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Abstract. The optimization of dense linear algebra operations is a fun-
damental task in the solution of many scientific computing applications.
The Roofline Model is a tool that provides an estimation of the perfor-
mance that a computational kernel can attain on a hardware platform.
Therefore, the RM can be used to investigate whether a computational
kernel can be further accelerated. We present an approach, based on
the RM, to optimize the algorithmic parameters of dense linear algebra
kernels. In particular, we perform a basic analysis to identify the opti-
mal values for the kernel parameters. As a proof-of-concept, we apply
this technique to optimize a blocked algorithm for matrix inversion via
Gauss-Jordan elimination. In addition, we extend this technique to multi-
block computational kernels. An experimental evaluation validates the
method and shows its convenience. We remark that the results obtained
can be extended to other computational kernels similar to Gauss-Jordan
elimination such as, e.g., matrix factorizations and the solution of linear
least squares problems.

Keywords: Roofline model - Dense linear algebra - Gauss-Jordan
elimination

1 Introduction

Dense numerical linear algebra operations are crucial for the solution of a vast
number of scientific computing applications. In response to this, highly tuned
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basic numerical linear algebra subroutines (BLAS) [5], as well as more com-
plex routines as those defined in LAPACK [1], have been developed and inte-
grated into high performance libraries. There are several implementations of
BLAS and/or LAPACK, usually specialized and maintained for different types
of architectures by the processor manufacturer, such as IBM ESSL, Intel MKL
or NVIDIA CUBLAS.

The Roofline model (RM) [16] is a graphical tool that can be leveraged to
investigate the performance as well as identify the limiting factors of a compu-
tational kernel, including e.g. those in BLAS and LAPACK, executed in a given
hardware architecture. Concretely, the RM consists of a two-dimensional chart
that displays the (theoretical) peak memory bandwidth and performance of a
platform, and relates these bounds to the arithmetic intensity (AI) of a compu-
tational kernel, defined as the ratio between floating-point arithmetic operations
(flops) and memory accesses (memops) of the implementation.

In this paper we analyze the effect that Al exerts on the practical performance
of blocked algorithms for dense matrix factorizations, such as those in LAPACK,
making the following concrete contributions:

— We introduce a simple theoretical analysis to determine the algorithmic
blocksize that reduces memops, optimizing AI and in general performance,
of a blocked algorithm for matrix inversion via Gauss-Jordan elimination
(GJE) [6].

— We extend this simple model to deal with more complex multi-block variants
that improve Al for the inversion procedure.

— We provide a compact experimental analysis on a quadcore Intel processor to
validate our findings.

— Finally, we remark that our study carries over, among others, to several other
matrix factorization algorithms for the solution of linear systems and linear
least squares problems [6].

The rest of the paper is structured as follows. In Sect.2, we offer a brief
review of the RM. Next, in Sect.3 we revisit matrix inversion via GJE; and in
Sect. 4 we introduce the analysis to compute the optimal algorithmic blocksize
from the perspective of Al. Additionally, in that section we extend our study to
a multi-block variant, which is a conventional technique to improve the perfor-
mance of dense linear algebra factorization algorithms. In Sect. 5, we outline the
experimental impact of the blocksizes previously, on a practical implementation.
Finally, in Sect.6 we summarize the results and emphasize a few concluding
remarks derived from our work.

2 The Roofline Model

The RM separates the memory-bound and compute-bound “spaces” of an archi-
tecture as a function of Al In particular, the model provides a two-dimensional
easy-to-read chart that illustrates the crossover threshold between the peak
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Fig. 1. The RM for an Intel Core i7-4770. The intersection between the red and blue
lines identify the threshold between memory bandwidth (BW)-bound and compute-
bound areas, as a function of the operation’s Al (Color figure online)

memory bandwidth and performance (in terms of flops per second) of the hard-
ware platform, showing the relation between the maximum performance attain-
able by the hardware and the AI of the computational kernel.

