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Abstract. Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) are the most prevalent neurodegenerative brain diseases in elderly
population. Recent studies on medical imaging and biological data have
shown morphological alterations of subcortical structures in patients
with these pathologies. In this work, we take advantage of these struc-
tural deformations for classification purposes. First, triangulated surface
meshes are extracted from segmented hippocampus structures in MRI
and point-to-point correspondences are established among population of
surfaces using a spectral matching method. Then, a deep learning vari-
ational auto-encoder is applied on the vertex coordinates of the mesh
models to learn the low dimensional feature representation. A multi-layer
perceptrons using softmax activation is trained simultaneously to clas-
sify Alzheimer’s patients from normal subjects. Experiments on ADNI
dataset demonstrate the potential of the proposed method in classifica-
tion of normal individuals from early MCI (EMCI), late MCI (LMCI),
and AD subjects with classification rates outperforming standard SVM
based approach.

Keywords: Classification · Spectral matching · Variational
autoencoder · Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is characterized by progressive impairment of cognitive
and memory functions in elderly population. Considering its worldwide preva-
lence, early diagnosis of this disease might have a huge impact on the overall
well-being of the population, and the burden to caregivers, as well as the asso-
ciated financial costs to the world’s health system. Studies reported that AD
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can be diagnosed by clinical assessments in most of the cases [1], while by the
time the patient is diagnosed the disease progression may have deteriorated.
Therefore, early diagnosis of this neuropathology is of special interest.

Mild cognitive impairment (MCI) is considered as a transition state between
normal aging and dementia [2]. The cognitive deficits in MCI patients are not as
severe as those seen in individuals with AD. However, studies have suggested that
about 10–12% of subjects with MCI progress to AD per year [2]. Therefore, these
individuals with milder degrees of cognitive and functional impairment than
AD patients are particularly interesting subjects, since biomarker manifestation
could potentially be different at such an early stage of the disease.

Studies have shown that the neuropathological changes in AD and MCI affect
the hippocampus structure, which is a brain region crucial to various cognitive
functions [3]. Neuroimaging datasets for AD including magnetic resonance imag-
ing (MRI) and other types of biomarkers have shown considerable promise to
detect longitudinal changes in subjects [4], by offering rich information on the
patients morphometric and anatomical profiles. Their use stems from the premise
that morphological changes may be more reproducible and more precisely mea-
sured with MRI than other parameters such as clinical scores, cerebrospinal fluid
(CSF), or proteomic assessments.

Recent advances in medical imaging and classification techniques have led to
a better discrimination between Alzheimer’s disease and healthy aging. Because
of the high dimensionality of medical image, various dimensionality reduction
approaches have been developed to facilitate and enhance classification accuracy.
A simple method is principal components analysis (PCA) [5], which finds the
directions of greatest variance in the dataset and represents each data point by
its coordinates along each of these directions. A nonlinear generalization of PCA
is multi-layer autoencoders (AE) [6], which is a feedforward neural network to
encode the input into a more compact from and reconstruct the input with the
learned representation. Among available AE architectures, the deep variational
autoencoder (VAE) [7] method has recently become popular in computer vision
due to its capability to learn a manifold without the assumption of linearity in
addition to its generative property.

With respect to surface representation, recent studies have shown the advan-
tage of spectral shape description compared to Euclidean surface representa-
tion [8–10]. The use of eigenvalues have led to interesting results for AD classifi-
cation in [11], where Laplace-Beltrami spectrum on the intrinsic geometry of the
structural meshes was computed to define the shape descriptors. The spectral
coordinates, which were derived from the Laplacian eigenfunctions of shapes
have been used in [8] to parametrize surfaces explicitly. The authors applied
a Random Decision Forest classifier on spectral representation of surfaces and
achieved a significant improvement on cortical parcellations. Also, in [9,10], the
eigendecomposion of the surfaces in the spectral domain were used to provide
pointwise information on meshes and establish accurate point-to-point corre-
spondences across surfaces.
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In this work, we present a surface-based classification technique based on clas-
sification of spectral features using variational stacked auto-encoders. We first
extract 3D surface meshes of hippocampus structures from segmented binary MR
images. Then, the point-to-point surface correspondences is established across
populations (NC, AD, EMCI, LMCI) using a spectral matching approach. In
spectral based shape matching approach, relationships are modeled as graphs
and an eigendecomposition on these graphs enables us to match similar fea-
tures. Once the matched surfaces are created, the vertex coordinates are used as
shape feature descriptors. Then, variational autoencoder (VAE) obtains the non-
linear low-dimensional embedding of the shape features. A multi-layer percep-
tron (MLP) classifier is simultaneously trained to model the non-linear decision
boundaries between classes.

