVD-Based Tensor Train Representation

We outline a framework that can be used to construct a data sparse tensor train
approximation to a given tensor A € R"**"s_ There are four steps:

Step 1. Set M} = reshape(A, [n1, nanzngns]) and compute the SVD
M, = UX\VI =Uz
where Uy € R, Z = X, VI € R340 and | = rank(M,). Define
G =U.
Step 2. Set M, = reshape(Z,, [r1n2, n3nans]) and compute the SVD
My = U, ,Vi = UaZ,
where U, € R'""*"2, 7, = 22V2T € R2>m14n5 and r, = rank(M,). Define
G» = reshape(Us,[r1,n2, 1))
Step 3. Set M3 = reshape(Z,, [ran3, nans|) and compute the SVD
My = UsZ53Vi = UsZs
where U; € R?"%"3, 73 = X3 V3T € R3>™"5 and r3 = rank(M3). Define
Gy = reshape(Us, [r2,n3,713])
Step 4. Set My = reshape(Zs, [r3n4, ns]) and compute the SVD
My = Uy X4V = Uyz4
where Uy € R34 Z4 € R**" and ry = rank(M,). Define
G4 = reshape(Us, [r3,n4,14]) Gs = Z4
Verification that the G’s form a tensor train for A is somewhat involved and we
refer the reader to [10, p.742]. However, to acquire some insight, let us assume that

ny = --- = ns = n and tabulate the sizes of the various matrices that arise in the
tensor train computation:

Structured Matrix Problems from Tensors 55

i Size(M;) r; = rank(M;) Size(U;) Size(Z) Size(G;)

1 n-by-n* n<n n-by-r r -by-n* n-by-r

2 rin-by-n? rn < rn<n? n? -by-r, ry -by-n? ry -by-n-by-r,

3 ran -by-n? r3y < min{rn, n?} n’ -by-r3 r3 -by-n? ry -by-n-by-r3

4 r3n-by-n rs<n n*-by-ry rq-by-n r3 -by-n-by-ry
3 - — — - ry-by-n

Notice that the “rate” at which the M; get thinner and thinner depends upon the
rank deficiencies that the SVDs discover along the way. This is important since the
amount of work in step i depends upon the dimensions of M;. The amount of data in
the M; depend upon the r;:

M, N

M- ri/n)N
If N = n° then the amount of data in 2 is (ri/m)

M; (r2/n*)N

My (r3/n*)N

There are important applications for which the factors r;/n' are very small.

11 Tensor Problems with Multiple Symmetries

In dense matrix computations, the presence of symmetry (A = A”) usually means
that work and storage requirements are halved. Further economies can be realized
if additional symmetries are around. For example, a centrosymmetric matrix is
symmetric about both its diagonal and antidiagonal. It turns out that this can reduce
work and storage requirements by a factor of four.

Matrix problems with multiple symmetries arise in tensor problems when the
tensor in question has multiple symmetries. For example, if A € R™""" and

A(ir, ip, i3, i4) = Az, 01,13, i) = A1, 1, 0s,13) = A(iz, 4,11, 02),

then certain unfoldings give rise to n”-by-n’? matrices that possess multiple
symmetries. This creates interesting challenges. For example, can we efficiently
compute structured low-rank approximations to A by computing structured low-
rank approximations to its structured unfoldings? The answer is “yes”.

56 C.F. Van Loan
11.1 A First Look at Multiple Symmetries

A matrix A € R™" is centrosymmetric if A = AT and A = E,AE, where E, = I,
(:;n :—1:1). For example,

0001 abcd
0010 befc
E, = A =
4 0100 cfeb
1000 dcba

Suppose n = 2m. It can be shown that

is orthogonal and

A Ap Ay +ApE, 0
Or O = = .
Arp Ay 0 Ay —ApE,

This kind of “free” block diagonalization is at the heart of all structure-exploiting
algorithms for centrosymmetric matrix problems. The original problem is basically
replaced by a pair of half-sized problems, one for the (1,1) block A;; + ApRE,
and the other for the (2,2) block A;; — Aj2E,,. Thus, we could compute the Schur
decomposition of A by computing two half-sized Schur decompositions. Since the
complexity of such a calculation is cubic, work will be reduced by a factor of four.