To create the model, the peak performance and memory bandwidth of the
target system are needed. These figures are typically obtained from the hardware
manufacturer, though it is also possible to use benchmarks to experimentally
replace them with more realistic/practical values, see e.g. [14]. To illustrate this,
Fig. 1 presents the RM for the hardware platform employed in the experimental
evaluation in Sect. 5.

In order to position a computational kernel with respect to the bounds defined
by the RM, it is necessary to determine the kernel’s Al. This can be computed
from (estimations for) the total flops and memory accesses performed by the
kernel. It should be noted that the RM is platform-specific, but can be re-used
for any computational kernel executed in that system.

To summarize, the RM provides a helpful means to understand how the mem-
ory bandwidth constrains the performance, for memory-bounded algorithms,
and/or identify how much an application can be accelerated (as the gap between
the real and the attainable performance reported by the model). More details
on the RM can be found in [8,10,15].

3 Matrix Inversion via GJE

Our general goal for this work is to exploit the principles underlying RM to
improve the performance of dense linear algebra operations. As a proof-of-concept,
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Algorithm: [A] := GJE_BLK(A)
A (ATL Arr )
BL|ABR
where Arp is0x 0
while m(Arz) < m(A) do
Determine block size b
Arp | Arn Aoo|Aor | Aoz
(ABL ABR) — | Awo]Ai1|Ai2
Ao Az21| A2z
where A1 isbxb
Ao1 ] Ao1
A1 | :=GJE_unB An Unblocked Gauss-Jordan
A2 | Az
Aoo = AOQ + A01 A10 Matrix-matrix product
Agp := Ago + Az1A1o Matrix-matrix product
Ao = A11Ao Matrix-matrix product
A02 = A02 + A01 A12 Matrix-matrix product
Ao 1= Az + A21A12 Matrix-matrix product
A1 := A1 A2 Matrix-matrix product
A | A z:oo fl(n 1302
(—I—A 7 ) — 10| A11|A12
BLieER Aso| Ao | A2z
endwhile

Fig. 2. Blocked algorithm for matrix inversion via GJE without pivoting.

we perform our study on the blocked algorithm for matrix inversion, based on
GJE, described in this section.

GJE is an appealing method for matrix inversion, with a computational cost
and numerical properties analogous to those of the conventional approach based
on the LU factorization [9], but superior performance on a variety of architec-
tures, from clusters [13] to general-purpose multicore processors and GPUs [3].

Figure2 shows a blocked version of GJE for matrix inversion using the
FLAME notation. There, m(A) stands for the number of rows of the matrix A.
More details on the notation can be found in [4,7]. For a detailed description of
the algorithm and the unblocked version of GJE, invoked from inside the blocked
routine, see [2,13]. For simplicity, we do not include the application of pivoting
during the factorization, but details can be found there as well. Given a square
(nonsingular) matrix of size n = m(A), the cost of matrix inversion using this
algorithm is 2n3 flops. Furthermore, the inversion is carried out in-place so that,
upon completion, the entries of A are overwritten with those of its inverse.

At this point, we emphasize that the blocked algorithm in Fig.2 casts most
of its operations in terms of matrix-matrix products and other BLAS (inside
the unblocked routine for GJE). Therefore, the conclusions from our intensity-
performance analysis via RM in the next section can be also extended to several
other dense linear algebra operations, such as the solution of linear systems via
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the LU and Cholesky factorizations, as well as least-squares computations using
the QR decomposition, among others [6].

4 Optimizing the Algorithmic Blocksize

4.1 General Discussion of High Performance for Dense Linear
Algebra Routines

The usual approach to attain high performance for the execution of a dense linear
algebra operation in a current architecture formulates the computation in the
form of a blocked algorithm, where the bulk of the flops are computed via BLAS-
3 operations such as, e.g., matrix-matrix products. This is motivated by the high
performance offered by the BLLAS-3 operations, due to their intrinsic parallelism
and their convenient flops-to-memops ratio. Compared with this, the BLAS-1
and BLAS-2 kernels perform a number of flops of the same order as the volume
of memory accesses, in general achieving a small fraction of the theoretical peak
performance of a current general-purpose architecture. The performance attained
by blocked algorithms strongly depends on the value of the algorithmic blocksize,
b. This parameter determines how operations are distributed among the different
kernels. Identify the best value for b is a complex task since it depends on the
underlying hardware as well as on the computational kernel [11,12].

