
Chapter 3
Permanents

Introduced in 1812 by Binet and Cauchy, permanents are of interest to combina-
torics, as they enumerate perfect matchings in bipartite graphs, to physics as they
compute certain integrals and to computer science as they occupy a special place in
the computational complexity hierarchy. This is our first example of a partition func-
tion and we demonstrate in detail how various approaches work. Connections with
H-stable polynomials lead, in particular, to an elegant proof of the van der Waerden
lower bound for the permanent of a doubly stochastic matrix. Combining it with the
Bregman -Minc upper bound,we show that permanents of doubly stochasticmatrices
are strongly concentrated. Via matrix scaling, this leads to an efficient approximation
of the permanent of non-negative matrices by a function with many convenient prop-
erties: it is easily computable, log-concave and generally amenable to analysis. As
an application of the interpolation method, we show how to approximate permanents
of a reasonably wide class of complex matrices and also obtain approximations of
logarithms of permanents of positive matrices by low degree polynomials.

3.1 Permanents

3.1.1 Permanent. Let A = (
ai j

)
be an n×n real or complexmatrix. The permanent

of A is defined as

per A =
∑

σ∈Sn

n∏

i=1

aiσ(i), (3.1.1.1)

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}.
One can see that the permanent does not change when the rows or columns of

the matrix are permuted and that per A is linear in each row and each column of A.
Moreover, if n > 1, then denoting by A j the (n − 1)× (n − 1) matrix obtained from
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48 3 Permanents

A by crossing out the first row and the j-th column, we obtain the row expansion

per A =
n∑

j=1

a1 j per A j . (3.1.1.2)

3.1.2 Permanents and perfect matchings. If A is a real matrix and ai j ∈ {0, 1}
for all i, j then per A has a combinatorial interpretation as the number of perfect
matchings in a bipartite graph G with biadjacency matrix A. Namely, the vertices of
G are 1L , 2L . . . , nL and 1R, 2R, . . . , n R (“L” is for “left” and “R” is for “right”),
whereas the edges of G are all unordered pairs {i L , j R} for which ai j = 1. A perfect
matching in a graph G is a collection of edges which contain every vertex of G
exactly once, see Fig. 3.1.

In this case, per A is the number of perfect matchings in G, since every perfect
matching in G corresponds to a unique permutation σ such that aiσ(i) = 1 for all
i = 1, . . . , n. For example, Fig. 3.1 pictures a graph encoded by the matrix

A =

⎛

⎜⎜
⎝

1 1 0 0
1 0 0 1
0 0 1 1
0 1 0 0

⎞

⎟⎟
⎠ (3.1.2.1)

and a perfect matching corresponding to the permutation

σ =
(
1 2 3 4
1 4 3 2

)
(3.1.2.2)

Fig. 3.1 A bipartite graph
and a perfect matching (thick
edges)
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3.1.3 Permanents and cycle covers. A different interpretation of the permanent of
a 0–1 matrix A arises if we interpret A as the adjacency matrix of a directed graph
G. In this case, the vertices of G are 1, . . . , n whereas the edges of G are all ordered
pairs (i, j) such that ai j = 1 (in particular, we allow loops). A cycle cover of G is a
collection of edges which contain every vertex of G exactly once as the beginning
point of an edge and exactly once as an endpoint of an edge, see Fig. 3.2.

In this case, per A is the number of cycle covers of G, since every cycle cover of
G corresponds to a unique permutation σ such that aiσ(i) = 1 for all i = 1, . . . , n.
For example, Fig. 3.2 pictures a graph encoded by the matrix (3.1.2.1) and a cycle
cover corresponding to the permutation (3.1.2.2).

Interpretations of Sects. 3.1.2 and 3.1.3 explain why permanents are of interest to
combinatorics, see [LP09] for more.

3.1.4 Permanents as integrals. Let μn be the Gaussian probability measure on the
complex vector space Cn with density

1

πn
e−‖z‖2 where ‖z‖2 = |z1|2 + . . . + |zn|2 for z = (z1, . . . , zn) .

The measure μn is normalized in such a way that

E |zi |2 = 1 for i = 1, . . . , n and E zi z j = 0 for i �= j.

Let f1, . . . , fn; g1, . . . , gn : Cn −→ C be linear forms and let us define an n × n
matrix A = (

ai j
)
by

ai j = E fig j =
∫

Cn

fi (z)g j (z) dμn for all i, j.

