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Abstract. We introduce the notion of approximate-deterministic public
key encryption (A-DPKE), which extends the notion of deterministic
public key encryption (DPKE) by allowing the encryption algorithm to
be “slightly” randomized. However, a ciphertext convergence property is
required for A-DPKE such that the ciphertexts of a message are gather-
ing in a small metric space, while ciphertexts of different messages can be
distinguished easily. Thus, A-DPKE maintains the convenience of DPKE
in fast search and de-duplication on encrypted data, and encompasses
new constructions. We present two simple constructions of A-DPKE,
respectively from the learning parity with noise and the learning with
errors assumptions.
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1 Introduction

Deterministic Public Key Encryption. The provable security of determin-
istic public key encryption (DPKE) was initiated by Bellare, Boldyreva and
O’Neill in 2007 [4]. Different from the widely accepted notion of probabilistic
encryption [19], the encryption algorithm of DPKE does not require a fresh ran-
domness; consequently, given a plaintext, its ciphertext is unique. Hence DPKE
can serve as a candidate for efficiently searchable encryption, and supports de-
duplication over encrypted data.

Though DPKE can not satisfy most security requirements of randomized
public key encryption due to the deterministic encryption algorithm, Bellare,
Boldyreva and O’Neill defined an as-strong-as-possible security notion for
DPKE, called PRIV, over plaintext distributions with high min-entropy indepen-
dent of the public key. More security definitions and constructions of DPKE were
discussed in [5,6,13,17,33,35]. Currently DPKE can be instantiated from vari-
ous intractability assumptions, including lattice-related ones such as the learning
with errors assumption (LWE).
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Hard Learning Problems. Generally, hard learning problems, such as LWE
and LPN (learning parity with noise), refer to learning a secret from several noisy
linear equations. LWE was introduced by Regev in [32]. It states that recovering
a secret s giving (A,b = As + e) is intractable, wherein A ∈ Z

m×n
q and s ∈ Z

n
q

are chosen at random, and e is picked from an error distribution, for appropriate
secret dimension n, number of samples m, and modulus q. The decisional version
of LWE states that (A,b = As + e) is computationally indistinguishable from
the uniform pair (A,u), and is equivalent to the search version. Syntactically,
LPN is LWE in the case of q = 2 with the errors being picked from the Bernoulli
distribution, however, LPN and LWE are different in many aspects.

The hardness of LWE is guaranteed by worst-case hard problems over lattices,
as shown in a series of literatures [11,29,32], and LPN is essentially the hard
problem of decoding a random binary linear code. In addition, both are believed
to be intractable even for quantum algorithms. Thus, it is desirable to instantiate
cryptographic primitives from them.

LWE is useful in the construction of various public key cryptographic primi-
tives, such as chosen-ciphertext secure encryption [31], identity-based encryption
[20], password-based authenticated key exchange [24], and in our interest, DPKE
[35]. The low-noise version of LPN has also been used to construct secure pub-
lic key encryption [1,16,21,23,34]. And recently, Yu and Zhang showed how to
obtain several public key cryptographic primitives from constant-noise LPN [38],
such as CPA/CCA secure encryption and oblivious transfer.

However, the syntax of hard learning problems seems incompatible with the
definition of DPKE since it involves a randomly sampled error item, which is
important to the intractability of the problems while causes a kind of nondeter-
minacy. Hence, current constructions of DPKE from LWE either take a detour
from lossy trapdoor functions (LTDF) [6,35], or use a deterministic variant of
LWE called learning with rounding (LWR) [12]. The construction of LTDF from
LWE are somewhat complicated [31]. The LWR-based constructions of DPKE
[3,37] are very simple, but to ensure the hardness of LWR, the modulus q should
be large enough [3,7]. Besides, as far as we know, currently there is no con-
struction of DPKE or even LTDF from LPN, and it is believed that there is no
“rounding version” of LPN [2].

Nevertheless, we try to address the problem in another way. Remember that
using the LWE assumption to instantiate another important cryptographic prim-
itive, the smooth projective hashing (SPH) [14], is also an open problem as
stated in [30]. In 2009, Katz and Vaikuntanathan defined a variant of SPH
called approximate smooth projective hashing , instantiated it with LWE,
and obtained the first password-based authenticated key exchange protocol from
a lattice-related assumption [24]. Thus, we believe that a similar solution should
work for the case of DPKE.