4.2 Blocked Algorithm for GJE

In the particular case of the GJE, the use of a large algorithmic blocksize b con-
centrates most of the flops inside subroutine GJE_UNB, which is rich in BLAS-1
and BLAS-2 kernels. Consequently, the performance provided by the unblocked
stages in GJE_UNB will dictate the performance of the whole algorithm. At the
opposite extreme, the selection of a very small value for b transforms the BLAS-3
operations in GJE_BLK into quasi-BLAS-2 kernels (due to the reduced number
of columns in the blocks of the form Agq). Our aim is therefore to identify the
value of b that maximizes the use of BLLAS-3 operations, and thus minimizes
the volume of memory accesses. Given an algorithm with a fixed computational
cost, reducing the memops factor improves its Al (as the ratio between flops and
memops), and generally the attained performance.

The main loop of GJE_BLK requires a total of n/b iterations (see Fig.2),
with each step requiring the computation of BLAS-3, BLAS-1/BLAS-2 kernels.
Note that in general, BLAS-3 are compute-bound while BLAS-1/BLAS-2 are
memory-bound. Concretely, the flops of each iteration are distributed as follows:

— BLAS-1 and BLAS-2: 2n b2 flops to factorize the panel, i.e. [Ag1; A11; Aaq].
— BLAS-3: 2n(n — b) b flops to update the rest of the matrix.

Now, assuming that BLAS-1 and BLAS-2 kernels perform O(1) flops per
memop while BLAS-3 kernels perform O(b) flops per memop, the total number
of memory accesses needed by GJE is approximately:

n/b(2n (n —b) +2nb?), (1)
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which can be simplified into:
2n” (n/b — 1 + b) memops. (2)

If we consider communication (memops) as overhead, finding the optimal
blocksize b°P! is then equivalent to minimizing the number of memops given
by (2). Therefore, we just need to find the root(s) of the derivative function
of (2) with respect to b in order to obtain b°P* = \/n.

Moreover, the arithmetic intensity of the GJE_BLK is then given by

2n3
2n? (n/bert — 1 + bort)

flops-per-memop (3)

and, as b°P* = \/n, the “best” arithmetic intensity we can attain with our blocked
algorithm for matrix inversion via GJE_BLK is

n

o —1

g flops-per-memop. (4)

4.3 Multi-block Variant of GJE

In this section we describe a multi-block strategy to accelerate GJE, and how
to extend the analysis based on the RM/AI in order to identify the optimal
blocksizes for this variant.

The Multi-block GJE partly casts the operations involved by the panel fac-
torization in terms of BLAS-3 kernels, in order to further increase the number
of flops performed using this type of kernels in the algorithm. For this purpose,
in the multi-block version of the algorithm, subroutine GJE_UNB is replaced
by a slightly modified version of GJE_BLK that can operate with rectangular
matrices. As a result, the multi-block variant of GJE is parametrized by two
blocksizes: the outer blocksize b, applied during the execution of the blocked
algorithm, and the inner blocksize ¢, employed during the factorization of the
panel. For simplicity, hereafter we will assume that b is an integer multiple of c.

Leveraging RM to Select the Optimal Blocksizes. Using a similar strategy
to that presented in Sect. 4.1, we can infer the optimal values for both blocksizes
and use them to establish the best arithmetic intensity attainable by the multi-
block variant of the GJE algorithm.

In this case, the flops performed during an iteration of the main loop can be
decomposed into the following three terms:

— BLAS-1 and BLAS-2: 2n¢? flops to factorize the panel (note that this fac-
torization itself requires b/c steps).

