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Abstract. This paper provides an overview of the current state-of-the-
art on using constraints in knowledge discovery and data mining. The
use of constraints requires mechanisms for defining and evaluating them
during the knowledge extraction process. We give a structured account of
three main groups of constraints based on the specific context in which
they are defined and used. The aim is to provide a complete view on
constraints as a building block of data mining methods.

1 Introduction

Data mining extracts synthetic models from datasets. Data are represented by
collections of records characterizing data with respect to several dimensions.
The use of constraints may be useful in the data mining process in at least
three ways: (4) filtering and organizing the dataset before applying data mining
methods; (i) improving the performance of data mining algorithms by reducing
the search space and focusing the search itself; and (%ii) reasoning on the results
of the mining step for sharpening them and presenting a more refined view of
the extracted models.

The integration of constraints in data mining tasks has rapidly emerged as a
challenging topic for the research community. A large number of ad-hoc exten-
sions of mining algorithms use constraints for improving the quality of their
results. The use of constraints requires a way for defining and satisfying them
during the knowledge extraction process. This point is crucial both for the qual-
ity of the extracted data mining models, and for the scalability of the entire
process. On the one hand, an analyst can define the knowledge extraction phase
where a constraint must be satisfied. On the other hand, an optimizer is required
to understand where a constraint must be satisfied inside the process flow, in
an automatic way. Moreover, mining algorithms must be rewritten for satisfying
constraints directly into model extraction.

The amount of data in our world has been exploding. This chapter ends
offering the user a glimpse at the future by considering the emerging phenomenon
of big data. With big data traditional analysis tools cannot be used because of
the massive volume of data gathered by automated collection tools, there are
already promising line researches addressing this issue.

Furthermore, this chapter represents a solid scientific basis for several
advanced techniques developed inside the ICON project and outlined in this book.
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For example the reader can examine in depth the use of a constraint language
for defining data mining tasks considering the Chapter “Modeling Data Min-
ing Problems in MiningZinc”, or study clustering problems via constraints opti-
mization reading the Chapter “Partition-Based Clustering using Constraints
Optimization” .

For these aims, Sect. 2 provides an introduction to data mining and proposes
several references useful to understand how the basic data mining concepts can
be extended by using constraints. Section3 reviews the use of constraints in
data mining, introducing three different dimensions on which constraints can be
classified. Finally, Sect.4 draws some conclusions.

2 Data Mining

Today, data mining is both a technology that blends data analysis methods with
sophisticated algorithms for processing large data sets, and an active research
field that aims at developing new data analysis methods for novel forms of data.
On the one hand, data mining tools are now part of mature data analysis systems
and have been successfully applied to problems in various commercial and scien-
tific domains. On the other hand, the increasing heterogeneity and complexity
of new forms of data, such as those arriving from medicine, biology, the Web,
Earth observation systems, call for new forms of patterns and models, together
with new algorithms to discover such patterns and models efficiently.

Data mining is originally defined as the process of automatically discovering
useful information in large data repositories. Traditionally, data mining is only
a step of knowledge discovery in databases, the so-called KDD process for con-
verting raw data into useful knowledge. The KDD process consists of a series
of transformation steps: data preprocessing, which transforms the raw source
data into an appropriate form for the subsequent analysis. Actual data mining,
which transforms the prepared data into patterns or models, and postprocessing
of mined results, which assesses validity and usefulness of the extracted patterns
and models, and presents interesting knowledge to the final users - business
analysts, scientists, planners, etc. — by using appropriate visual metaphors or
integrating knowledge into decision support systems.

The three most popular data mining techniques are predictive modelling,
cluster analysis and association analysis. In predictive modelling (Sect. 2.1), the
goal is to develop classification models capable of predicting the value of a class
label (or target variable) as a function of other variables (explanatory variables);
the model is learnt from historical observations, where the class label of each
sample is known: once constructed, a classification model is used to predict the
class label of new samples whose class is unknown, as in forecasting whether a
patient has a given disease based on the results of medical tests.

In association analysis, also called pattern discovery, the goal is precisely to
discover patterns that describe strong correlations among features in the data
or associations among features that occur frequently in the data (see Sect.2.3).
Often, the discovered patterns are presented in the form of association rules:
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useful applications of association analysis include market basket analysis, i.e.
the task of finding items that are frequently purchased together, based on point-
of-sale data collected at cash registers.

Finally, in cluster analysis (Sect. 2.2), the goal is to partition a data set into
groups of closely related data in such a way that the observations belonging
to the same group, or cluster, are similar to each other, while the observations
belonging to different clusters are not. Clustering can be used, for instance, to
find segments of customers with a similar purchasing behaviour or categories of
documents pertaining to related topics.

2.1 Predictive Modelling or Classification

Classification is one of the most popular approaches for mining useful informa-
tion. The aim is to predict the behavior of new elements (classification phase),
given a set of past and already classified instances. The process of classifying
new data begins from a set of classified elements, and tries to extract some regu-
larities from them (training phase) [WFH11, TSK06,HK12]. The model employs
a set of input data called training set where the class label for each instance is
provided. The process of classifying new data starts from a training set, and tries
to extract some regularities from them. Classification is an example of supervised
learning.