The work follows on the prior work of [12], which used a Stacked Auto-
Encoder (SAE) to discover the latent representation from the grey matter (GM)
tissue densities and voxel intensities. Unlike Suk and Shen [12], which selects
intensity and volume based features from MRI and PET modalities, we cre-
ate the feature descriptors from matched hippocampi surfaces extracted from
MRI. Moreover, instead of training a separate classifier on the low dimensional
features as in [12], we add a softmax multi-layer perceptron on top of our vari-
ational autoencoder network to obtain both dimensionality reduction and the
classification output at the same time.

The rest of the paper is organized as follows. In Sect. 2, we present the mor-
phological feature extraction method using spectral shape matching, as well
as the feature representation and classification method based on variational
autoencoder and multi-layer perceptron. Section 3 includes the description of
the dataset, experiments and discussion. Our conclusions are presented in Sect. 4,
along with envisioned future research directions.

2 Methodology

Given MR images along with their corresponding hippocampus segmentations
(produced manually or automatically), we first extract features from MRI as
explained in Sect. 2.1. Then, we use a deep variational autoencoder (VAE) to
learn a latent feature representation from the low-level features and train a
multi-layer perceptron (MLP) for classification purposes in Sect. 2.2.

2.1 Shape Feature Extraction Using Spectral Matching

Given a reference surface mesh Sr and a population of n surfaces {Si}i=1..n, the
spectral matching between each surface meshe Si and Sr is done in a two step
process. First, an initial map is calculated between the two surfaces [9]. This
initial map is then used in the second step to establish a smooth map between
the two meshes [10].

Here, we consider vertices and neighbouring points in each surface mesh as
nodes and edges of a graph. Then a laplacian graph is created for each surface
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graph from the set of vertices and edges of each mesh. The general Laplacian
operator Li [13] is defined on each surface as following:

Li = G−1
i (Di − Wi) (1)

where Wi is the weighted adjacency matrix, which is created based on a distance
between connected nodes. The term Di is a diagonal matrix, in which the ele-
ments are set by the degree of vertices. Gi is a node weighting matrix created
based on the mean curvature at each node as described in [14].

The eigendecomposition of Laplacian matrix Li provides its spectral compo-
nents. After reordering the spectral components by finding the optimal permu-
tation of components between the pair of meshes, regularization is performed by
matching the spectral embeddings. The correspondence initial map c between
each pair of vertices on Si and Sr is established with a simple nearest-neighbour
search between their spectral representations.

In the next step, given initial map c, the final smooth map between two
surfaces Si and Sr is obtained. In this process, an association graph is defined
as the union of the set of vertices and edges of two surfaces with an initial set
of correspondence links c between both surfaces. Then, a Laplacian matrix is
created for the association graph, and the spectral decomposition is computed
to produce a shared set of eigenvectors that enables a direct mapping between
two meshes Si and Sr.

Once all 3D meshes are matched to the reference, the vertices of all surfaces
are rearranged to create the new reconstructed meshes with consistent vertex
ordering. Now, the shape descriptor xi will be created for the surface Si as a
vector of (X,Y,Z) coordinate of all vertices.

2.2 Feature Learning and Classification

In this work we use a deep learning-based feature representation method to
improve the classification accuracy. Here, we take inspiration from the varia-
tional autoencoder network, which learns the low-dimensional manifold with-
out the linearity assumption and has a generative model. In this section, we
explain the proposed network architecture, which is a combination of a varia-
tional autoencoder network (VAE) and a softmax multi-layer perceptron (MLP).
The combined VAE-MLP network architecture is shown in Fig. 1.

