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Abstract. Previous work introduced a model of corruption within
strategic argumentation, and showed that some forms of strategic argu-
mentation are resistant to two forms of corruption: collusion and espi-
onage. Such a result provides a (limited) basis on which to trust agents
acting on our behalf. That work addressed several argumentation seman-
tics, all built on the notion of admissibility. Here we continue this work to
three other well-motivated semantics: the ideal, naive, and stage seman-
tics. The latter two are not admissibility-based. We show that the naive
semantics does not support strategic argumentation, in the sense that
the outcome of the game is determined by the initial state, if the players
are not corrupt. As a result, the semantics is corruption-proof. We show
that the ideal semantics is resistant to both collusion and espionage. The
stage semantics is resistant to espionage, but its resistance to collusion
depends on the strategic aims of the players.

1 Introduction

Strategic argumentation provides a simple model of disputation and negotiation
among agents. Agents are intended to act on our behalf but – whether they are
human or software – we cannot be sure that they are acting in our best interests.
Social structures, including criminal sanctions, are used to discourage corruption
by human agents. For computational agents, [2] introduced another way corrup-
tion can be discouraged: if the computational requirements to take advantage of
the corruption are too great then there is no incentive to act corruptly. [13–15]
adapted this idea to strategic argumentation. That work formulated a notion
of resistance to corruption, where corruption may be collusion of the two nom-
inally opposed agents, or espionage by one agent in gaining illicit knowledge of
her opponent’s arsenal of arguments.

[14,15] addressed the problem in terms of Dung’s abstract argumentation
[6]. Abstract argumentation abstracts away from the structure of arguments
and the conflicts between them; the resulting argumentation framework can be
interpreted by many different semantics. Each semantics expresses compatibility
criteria that a set of arguments must satisfy to be jointly accepted. The different
semantics reflect different intuitions and principles of how conflicting arguments
should be resolved.
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While [14,15] addressed many semantics for argumentation, attention was
focussed on semantics based on admissibility: that for a set of arguments to be
compatible it must defend itself against any attack. In this paper we address
one admissibility-based semantics (the ideal semantics) that was not addressed
in previous work, and two semantics that are not based on admissibility (the
naive and stage semantics). It has been argued ([1,17], among others) that
admissibility-based semantics do not accord with intuitions, for some argumen-
tation frameworks.

The ideal semantics [7] offers a form of scepticism that is not as severe as that
provided by the grounded semantics. Starting from the preferred semantics, it
provides a single maximal coherent set of arguments that are accepted in every
preferred extension, and defends itself against attack from any other arguments.
It is claimed to express “justifiably accepted skeptical belief” [9].

The other semantics define a collection of sets of arguments, rather than a
single set, and are not based on self-defence. The naive semantics [4] is quite
natural: it consists of maximal conflict-free sets of arguments, where conflict-
free entails that no argument in the set is incompatible with another. It reflects
a desire to accept as many arguments as possible that are consistent with each
other.

The stage semantics [17] is, like the naive semantics, based on conflict-free
sets. It consists of those conflict-free sets that maximize the arguments that are
decided – accepted or rejected. It reflects the intuition that as many arguments
as possible should have their status decided. It has a close relation to some
admissible semantics [17].

This paper is structured as follows. The next section provides necessary back-
ground on abstract argumentation and computational complexity. The follow-
ing sections introduce strategic argumentation, and the computation problems
arising in playing strategic argumentation games, including problems that arise
when exploiting corruption. Then these problem are examined for, respectively,
the ideal, naive, and stage semantics. Their computational complexity is estab-
lished, which provides the basis for identifying resistance to corruption.

2 Background

2.1 Abstract Argumentation

This work is based on abstract argumentation in the sense of [6], which addresses
the evaluation of a static set of arguments. An argumentation framework A =
(S,�) consists of a finite set of arguments S and a binary relation � over S,
called the attack (sometimes, defeat) relation. If (a, b) ∈� we write a � b and
say that a attacks b. The semantics of an argumentation framework is given in
terms of extensions, which are subsets of S.

Given an argumentation framework, an argument a is said to be accepted in
an extension E if a ∈ E, and said to be rejected in E if some b ∈ E attacks
a. The set of rejected arguments in E is denoted by E−. An argument that
is neither accepted nor rejected in E is said to be undecided in E. We say an
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argument a is self-defeating if it attacks itself (that is, a � a). We say there
is a conflict between arguments a1 and a2 if either a1 � a2 or a2 � a1. An
extension E is conflict-free if the restriction of � to E is empty. The naive
extensions are the maximal conflict-free extensions. The stage extensions are
the conflict-free extensions that are maximal under the containment ordering of
E ∪ E−. Alternatively, the stage extensions are the conflict-free extensions that
minimize the set of undecided arguments.