Then
E ( f1 · · · fng1 · · · gn) = per A. (3.1.4.1)

Formula (3.1.4.1) is known as (a version of) Wick’s formula, see for example, [Zv97]
and [Gu04]. To prove it, we note that both sides of (3.1.4.1) are linear in each
fi and antilinear in each g j . Namely, denoting the left hand side of (3.1.4.1) by
L ( f1, . . . , fn; g1, . . . , gn) and the right hand side by R ( f1, . . . , fn; g1, . . . , gn), we
observe that

L
(

f1, . . . , fi−1,α1 f ′
i + α2 f ′′

i , fi+1, . . . , fn; g1, . . . , gn
)

= α1L
(

f1, . . . , fi−1, f ′
i , fi+1, . . . , fn; g1, . . . , gn

)

+ α2L
(

f1, . . . , fi−1, f ′′
i , fi+1, . . . , fn; g1, . . . , gn

)

and

R
(

f1, . . . , fi−1,α1 f ′
i + α2 f ′′

i , fi+1, . . . , fn; g1, . . . , gn
)
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= α1R
(

f1, . . . , fi−1, f ′
i , fi+1, . . . , fn; g1, . . . , gn

)

+ α2R
(

f1, . . . , fi−1, f ′′
i , fi+1, . . . , fn; g1, . . . , gn

)

as well as

L
(

f1, . . . , fn; g1, . . . , gi−1,α1g
′
i + α2g

′′
i , gi+1 . . . , gn

)

= α1L
(

f1, . . . , fn; g1, . . . , gi−1, g
′
i , gi+1, . . . , gn

)

+ α2L
(

f1, . . . , fn; g1, . . . , gi−1, g
′′
i , gi+1, . . . , gn

)

and

R
(

f1, . . . , fn; g1, . . . , gi−1,α1g
′
i + α2g

′′
i , gi+1, . . . , gn

)

= α1R
(

f1, . . . , fn; g1, . . . , gi−1, g
′
i , gi+1, . . . , gn

)

+ α2R
(

f1, . . . , fn; g1, . . . , gi−1, g
′′
i , gi+1, . . . , gn

)
.

Hence it suffices to check (3.1.4.1) when each fi and g j is a coordinate function.
Suppose therefore that

( f1, . . . , fn) =
⎛

⎜
⎝z1, . . . , z1︸ ︷︷ ︸

m1 times

, . . . , zn, . . . , zn︸ ︷︷ ︸
mn times

⎞

⎟
⎠ and

(g1, . . . , gn) =
⎛

⎜
⎝z1, . . . , z1︸ ︷︷ ︸

k1 times

, . . . , zn, . . . , zn︸ ︷︷ ︸
kn times

⎞

⎟
⎠ ,

where m1, . . . , mn and k1, . . . , kn are non-negative integers such that

m1 + . . . + mn = k1 + . . . + kn = n.

If we have mi �= ki for some i then the left hand side of (3.1.4.1) is 0 since

E zmi
i zki

i = 0 provided mi �= ki .

On the other hand, the right hand side of (3.1.4.1) is also 0. Indeed, without loss of
generality, we may assume that mi > ki . The matrix A contains an mi × (n − ki )

block of 0 s and if mi > ki each of the n! terms of (3.1.1.1) contains and least one
entry from that block and hence is 0. Thus it remains to prove (3.1.4.1) in the case
when mi = ki for all i = 1, . . . , n. Since

E zmi
i zmi

i = mi !,
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Fig. 3.3 The structure of
matrix A
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we conclude that the left hand side of (3.1.4.1) is m1! · · · mn!. The matrix A in this
case consists of the diagonal blocks filled by 1s of sizes m1, . . . , mn , see Fig. 3.3,
and hence the right hand side of (3.1.4.1) is also m1! · · · mn!. �

One immediate corollary of (3.1.4.1) is that

per A ≥ 0 provided A is Hermitian positive semidefinite. (3.1.4.2)

Indeed, any such A = (
ai j

)
can be written as

ai j = E
(

fi f j
)

for all i, j

and some linear forms f1, . . . , fn , in which case by (3.1.4.1) we have

per A = E
(

f1 · · · fn f1 · · · fn
) = E

(| f1|2 · · · | fn|2
) ≥ 0.

The identity of Sect. 3.1.4 has some relevance to statistics of bosons in quantum
physics, see, for example, [AA13] and [Ka16].

3.1.5 Permanents in computational complexity. Permanents occupy a special
place in the theory of computational complexity. Valiant [Va79] proved that com-
puting permanents of 0–1 matrices exactly (that is, counting perfect matchings in
bipartite graphs exactly) is an example of a #P-complete problem, that is, counting
perfect matchings in bipartite graphs in polynomial time exactly would lead to a
polynomial time counting of the number of acceptable computations of a general
non-deterministic polynomial time Turing machine, see also [AB09] and [Go08].
This is especially striking since finding whether there exists a perfect matching in
a given bipartite graph is a famous problem solvable in polynomial time, see for
example, [LP09]. Exact computation of permanents of 0–1 matrices leads by inter-
polation to exact computation of permanents of matrices with 0 and ±1 entries and
those turn out to be sufficient to encode rather involved computations. In the alge-
braic complexity theory, permanents stand out as universal polynomials, see Part 5
of [B+97].

