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Abstract. Scene text in indoor environments usually preserves and
communicates important contextual information which can significantly
enhance the independent travel of blind and visually impaired people.
In this paper, we present an assistive text spotting navigation system
based on an RGB-D mobile device for blind or severely visually impaired
people. Specifically, a novel spatial-temporal text localization algorithm
is proposed to localize and prune text regions, by integrating stroke-
specific features with a subsequent text tracking process. The density of
extracted text-specific feature points serves as an efficient text indica-
tor to guide the user closer to text-likely regions for better recognition
performance. Next, detected text regions are binarized and recognized by
off-the-shelf optical character recognition methods. Significant non-text
indicator signage can also be matched to provide additional environment
information. Both recognized results are then transferred to speech feed-
back for user interaction. Our proposed video text localization approach
is quantitatively evaluated on the ICDAR 2013 dataset, and the experi-
mental results demonstrate the effectiveness of our proposed method.

1 Introduction

Texts in natural scenes matter, since they usually convey significant seman-
tic information and often serve as effective cues in unfamiliar environments for
wayfinding. According to the World Health Organization1, there are more than
39 million legally blind and 285 million visually impaired people living across the
world, and this number is still growing at an alarming rate. Although many per-
sonal Text-to-Speech assistive systems [1] have been developed for recognizing
product labels, grocery signs, indoor indicators, and currency and bills, effec-
tive scene text spotting (including text detection and recognition) from videos
captured by mobile devices in natural scenes remains a challenging problem.

1 http://tinyurl.com/who-blindness.
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In recent years, the data collected from mobile smartphones and wearable
devices has become increasingly important for a broad range of applications,
including static Photo Optical Character Recognition (OCR) and dynamic Video
OCR. To extract text information in complex natural scenes, effective and effi-
cient scene text detection and recognition algorithms are essential. However,
extracting scene text from mobile devices is challenging due to (1) cluttered
backgrounds with noise, blur, and non-text background outliers, such as grids
and bricks; (2) diversity of text patterns such as script types, illumination vari-
ation, and font size; and (3) the limitations of mobile devices such as limited
computational capability, lower image/video resolution, and restricted memory.

In spite of these challenges, many text spotting (from text localization to
word recognition) approaches have been recently developed and demonstrated
effectiveness in different applications [2–6]. In practice, Google Translate and
Microsoft Translator applications on iOS and Android platforms have been
widely used to translate text in photos to a readable sentence in other lan-
guages to help foreign tourists, but similar applications based on videos on mobile
devices still remain to be explored. On the one hand, simply applying current
photo-based text spotting methods to individual frames ignores the continuous
temporal cues in consecutive frames. On the other hand, the photo-based text
detection and recognition process is usually time-consuming and doesn’t meet
the efficiency requirement of mobile devices. Moreover, the recognition process
of detected text regions often consumes the most computation time in the end-
to-end text spotting process [4], and inevitably suffers from the tiny text regions
extracted from the large natural scene image.

Considering all the above limitations, we here propose a guided text spot-
ting approach that reduces the number of text recognition steps in continuous
videos frames, and gradually guides the user to move closer to the preliminar-
ily detected text regions for better recognition performance. Specifically, in the
initial text localization step, a stroke-specific feature detector tuned for lower
resolution videos and computation requirement is implemented to quickly pro-
pose candidate text regions in natural scene frames. The candidate text regions
are then tracked based on the feature points across consecutive video frames to
reduce average computational load, eliminate occasional false alarms, and guide
the blind user to aim the camera on the mobile device to the most likely text
regions. If a text region has been localized, verified, and tracked for a sufficient
number of subsequent frames, it is considered as successfully detected as the
primary text region. Afterward, an off-the-shelf text recognition approach [7] is
applied to translate the scene text into meaningful word strings. The text detec-
tion and final text recognition results are passed to the text-to-speech engine to
generate voice guidance information for blind users.

Due to the importance and usefulness of many signage indicators (text and
non-text (see Fig. 1) existing in the blind navigation environments, we also
present a template-matching based approach for extracting the signs to provide
more semantic information besides the text spotting process. To demonstrate
the effectiveness of the proposed methods in a real blind navigation application,
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Fig. 1. Samples which demonstrate the small size and relatively low resolution of many
interesting text regions with respect to the large scale of the whole scene image.

an obstacle-aware assistive wearable indoor navigation system is designed
and presented, including a speech-based user interaction interface.

The rest of the paper is organized as follows: in Sect. 2, an overview of existing
assistive navigation and text spotting methods is presented. Section 3 describes
the main components of the proposed indoor navigation system. Section 4 intro-
duces the proposed signage reading method, the video text localization and
tracking approach, and the speech-based user interaction interface. Section 5
presents the experimental results. Section 6 describes our conclusions.