Based on the way learners actually subdivide the above-mentioned phases,
they are categorized into two classes, namely eager learners or lazy learners. For
example, decision trees or rule-based learners are examples of eager approaches.
In this category, most of the computing resources are spent to extract a model,
but once a model has been built, classifying a new object is a rather fast process.

By contrast, lazy learners, such as nearest-neighbour classifiers do not require
an explicit model building phase, but classifying a test example can be very
expensive, since the element to classify must be compared with all the samples
in the training set. In the following, we provide a short description of the most
popular classifiers available in the literature.

Decision Trees. The model has the form of a tree, where each node contains
a test on an attribute, each branch from a node corresponds to a possible out-
come of the test, and each leaf contains a predicted class label [Mor82]. Decision
tree induction often uses a greedy top-down approach which recursively replaces
leaves by test nodes, starting from the root. The attribute associated to each
node is chosen through the comparison of all the available attributes, and the
selection of the best one is based on some heuristic measures. Several impurity
measures are available in the literature [Qui86,Qui93, BFOS84]. Typically, the
measures developed are based on the degree of impurity of the child nodes. The
lower is the value, the more skewed is the class distribution. The extraction
procedure continues until a termination condition is satisfied.

The Hunt’s algorithm represented in Algorithm 1 is the basis of several
popular decision tree learners including ID3 [Qui86], CART [BFOS84], C4.5
[Qui93, Quig6] and EC4.5 [Rug02]. The cited approaches assume that all training
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Algorithm 1. The Hunt’s algorithm - DecisionTree(TS, A)

Require: Training set TS, an attribute set A
Ensure: Decision tree

1: if stoppingCondition(TS, A) = true then

2: leaf «— createLeaf(TS) //given T'S determines the class label to assign a leaf
node

3:  return leaf

4: else

5:  root «— createNode()

6:  root.testCondition «— findBestSplit(TS, A)

7. TS; < splitData(root.testCondition) //given the test condition splits 7S in sub-
sets

8: for each TS; do

9: root.child; «— DecisionTree(TS;, A)

10:  end for

11: end if

12: return root

examples can be simultaneously stored in main memory, and thus have a limited
number of examples from which they can learn. [LLS00] shows a comparison of
complexity, training time and prediction accuracy of main memory classification
algorithms, including decision trees. In several cases, training data can exceed
the main memory capability. In order to avoid this limitation, disk-based deci-
sion tree learners, such as SLIQ [MAR96] and SPRINT [SAM96], assume the
examples to be stored on disk, and are learned by repeatedly reading them in a
sequence. More recently, new data structures and algorithms have been defined

to tackle the classification problem in stream environments, also using decision
trees [GT12,GS11].

Bayesian Approaches. In many situations, the relationship between the
attributes and the class variable cannot be deterministic. This situation typically
occurs in the presence of noisy data, or when external factors affecting classifi-
cation, not included in our analysis, arises. Based on Bayes theorem, Bayesian
classifiers are robust to isolate noisy points and irrelevant attributes.

A popular approach of Bayesian classification is naive Bayes. This kind
of classifier estimates the class-conditional probability, by assuming that the
attributes are conditionally independent. To classify a record, the algorithm
computes the posterior probability of a class value using Bayes theorem, and
returns the class that maximizes this probability value. The way of computing
class-conditional distribution varies in the presence of categorical or continuous
attributes. In the first case, the conditional probability is estimated using the
fraction of training samples with a specific class label considering an attribute
value. By contrast, continuous attributes must be discretized, or a Gaussian
distribution is typically chosen to compute the class-conditional probability.

Detailed discussions on Bayesian classifiers can be found in [DH73,Mic97,
WKO91]. An analysis of the accuracy of naive Bayes classifiers without class
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Algorithm 2. The k-nearest neighbour algorithm
Require: Training set TS, the number of nearest neighbour k
Ensure: Set of k nearest neighbours

1: for each test example z = (z’,3’) do do

2:  Distance(x', x) < compute the distance between z and every training element

(z,y) € TS

3 TSs < Select the k closest training example to z
4:  class «— FindClass(TSs)
5
6

return class
: end for

conditional independence hypothesis is available in [DP96], while [Jen96] pro-
vides a first overview of Bayesian networks.

Nearest Neighbour. This kind of classifier belongs to the family of lazy learners.
In this case, every training example is viewed as a point in a multidimensional
space, defined on the number of the available attributes.

As shown in Algorithm 2, given an element to classify, the call label is chosen
based on the label of element neighbours selected by a proximity measure. In this
case, specific training instances are employed to provide a prediction, without
providing any model derived from data. Every training example is viewed as
a point in a multidimensional space, defined on the number of the available
attributes. In real applications only k points, that are closest to the element
to classify are selected to decide the class label to return. The crucial aspect
is to select the measures of proximity, that similarly to clustering are based on
attribute types and special issues to solve. Due to its nature these models are
rather sensible to noisy data and the prediction accuracy is highly influenced by
the data preprocessing step and proximity measure.