11.2 A Tensor Problem with Multiple Symmetries

We now consider a quantum chemistry problem that gives rise to an order-4 tensor
that has several different symmetries. Given a basis {¢;(r)}/_, of atomic orbital
functions, we consider the following order-4 tensor:

A(il,iz,i3,i4) — / / ¢i1 (rl)¢i2(rl)¢i3(r2)¢i4(r2)dl'1dl'2. (25)
R3 JR3

[r1 — 1

This is called the TEI tensor and it plays an important role in electronic structure
theory and ab initio quantum chemistry. By looking at the integrand it is easy to

Structured Matrix Problems from Tensors 57

show that
Alir.iv.i, i)
A(iy,ip,13,14) = A(i1, 2, s, 03) -
A(is, i4.i1, 1)

We say that A is ((12)(34))-symmetric.
A common calculation involves switching from the atomic orbital basis to a
molecular orbital basis {v;(r)}/_,. If

Yir) = > X(@.kge(r) i=1.2.....n

k=1

then the molecular orbital basis tensor

‘le (I'1) sz (l'1) Wb (rZ) Ir/szt (rZ) dr

1dr
R3 lr; — 2|

B(jrjovjs.js) = /
R3

is given by
BGE = D333 AW X(inj1) - X(izej2) - X(i3.j3) - X(ia.ja)-
i1=1 ib=1 i3=1 iy=1

It can be shown that B is also ((12)(34))-symmetric.
The computation of B from A is neatly expressed in terms of the [1 3] x [2 4]
unfolding:

Buaxpa = X @ X)) ApgxpgX @ X).
This unfolding is based on the tensor-to-matrix mapping
A(iy, ba,i3,14) — A(ip + (i3 — Dn,ip + (is — Dn)

and has a nice block-level interpretation. If we regard A = A[j 3)x2.4) as an n-by-n
block matrix (A,s) with n -by- n blocks, then

Ap,q.r,5) < [Asy]pq .

It follows from the symmetries in tensor A that the blocks of matrix A are symmetric
(ArTS = A,s) and that A is block-symmetric (A,; = A,;). Less obvious is that the
submatrices

A,-j:A(i:n:nz,j:n:nz)

58 C.F. Van Loan

are also symmetric. Here is an n = 3 example that showcases the three symmetries:

11 12 13 12 17 18 13 18 227]
12 14 15 17 19 20 18 23 24
13 15 16 18 20 21 22 24 25
12 17 18 14 19 23 15 20 24
A= 11719 20 19 26 27 20 27 29
18 20 21 23 27 28 24 29 30
13 18 22 15 20 24 16 21 25
18 23 24 20 27 29 21 28 30
| 22 24 25 24 29 30 25 30 31

Also of interest is the [1, 2] x [3, 4] unfolding A = Aj; 2jx[3,4) defined by the mapping
Alir, iz, i3,i4) — A1 + (i — D, i3 + (is — Dn).
Here is an example:

(11 12 13 12 14 15 13 15 16]
12 17 18 17 19 20 18 20 21
13 18 22 18 23 24 22 24 25
12 17 18 17 19 20 18 20 21
A= | 1419 23 19 26 27 23 27 28
15 20 24 20 27 29 24 29 30
13 18 22 18 23 24 22 24 25
1520 24 20 27 29 24 29 30
16 21 25 21 28 30 25 30 31

This unfolding of a ((1,2),(3,4)) symmetric tensor is symmetric and has the
property that each column reshapes to a symmetric matrix, e.g.,

11 12 13
reshape(A(;,1),[33]) = | 12 14 15
13 15 16

We call this perfect shuffle symmetry.

Structured Matrix Problems from Tensors 59

11.3 Perfect Shuffle Symmetry
An n? -by- n?> matrix A is PS-symmetric if it is symmetric and satisfies
A =11,,AIl, ,
where IT, , is the perfect shuffle permutation
I, = Lp(:,v), v=1_[1n:n*|2:n:n*| - |n:n:n*l.