An argument a is defended by E if every argument that attacks a is attacked
by some argument in E. An extension E of A is admissible if it is conflict-free
and, for every argument a ∈ E is defended by E. An extension E of A is complete
if it is conflict-free and, a ∈ E iff a is defended by E. The least complete extension
under the containment ordering exists and is called the grounded extension. It
reflects a strongly sceptical attitude towards accepting arguments. The preferred
extensions are the maximal admissible extensions under the containment order-
ing. The ideal extension is the maximal admissible extension contained in all
preferred extensions. A semantics is unitary if every argumentation framework
has a single extension under the semantics. The grounded and ideal semantics
are unitary; the naive and stage semantics are not.

A semantics is defined to be a set of extensions: the ideal semantics consists
only of the ideal extension, the naive semantics is the set of naive extensions, the
stage semantics is the set of stage extensions, etc. Each semantics expresses a
criterion for what arguments can coherently be accepted together, given an argu-
mentation framework. Each extension in the semantics represents a “reasonable”
adjudication, according to that criterion, of the arguments in the argumentation
framework.

2.2 Computational Complexity

We can view a complexity class as a set of decision problems. We assume the
reader has knowledge of the polynomial complexity hierarchy (see, for example,
[12]). We use PTIME to refer to the class of problems solvable in polynomial
time. PSPACE is the class of decision problems solvable in polynomial space. It
contains the entire polynomial hierarchy PH. As usual, the notation CD, where C
and D are complexity classes, refers to the class of problems that can be decided
by an algorithm of complexity C with calls to a D oracle.

There are some additional complexity classes within the hierarchy that we
need. Dp

2 is the class of problems that can be expressed as the conjunction of a
problem in Σp

2 and a problem in Πp
2 . Θp

2 is the class of decision problems solvable
by a deterministic polynomial algorithm with O(log n) calls to an NP oracle. It is
equal to PTIMENP

|| , the class of problems solvable by a deterministic polynomial
algorithm with non-adaptive calls to an NP oracle. Non-adaptive refers to the
restriction that oracle calls cannot depend on the outcome of previous calls. We
have

NP, coNP ⊆ Dp ⊆ Θp
2 ⊆ Δp

2 ⊆ Σp
2 ,Πp

2 ⊆ Dp
2 ⊆ Σp

3 ,Πp
3

with NPΘp
2 = Σp

2 and NPDp
2 = Σp

3 . Also, PTIMEΣp
i = Δp

i+1.
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Table 1. Complexity of several argumentation reasoning problems under selected
semantics

Credulous acceptance Sceptical acceptance Verification Non-emptiness

Ideal in Θp
2 in Θp

2 in Θp
2 in Θp

2

Naive in PTIME in PTIME in PTIME in PTIME

Stage Σp
2 -c Πp

2 -c coNP-c in PTIME

There are several prominent decision problems in argumentation. For any
semantics σ:

– The Verification problem asks, given an argumentation framework A and a
set of arguments S, is S a σ-extension?

– The Credulous Acceptance problem asks, given A and an argument a, is there
a σ-extension containing a?

– The Sceptical Acceptance problem asks, given A and an argument a, do all
σ-extensions contain a?

– The Non-emptiness problem asks, is there a σ-extension of A that is non-
empty?

Table 1 summarizes complexity results for these problems under the semantics of
interest in this paper, drawn from [8–10]. For a complexity class C, C-c denotes
C-completeness.

3 Strategic Argumentation

Strategic argumentation provides a simple model of dynamic argumentation.
Originally [11] it was formulated for a concrete argumentation system based in
a defeasible logic, but we will use the model of [15] which is defined in terms of
abstract argumentation. In strategic abstract argumentation, players take turns
to add arguments to an argumentation framework. At each turn, the player adds
arguments so that the argumentation framework is in a desired state. We refer to
such states interchangeably as desired outcomes or strategic aims of the player. A
player loses the strategic argumentation game when she is unable to achieve her
desired outcome. In general, both players can win if the argumentation reaches a
state that is desired by both players, but in this paper we consider an adversarial
setting where the players’ aims are mutually exclusive.