With respect to decision trees, nearest-neighbor classifier provides a more
flexible model representation. It produces arbitrarily-shaped boundaries, while
decision trees are typically constrained to rectilinear decision boundaries
[TSK06, HK12].

Support Vector Machine. This kind of approaches has its root in statistical
learning theory. They have been successfully employed in many real applications,
including handwritten digit recognition, and text categorization among others.

The main idea of this method is representing the decision boundary using a
subset of training examples, known as support vectors. A support vector machine
constructs a hyperplane (or set of hyperplanes) in a multi-dimensional space,
which can be used for classification, regression, or other tasks. Essentially, given
a set of possible hyperplanes (implicitly defined in the data), the classifier selects
one hyperplane for representing its decision boundary, based on how well they
are expected to perform on test examples. A support vector approach is typically
described as linear or non-linear. The former involves a linear decision boundary
to split the training objects into respective classes [ABR64]. Non-linear models
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try to compute a boundary for separating objects that cannot be represented
by a linear model [BGV92|. The trick is to transform the data from its original
space into a new space that can be divided by a linear bound. In the literature
several approaches are available for learning a support vector model [CV95,
Bur98,SC08].

2.2 Clustering

Clustering is the process of partitioning a set of data objects into subsets without
any supervisory information such as data labels. Each subset is a cluster, such
that objects in a cluster are similar to one another, yet dissimilar to objects in
other clusters. The set of clusters resulting from a cluster analysis can be referred
to as a clustering [WFH11, TSK06,HK12]. Clustering can lead to the discovery
of previously unknown groups within the data. Examples of data objects include
database records, graph nodes, a set of features describing individuals or images.
Because there is no a priori knowledge about the class labels, clustering is also
called unsupervised learning. Cluster analysis is used in a wide range of applica-
tions such as: business intelligence, image pattern recognition, web analysis, or
biology.

The following general aspects are orthogonal characteristics in which cluster-
ing methods can be compared:

e the partitioning criteria: all the clusters are at the same level vs. parti-
tioning data objects hierarchically, where clusters can be formed at different
semantic levels.

e separation of clusters: methods partitioning data objects into mutually
exclusive clusters vs. a data object may belong to more than one cluster.

e similarity measure: similarity measures play a fundamental role in the
design of clustering methods. Some methods determine the similarity between
two objects by the distance between them wvs. the similarity may be defined
by connectivity based on density or contiguity.

e clustering space: the entire given data space vs. subspace clustering.

The literature proposes several ways to compute and represent a cluster. The
partition method is based on prototypes and is one of the most widely studied
and applied approaches. In this case, every cluster is selected and represented by
a prototype called centroid (e.g. K-means and K-medoid). Prototype-based tech-
niques tend to consider the region only based on a distance value from a center.
This approach typically provides clusters having globular shapes. Hierarchical-
clustering is a method of cluster analysis which seeks to build a hierarchy of
clusters. Also this kind of clustering is typically based on distance measures, but
in this case, we permit clusters to have subclusters thus forming a tree. Each
cluster i.e. a node in the tree, is the union of its subclusters, and the root of the
tree is the cluster containing all the objects. The class of approaches for hierar-
chical clustering can be found under the agglomerative hierarchical clustering.
BIRCH [ZRL96] is a famous example of hierarchical clustering algorithm.
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Algorithm 3. The k-means algorithm
Require: Set of points P
Ensure: Set of k clusters

1: repeat

2 Form k clusters by assigning each point p; € P to the closest centroid
3:  centroids < Recompute the centroid of each cluster

4: until centroids do not change

Density-based approaches work also with non-globular regions and they are
designed for discovering dense areas surrounded by areas with low density (typi-
cally formed by noise or outliers). In this context a cluster consists of all density-
connected objects, which can form a cluster of an arbitrary shape. DBSCAN
[EKSX96] and its generalization OPTICS [ABKS99] are the most popular den-
sity based clustering methods. In several situations spectral and/or graph-based
clustering are proposed for solving problems when the available information is
encoded as a graph. If the data is represented as a graph, where the nodes are
objects and the links represent connections among objects, then a cluster should
be redefined as a connected component, i.e. a group of objects that are connected
to one another, but that have no connection to objects outside the group. An
important example of graph-based clusters are contiguity-based clusters, where
two objects are connected only if they are within a specified distance of each
other. This implies that each object in a contiguity-based cluster is closer to
some other object in the cluster than to any point in a different cluster.

Finally, Fig.1, taken from [HKI12], summarizes the main characteristics
related to the different clustering approaches considering the three main cluster-
ing methods proposed above. For each method, the figure highlights the specific
features and the most well-known and basic algorithms widely studied in the
literature. Finally, Fig. 1, taken from [HK12], summarizes the main character-
istics related to the different clustering approaches considering the three main
clustering methods proposed above. For each method, the figure highlights the
specific features and the most well-known and basic algorithms widely studied
in the literature.