Here is an example:

100
000
000
010
M; =000
000
001
000
1000

Because I1,, is symmetric it has just two eigenvalues: 4+1 and —1. Consider the
eigenvector equation

coococo o — o
coo—~o oo o
— oo oo oo o
co oo o —o o
co—~o0co oo o
[e N =T R N B R BN

)
=)
=)
)
)

100000000 X11 xll_
000100000 X1 X12
000000100 X31 X13
010000000O X12 X21
173,3x= 000010000 X22 = =* X22
000000010 X32 X23
001000000O0 X13 X31
000001000 X23 X3
LOOO0OO00O0O0O0 1] [x33] [X33 |
If I1T,,x = x, then reshape(x, [n,n]) is symmetric. If IT,,x = —x, then

reshape(x, [n, n]) is skew-symmetric.

11.4 Block Diagonalization

Suppose A € R is PS-symmetric and A is a distinct eigenvalue. Thus,

Ax = Ax = A(Hn,n-x) = A(1711,"!)()

60 C.F. Van Loan

from which we may conclude that either 7, ,x = x or I, ,x = —x. The first case
says that x reshapes to an n -by- n symmetric matrix while the second case says that
x reshapes to an n -by- n skew-symmetric matrix. From this we may conclude that
the subspaces

Sym ={x € R" | reshapel(x, [n n]) is symmetric }

Spew = X € R" | reshape(x, [n]) is skew-symmetric }

are invariant for A. Moreover, S, = Sstw. Here is an orthogonal matrix whose
columns span these subspaces:
(V20 0 000 0 0 0]
0O 0 0100 1 0O
0O 0 0OOI1O0O O 1 O0
1 0 0 0100-1 00
033 = 0v20000 0 0 0 =1[0uml|Quul (26)
V210 0 0001 0 0 1
0O 0 0O0OI1O0O O O0OTDO
0 0 0001 0-1-1
L 0 0 /2000 0 0 O]

Here are a pair of column reshapings taken from this matrix:

010 0—-10
053,49 =100 03¢, 7) = (100
000 00O
It follows that if A € R"™*" is PS-symmetric, then
(X X xXxxx0007]
XXXXXxx000
XXXXXx000
XXXXXXx000
, B _[AWO}
0, AQpn = | xxxxxx000 | = . 27
' XXXXXxx000 0 Ao
000000 xxx
000000 xxx
1000000 xxx_]

This “free” block diagonalization can be effectively exploited as we now show.

Structured Matrix Problems from Tensors

11.5 Low-Rank PS-Symmetric Approximation

61

In certain important quantum chemistry applications, the n?-by-n> matrix A in (27)
is positive definite and very near a rank-n matrix. Our plan is to approximate the

diagonal blocks A,,, and A, using Cholesky with diagonal pivoting.

Recall that pivoted LDL can be used to compute an approximate rank-r

approximation to a positive definite matrix:

P is a permutation

PAPT ~ LDLT L € R™*"is unit lower triangular

D =diag(d), dy > d>>--->d, > 0

e.g.,

[x 007 d 00 X X X XXX XXX
x x 0 0d, 0 0 X X XXX XXX
X X X 0 0ds 00 XXXXXXX
X X X

PAPT ~ | x x x
X X X
X X X
X X X
| X X X |

See [10, p.167].

It follows from (26) and (27) that if we compute the low-rank LDL decomposi-

tions
. pT T
Asym ~ PsylanynlDsylanymPsyln
. pT T
Askcw ~ PskchskcstkchskcwP»kcw
then
A~ VoD,V 4+ VDo VL
~ sym™~sym ¥ ¢y skew ™ skew ¥ gkew
where
_ T
Vsym - stmpbymL.\\ym
and

T
Vskew = stewP Lskew

skew

(28)

62

C.F. Van Loan

It is easy to verify that these low-rank matrices are also PS-symmetric. When the
structured approximation (28) to A = Aj; 3jx[3,4] is substituted into

Buoxpa = X @ X)" ApaxpaX ® X).

then the volume of work is greatly reduced. See [31].