1.1 Our Contributions

Approximate-DPKE. We extend the definition of DPKE to allow some sort of
nondeterminacy while maintaining its advantages, by introducing the notion of
approximate-deterministic public key encryption (A-DPKE). Compared
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with DPKE, in A-DPKE the encryption algorithm is “slightly” randomized,
thus there will be many ciphertexts corresponding to one message. However,
these ciphertexts are not scattered in the ciphertext space, instead they are
gathering in a small metric space. Moreover, ciphertexts of different plaintexts
are distributed “far enough” that they will not mix up. We call the property
ciphertext convergence , and with it A-DPKE preserves the advantages of
DPKE in encrypted search and de-duplication, since the ciphertexts of a given
message can be easily recognized without decryption.

A-DPKE can achieve the same security level of DPKE, namely, the PRIV-
series of security definitions. However, though the encryption algorithm of A-
DPKE is randomized, it cannot be as secure as probabilistic encryption due to
the ciphertext convergence property: encryptions of the same message can be
easily recognized while encryptions of different messages can be easily distin-
guished. It is a tradeoff between security and functionality just as in the case
of DPKE.

Then we can bring out simple and natural instantiations of A-DPKE from
hard learning problems.

A-DPKE from LPN. To the best of our knowledge, there is no constructions
of DPKE from the LPN assumption (neither low-noise nor constant-noise) so
far. However, by relaxing DPKE to A-DPKE, immediately we obtain a simple
construction of A-DPKE from low-noise LPN, using the trapdoor generation
techniques as in [23]. The secret key is a matrix T ∈ Z

m×m
2 , and the public

key is a pair of matrices (A,B = TA) ∈ (Zm×n
2 )2. To encrypt a message m ∈

{0, 1}n, two ciphertext components are computed as c1 = Am + e, c2 = (B +
G)m + T̄e, where e, T̄ are small errors, and G is the generator matrix of an
efficiently decodeable binary linear code. We can see that though the encryption
is randomized, the Hamming distance of two ciphertexts of a message could
be small if the error items are small. By choosing proper parameters, both the
ciphertext convergence property and the security will hold.

A-DPKE from LWE. Further, we show a natural A-DPKE construction from
LWE. The public key is simply a matrix A ∈ Z

m×n
q generated with the trap-

door generation techniques from [28], and the secret key is the corresponding
trapdoor R. Then the encryption and decryption are simply the evaluation and
inversion of the LWE function. Note that a message m ∈ {0, 1}n is encrypted as
c = Am+e. By choosing the size of the error item e properly, the ciphertext con-
vergence property will hold. And the security is ensured by the hardness of LWE
for high min-entropy secrets [3,18]. Compared with the LWE-based DPKE via
LTDF, our A-DPKE is simpler in structure; and compared with the LWR-based
DPKE scheme, our LWE-based A-DPKE scheme can use smaller modulus q.

Organization. The rest of the paper is organized as follows. In Sect. 2 some
notations and preliminaries about lattice is introduced. In Sect. 3 the definition
of A-DPKE is given. In Sect. 4 and Sect. 5 the A-DPKE schemes from LPN and
LWE are constructed respectively. Finally, Sect. 6 is the conclusion.
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2 Preliminaries

2.1 Notations

We use bold lower-case characters to denote vectors, such as x, and use bold
upper-case letters to denote matrices, such as X. If X is a set, then x

$← X
denotes that x is chosen from X uniformly at random. If X is a distribution,
then x

$← X denotes that x is randomly sampled according to X.
For a randomized algorithm A, x

$← A(·) denotes that x is assigned the output
of A. An algorithm is efficient if it runs in polynomial time in its input length.
A function f(λ) is negligible if it decreases faster than any polynomial of the
security parameter λ, and is denoted as f(λ) ≤ negl(λ).

The min-entropy of a random variable X is denoted as H∞(X) =
− log (max

x
PX(x)), wherein PX(x) = Pr[X = x]. X is called a k-source if

H∞(X) ≥ k.
The statistical distance between two random variables X and Y is Δ(X,Y ) =

1
2 Σ

x
|PX(x) − PY (x)|, X and Y are statistically close if Δ(X,Y ) ≤ ε(λ), and is

denoted as X
s≈ Y . X and Y are computationally indistinguishable if no efficient

algorithm can tell them apart given only oracle access, and is denoted as X
c≈ Y .