Strategic abstract argumentation is formalized as follows [15]. We assume
there are two players, a proponent P and her opponent O. A split argumenta-
tion framework (ACom,AP ,AO,�) consists of three sets of arguments: ACom

the arguments that are common knowledge to P and O; AP the arguments avail-
able to P , and AO the arguments available to O; and an attack relation � over
ACom ∪ AP ∪ AO. AP is assumed to be unknown to O, and AO is unknown
to P . Each player is aware of � restricted to the arguments they know. We
assume that P ’s desired outcome is that a distinguished argument a is accepted,
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in some sense, while O’s aim is to prevent this. Starting with P , the players
take turns in adding sets of arguments to ACom from their available arguments,
ensuring that their desired outcome is a consequence of the resulting argumen-
tation framework1. As play continues, the set of arguments that are common
knowledge ACom becomes larger. When a player is unable to achieve her aim
when it is her turn to play, she loses. We say that a player is honest if she plays
rationally in trying to win. In particular, an honest player does not abandon a
game when she has a play that achieves her aim, and does not play arguments
that are unnecessary to achieve her aim.

[15] identifies several plausible strategic aims that the proponent P might
have under an argumentation semantics σ. In this paper we focus on the following
four:

1. Existential: a is accepted in at least one σ-extension
2. Universal: a is accepted in all σ-extensions
3. Unrejected: a is not rejected in any σ-extension
4. Uncontested: a is accepted in at least one σ-extension and is not rejected

in any σ-extension

The existential and universal aims are credulous and sceptical acceptance.
[15] also identifies some “counting aims”. They will not be addressed in this
paper.

In addition to these aims, a player may wish to “spoil” or prevent such aims
from being achieved. Such aims are the negation of the above aims. For example,
the negation of the uncontested aim aims to have a not accepted in any extension
or have a rejected in some extension. In this paper, player O’s aim is to prevent
P ’s desired outcome; thus O’s aim is the negation of P ’s aim.

In general, all these aims are distinct. However, for a unitary semantics σ (such
as the ideal semantics) this variety of aims collapses: all the above aims – except
the unrejected aim – collapse into one, that a is accepted in the σ-extension.
For a unitary semantics σ there are six possible aims: (1) a is accepted in the
σ-extension; (2) a is rejected; (3) a is undecided; (4) a is not accepted; (5) a is
not rejected; and (6) a is not undecided. Each of these aims can be expressed as
a disjunction of (some of) the three properties: a is accepted; a is rejected; and a
is undecided. There are, in theory, two other aims. One is the empty disjunction,
which represents an aim that can never be satisfied in a unitary semantics2. The
other is the disjunction of all three properties, but this is always satisfied in any
non-empty semantics. Of the six possible aims, the second three are the negations
of the first three.

1 Each player’s move is a normal expansion [3].
2 This possibility is not so outré in general: the stable semantics can be empty, and

this is a sensible aim when a player wants to sabotage the game (that is, prevent any
conclusion about the status of a).
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4 Corruption in Strategic Argumentation

[13–15] presents a model of corruption within strategic argumentation. Two cor-
rupt behaviours are defined: espionage, where one player (say P ) violates the
privacy of AO, and collusion, where P and O arrange for one of them to win, in
violation of the best interests of the other’s client.

Resistance to corruption under this model, adapting the notion of resistance
of voting systems to manipulation [2], arises when the computational prob-
lems that arise when exploiting corruption and hiding the corruption from view
require greater computational resources than playing the game honestly. This
greater computational cost can act as a disincentive to corruption, since a player
might be unable to exploit the results of corruption. The computational prob-
lems are formulated as decision problems, rather than functional problems, to
avoid less familiar complexity classes.

The problem of verifying that an aim is satisfied by some state of strate-
gic argumentation is a fundamental part of each move in a game, and of the
exploitation of corrupt behaviour. However, its main interest is as a component
of other problems.

The Aim Verification Problem

Instance An argumentation framework (ACom,�), an argumentation seman-
tics, and an aim.

Question Is the aim satisfied under the given semantics by the given argumen-
tation framework?

The Desired Outcome problem [15] is the problem that a player must solve
at each step of a strategic abstract argumentation game. It involves identifying
that the player has a legal move.

The Desired Outcome Problem for P

Instance A split argumentation framework (ACom,AP ,AO,�) and a desired
outcome for P .

Question Is there a set I ⊆ AP such that P ’s desired outcome is achieved in
the argumentation framework (ACom ∪ I,�)?