Method Specific Features Algorithms
Partitioning | Distance based K-means
methods Discover mutual clusters of spherical shape K-medoids
Prototyped-based (mean or medoid) to represent centroid
Hierarchical |Hierarchical decomposition BIRCH
methods May incorporate other techniques (e.g. microclustering)
Cannot correct erroneous splits (or merges)
Density-based |Find arbitrary shaped clusters DBSCAN
methods Based on concept of dense regions OPTICS
May filter out outliers

Fig. 1. Overview of clustering methods.
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2.3 Pattern Discovery

Pattern analysis methods are fundamental in many application domains includ-
ing market basket analysis, medicine, bioinformatics, web mining, network
detection, DNA research. Unlike in predictive models, in pattern discovery
the objective is to discover all patterns of interest. Here, we briefly recall the
basic methods of pattern mining, including frequent itemsets mining (FIM),
association rule mining (ARM) and sequential patterns mining (SPM). See
[2702,HCXY07,Sha09] for past surveys on ARM, and [ME10,CTG12] for sur-
veys on SPM.

Let I = {i1,...,i,} be a set of distinct literals, called items. An itemset
X is a subset of I. An itemset X has a support, supp(X), in a transactional
database D if s% of the transactions contains the itemset X in D. Given a
user-defined minimum support 3, an itemset X such that supp(X) > 3 is called
frequent itemset. The FIM problem can be stated as follows: given a transaction
database D and a minimum support threshold s, find all the frequent itemsets
from the set of transactions w.r.t. s.

A natural derivation of frequent itemsets is called association rule (AR),
expressing an association between two itemsets. Given X and Y two itemsets,
with X NY = (), an AR is an expression of the form X = Y. X is called the
body or antecedent, and Y is called the head or consequent of the rule. The
support of an AR X = Y is supp(X = Y) = supp(X UY'). The confidence of an

ARisconf(X =Y) = %. Given a transaction database D, a minimum
support threshold, 5, and a minimum confidence threshold, ¢, the ARM problem
is to find all the ARs from the set of transactions w.r.t. 5 and ¢.

Finally, the concept of sequential pattern is introduced to capture typical
behaviors over time, i.e. behaviors sufficiently repeated by individuals to be
relevant for the decision maker. A sequence S =< X;...X,, > is an ordered
list of itemsets. We say that S is a subsequence of another sequence V =<
Y:...Y,, > with n < m, if there exist integers 1 < iy < --- < i, < m such that
X1 CY,..., X, €Y. We denote with X;.time the timestamp of the itemset
X; and with supp(S) the support of S, i.e. the number of tuples containing the
sequence S. Given a sequence database and a minimum support threshold s,
the SPM problem is to find all the sequences from the set of transactions w.r.t.
. Sequential patterns are not the only form of patterns that can be mined.
Consider for example the huge literature for gene mining [EZ13].

Different algorithms for FIM have been proposed in the literature [AS94,
HPY00,SON95, T0i96, ZPOLI7]. The most popular algorithm is Apriori [AS94].
The approach is outlined in Algorithm 4. It is based on a level-wise search process
that makes multiple passes over the data. Initially, it computes the frequent item-
sets of size 1. The core of the algorithm is then a cycle of passes each of them
composed of two main phases: the candidate generation and the support count-
ing. In the former phase, the set of all frequent k-itemsets, Ly, found in the pass
k, is used to generate the candidate itemsets C11. In the latter, data is scanned
to determine the support of candidates. After the support counting, unfrequent
itemsets are dropped, according to the downward closure property. Another algo-
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Algorithm 4. The Apriori algorithm
Require: Set of transaction T’
Ensure: Frequent itemsets

1: k1

2: Fj < Find all frequent 1-itemsets

3: repeat

4 k—k+1

5:  for each transaction t € T' do
6: Identify all candidates that belongs to ¢
7.
8
9

0

1

Compute support counting for each candidate Ct
end for
. Fy < Extract the frequent k-itemsets
10: until F, =¢
11: return (JFy

rithm is the FP-Growth. It allows to reduce the number of transactions to be
processed at each iteration via a divide et impera strategy [HPY00]. Basically,
it divides the search space on a prefix base. After the first scan, the original
problem can be divided into |I| sub-problems, where I is the set of frequent sin-
gletons. Other algorithms based on the splitting of the input data into smaller
datasets, are eclat [ZPOL97] and partition [SON95].

Sequential pattern mining methods can be classified into three classes:
Apriori-based with an horizontal formatting methods; Apriori-based with a ver-
tical formatting methods; projection-based pattern growth methods. The first
class includes the GSP algorithm [SA96] and its derivations. The second class
includes SPADE [ZakO01]. The third class is based on the SPAM [AFGY02] and
PrefixSpan algorithms [PHMA+04]. In particular, the latter works by means
of a divide-and-conquer strategy with a single scan on the entire dataset. Each
sequential pattern is treated as a prefix and mined recursively over the corre-
sponding projected database.

Recently, mining frequent structural patterns from graph databases, e.g. web
logs, citation networks, and social networks has become an important research
problem with broad applications. Several efficient algorithms were proposed in
the literature [WWZ+05,TWMO00, YHO02], ranging from mining graph patterns,
with and without constraints, to mining closed graph patterns.