2.2 Lattices

A full-rank m-dimensional lattice Λ generated by a basis B = {b1, ...,bm} ∈
Z

m×m is defined as
Λ = L(B) = {Bx : x ∈ Z

m},

where b1, ...,bm are linearly independent.
The length of lattice vectors is measured with norms. By default the Euclid-

ean norm is used, i.e., ‖x‖2 =
√∑

x2
i , or solely denoted as ‖x‖. In some occasions

in this work, the infinity norm is also used, i.e., ‖x‖∞ = max xi. Obviously, for
an m-dimensional vector x, if ‖x‖∞ ≤ a, then ‖x‖2 ≤ √

ma; and if ‖x‖∞ ≥ a,
then ‖x‖2 ≥ a.

The length of the shortest nonzero vector in a lattice Λ is denoted by λ1(Λ).
Since lattice points are periodically arranged in every dimension, then λ1(Λ) is
the distance of two lattice points in the most “compact” dimension.

The LWE problem is essentially the bounded-distance decoding problem over
a full-rank m-dimensional q-ary integer lattice Λq(A) generated by a random
matrix A ∈ Z

m×n
q :

Λq(A) = {y ∈ Z
m : ∃s ∈ Z

n
q s.t. y = As mod q}.

3 Approximate-DPKE: Definition and Security

Here we define approximate-DPKE. Compared with the original DPKE defini-
tion, the main difference is that the encryption algorithm of A-DPKE is random-
ized. And compared with the definition of randomized PKE, A-DPKE has the



Approximate-DPKE from Hard Learning Problems 29

additional property of ciphertext convergence, i.e., the ciphertexts of a message
are distributed in a small metric space.

Definition 1. An approximate-deterministic public key encryption scheme A-
DPKE = (KG, ENC, DEC) consists of the following three algorithms:

– The probabilistic key generation algorithm: (pk, sk) $← KG(1λ).

– The probabilistic encryption algorithm: c
$← ENC(pk,m; r).

– The deterministic decryption algorithm: m ← DEC(sk, c).

And we further require that the encryption scheme should satisfy a “ciphertext
convergence” property, i.e., there are a function dis measuring the “distance” of
ciphertexts, and a distance parameter t, fulfilling the following requirements:

– For arbitrary two ciphertexts c1, c2 of a given plaintext m, there is dis(c1, c2) ≤
t.

– For arbitrary two ciphertext-plaintext pairs (c,m) and (c′,m′), there is
dis(c, c′) > t if m 
= m′.

In the definition we explicitly contain the randomness r in the encryption
algorithm. In the following we sometimes omit it in occasions that the choice of
randomness is unimportant and just use Enc(pk,m).

The correctness requirement of A-DPKE involves two aspect. One is trivially
the decryption correctness, i.e., there should be DEC(sk,ENC(pk,m; r)) = m.
The other is the ciphertext convergence property, wherein the choices of the
metric function dis and parameter t depend on specific instantiations.

The definition of A-DPKE is a generalization of that of DPKE. Consider the
metric function dis to be the Hamming distance, e.g., the numbers of bit-wise
differences between two ciphertexts, and set the parameter t = 0, then a DPKE
certainly satisfies the ciphertext convergence property.

As to the security requirement, it is clear that A-DPKE can achieve existing
security requirements of DPKE, e.g., the PRIV security. The question is whether
it can be semantically secure [19]. The answer is NO, but the consequence is not
necessarily negative. On one side, though the encryption algorithm of A-DPKE
is randomized, it still can not achieve semantic security due to the ciphertext
convergence property. On the other side, with this property, A-DPKE preserves
the advantages of DPKE in searchable encryption and de-duplication, since the
ciphertexts of a certain message can be efficiently recognized without decryption,
given dis and t.

In the following we give the definition of PRIV-IND security [5,6] for A-
DPKE, which requires that the encryptions of messages from two different high
min-entropy distributions are indistinguishable.

Definition 2 (PRIV-IND security for A-DPKE). An approximate-
deterministic public-key encryption scheme Π = (KG,Enc,Dec) is PRIV-IND
secure if for any probabilistic polynomial time adversary A, for any efficiently
sampleable distributions {M0

λ}λ∈N and {M1
λ}λ∈N with sufficient min-entropy
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H∞(M0
λ) ≥ k and H∞(M1

λ) ≥ k, there is (pk,Enc(pk,m0))
c≈ (pk,Enc(pk,m1)),

where (pk, sk) $← Gen(1λ), m0
$← M0

λ and m1
$← M1

λ.