It is not difficult to see that this problem can be solved by a non-deterministic
algorithm with an oracle for the Aim Verification problem.

Playing strategic argumentation involves solving the desired outcome prob-
lem at each turn. We can formulate this as a deterministic polynomially bounded
algorithm with an oracle for the player’s desired outcome problem. Consequently,
we can identify the complexity of playing strategic argumentation as PTIMEDO,
where DO is the complexity of the desired outcome problem.

We now turn to corruption, and the computational problems that must be
solved to exploit corruption.

In the case of collusion between P and O to ensure that (say) P wins, the
players must arrange a sequence of moves that satisfy the rules of the game and
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leads to P winning. This sequence must give the appearance of being normal
play. In particular, O cannot simply “give up” and fail to make a move – such
behaviour would open her to charges of incompetence or corruption. Instead,
she must exhaust her possible moves.

The Winning Sequence Problem for P

Instance A split argumentation framework (ACom,AP ,AO,�) and a desired
outcome for P .

Question Is there a sequence of moves such that P wins?

This problem can be solved by a non-deterministic algorithm that guesses
moves for P and O and uses oracles for the aim verification problem for P and
O and the (complement of) the desired outcome problem for O.

In the case of espionage, one player, say P , illicitly learns her opponent’s
arguments AO and desires a strategy that will ensure P wins, no matter
what moves O makes. A strategy for P in a split argumentation framework
(ACom,AP ,AO,�) is a function sP from a set of common arguments and a
set of playable arguments to the set of arguments to be played in the next
move. A sequence of moves S1, T1, S2, T2, . . . resulting in common arguments
AP,1

Com,AO,1
Com,AP,2

Com,AO,2
Com, . . . is consistent with a strategy s for P if, for every

j, Sj+1 = sP (AO,j
Com,AP ). A strategy for P is winning if every valid sequence of

moves consistent with the strategy is won by P .

The Winning Strategy Problem for P

Instance A split argumentation framework (ACom,AP ,AO,�) and a desired
outcome for P .

Question Is there a winning strategy for P?

Strategic argumentation is said to be resistant to collusion (espionage) if the
complexity of the Winning Sequence (Winning Strategy) problem is greater than
the complexity of playing the strategic argumentation game, under the widely-
believed complexity-theoretic assumption that the polynomial hierarchy does
not collapse. In that case, the computational work needed to exploit the corrupt
behaviour is greater than that required to simply play the argumentation game.

In the next sections we investigate the complexity of the problems defined
above for the three semantics of abstract argumentation under investigation.

5 Strategic Argumentation Under the Ideal Semantics

Building on the work of [8], and the previous analysis of the aims under a unitary
semantics, we have an upper bound on the complexity of aim verification under
the ideal semantics.

Theorem 1. The Aim Verification problem for P with any of the six strategic
aims under the ideal semantics is in Θp

2 . The corresponding aim verification
problem for O is also in Θp

2 .
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On the other hand, for the remaining problems we can give a tight analysis
of their complexity. The ideal semantics is amenable to the techniques developed
in [14] for other admissibility-based semantics. By combining constructions in
[8,14] we obtain the following results.

Theorem 2. The Desired Outcome problem for P with any of the aims under
the ideal semantics is Σp

2 -complete. The same complexity holds for O.

Theorem 3. The Winning Sequence problem for P with any of the aims under
the ideal semantics is Σp

3 -complete.

Theorem 4. The Winning Strategy problem for P with any of the aims under
the ideal semantics is PSPACE-complete.

The complexity of honestly playing strategic argumentation is PTIMEΣp
2 =

Δp
3, using Theorem 2. Consequently, we see that strategic argumentation under

the ideal semantics is resistant to both collusion and espionage.

6 Argumentation Under the Naive Semantics

We can characterize the aims under the naive semantics.

Lemma 1. Consider an argument a in an argumentation framework and the
naive semantics.

1. a is in at least one naive extension iff a is not self-defeating
2. a is in every naive extension iff the only arguments that attack or are attacked

by a are self-defeating
3. a is unrejected in every naive extension iff the only arguments that attack a

are self-defeating
4. a is uncontested iff a is not self-defeating, and the only arguments that attack

a are self-defeating

It follows from this lemma that the aim verification problem under the naive
semantics can be solved in polynomial time for each of the aims.

However, using the above characterization we find a more surprising result:
under the naive semantics, if the players are honest, the outcome of the strategic
argumentation game is determined by the initial split argumentation framework
A. There is no strategy involved.