2 Related Work

Wearable Indoor Navigation Systems. In recent years, there have been
numerous efforts to develop electronic travel aids (ETA) [8] to improve the orien-
tation and mobility of the visually impaired. Most ETAs are designed to improve
and enhance independent travel, rather than to replace conventional aids such
as the guide dog or long cane.

Various ETAs including different kinds of sensors have been proposed [9–11],
which usually have in common three basic components: a sensor, a processing
system, and an interface. A sensor captures data from the environment in a
specific type. The data are then processed to generate useful information for the
visually impaired user. Lastly, an interface delivers the processed information to
the user using an appropriate sensory modality such as auditory or tactile to
convey information. We refer the reader to [9] for a more complete review of the
recent development of wearable indoor navigation systems.
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Text Spotting in the Wild. Although most of the existing scene text spotting
approaches focus on text detection and recognition from a single high-resolution
image, some methods have been proposed for text detection in video [3,12,13].
These methods can be briefly divided into connected component-based, texture-
based, edge and gradient-based methods [14]. Since connected component-based
methods [6] require character shapes, they may not achieve good accuracies
for low-resolution text images with complex backgrounds. To handle complex
backgrounds, texture feature-based methods have been developed [15]. These
methods are computationally expensive and their performance depends on the
number of trained classifier and collected samples. To improve efficiency, edge
and gradient-based methods have been proposed [2]. These methods are efficient
but more sensitive to cluttered backgrounds and hence produce more false posi-
tives. However, most of these methods are not able to suit the mobile computa-
tional capability and still rely on individual frames instead of utilizing temporal
information of video stream.

3 Indoor Navigation System

Before introducing our proposed guided text spotting methods in detail, we
first give an overview of the Intelligent Situation Awareness and Navigation Aid
system in which we implemented them. The hardware (shown in Fig. 3) comprises
of a chest-mounted mobile device (Google Tango Tablet2) with an integrated
RGB-D camera. The software consists of our algorithms for navigation, scene
text spotting, scene signage reading, and speech based user interface which are
all developed and deployed on the Google Tango device. The main components
of the software architecture are shown in Fig. 2.

Initialization and Mapping. We use the Google Tango Android tablet device
for our prototype design mainly due to its portability, its ability to build 3D
sparse feature maps called Area Description File (ADF), and its ability to localize
based on the ADF. A feature-based Simultaneous Localization and Mapping
(SLAM) module running on the Tango device provides a feature model as an
ADF map for area learning and area recognition. First, the model file is parsed
and geometric objects such as texts as room labels, ellipses as doors, polylines
as contours are acquired. Then semantic topological graph connections between
room labels and doors are analyzed using region growing algorithm, and semantic
landmarks and areas of interest are updated into the semantic map. Finally, a
multi-floor semantic map is built as the graph between common connectors such
as stairs, elevator, and escalator.

Navigation with Obstacle Avoidance. Based on the indoor semantic map,
we create a node-edge based graph and then use it to perform indoor assistive
navigation for the blind user. A graph searching algorithm is applied to generate
2 https://get.google.com/tango.

https://get.google.com/tango


Guided Text Spotting for Assistive Blind Navigation 15

Fig. 2. Flowchart of the proposed Intelligent Situation Awareness and Navigation Aid
system including the text spotting modules.

Fig. 3. The basic hardware configuration of the proposed assistive navigation system,
including the Google Tango Tablet device and the 3D printed chest level tablet mount.

an optimal path from the current position node to the node nearby the spec-
ified destination. Afterward, a waypoint representation of the route is refined
from the path and delivered to the user for guidance. The proposed system fur-
ther provides the user local obstacle direction information such as front/front
right/head-height obstacles. Finally, in the scenarios where there are multiple
obstacles, obstacle position, and size information are updated into the global
map, and a request is set for path planning to generate a new path. The obsta-
cle projection in 3D space is illustrated in Fig. 4.

Speech Recognition Based User Input Interface. During the naviga-
tion process, the speech recognition interface, developed on the CMU Sphinx
library, keeps working in the background to receive speech commands from the
user. The commands include but are not limited to, starting, ending, pausing,
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Fig. 4. Demonstration of the 3D projection of the obstacles in front of the user with
RGB-D camera, mounted just below his waist. The two images on the right are from
the point of view of the camera. The blue pixels represent the corresponding obstacle
regions, and the green pixels represent the ground regions respectively. The red pixels
represent the region of the occasionally missing data. (Color figure online)

resuming, stopping, and restarting the navigation processing. The effectiveness
of the speech to text modules has been validated in practice and proven to effec-
tively boost the practicability of our proposed pipeline in the blind navigation
system.