In [37] Xie et al. defined a PRIV-INDr security for DPKE, which requires
that the encryption is indistinguishable from uniform. It is clear that PRIV-INDr
implies PRIV-IND. We also define the PRIV-INDr security for A-DPKE.

Definition 3 (PRIV-INDr security for A-DPKE). An approximate-
deterministic public-key encryption scheme Π = (KG,Enc,Dec) is PRIV-INDr
secure if for any probabilistic polynomial time adversary A, for any efficiently
sampleable distributions {Mλ}λ∈N with sufficient min-entropy H∞(Mλ) ≥ k,

there is (pk,Enc(pk,m))
c≈ (pk,u), where (pk, sk) $← Gen(1λ), m $← Mλ and

u $← Cλ, where Cλ is the ciphertext space.

Note that other forms of security definitions for DPKE can also be extended
to the A-DPKE case naturally, such as PRIV with respect to hard-to-invert
auxiliary information [13].

In the definition of PRIV security, the message blocks m0 and m1 contain
several (possibly correlated) messages. If the block size is restricted to be one,
then the security is called PRIV1 [4–6]. Full PRIV security in the standard
model is considered to be elusive [36], and currently the only known approach
to achieve it is the one proposed by Bellare and Hoang in [8], with the help of a
newly introduced strong assumption UCE (universal computational extractor)
[9]. Thus, in this work, we are satisfied with just the PRIV1 security.

4 A-DPKE from LPN

So far, there is no known constructions of DPKE from the learning parity with
noise assumption. Now we propose an A-DPKE scheme under the LPN assump-
tion, which depicts that the relaxation from deterministic to approximate-
deterministic is worthwhile.

4.1 Coding Theory

In the LPN based A-DPKE construction, we will use a linear code as a building
block. Thus some preliminaries about the coding theory are recalled below. The
notations and definitions mainly come from [26] by Meurer.

For x ∈ [0, 1], the q-ary entropy function is defined as Hq(x) = x
logq(q − 1) − x logq x − (1 − x) logq(1 − x). In particular, when q = 2, H(x) =
x log x − (1 − x) log(1 − x).

Definition 4 (Linear Code). A linear code C in a finite field Zq is a linear
subspace of the linear space Z

m
q . If the dimension of C is n, then C is called an

[m,n]-code. The ratio R = n
m is called the information rate of C.
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In this work, we use linear codes in Z
m
2 . Given a generator matrix A ∈ Z

m×n
2 ,

a code C(A) = {c = As : s ∈ Z
n
2} is specified. An important parameter of a

code C is the minimum distance d(C), which is the minimum Hamming distance
between two distinct codewords, i.e., d(C) = min

c1 �=c2∈C
|c1 −c2| = min

c∈C\{0}
|c|. With

the relative Gilbert-Varshamov distance, a lower bound of d(C) can be estimated.

Definition 5 (Relative Gilbert-Varshamov distance). Let 0 < R < 1.
The relative Gilbert-Varshamov distance DGV(R) ∈ R is the unique solution in
0 ≤ x ≤ 1 − 1

q of the equation Hq(x) = 1 − R.

The following lemma from [26] shows the lower bound of a linear code C.

Lemma 1. Almost all linear codes meet the relative Gilbert-Varshamov dis-
tance, i.e., for almost all linear codes C of rate R it holds d(C) ≥ �DGV(R)m�.

4.2 The LPN Assumption

Then we recall the LPN assumption, wherein the error item is sampled from the
Bernoulli distribution Bρ with 0 < ρ < 1/2, i.e., Pr[x = 1 : x

$← Bρ] = ρ.

Definition 6 (Learning Parity with Noise). Let λ be the security parame-
ter, n = n(λ),m = m(λ) be integers, and ρ ∈ (0, 1/2) be the Bernoulli parameter.

The LPNn,m,ρ assumption states that, if we choose A $← Z
m×n
2 , s $← Z

n
2 , e ←

Bm
ρ ,u $← Z

m
2 , then the following distributions are computationally indistinguish-

able:
(A,As + e)

c≈ (A,u).

In standard LPN, the Bernoulli parameter ρ is a constant such as 1/10.
However, for the purpose of constructing PKE schemes, we mainly use a low-
noise variant of LPN contributed by Alekhnovich [1], in which ρ = Θ(1/

√
n).

And we still need another variant of LPN called Knapsack LPN (KLPN),
which is defined below.

Definition 7 (Knapsack LPN). Let λ be the security parameter, n =
n(λ),m = m(λ) be integers, and ρ ∈ (0, 1/2) be the Bernoulli parameter.