3 Using Constraints in Data Mining

The integration of constraints in data mining has rapidly emerged as a chal-
lenging topic for the research community. Many ad-hoc extensions of mining
algorithms that use constraints for improving the quality of their results have
been proposed for the different methods introduced along the Sect.2. The def-
inition and the integration of constraints allows the user to specify additional
information on input data as well as requirements and expected properties of
data mining models in output in a declarative way. For example, the extrac-
tion of association rules typically leads to a large quantity of useless rules.
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An approach that extracts the rules by specifying the analyst’s needs can speed
up both the domain experts evaluation of the extracted rules and the extraction
algorithm itself.

The literature proposes several works on using constraints in data mining
tasks. Currently, every mining task has its own way for classifying constraints.
A full view that binds mining tasks to the the objects on which constraints
are defined, is still missing. For this reason, one of the aims of this chapter
is to provide a general framework where a constraint can be classified. In this
perspective, this section provides a description about the dimensions on which
constraints can be classified. This view is based on the main characteristics that
every kind of constraint proposes in its specific mining context.

We introduce the use of constraints considering three dimensions based on
the characteristics that every kind of constraint presents in its specific context:

1. Object Constraints: considers which objects the constraints are applied
to, namely data, models and measures. This kind of constraints is presented
in Sect. 3.1.

2. Hard &Soft Constraints: considers the type of constraints: hard and soft
constraints. Section 3.2 introduces this kind of constraints.

3. Phase-defined Constraints: considers the phases of the knowledge extrac-
tion process, in which the constraints are used, namely pre, mining and post.
Section 3.3 overviews this class of constraints.

Before starting analysing the dimension dealing with the objects constraints,
it is worth noting that the dimensions proposed above are not complementary
or mutually exclusive, but they represent different perspectives on which we can
classify constraints for data mining.

3.1 Object Constraints

We start by analyzing the dimension dealing with the objects constraints are
applied to. Constraints can be defined on data, on the mining model and on
measures. In particular, Sect.3.1.1 overviews the constraints on data (or items),
while Sect. 3.1.2 overviews the ones on mining models. Finally, Sect. 3.1.3 intro-
duces the constraints defined on measures.

3.1.1 Constraints on Data
Referred to the literature also as constraints on items, this kind of object con-
straint involves specific data attributes. Data constraints require a complete
knowledge about the data attributes and properties in order to define con-
straints on specific data features. Furthermore, they can involve some forms
of background knowledge directly. Examples of constraints on data include the
must and cannot-link in a clustering problem, or consider only the items having
a price higher than a given threshold for pattern mining.

If we consider the classification task the literature in this field has explored
constraints among instances and classes, and among different classes themselves.
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This is principally due to the fact that a classifier is extracted from a training set
specifically conceived on the requirements of the classification task. [HPRZ02]
introduces a constrained classification task, where each example is labeled with a
set of constraints relating multiple classes. Every constraint specifies the relative
order of two classes and the goal is to learn a classifier consistent with these con-
straints. As reported in [PF08], in many applications explicit constraints among
the labels can be easily discovered. For example, in the context of hierarchical
classification, the presence of one label in the hierarchy often implies also the
presence of all its ancestors. [TJHAO5] proposes a constrained support vector
machine approach. In this work, the authors consider cases where the prediction
is a structured object or consists of multiple dependent constrained variables.
An interesting approach is proposed in [DMMOS§] in case of a lack of labeled
instances. In this case, the knowledge base is a set of labeled features, and the
authors propose a method for training probabilistic models with labeled fea-
tures (constrained from domain knowledge) from unlabeled instances. Labeled
features are employed directly to constrain the model predictions on unlabeled
instances.

Data constraints for clustering involves the concept of instance-level con-
straints. Well-established approaches on using data constraints for clustering
problems focused on the introduction of instance-level constraints [WCRSO01,
WCO00]. In this case a domain expert defines constraints that bind a pair of
instances in the same cluster or that avoid that a pair of instances will be assigned
to the same cluster. () must-link constraints enforce two instances to be placed
in the same cluster, while (4i) cannot-link constraints enforce two instances
to be in different clusters. Several properties are related to instance-level
constraints [DRO6]. Must-link constraints are symmetric, reflexive and transitive.
The latter property enables a system to infer additional must-link constraints.
On the contrary, cannot-links do not have the transitive property. Since must
and cannot-link are relevant for a large amounts of works in the literature, where
several types of constraints based on groups of instances have been defined in
[DR05,DR09,DR07,DDV13], Chap.1 in [BDWOS] reports a detailed definition
of the properties on which they are based.

In pattern mining, data constraints are introduced to specify patterns that
include (or not) specific items. For example, when mining association rules out
of a weblog, one might be interested in only rules having sport pages in the
consequent, and not having shopping pages in the antecedent. In the case of
sequential patterns, one might be interested to patterns that first visit finance,
and then sport or books [PHWO7]. There are two principal ways to express data
constraints for pattern mining: (3) by means of a concept hierarchy (i.e. multi-
level constraints) and (43) weighted pattern mining emerges when considering a
different semantic significance of the items.