4 Signage and Scene Text Reading for a Navigation Aid

In this section, we focus on describing the signage and scene text spotting
approaches in details, including the localization, verification, fusion, and recog-
nition stages. The speech-based interface is also introduced in Sect. 4.3.

4.1 Signage Reading

To effectively recognize the signage most significant for wayfinding and safety
in indoor environments, a template matching method is developed to recognize
predefined meaningful signage based on the binary online learned descriptor [16].
In practice, we follow a matching-by-detection mechanism. An instance-specific
detector is trained based on the pre-collected indicator sign dataset, but it is
not updated online to avoid the influence of various training examples, which
effectively alleviates the problem of weak binary tests. As in [17], we create a
classification system based on a set of N simple binary features of intensity dif-
ferences, similar to the ones of Binary Robust Independent Elementary Features
(BRIEF). Following a sliding window manner, which is common among state-
of-the-art detectors, each window candidate is classified as a target sign or as
background. The recognized sign is then vocalized via the text-to-speech module
(See Sect. 4.3).
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4.2 Scene Text Detection

Text Region Localization. Typically, OCR methods present low recognition
performance when the texts in the image suffer perspective distortion or are not
properly aligned, centered, scaled or illuminated. This often occurs in ego-centric
images or videos captured by a wearable camera in indoor navigation environ-
ments. In this case, the OCR performance could be boosted if we could auto-
matically obtain regions of interest containing text and process them to avoid
these issues from general scene images. Considering the application needs to run
on a mobile device, we start by restricting this initial processing to repetitively
detected text regions across consecutive video frames to improve efficiency.

In the proposed video-based text spotting module, a stroke specific text detec-
tor, FASText [4], is employed to initially localize the potential text regions, since
it is fast, scale and rotation invariant, and usually produces fewer false detections
than the detectors commonly used by prevailing scene text localization meth-
ods. Considering the observation that almost all the script texts are formed of
strokes, stroke keypoints are efficiently extracted and segmented subsequently.
General corner detection methods [18] could successfully detect the corners and
stroke endings of certain letters such as the letter “K” or “I”, but would usually

Fig. 5. Each column demonstrates the detected stroke specific features (Red for stroke
ending point and Cyan for stroke bend point) on the gradually coarser levels of image
pyramid. (Color figure online)
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fail on characters whose strokes do not have a corner or an ending such as the
letter “O” or the digit “8”. In comparison, the FASText detector tends to boost
the detection performance of the proposed pipeline by focusing on the detection
of stroke ending/bending keypoint at multiple scales. And the keypoints are
detected in an image scale-space to allow detection of wider strokes. Each level
of the image pyramid is calculated from the previous one by reducing the image
size by the scaling factor. A simple non-maximum suppression is also performed
on a 3× 3 neighborhood to further eliminate the number of the detected feature
keypoints (See Fig. 5).

After the initial keypoints have been detected, an efficient Gentle AdaBoost
classifier [19] is applied to reduce the still relatively high false detection rate,
and eliminate regions which do not correspond to text fragments, including a
part of a character, a single character, a group of characters, and a whole word.
The classifier exploits features already calculated in the detection phase and an
effectively approximated strokeness feature, which plays an important role in
the discrimination between text fragments and background clutter. The classi-
fication step also accelerates the processing in the subsequent steps. Finally, an
efficient text clustering algorithm based on text direction voting is implemented
to aggregate detected regions into text line structures and to allow processing
by subsequent tracking and recognition. In this step, the unordered set of FAS-
Text regions classified as text fragments is clustered into ordered sequences,
where each cluster (sequence) shares the same text direction in the image. In
other words, individual characters (or groups of characters or their parts) are
clustered together to form lines of text.

Although the original FASText detector outperforms many previous text
detection approaches on efficiency (average 0.15 s on the ICDAR 2013
dataset [20] on a standard PC), it is still not fast enough on the portable plat-
forms without specific tweaking. To make the FASText detector work for mobile
computation platforms, we follow the basic structure and feature design in the
implementation and tune the detector parameters including the circle size and
margin. We also lower the computational load by limiting the maximum num-
ber of keypoints per image and reducing the pyramid layers whilst keeping a
comparable detection rate for subsequent processing steps.

Verification and Tracking for Preliminarily Extracted Text Regions.
After the candidate text regions have been proposed by the detector, we fur-
ther filter the proposals by scene text tracking in order to further reduce the
number of candidates which will be processed by the subsequent relatively
computation-demanding text recognition. Each frame of the mobile video stream
is processed independently and text features from consecutive frames are aggre-
gated. If the same text region in approximately the same location of the image
has been tracked across a sufficient number of frames, it is considered as truly
detected, and then passed to the following recognition step. The fused density
of the preliminarily detected stroke features is also exploited for indicating the
most interesting text regions, as illustrated in Fig. 6. The direction guidance
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Fig. 6. Demonstration of our text tracking algorithm on consecutive video frames,
with the blind user guided by the audio feedback. Density of the previously detected
stroke feature points serves as the text-specific indicator and guide the blind or visually
impaired user to aim the device to the most likely text regions for better text detection
and recognition results.

information (speech and alert sounds) is generated accordingly to help the blind
user to approach the potential text regions to capture the higher resolution
images for better text recognition results.