The KLPNm
n,m,ρ assumption states that, if we choose A $← Z

m×(m−n)
2 ,T $←

Bm×m
ρ ,u $← Z

m×(m−n)
2 , then the following distributions are computationally

indistinguishable:
(A,TA)

c≈ (A,u).

The equivalence of LPN and KLPN assumptions was stated in [23,27] with
the following lemma:

Lemma 2 [23]. For all algorithms B there exists an algorithm A that runs in
roughly the same time as B and AdvLPNn,m,ρ(A) ≥ 1

mAdvKLPNm
n,m,ρ

(B).
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4.3 Construction 1: A-DPKE from LPN

Now we will describe the A-DPKE construction from LPN. Firstly we set the
parameters used in the construction. Some choices of parameters are similar to
those in [23].

– λ is the security parameter, n(λ),m(λ) are integers, where n = Θ(λ2) and
m ≥ 2n. Besides, m > 1400. For reasonable choices of the security parameter,
say λ ≥ 80, m > 1400 can be trivially met.

– 0 < c < 1/4 is a constant. And the Bernoulli parameter is ρ =
√

c/m.
β = 2

√
cm is a parameter used in the correctness proof of the construction.

– G ∈ Z
m×n
2 is the generator-matrix of a binary linear error-correcting code

C : Zn
2 → Z

m
2 with an efficient decoding algorithm DecodeG which corrects

up to αm errors with 4c < α ≤ 0.05.

Now the A-DPKE based on LPN is given below:

– KG(1λ): Choose T $← Bm×m
ρ , A $← Z

m×n
2 , and compute B = TA. Set sk = T

and pk = (A,B).
– Enc(pk,m; (e, T̄)): To encrypt a message m ∈ {0, 1}n, choose e $← Bm

ρ , T̄ $←
Bm×m

ρ , and compute

c1 = Am + e, c2 = (B + G)m + T̄e,

where G is the generator matrix of a binary linear code defined above as part
of the public parameter. Finally, set the ciphertext C = (c1, c2).

– Dec(sk,C): Parse C as (c1, c2). Compute y = c2 − Tc1 and set m =
DecodeG(y).

4.4 Correctness

To establish the correctness of Construction 1 over the specified parameter set-
tings, two lemmata from literatures are required. The first one is the Chernoff
Bound for bounding the Hamming weight of a vector constituted by indepen-
dent Bernoulli random variables, e.g., the weight of the error item in the first
component of the ciphertext.

Lemma 3 (Chernoff Bound). For d $← Bm
ρ and δ > 0,

Pr[|d| > (1 + δ)ρm] < e−min(δ,δ2)
3 ρm.

In our case, δ = 1. The other lemma is essentially from [23], bounding the
Hamming weight of the error item in the second component of the ciphertext.

Lemma 4 [23]. For e $← Bm
ρ with |e| ≤ 2ρm, T $← Bm×m

ρ , and 4c < α < 1,
there is

Pr
T

[|Te| >
α

2
m] < negl(λ).

Then we can establish the correctness of Construction 1 as an A-DPKE.
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Theorem 1. Let λ be the security parameter, n,m, c, ρ, β, α and the error cor-
recting code G be defined above. Choose the distance function dis such that
dis(C1,C2) = |C1 − C2| = (|c1,1 − c1,2|, |c2,1 − c2,2|) denotes the Hamming
distance of two ciphertexts C1 = (c1,1, c1,2),C2 = (c2,1, c2,2), and set the para-
meter t = (t1, t2) = (2β, αm). Then the above construction is a correct A-DPKE
scheme.

Proof. The correctness includes the decryption correctness and the ciphertext
convergence.

– Decryption correctness.
Given a ciphertext C = (c1, c2), the decryption algorithm computes

y = c2 − Tc1 = Gm + (T̄ − T)e.

To ensure that DecodeG(y) correctly recovers m, the Hamming weight of the
error term (T̄ − T)e should be small, i.e., |(T̄ − T)e| ≤ αm.
With the parameters ρ =

√
c/m, β = 2

√
cm = 2ρm, and the Chernoff Bound

for δ = 1, the Hamming weight of e is bounded by β with overwhelming
probability. That is,

Pr
e

$←Bm
ρ

[|e| > β] ≤ e−ρm/3 = 2−Θ(
√

m).

Then with the triangular inequality and Lemma4 from [23], there is

|(T̄ − T)e| ≤ |T̄e| + |Te| ≤ αm,

with overwhelming probability. Thus, DecodeG(y) will recover m with over-
whelming probability.