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R.
Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J.
Ramanujam, P. Sadayappan, A. Sibiryakov , Synthesis of high-performance parallel programs
for a class of ab initio quantum chemistry models. Proc. IEEE 93(2), 276-292 (2005)

. G. Beylkin, M.J. Mohlenkamp, Numerical operator calculus in higher dimensions. Proc. Natl.

Acad. Sci. 99(16), 1024610251 (2002)

. G. Beylkin, M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions. SIAM

J. Sci. Comp. 26, 2133-2159 (2005)

. P. Comon, G. Golub, L.-H. Lim, B. Mourrain, Genericity and rank deficiency of high order

symmetric tensors. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP ’06) 31(3),
125-128 (2006)

. P. Comon, G. Golub, L.-H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank.

SIAM J. Matrix Anal. Appl. 30, 1254-1279 (2008)

. L. de Lathauwer, Signal Processing Based on Multilinear Algebra. Ph.D. thesis, K.U. Leuven,

1997

. L. De Lathauwer, P. Comon, B. De Moor, J. Vandewalle, Higher-order power method—

application in independent component analysis, in Proceedings of the International Symposium
on Nonlinear Theory and Its Applications (NOLTA ’95), Las Vegas, NV (1995), pp. 91-96

. L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21, 1253-1278 (2000)

. V. De Silva, L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation

problem. SIAM J. Matrix Anal. Appl. 30, 1084—-1127 (2008)

G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (Johns Hopkins University Press,
Baltimore, MD, 2013)

W. Hackbusch, B.N. Khoromskij, Tensor-product approximation to operators and functions in
high dimensions. J. Complexity 23, 697-714 (2007)

H.V. Henderson, S.R. Searle, The vec-permutation matrix, the vec operator and Kronecker
products: a review. Linear Multilinear Algebra 9, 271-288 (1981)

C.J. Hillar, L.-H. Lim, Most tensor problems are NP-hard. J. ACM 60(6), Art. 33—47 (2013)
E. Kofidis, P.A. Regalia, On the best rank-1 approximation of higher-order supersymmetric
tensors. SIAM J. Matrix Anal. Appl. 23, 863-884 (2002)

T.G. Kolda, B.W. Bader, Algorithm 862: MATLAB tensor classes for fast algorithm prototyp-
ing. ACM Trans. Math. Softw. 32, 635-653 (2006)

T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51, 455-500
(2009)

L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Proceedings
of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP 05), vol. 1 (2005), pp. 129-132

L.-H. Lim, Tensors and hypermatrices, in Handbook of Linear Algebra, Chap. 15, 2nd edn.,
ed. by L. Hogben (CRC Press, Boca Raton, FL, 2013), 30 pp.

Structured Matrix Problems from Tensors 63

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.
31.

C. Martin, C. Van Loan, A Jacobi-type method for computing orthogonal tensor decomposi-
tions. SIAM J. Matrix Anal. Appl. 30, 1219-1232 (2008)

I.V. Oseledets, E.E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in
many dimensions. SIAM J. Sci. Comput. 31, 3744-3759 (2008)

I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear
Algebra Appl. 432, 70-88 (2010)

C.C. Paige, C.F. Van Loan, A Schur decomposition for Hamiltonian matrices. Linear Algebra
Appl. 41,11-32 (1981)

N. Pitsianis, C. Van Loan, Approximations with Kronecker products, in Linear Algebra
for Large Scale and Real-Time Applications, ed. by M.S. Moonen, G.H. Golub (Kluwer,
Dordrecht, 1993), pp. 293-314

J. Poulson, B. Marker, R.A. van de Geijn, J.R. Hammond, N.A. Romero, Elemental: A new
framework for distributed memory dense matrix computations. ACM Trans. Math. Softw.
39(2), 13:1-13:24, February 2013 (2014). arXiv:1301.7744