— BLAS-3: 2n (b — ¢) ¢ flops to update the elements within the panel.

— BLAS-3: 2n (n — b) b flops to update the rest of the matrix.
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Let us assume that c offers a rough measure of the relation between the flops
and memory accesses for the BLLAS-3 operations executed inside the panel, and
let b be its counterpart for the BLLAS-3 operations to update the elements placed
out of the panel. Consider again that the BLAS-1 and BLAS-2 kernels perform
O(1) flops per memory access, while the ratio for the BLAS-3 is O(b). Then,
the outer loop is executed n/b times, while the inner loop b/c times per step of
the outer loop; and the total number of memops of the multi-block variant is

n/b(b/c(2nc+2n(b——c))+2n(n—0"»)), (5)
which can be simplified to
2n? (¢ +b/c +n/b — 2) memops. (6)

Differentiating the previous expression with respect to ¢, and finding the roots
of the result, we obtain that the value of the inner blocksize that minimizes the
number of memory accesses is ¢°?® = /b. This is natural as the computation
performed by the inner loop is analogous to the application of a “rectangular”
version of the blocked algorithm for GJE to a matrix of dimension n X b.

Replacing ¢ by its optimal value c°?!, in Eq. (6), we then obtain:

2n? (n/b — 2 4 2v/b) memops. (7)

Similarly, if we derive Eq. (7) with respect to b, and equate the result to zero,
we obtain the value of b that minimizes the number of memory accesses as

b = ()
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Fig. 3. Effect of the external blocksize b on Al. Lines with marks “x” and “+” represent
the AI for the blocked and the multi-block algorithm respectively. For the multi-block
algorithm, ¢ = Pt = \/b.
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Finally, the arithmetic intensity of the multi-block variant of GJE is given by

2n3

flops-per- 8
92 (nfb— 2+ bjct+c) P PETHEmOp, ®)

and, in the case of b°P* and c°P!,

n w2
n/b—2+2vb  3n—2 3

To close this section, Fig. 3 illustrates the effect of the (external) blocksize b
on the AT of the blocked GJE-algorithm for matrix inversion and its multi-block
version, clearly identifying the existence of optimal values for both algorithms,
and the much higher AT of the multi-level variant.

flops-per-memop. (9)

5 Experimental Evaluation

The experiments in this section were performed on an Intel-based server equipped
with an Intel Core i7-4770 processor (4 cores operating at 3.40 GHz) using double
precision (DP) floating-point arithmetic. The (theoretical) peak floating-point
rate of this hardware platform is 108.8 DP GFLOPS (billions of flops/sec) and
the (theoretical) peak bandwidth is 25.5 GB/s (i.e., 3.18 millions of DP numbers
per second). All the implementations rely on the multi-threaded implementation
of BLAS provided by Intel MKL 11.1, and the experiments are configured to
exploit all 4 cores in the platform by spawning 4 threads during the execution
of the BLAS.

We first carry out an experiment that aims to empirically assess the impact
of the blocksize on the performance of the blocked implementation of the GJE
method to invert matrices of four dimensions. To avoid variations due to cache
dimensions and associativity, we select n=2,048, 4,096, 6,144 and 9,216. For
brevity, and to better exploit the processor’s vector units, we only experiment
with “spaced” values of b that are integer multiples of s =32 (except for the 2,048
case, where we use integer multiples of s =16). For each matrix dimension, the
theoretical optimal blocksize b°P! is computed as described in Sect. 4.1. We then
test three different values for b, corresponding to the two integer multiples of s
closer to b°P! above it (i.e., ([b°P!/s] + 1)s and ([b°P!/s] + 2)s) as well as the
closest integer multiple below this value (|°P*/s]s).

Table 1 displays the results obtained for this initial study, showing the value
of b°P! for each matrix dimension and the performance (in GFLOPS) attained
using the three values selected for b. The best performance is always observed
for the value of b closest to b°P¢, validating our formula to determine the optimal
blocksize setting.