– Ciphertext convergence.
• Given a message m, and its arbitrary two ciphertexts:

C1 = (c1,1 = Am + e1, c1,2 = (B + G)m + T̄1e1),

C2 = (c2,1 = Am + e2, c2,2 = (B + G)m + T̄2e2).

According to Lemmas 3 and 4, there is

dist(C1,C2) = (|c1,1 − c1,2|, |c2,1 − c2,2|)
= (|e1 − e2|, |T̄1e1 − T̄2e2|)
≤ (2β, αm),

with overwhelming probability, i.e., the ciphertexts of the same message
are close in Hamming distance.
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• Given two different messages m and m′, and two ciphertexts of them:

C = (c1 = Am + e, c2 = (B + G)m + T̄e),

C′ = (c′
1 = Am′ + e′, c′

2 = (B + G)m′ + T̄′e′),

there is dist(C,C′) = (|c1 − c′
1|, |c2 − c′

2|).
Let us analyze the two components separately. Consider A as the gener-
ator matrix of a linear code C(A), then |A(m − m′)| is not less than the
minimum distance of C(A). With the triangular inequality and Lemma1,
there is

|c1 − c′
1| = |A(m − m′) + (e − e′)|

≥ |A(m − m′)| − |e − e′|
≥ d(C(A)) − 2β

≥ �DGV(
n

m
)m� − 2β

≥ DGV(
1
2
)m − 1 − 2β.

By a routine calculation based on Definition 5 there is DGV( 12 ) > 0.11.
Since m > 1400 and c < 0.25, that is, c < 0.000179m, then 2β = 4

√
cm <

0.0536m. Hence there is

|c1 − c′
1| ≥ 0.11m − 1 − 0.0536m

= 0.0564m − 1
> 2β = t1.

Similarly, view U = B+G as the generator matrix of a linear code C(U),
then there is

|c2 − c′
2| = |U(m − m′) + (T̄e − T̄′e′)|

≥ |U(m − m′)| − |T̄e − T̄′e′|
≥ d(C(U)) − αm

≥ �DGV(
n

m
)m� − αm

≥ DGV(
1
2
)m − 1 − αm

> 0.11m − 1 − 0.05m

= 0.06m − 1
> 0.05m ≥ αm = t2.

Hence it holds that dis(C,C′) > (2β, αm), i.e., ciphertexts of different
messages are far enough in Hamming distance. ��
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4.5 Security

Now we can show the PRIV1-INDr security of Construction 1.

Theorem 2. Let λ be the security parameter, n,m, c, ρ, β, α and the error cor-
recting code G be defined above. If the LPN assumption holds, then the above
construction is PRIV1-INDr secure for uniformly distributed messages.

Proof. Since for (pk, sk) $← KG(1λ), m $← {0, 1}n, e $← Bm
ρ , T̄ $← Bm×m

ρ , there
is

(pk,Enc(pk,m)) = ((A,B), (Am + e, (B + G)m + T̄e)) (1)
c≈ ((A,B′), (Am + e, (B′ + G)m + T̄e)) (2)
c≈ ((A,B′), (Am + e,Um + T̄e)) (3)
c≈ ((A,B′), (u1,u2)), (4)

where B′,U $← Z
m×n
2 ,u1,u2

$← Z
m
2 . Step 1 is straightforward. Step 2 follows

from the KLPN assumption. Step 3 is also natural since B′ is uniform. And step
4 follows from the LPN assumption. ��

5 A-DPKE from LWE

5.1 The LWE Assumption

Next we will show a natural construction of A-DPKE from the learning with
errors assumption. Firstly we recall the definition of (decisional) LWE.

Definition 8 (Learning with Errors [32]). Let λ be the security parameter,
n = n(λ),m = m(λ), q = q(λ) be integers, and χ = χ(λ) be a distribution

over Zq. The LWEn,m,q,χ assumption states that, if we choose A $← Z
m×n
q , s $←

Z
n
q , e ← χm,u $← Z

m
q , then the following distributions are computationally indis-

tinguishable:
(A,As + e)

c≈ (A,u).

Typically, the error distribution is the discrete Gaussian distribution over Zq

with appropriate variance, or the uniform distribution over a small interval [15].
The equivalent computational version of LWE states that getting the secret s

from (A,b = As + e) is hard. However, with the trapdoor generation technique
from [28], the secret s can be efficiently recovered.