Multi-level constraints enables the generalization of items at bottom level
to higher levels of the hierarchy before applying the mining algorithm [SA95].
Methods to integrate multi-level constraints into mining algorithms are intro-
duced in [HF99], in which frequent itemsets are generated one level at a time
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of the hierarchy. [SVA97] and [HLN99] can be seen as the first attempts to
integrate multilevel mining directly into the Apriori. More recent works on gen-
eralized rule mining include [ST02] about exploiting the lattice of generalized
itemsets, and [WH11], on using efficient data structures to retrieve item general-
izations. [BCCG12] exploits schema constraints and the opportunistic confidence
constraints to remove uninteresting rules.

Weighted pattern mining has been extensively proposed in frequent itemset
mining and association rule mining, in discussing a new tree structure that is
robust to database modifications [ATJ+12]; in pushing the weight constraint into
pattern growth algorithms [YL05, TSWYng, YSRY12], or into level-wise methods
[WYYO00, TM03,LYCO08]; in suggesting approximated weighted frequent pattern
mining, as a fault tolerant factor [YR11].

3.1.2 Constraints on the Mining Model

This class of constraints defines specific requirements that an extracted model
should satisfy. This kind of constraint does not involve background knowledge
directly, but it requires a complete knowledge on the characteristics needed by
the output model. For example, they include the extraction of association rules
having a specific set of items in the body and in the head, or discovering clusters
with a minimum number of elements.

Examples of model constraints for classification can be found in [NF07,NF10,
NPS00]. [NPS00] proposes different kinds of constraints, related to the form of a
decision tree, e.g. internal nodes should not have pure class distributions or rules
about the class distribution. [NF10] defines a framework for determining which
model constraints can be pushed into the pattern mining process, proposing an
optimal classifier model. More precisely, [NF10] shows how several categories of
constraints defined for frequent itemset mining, e.g. monotonic, anti-monotonic
and convertible, can be applied in decision tree induction. It highlights the con-
nection between constraints in pattern mining and constraints in decision tree
extraction, developing a general framework for categorizing and managing deci-
sion tree mining constraints.

The algorithms K-means and K-medoid represent a basic approach for forc-
ing clustering models to have specific properties [GMN+15]. In [BBD00, DBBO0S],
the authors avoid empty clusters by adding k constraints to the clustering
problem requiring that cluster h contains at least 7, points. The solution
proposed is equivalent to a minimum cost flow linear network optimization
problem [Ber91]. Another approach for discovering balanced clusters can be
found in [BG08,BG06]. In this case, the introduced constraint requires that the
obtained clusters have a comparable size. The proposed method has three steps:
(i) sampling; (iz) clustering of the sampled set; and (%ii) populating and refin-
ing the clusters while satisfying the balancing constraints. Other methods for
constraining the clustering approach to discover balanced clusters can be found
in [SGO03]. The authors propose the use of graph partition techniques or hierar-
chical approaches that encourage balanced results while progressively merging
or splitting clusters [BK03,ZG03]. Many papers focus on metric learning driven
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by constraints. Distance measure learning and clustering with constraints in K-
means were both considered in [BBMO04b], and the result was extended to a
Hidden Markov random field formulation in [BBMO04a].

Pattern-model constraints are related to the form, or the structure of the
entire pattern, as well as to relations among items. For example, one might wish
to find patterns that include first visit of a sport page, then a shopping page,
and finally a finance page. In this context, we are searching for meta-rules that
are useful to specify the syntactic form of the patterns [FH95]. These constraints
can be specified using either high-level user interfaces or declarative data min-
ing query languages. Here, we briefly review the usage of regular expressions
(RE) in sequential pattern mining. They are based on the typical RE operators,
such as disjunction and Kleene closure, to constrain the set of items. Then, we
deal with relaxation of constraints. There are several algorithms supporting RE
constraints. SPIRIT [GRS99] is based on an evolution of the GSP algorithm.
RE-Hackle represents RE by means of a tree structure [CMBO03]. Prefix-growth
extends the prefix-span approach with several kinds of constraints, among which
RE are included [PHWO07].