Deep Variational Autoencoder and MLP Classifier

Auto-encoders are a type of deep neural networks structurally defined by input,
hidden, and output layers. Given the input data x ∈ RD defined from the spectral
representation of mesh shapes, an auto-encoder maps it to a latent representation
z ∈ Rd (encoding), which could be used for unsupervised learning or for feature
extraction. The representation z from the hidden layer is then mapped back to
a vector y ∈ RD (decoding), which approximately reconstructs the input vector
x. The hidden layer in the middle, i.e., z, can be constrained to be a bottleneck
to learn compact representations of the input data.
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Variational autoencoder (VAE) assumes that data is generated by a directed
graphical model with a latent variable z. VAE uses the encoder network to
map the input x into the continuous latent variables (qφ(z|x)) and uses decoder
network to map latent variables to reconstructed data (pθ(x|z)), where φ and θ
are the parameters of the encoder (recognition model) and decoder (generative
model), respectively.

The lower bound VAE loss function of the variational autoencoder for indi-
vidual datapoint xi has the following form:

LV AE(θ, φ;xi) = −DKL (qφ (z|xi) ||pθ (z)) + Eqφ(z|xi) [log pθ (xi|z)] (2)

The first component is the regularization term, which is the KL divergence of
the approximate posterior from the prior, while the second term is the expected
reconstruction error. As shown in [7], we assume both pθ (z) and qφ (z|xi) as
Gaussian. Given J as the dimensionality of z and K as the number of samples
per datapoint, the resulting estimator for xi will be as follows:

LV AE(θ, φ;xi) = −1
2

J∑

j=1

(
1 + log

(
σ2

j

) − μ2
j − σ2

j

)
+

1
K

K∑

k=1

log pθ (xi|zi,k) (3)

where, zi,k = μi + σi � εk and εk ∼ N (0, I).
Here, μ and σ can be computed using the deterministic encoder network.

The reconstruction (decoding) term of log pθ (xi|zi,k) could be set as a Bernoulli
cross-entropy loss function.

The low dimensional features zi = μi + σi from the latent layer are fed to
an MLP classifier for solving the classification problem. For the last layer, we
use the cross entropy loss function and the softmax activation function, which
is standard for classification problems [15]. The softmax function ensures that
the network outputs are all between zero and one, and that they sum to one on
every time step. Therefore, they can be interpreted as the posterior probabili-
ties, given all the inputs up to the current one. We set the number of units in
the classification output layer to be equal to the number of classes of interest
(i.e., two).

The Network Architecture

Annotated medical image datasets tend to be small and generally hard to obtain.
This increases the risk of network overfitting in medical applications. Therefore,
we make a series of design choices for our network to avoid overfitting. Our net-
work includes L2 regularization at each layer to penalize the squared magnitude
of all parameters directly in the objective function. That is, for every weight
w in the network, we add the term 1

2λw2 to the cost function, where λ is the
regularization strength.

We also add a drop out layer with the probability of 0.5 after each dense
layer. During training, dropout is implemented by only keeping a neurone active
with some probability p, or setting it to zero otherwise. Network weights are set
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based on the uniform initialization scaled by the square root of the number of
inputs.

We train the network for 100 epochs with batch size of 28 starting with a
learning rate of 0.00001 and dropping it at a logarithmic rate to 0.000001. For
the deep learning library, we use Keras and Theano. We determine the number
of hidden units based on the classification results. The optimal structure of the
network is shown in Fig. 1.

Fig. 1. The architecture of our proposed network. The numbers mentioned under each
layer correspond to the layer’s dimension.
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3 Experiments

We evaluate the performance of our approach on a popular brain imaging
dataset in Alzheimer’s disease, namely the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). The ADNI database (adni.loni.usc.edu) was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.
The database of ADNI consists of cross-sectional and longitudinal data includ-
ing 1.5 or 3.0 T structural MR images. The detailed description of the MRI
protocol of ADNI is provided in [16].