Lemma 5 [28]. There is an efficient randomized algorithm GenTrap(1n, 1m, q)
that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q),
outputs a parity-check matrix A ∈ Z

m×n
q and a ‘trapdoor’ R such that the dis-

tribution of A is negl(n)-far from uniform. Moreover, there are an efficient algo-
rithm Invert that with overwhelming probability over all random choices, does the
following:
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– For b = As + e, where s ∈ Z
n
q is arbitrary and either ‖e‖ < q/O(

√
n log q)

or e ← DZm,αq for 1/α ≥ √
n log q · ω(

√
log n), the deterministic algorithm

Invert(R,A,b) outputs s and e.

Goldwasser et al. proved that LWE is hard even for non-uniform secret s
with hard-to invert auxiliary information f(s), provided that s has high min-
entropy and the modulus q is super-polynomial [18]. The size of the modulus q
was improved to be polynomial by Alwen et al. in [3] (in the appendix of its full
version) with the following definition and lemma.

Definition 9 (LWE with Weak and Leaky Secrets [3]). Let λ be the secu-
rity parameter, n = n(λ),m = m(λ), q = q(λ) be integer parameters, and χ be
a distribution over Zq. Let γ = γ(λ) ∈ (0, q/2) be an integer and k = k(λ) be a
real. The LWEWL(γ,k)

n,m,q,χ problem says that for any efficiently sampleable correlated
random variables (s, aux), where the support of s is the integer interval [−γ, γ]n

and H∞(s|aux) ≥ k, the following distributions are computationally indistin-
guishable:

(aux,A,As + e)
c≈ (aux,A,u),

where A $← Z
m×n
q ,u $← Z

m
q , e $← χm are chosen randomly and independently of

(s, aux).

The lemma below states that the hardness of LWE for weak and leaky sources
follows from that of the standard LWE.

Lemma 6 [3]. Let k, l,m, n, β, γ, σ, q be integer parameters and χ a distribution
(all parameterized by λ) such that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnm. Let

Ψσ be either:

– The discrete Gaussian distribution with standard deviation σ, or
– The uniform distribution over the integer interval [−σ, σ].

Assuming that the LWEl,m,q,χ assumption holds, the weak and leaky
LWEWL(γ,k)

n,m,q,Ψσ
-assumption holds if k ≥ (l + Ω(λ)) log q.

In our construction, we choose γ = 1, and use binary secrets s ∈ {0, 1}n.

5.2 A-DPKE from LWE

5.3 Construction 2: A-DPKE from LWE

The A-DPKE construction from LWE is shown below. Firstly we list the para-
meter settings:

– λ is the security parameter, and n(λ),m(λ), q(λ) are integers, with m ≥
2n log q. For simplicity, we let q be prime.
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– Let Ψσ be a suitable error distribution with βnm < σ < min( q
16 , q

O(
√

n log q)
),

where β is the parameter for another error distribution χβ with which the
LWE assumption holds.

Then the encryption and decryption of A-DPKE are simply the evaluation
and inversion of the LWE function, using the trapdoor generation technique in
Lemma 5.

– KG(1λ). Run (A,R) $← GenTrap(1n, 1m, q). Set pk = A and sk = R.
– Enc(pk,m; e). To encrypt a message m ∈ {0, 1}n, compute c = Am+e, where

e ∈ Z
m is randomly sampled according to the distribution Ψσ.

– Dec(sk, c). Run (m, e) ← Invert(R,A, c), and output m.

5.4 Correctness

Intuitively, the encryption algorithm of Construction 2 encodes a message m
to a point near the lattice point As in the q-ary lattice Λq(A), and the offset
is the error size. Thus, to prove ciphertext convergence property, we need the
following lemma bounding the length of the shortest nonzero vector of Λq(A),
in the form of infinity norm.

Lemma 7 [20]. Let n and q be positive integers with q prime, and let
m ≥ 2n log q. Then for all but at most q−n fraction of A ∈ Z

m×n
q , we have

λ∞
1 (Λq(A)) ≥ q/4.

An immediate corollary explains the bound in the form of Euclidean norm.

Corollary 1. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but at most q−n fraction of A ∈ Z

m×n
q , we have λ2

1(Λq(A)) ≥ q/4.

Now we can show the correctness of Construction 2.