3.1.3 Constraints on Measures
Measures, e.g. entropy for classification, support and confidence for frequent
itemsets and euclidean distance for clustering, play an important role in data
mining, since they are related to the quality of the model extracted. This class
of constraints specifies a requirement that the computation of a measure should
respect. It involves both the knowledge about data and the knowledge about
the characteristics of a model. For example, if we consider clustering people as
moving objects, the trajectory implementing the shortest distance cannot cross
a wall, or we can constraints a classifier to provide a minimum level of accuracy.
Starting from model constraints for classification, [YG04, VSKSvdH09] deal
with the design of a classifier under constrained performance requirements. In
particular, [VSKSvdHO09] enables the user to define a desired classifier perfor-
mance. The work provides a complete analysis when a classifier is constrained to
a desired level of precision (defined as F-measure and/or to tp-/fp-rate related
performance measures). The learned model is adjusted to achieve the desired
performance, abstaining to classifying ambiguous examples in order to guaran-
tee the required level of performance. Furthermore, [VSKSvdHO09] studies the
effect on an ROC curve when ambiguous instances are left unclassified. This is
an example when a set of constraints defined on measures clearly influences also
the learned model implicitly. Similarly in [YGO04], an ensemble of neural networks
is constrained by a given tp or fp-rate to ensure that the classification error for
the most important class is within a desired limit. The final classifier is tuned by
using a different structure (or architecture), employing different training sam-
ples, and training with a different subset of features for individual classifiers with
respect to phase of employment. In most of the cases model constraints are used
during the model construction phase.
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Many papers focus on metric learning driven by constraints for clustering.
Distance measure learning and clustering with constraints in K-means were both
considered in [BBMO04b], and the result was extended to a Hidden Markov ran-
dom field formulation in [BBMO04a]. In [SJ04], an SVM-like approach is employed
to learn a weighted distance from relative constraints. The method learns a
weighted euclidean distance from constraints by solving a convex optimization
problem similar to SVMs to find the maximum margin weight vector. In this
case, the approach integrates the input points with a set of training constraints
that specify the distance requirements among points. Kumar and Kummamuru
[KKO08] proposed to learn an SVaD [KKA04] measure from relative comparisons.
Relative comparisons were first employed in [SJ03] to learn distance measures
using SVMs. The existing results on relative comparisons can be used to solve
clustering problems with relative constraints (since each relative constraint is
equivalent to two relative comparisons).

Besides those expressed on support and confidence, interestingness con-
straints specify thresholds on statistical measures of a pattern. We can find
three kinds of interestingness measures. With time constraints, the user has the
possibility of choosing not only the minimum support, but also time gaps and
window size [SA96, PHWO07, MPT09]. The former permits to constrain itemsets
in a pattern to occur neither too close, nor too far w.r.t the time. Considering
recency, frequency and monetary constraints, a model can be used to predict the
behavior of a customer on the basis of history data, with the aim of analyz-
ing how often and recently a customer purchases as well as how much he/she
spends [BW95, WLW10]. Finally aggregate constraints are based on aggregates
of items in a pattern, where the aggregate function can be sum, avg, max, min.
See [ZZNS09] for a recent review on the various interestingness measures.

3.2 Hard and Soft Constraints

The use of constraints enables a mining method to explore only those solu-
tions consistent with users expectations. Constraints may not always improve
the reliability of the extracted model, e.g. data overfitting. Generally, it is not
guaranteed that the use of constraints improves the reliability of the objective
measures. Moreover in some cases constraints can be redundant, e.g. a constraint
which does not affect the search solution space, and/or they can cause conflicts
and introduce inconsistencies on final result.

For example, if we constrain two elements, say a and b, to be in the same
cluster if their distance is lower than a given threshold ¢;, and, at the same
time, we require that a and b cannot be in the same cluster if their distance is
greater than an additional threshold ¢, the satisfaction of these two constraints
could not be solved by any cluster partitioning if ¢5 is lower than t,. Similarly,
forcing a classifier to provide a desired performance can lead to find empty
solutions since there is not a model extracted from the data that satisfies the
required constraints, e.g. [VSKSvdH09] avoids this situation. The learned model
is adjusted to achieve the desired performance by abstaining to classifying the
most ambiguous example in order to guarantee the required level of performance.
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Typically, these events happen when some sets of constraints work well but
some others do not [Dav12]. This aspect requires the use of measures to evaluate
how much a set of constraints is useful. Davidson et al. [DWB06, WBDO06] intro-
duce the concepts of informativeness and coherence. In the case of clustering,
the authors define the informativeness as the amount of information in the con-
straint set that the algorithm cannot determine on its own. It is determined by
the clustering algorithm’s objective function (bias) and search preference. While
given a distance matrix, the coherence measures the amount of agreement within
the constraints themselves. The above definitions should be revised in the case
of classification or pattern mining, but their relevance is already clear.

The above observations require that a user can define the way for computing
the measure related to a constraint. Furthermore, the user expresses “how well”
a constraint should be satisfied. Generally, the use of constraints does not nec-
essarily guarantee the achievement of a solution. In order to control this effect
it can be necessary to relax constraints. This leads to the need of offering the
possibility of classifying constraints as either hard or soft, that is relaxable:

e Hard constraint: a constraint is called hard if a model that violates it is
unacceptable. The use of only this class of constraints can involve the discovery
of empty solutions. A hard-constrained algorithm halts when there does not
exist a state that satisfies all the constraints, and it returns no results [OY12].
This situation is common when a large set of constraints is provided as input.

e Soft constraint: a constraint is called soft if even though a model that satis-
fies the constraint is preferable, a solution is acceptable anyway and especially
when no any other (or better) solution is available [BMR97]. Typically, it is
known that some constraints work well for finding the required solution, while
others do not, and in some context where a result is needed in any case, it
is important to select a set of useful constraints that should be considered as
hard, while others can be treated as soft [DWBO06].

This dimension is strictly related to the actual definition of a constraint and it
should not be perceived as a rigid categorization. As explained above, there are
some constraints that can be both hard and relaxed as soft based on the problem
and the properties the solution requires.