For example, for the unrejected aim, if AO contains an argument b that
attacks a and is not self-defeating then O simply has to play b in order to
win. Furthermore, additional arguments do not affect the existence of b, so it is
sufficient for O to play her entire set of arguments AO at her first move. She
does not even need to know what the focal argument is!

Theorem 5. Consider strategic argumentation under the naive semantics where
P and O are honest. Suppose that P can make an initial move that includes the
focal argument a.
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1. If P has the existential aim, then P wins.
2. If P has the universal aim, then P wins iff all the arguments in AO that

conflict with a are self-defeating
3. If P has the unrejected or uncontested aim, then P wins iff all the arguments

in AO that attack a are self-defeating

In each case, if P does not win then O wins, and if P cannot make an initial
play then O wins.

The characterization for the uncontested aim is the same as the characterization
for the unrejected aim because the assumption that P can make an initial move
ensures that there is a naive extension where a is accepted.

Consequently, for each of these aims, the outcome is totally predictable. Any
deviation from that result is a sign that one of the players is corrupt. Thus strate-
gic argumentation under naive semantics is more than resistant to corruption:
any collusive behaviour cannot be hidden, and the results of espionage cannot
be used to affect the outcome. We say that strategic argumentation under the
naive semantics is proof against corruption or corruption-proof.

This result contrasts markedly with a result of [16]. That work character-
ized strategy-proof games in similar argumentation games under the grounded
semantics. That characterization suggests that only rarely is a game under the
grounded semantics not strategic.

7 Strategic Argumentation Under the Stage Semantics

Unlike the ideal semantics, but like many other semantics [14], the complexity
of the problems under the stage semantics varies with the players’ strategic aim.

Proposition 1. Consider the Aim Verification problem for P under the stage
semantics.

1. The complexity for the existential aim is Σp
2 -complete

2. The complexity for the universal aim is Πp
2 -complete

3. The complexity for the unrejected aim is Πp
2 -complete

4. The complexity for the uncontested aim is Dp
2-complete

The complexity of Aim Verification for O, assuming O’s aim is to prevent P
from achieving her aim, is the complement of the complexity of Aim Verification
for P .

As mentioned earlier, the Desired Outcome problem is in NPAV , where AV
is the Aim Verification problem. Building on constructions of [10,15], we can
establish hardness results.
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Theorem 6. Consider the Desired Outcome problem for P under the stage
semantics.

1. The problem with the existential aim is Σp
2 -complete

2. The problem with the universal aim is Σp
3 -complete

3. The problem with the unrejected aim is Σp
3 -complete

4. The problem with the uncontested aim is Σp
3 -complete

Hence the complexity of P honestly playing strategic argumentation is Δp
3

for the existential aim, and Δp
4 for the other aims.

Theorem 7. Consider the Winning Sequence problem for P under the stage
semantics.

1. The problem with the existential aim is Σp
4 -complete

2. The problem with the universal aim is Σp
3 -complete

3. The problem with the unrejected aim is Σp
3 -complete

4. The problem with the uncontested aim is Σp
4 -complete

Like all the admissibility-based semantics, and unlike the naive semantics,
under the stage semantics the Winning Strategy problem is PSPACE-complete.

Theorem 8. The Winning Strategy problem under the stage semantics is
PSPACE-complete for each of the aims addressed in this paper.

Thus we see that there is resistance to espionage under the stage semantics,
but resistant to collusion only for the existential and uncontested aims.

Table 2. Resistance to collusion to ensure P wins, for several aims and semantics.

Grounded Preferred Ideal Naive Stage

Existential Resistant Resistant Resistant Proof Resistant

Universal Resistant Resistant Proof

Unrejected Resistant Resistant Proof

Uncontested Resistant Resistant Resistant Proof Resistant

8 Conclusion

We have investigated the resistance to corruption of strategic argumentation
under three semantics for argumentation. The naive semantics is proof against
corruption, but only because there is no significant strategy involved. The ideal
semantics is resistant to corruption, for each of the aims we studied. The resis-
tance to collusion of the stage semantics varies according to the aim: It is resis-
tant to collusion for the existential and uncontested aims, but not for the other
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aims. The stage semantics is also resistant to espionage for each of the aims.
A summary of the results of this paper on resistance to collusion appears in
Table 2.

There remain several argumentation semantics, including other extension-
based semantics and ranking-based semantics [5], for which resistance to corrup-
tion has not been determined.
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