Theorem 3. Let λ be the security parameter, n = n(λ),m = m(λ), q = q(λ) be
integers, with m ≥ 2n log q and q being prime. Let Ψσ be the error distribution
with βnm < σ < min( q

16 , q
O(

√
n log q)

), thus ‖e‖ ≤ σ. Choose the distance function
dis such that dis(c1, c2) = ‖c1 − c2‖ denotes the distance of the two vectors
c1, c2 ∈ Z

m
q , and set the parameter t = 2σ. Then the above construction is a

correct A-DPKE scheme.

Proof.

– The decryption correctness follows from Lemma 5.
– Ciphertext convergence.

• Given a message m, and its arbitrary two ciphertexts c1 = Am+e1, c2 =
Am + e2, then there is

dis(c1, c2) = ‖c1 − c2‖
= ‖e1 − e2‖
≤ ‖e1‖ + ‖e2‖
≤ 2σ.

It means that the ciphertexts of the same message are close in Euclidean
distance.
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• Given two different messages m,m′, and two ciphertexts of them, c =
Am + e, c′ = Am′ + e′. With Lemma 7 and Corollary 1 there is

dis(c, c′) = ‖c − c′‖
= ‖(Am − Am′) + (e − e′)‖
≥ λ2

1(Λq(A)) − 2σ

> q/4 − q/8
= 8/q > 2σ.

It means that the ciphertexts of different messages are far enough in
Euclidean distance. ��

5.5 Security

Now we show the PRIV1-IND security of Construction 2.

Theorem 4. Let λ be the security parameter, n = n(λ) ≥ λ, l = l(λ),m =
m(λ), q = q(λ) be integers, and χ be an efficiently sampleable distribution such
that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βnm. Define Ψσ as in Lemma 6 and

choose e according to Ψσ. If the LWEl,m,q,χ assumption holds, then the above
construction is PRIV1-IND secure for all k-sources where k ≥ (l + Ω(λ)) log q.

Proof. The parameters are chosen such that the LWEWL(1,k)
n,m,q,Ψσ

-assumption holds.
Hence for any distributions M0

λ ,M1
λ over {0, 1}n with H∞(M0

λ) ≥ k and
H∞(M1

λ) ≥ k, there is

(pk,Enc(pk,m0; e0))
s≈ (B,Bm0 + e0) (1)
c≈ (B,u) (2)
c≈ (B,Bm1 + e1) (3)
s≈ (pk,Enc(pk,m1; e1)), (4)

wherein m0
$← M0

λ, m1
$← M1

λ, (pk, sk) $← Gen(1λ), e0, e1
$← Ψσ, B ← Z

m×n
q ,

and u $← Z
m
q . Step 1 and Step 4 follow with Lemma5, i.e., the trapdoor genera-

tion technique. Step 2 and Step 3 follow with Lemma6, i.e., the LWE assumption
with weak secret. ��
Remark 1. Xie et al. proposed a very simple DPKE scheme which is basically the
evaluation of inversion of the LWR function, by encrypting m as �Am�p where
p � q, but the security analysis requires the modulus q to be super-polynomial
[37]. Later, Alwen et al. improved the size of the modulus q to be polynomial,
and the size of q is roughly q ≥ 2βnm2. In our A-DPKE scheme, there is roughly
q ≥ βnm

3
2 , i.e., the modulus can be smaller.
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Remark 2. Bellare et al. proved that with the trapdoor techniques in [28] the
LWE function is a lossy trapdoor function for uniform input distributions, but
they did not mention whether it is a secure DPKE [10] for high min-entropy
message distributions.

Remark 3. In fact we can prove the construction is PRIV1-IND secure with
respect to hard-to-invert auxiliary input [13], as long as the LWE with weak
and leaky secrets assumption holds. We only show the “weak” secret aspect for
simplicity.

6 Conclusion

In this work we proposed the notion of approximate-deterministic public key
encryption by generalizing the original definition of DPKE. A-DPKE maintains
the advantages of DPKE in applications such as searchable encryption and data
de-duplication, while allows new constructions from quantum-resistant assump-
tions. We presented two simple constructions of A-DPKE from hard learning
problems, e.g., LPN and LWE. The LWE based A-DPKE is as simple as the
DPKE scheme from the LWR assumption, with smaller modulus. And we believe
that the relaxation from deterministic to approximate-deterministic is meaning-
ful since previously there is no construction of DPKE from LPN.

To make the new concept practical, it is desirable to instantiate A-DPKE
with ring-based assumptions, such as ring-LPN [22] and ring-LWE [25]. However,
in the current work we have not addressed the problem, and leave it for future
work.
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