For this study, a subset of latest 1.5 T MR images is used including 150
normal controls (NC), 90 AD patients, 160 early MCI (EMCI), and 160 individ-
uals with late MCI (LMCI). ADNI performed additional post-processing steps
on MR images to correct certain image artifacts and to enhance standardization
across sites and platforms [16]. The post-processing steps include gradient non-
linearity correction, intensity inhomogeneity correction, bias field correction, and
phantom-based geometrical scaling to remove calibration errors. In this work,
we use these processed images. Here, hippocampi was segmented using FSL-
FIRST automatic segmentation software package [17] and visual inspection was
performed on the output binary masks to ensure the quality of the automatic
segmentation.

Here we consider six binary classification problems: AD vs. NC, NC vs.
EMCI, NC vs. LMCI, AD vs. EMCI, AD vs. LMCI, and EMCI vs. LMCI. We
consider 20% of data for test and the rest for train. Each time 20% of train
set is left out and used for validation. The whole process is repeated five times
for unbiased evaluation. The regularization strength λ is set as 0.05 based on
experimental results.

We tested different network architectures and realized that going deeper than
the proposed model in Fig. 1 would not help improving the classification accu-
racy, however the dimensionality of the hidden and the latent unit had direct
effect on the classification performance.

In the analysis of the results, the performance of the classifier are mea-
sured by its sensitivity (SE), specificity (SP) and accuracy (AC). Sensitivity,
which is the ability of the classifier to correctly identify positive results, is
defined as TP/(TP + FN). Specificity refers to the ability to correctly identify
negative results and is formulated as TN/(FP + TN). Accuracy is defined as
(TP + TN)/(TP + TN + FN+ FP).

As baseline, we train a linear Support Vector Machines (SVM) on the same
dataset after applying principle components analysis (PCA) for dimensionality
reduction. The features are extracted from 3D surface meshes after applying
spectral matching in the same way as our proposed method. The classification
accuracy for the proposed and the baseline methods is illustrated in Fig. 2. We

http://adni.loni.usc.edu/
http://www.adni-info.org
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Fig. 2. Comparison of the classification accuracy with a baseline approach using the
same spectral-based shape feature representation. The VAE-based method achieved
higher accuracy in most of the cases.

summarize the classification accuracy along with the sensitivity (SE), and speci-
ficity (SP) measures in Table 1.

These results show that our method produces higher accuracy in most of
the cases. As expected, the best classification accuracies are those obtained for
groups, which are well separated diagnostically. For instance, 84% and 81% for
the classification of NC versus AD and EMCI versus AD, respectively. The com-
putational time of both methods is around 60 s for training on 300 surfaces and
less than 5 ms for testing on one surface.

In addition, the obtained results is comparable to the previously proposed
approaches that have used MRI based features. For instance, Suk and Shen [12]
and Goryawala et al. [18] found the accuracy of 85% and 84%, respectively for
the classification of NC versus AD. These method have also included additional
information from PET modality or neuropsychological test to improve the clas-
sification performance. One future direction of our proposed approach would be
to include a combination of informative features to reach a higher accuracy.

Table 1. Comparison of the classification accuracy (AC%), sensitivity (SE%), and
specificity (SP%) with a baseline method using the same spectral-based shape feature
descriptor. The proposed method achieved higher accuracy in most of the cases.

NC/AD NC/EMCI NC/LMCI AD/EMCI AD/LMCI EMCI/LMCI

AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP AC SE SP

Baseline 80 70 86 55 52 58 63 56 75 76 65 71 63 58 66 51 50 52

Proposed 84 73 89 56 52 60 59 52 64 81 70 82 67 58 73 63 62 66
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4 Conclusions

In this paper we have proposed a deep learning method based on a spectral
feature representation using hippocampus morphology for the classification of
Alzheimer’s Disease. The morphological features were extracted as 3D surface
meshes from MR image and spectral matching process was used to establish
point-to-point correspondences in mesh vertices. A variational autoencoder was
trained to find the latent feature representation from hippocampus morpholog-
ical variations. A softmax classifier was applied to differentiate between NC,
EMCI, LMCI, and AD.

Experimental evaluation on the ADNI dataset demonstrates the effectiveness
of our approach especially in classifying AD vs. NC and AD vs. EMCI. This work
shows the importance of the VAE-based morphological feature representation in
improving the diagnosis accuracy in different stages of dementia. Future research
directions include adding other informative features, such as cognitive informa-
tion and multimodal data (e.g., PET) to increase the classification accuracy.
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