In addition, the performance observed for the implementation of GJE_BLK
grows with the dimension of the matrix, a result that is also aligned with the
theoretical study, as the computational intensity is proportional to b and larger
matrices demand larger blocksizes.
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Table 1. Performance (in GFLOPS) of GJE_BLK to invert matrices of different dimen-
sions using several blocksizes b.

Matrix dimension | b°P¢ | b GFLOPS
2,048 45 32| 38
48| 40
64| 40
4,096 64 32| 45
64| 52
96| 51
6,144 78 64| 62
96| 76
128 | 75
9,216 96 64| 78
96 | 102
128 | 98
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Fig.4. RM applied to the inversion of matrices via GJE on an Intel Core i7-4770.
(Color figure online)

Figure 4 relates performance/Al of the GJE kernel with the parameters of
RM for the target architecture. The position in the x-axis is calculated using
Eq. (3), and the black dots show the performance attained with the optimal
value of b for each problem dimension.
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Table 2. Performance (in GFLOPS) reported by the multi-block GJE variant.

Matrix dimension n | b°P* — ¢°P* |b— ¢ | GFLOPS | Arithmetic intensity
2,048 161-12 160-16 | 62 56
4,096 256-16 256-16 | 69 89
6,144 33518 320-16 | 82 115
9,216 40620 384-16 | 94 149

Considering the results in the figure, we point out that the increment in Al is
accompanied with improvements in the actual performance. However, the values
calculated for Al seem to be overestimated, as the line connecting the black dots
shows a gradient similar to that of the bandwidth limit (red line), but shifted in
the x-axis.

We next evaluate the multi-block version of GJE, described in Sect. 4.3, to
identify the optimal value for the two blocksizes: b and c. Table 2 presents the the-
oretical optimal values for these parameters, the actual values tested for the block-
sizes, the performance attained (in GFLOPS), and the AT according to Eq. (8).

An inspection of the results in the table reveals that the use of a multi-
block technique is especially effective for the inversion of matrices of moderate
dimension. Concretely, the multi-block algorithm increases the performance by
50% for the smallest problem but it is slightly slower for the largest problem.
This is because this technique aims to reduce the impact of the memory-bound
operations, a hazard that has a stronger effect for small- to moderate-size prob-
lems. In particular, when n =9,216, the computation is not memory-bound and,
therefore, the multi-block technique does not yield any gain. Additionally, the
blocked algorithm employs the optimal blocksize while suboptimal blocksizes are
employed by the multi-block algorithm (due to the multiple of 32 restriction).

In practice, even though the Al factors show that the performance should be
limited by the peak performance of the system, in practice it is limited by the
memory bandwidth. This is a sign that the theoretical model overestimates the
actual Al

6 Concluding Remarks and Future Work

The Roofline model offers a measure of the optimization potential of a com-
putational routine, relating its AI to the theoretical peak memory bandwidth
and peak performance of the target architecture. For dense linear algebra fac-
torization methods, blocked algorithms aim to improve performance by casting
a significant fraction of its computations in terms of efficient, compute-bound
BLAS-3 kernels that are only constrained by the processor’s peak GFLOPS rate.
A key parameter to optimize these algorithms is the blocksize, which determines
the fraction of the flops that are computed as BLAS-3 vs. BLAS-1/2 kernels
and, therefore, governs the performance of the global algorithm.
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In this paper we have presented simple yet accurate models to determine
the blocksize that optimizes Al for a blocked matrix inversion algorithm based
on GJE. Furthermore, we have extended the formulation to a multi-level vari-
ant that delivers even higher rates of AI. Our experimental results in an Intel
processor with four cores validates the approach, showing that the increases in
AT actually result in a performance improvement for both the original blocked
algorithm and its multi-level counterpart.

In the future we plan to apply the same techniques to other dense linear
algebra algorithms and platforms. We also intend to obtain more precise formulas
for the arithmetic intensity.
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