Unlike previous text tracking algorithms [3,12,21,22], for simultaneously
tracking several scene text regions belonging to different words, we apply the
multi-object tracking model based on the particle filter in the system implemen-
tation, which is capable of handling the variations of lighting and appearance.
To avoid challenges of multi-object tracking, three constraints are applied based
on our observation. First, the estimation of the scene text character trajecto-
ries is not necessary for the same word independently because we can instead
estimate the trajectory of the whole text region at first as a hint. Second, the
scene text characters within the same word are usually well aligned and are rela-
tively independent of one another. Third, the relative locations of characters are
stable. Therefore the inter-object occlusions rarely occur as long as the whole
text region is clearly captured. Therefore, we drastically reduce false alarms and
boost the efficiency of the whole system.
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4.3 Word Recognition and Scene Text to Speech Feedback

Based on the analysis of the most commonly used open source OCR approaches
in [23], we decided to use the best compromise option, Tesseract3, to implement
the final mobile navigation prototype. The OCR process could generate better
performance if text regions are first extracted and refined by the proposed video
text localization algorithm, and then binarized to segment text characters from
the background. After completing the sign matching, and the text detection,
tracking and recognition process, we further implement the signage and scene
text to speech module to convey the results to blind users, including the infor-
mation of the door numbers, corridor direction, and etc. The built-in speech
synthesis engine4 of Android is adopted in our system to transform the recog-
nized signage and text information to voice output, which provides adaptive
navigation support to the blind users.

5 Experimental Results

The proposed system was evaluated on the standard video text spotting bench-
mark: ICDAR 2013 [20]. The test set of the ICDAR 2013 Robust Reading (Chal-
lenge 3) Dataset consists of 15 videos, and the evaluation objective is to localize
and track all words in the video sequences. There are many challenging text
instances in the dataset (reflections, illumination variations, text written on
cluttered backgrounds, textures which resemble characters), but on the other
hand, the text is English only and mostly horizontal.

In our experiments, we compared the text tracking results of the proposed
method with several state-of-the-art text tracking methods. The evaluation mea-
sures consist of Mean Tracking Precision (MOTP), Mean Tracking Accuracy
(MOTA), and Average Tracking Accuracy (ATA). More details of these mea-
sures are described in [20]. Specifically, Zhao et al. and Wu et al. adopt the
Kanade Lucas Tomasi (KLT) tracker which is not robust to illumination vari-
ation across consecutive frames. The performance of [24] heavily relies on the
detection results and cannot handle the spatial translation of text regions very
well. Mosleh et al. employ Camshift for text region tracking. The implementation
details of TextSpotter are proprietary but its performance is reported in [20].

As illustrated in Table 1, the effectiveness of the proposed method is com-
parable with TextSpotter at MOTP, and Wu et al. at MOTA and ATA, Since
the parameters of the proposed method are tuned to be able to run on a mobile
platform with losing accuracy, there is a scope for migrating and comparing all
the methods on mobile devices in a real-time environment for more fair evalua-
tion. As to the text detection procedure, the main guidance failure for the text
detection process is due to low image contrast, missing threshold in the intensity
channel, characters very close to each other, and text-likely textures (see Fig. 7).

3 https://github.com/tesseract-ocr.
4 http://tinyurl.com/android-tts.

https://github.com/tesseract-ocr
http://tinyurl.com/android-tts
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Table 1. Performance of the proposed and existing techniques on tracking data of
ICDAR 2013 video text dataset.

Method MOTP MOTA ATA

Proposed 0.65 0.39 0.24

Wu et al. [22] 0.61 0.46 0.29

TextSpotter [20] 0.67 0.27 0.12

Mosleh et al. [25] 0.45 0.13 0.03

Li et al. [24] 0.21 0.15 0.07

Zhao et al. [26] 0.24 0.11 0.05

Fig. 7. Guidance difficulty of text localization process caused by low image contrast
and text likely textures. Best viewed in color. (Color figure online)

6 Conclusion and Future Work

In this paper, we have demonstrated the feasibility of a signage and scene text to
speech module as implemented in an assistive wearable indoor navigation system
on a Google Tango Tablet device, for better navigation aid to visually impaired
users. Our future work will focus on investigating more efficient deep learning
based text spotting methods to further boost system performance.
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