3.3 Phase-Defined Constraints

Since a data mining task, or more generally a knowledge extraction process, is
based on different iterated phases, constraints can be classified also with respect
to where a knowledge extraction process can evaluate and satisfy the set of
constraints defined by the user.

The pre-processing phase includes data cleaning, normalization, transforma-
tion, feature extraction and selection and its aim is to produce a set of data
for the subsequent processing/mining step. [Pyl99] presents basic approaches for
data pre-processing.

The processing step is the core phase where the actual knowledge extraction
is performed. This is the mining phase where a model is extracted.
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Finally, a post-processing step is required to verify if the model extracted
by a data mining algorithm is valid and useful. If a model does not reach the
desired standards, it is necessary to re-run the process and change parameters
of the pre-processing and mining steps.

Given the above observations, techniques for constraint-driven mining can be
roughly classified on the basis of the knowledge extraction phase in which they
are satisfied:

e Pre-processing constraints: are satisfied during the pre-processing phase.
They enable a restriction of the source data to the instances that can only
generate patterns satisfying them.

e Processing/Mining constraints: are directly integrated into the mining
algorithm used for extracting the model. The constraint evaluation in this
case is embedded directly in the mining algorithms, enabling a reduction of
the search space.

e Post-processing constraints: are satisfied either by filtering out patterns
generated by the mining algorithm, or by highlighting only the relevant results
given an interest measure provided by the user.

The phase of the knowledge extraction process where a constraint is satisfied is
the last dimension we introduce. Also in this case, the above definition is useful
to provide a complete picture about the use of constraints for data mining.
Table 1 summarizes the main characteristics related to the different dimensions
of constraints proposed in this chapter. The two main dimensions are the mining
task and the kind of object where a constraint is applied. Furthermore, for each
of the pairs the phase and the type of constraints are presented.

4 Conclusions: Towards New Frontiers of Data Mining

In this chapter, we presented an overview about the use of constraints in data
mining. In particular, we have depicted a general multidimensional view for
driving the reader into the world of constrained data mining. This chapter
shows why the use of constraints is becoming an important and challenging task
for the data mining community, since it requires a radical re-design of existing
approaches in order to define and satisfy constraints during the whole knowledge
extraction process.

Table 1. Main characteristics of the different classes of constraints

Classification Clustering Pattern
Data phase: pre, mining | phase: mining phase: pre, min-
type: hard type: hard, soft |ing
type: hard
Model | phase: mining, post | phase: mining phase: mining
type: soft type: soft, hard | type: hard, soft
Measure | phase: mining, post | phase: mining phase:  mining,
type: hard, soft type: hard post
type: hard
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Even though one of the aims of this chapter is to provide an introduction
on the basic mining models and algorithms, it is worth stating that the basic
concepts introduced along this overview are still valid also for advanced data
mining analysis. We conclude this chapter considering the emerging phenomenon
of big data. The final aim is to provide a set of features related to managing real
data, in order to highlight that basic concepts introduced in the section of this
chapter are actually the building blocks for real complex mining applications.

Often, traditional data analysis tools and techniques cannot be used because
of the massive volume of data gathered by automated collection tools. The
amount of data in our world has been exploding. Science gathers data at an
ever-increasing rate across all scales and complexities of natural phenomena.
New high-throughput scientific instruments, telescopes, satellites, accelerators,
supercomputers, sensor networks and running simulations are generating massive
amounts of scientific data. Companies capture trillions of bytes of information
about their customers, suppliers, and operations. Smart sensing, including envi-
ronment sensing, emergency sensing, people-centric sensing, smart health care,
and new paradigms for communications, including email, mobile phone, social
networks, blogs, Voip, are creating and communicating huge volumes of data.
Sometimes, the non-traditional nature of the data implies that ordinary data
analysis techniques are not applicable.

In this perspective, the challenge is particularly tough: which data mining
tools are needed to master the complex dynamics of people in motion and con-
struct concise and useful abstractions out of large volumes of mobility data is,
by large, an unanswered question. Good news, hence, for researchers willing to
engage in a highly interdisciplinary, highly risky and highly promising area, with
a large potential impact on socially and economically relevant problems.

Big data requests a complete re-design of existing architectures and proposes
new challenges on data management, privacy, and scalability among the other.
Provide the appropriate analytical technology for distributed data mining and
machine learning for big data, and a solid statistical framework adapting stan-
dard statistical data generation and analysis models to big data: once again,
the sheer size and the complexity of big data call for novel analytical methods.
At the same time, the kind of measures provided by the data and the popula-
tion sample they describe cannot be easily modeled through standard statistical
frameworks, which therefore need to be extended to capture the way the data
are generated and collected.

The use of constrained-based tools, from the constraints programming to the
solver, is finally under analysis from the researcher community. In this perspec-
tive, we are sure that the approaches developed along this book, generated from
the experience inside the ICON project, not only represents a base for applying
constrained methods to data mining but they are a first step for integrating a
more versatile definition and formulation of mining approach as optimization
problems by using constraint programming tools also considering the emerging
phenomenon of big data.
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