S. Ragnarsson, C.F. Van Loan, Block tensor unfoldings. SIAM J. Matrix Anal. Appl. 33(1),
149-169 (2012)

S. Ragnarsson, C.F. Van Loan, Block tensors and symmetric embeddings. Linear Algebra Appl.
438, 853-874 (2013)

A. Smilde, R. Bro, P. Geladi, Multi-way Analysis with Applications in the Chemical Sciences
(Wiley, Chichester, 2004)

E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops Tensor Framework: reducing
communication and eliminating load imbalance in massively parallel contractions, Berkeley
Technical Report No. UCB/EECS-2013-1 (2013)

C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadel-
phia, PA, 1992)

C. Van Loan, The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85-100 (2000)
C.E. Van Loan, J.P. Vokt, Approximating matrices with multiple symmetries. SIAM J. Matrix
Anal. Appl. 36(3), 974-993 (2015)

2 Springer
http://www.springer.com/978-3-319-49886-7

Exploiting Hidden Structure in Matrix Computations:
Algorithms and Applications

Cetraro, Italy 2015

Benzi, M.; Bini, D.; Kressner, D.; Munthe-Kaas, H.; Van
Loan, C. - Benzi, M.; Simoncini, V. (Eds.)

2016, IX, 406 p. 57 illus., 46 illus. in color., Softcover
ISBEM: 978-3-319-49886-7

	Structured Matrix Problems from Tensors
	1 Introduction
	2 The Exploitation of Structure in Matrix Computations
	2.1 Exploiting Data Sparsity
	2.2 Exploiting Structured Eigensystems
	2.3 Exploiting the Right Representation
	2.4 Exploiting Orthogonality Structures
	2.5 Exploiting a Structured Data layout

	3 Matrix-Tensor Connections
	3.1 Talking About Tensors
	3.2 Tensor Parts: Fibers and Slices
	3.3 Order-4 Tensors and Block Matrices
	3.4 Modal Unfoldings
	3.5 The vec Operation
	3.6 The Kronecker Product
	3.7 Perfect Shuffles, Kronecker Products, and Transposition
	3.8 Tensor Notation
	3.9 The Tensor Product

	4 A Rank-1 Tensor Problem
	4.1 Rank-1 Matrices
	4.2 Rank-1 Tensors
	4.3 The Nearest Rank-1 Problem for Matrices
	4.4 A Nearest Rank-1 Tensor Problem

	5 The Variational Approach to Tensor Singular Values
	5.1 Rayleigh Quotient/Power Method Ideas: The Matrix Case
	5.2 Rayleigh Quotient/Power Method Ideas: The Tensor Case
	5.3 A First Look at Tensor Rank

	6 Tensor Symmetry
	6.1 Tensor Transposition
	6.2 Symmetric Tensors
	6.3 Symmetric Rank
	6.4 The Eigenvalues of a Symmetric Tensor
	6.5 Symmetric Embeddings

	7 The Tucker Decomposition
	7.1 Tucker Representations: The Matrix Case
	7.2 Tucker Representations: The Tensor Case
	7.3 The Mode-k Product
	7.4 The Core Tensor
	7.5 The Higher-Order SVD
	7.6 The Tucker Nearness Problem
	7.7 A Jacobi Approach

	8 The CP Decomposition
	8.1 CP Representations: The Matrix Case
	8.2 CP Representation: The Tensor Case
	8.3 More About Tensor Rank
	8.4 The Nearest CP Problem
	8.5 The Khatri-Rao Product
	8.6 Equivalent Formulations

	9 The Kronecker Product SVD
	9.1 The Nearest Kronecker Product Problem
	9.2 The Kronecker Product SVD (KPSVD)
	9.3 Order-4 Tensor Approximation Using the KPSVD

	10 The Tensor Train SVD
	10.1 Tensor Trains and Data Sparsity
	10.2 Computing an SVD-Based Tensor Train Representation

	11 Tensor Problems with Multiple Symmetries
	11.1 A First Look at Multiple Symmetries
	11.2 A Tensor Problem with Multiple Symmetries
	11.3 Perfect Shuffle Symmetry
	11.4 Block Diagonalization
	11.5 Low-Rank PS-Symmetric Approximation

	References