Permanents also stand out as an example of the problem where randomized algo-
rithms so far substantially outperform deterministic algorithms. The Monte Carlo
Markov Chain algorithm of Jerrum, Sinclair and Vigoda [J+04] approximates per-
manents of non-negative matrices in polynomial time and none of the deterministic
algorithms could achieve that so far, see also Sects. 3.7 and 3.9 below.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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3.2 Permanents of Non-negative Matrices
and H-Stable Polynomials

3.2.1 Permanents and products of linear forms. Let A = (
ai j

)
be an n ×n matrix

and let z1, . . . , zn be complex variables. The following simple formula has many
important consequences:

per A = ∂n

∂z1 · · · ∂zn

n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ . (3.2.1.1)

In other words, per A is the coefficient of z1 · · · zn in the product (3.2.1.1) of linear
forms.

We note that if A = (
ai j

)
is a non-negative real matrix with non-zero rows, then

the polynomial

f (z1, . . . , zn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠

is H-stable, see Sect. 2.4, since

�
⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ > 0 provided �z j > 0 for j = 1, . . . , n.

More generally, let a1, . . . , an be the columns of A, so that A = [a1, . . . , an].
Given a non-negative integer vector m = (m1, . . . , mn) such that m1+ . . .+mn = n,
let

Am =
⎡

⎢
⎣a1, . . . , a1︸ ︷︷ ︸

m1 times

, . . . , ak, . . . , ak︸ ︷︷ ︸
mk times

, . . . , an, . . . , an︸ ︷︷ ︸
mn times

⎤

⎥
⎦

be the n × n matrix with columns consisting of mk copies of ak for k = 1, . . . , n.
Then

∂n

∂zm1
1 · · · ∂zmn

n

n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ = per Am (3.2.1.2)

(if mk = 0 for some k then the corresponding partial derivative is missing and so are
the copies of ak in Am). Indeed, the left hand side of (3.2.1.2) is the coefficient of
zm1
1 · · · zmn

n in the product of linear forms

fi (z1, . . . , zn) =
n∑

j=1

ai j z j ,

http://dx.doi.org/10.1007/978-3-319-51829-9_2


3.2 Permanents of Non-negative Matrices and H-Stable Polynomials 53

multiplied by m1! · · · mn!. Hence the left hand side of (3.2.1.2) can be written as

∫

Cn

f1 · · · fnzm1
1 · · · zmn

n dμn,

for the Gaussian measure μn of Sect. 3.1.4, and (3.2.1.2) follows by (3.1.4.1).

3.2.2 Alexandrov - Fenchel inequalities. One immediate application of (3.2.1.1)
and (3.2.1.2) is an inequality for permanents of non-negative matrices, which is a
particular case of the Alexandrov - Fenchel inequality for mixed volumes of convex
bodies, see, for example, [Sa93].

Let [a1, . . . , an] denote the n × n matrix with non-negative real columns
a1, . . . , an . Then

per2[a1, . . . , an] ≥ per[a1, a1, a3, . . . , an] per[a2, a2, a3, . . . , an]. (3.2.2.1)

By continuity, it suffices to prove (3.2.2.1) assuming that the coordinates ofa1, . . . , an

are strictly positive. Let ai j > 0 be the i-th coordinate of a j . Then, from Sect. 3.2.1,
the polynomial

f (z1, . . . , zn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠

is H-stable. Let

g(z1, z2) = ∂n−2

∂z3 · · · ∂zn
f = uz21 + 2vz1z2 + wz22.

Using (3.2.1.2) we observe that

u =1

2
per[a1, a1, a3, . . . , an], v = 1

2
per[a1, . . . , an] and

w =1

2
per[a2, a2, a3, . . . , an].

By the repeated application of Part (3) of Lemma 2.4.2, the quadratic polynomial q is
H-stable, which implies that v2 ≥ uw and we get (3.2.2.1). Indeed, if v2 < uw then
the univariate polynomial t 	−→ u +2vt +wt2 has a pair of complex conjugate roots
α±βi for someβ > 0.Then, for any ε > 0, the point z1 = 1+iε, z2 = (α+βi)(1+iε)
is a root of q(z1, z2) and if ε > 0 is sufficiently small, we have �z2 = αε + β > 0,
which contradicts the H-stability of q.

The connection of (3.2.2.1) to the Alexandrov - Fenchel inequality for mixed
volumes is as follows. Let K1, . . . , Kn ⊂ R

n be convex bodies and let λ1, . . . ,λn be
positive real numbers. We consider a combination λ1K1 + . . . + λn Kn , where

λK = {λx : x ∈ K }

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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is the dilation/contraction by a factor of λ and “+” stands for the Minkowski sum of
convex bodies:

A + B = {x + y : x ∈ A, y ∈ B}.

As is known, the volume vol (λ1K1 + . . . + λn Kn) is a homogeneous polynomial in
λ1, . . . ,λn and its coefficient

V (K1, . . . , Kn) = ∂n

∂λ1 · · · ∂λn
vol (λ1K1 + . . . + λn Kn)

is called the mixed volume of K1, . . . , Kn . The Alexandrov - Fenchel inequality
asserts that

V 2(K1, . . . , Kn) ≥ V (K1, K1, K3, . . . , Kn)V (K2, K2, K3, . . . , Kn). (3.2.2.2)

We obtain (3.2.2.1), if we choose K j to be the parallelepiped, that is the direct product
of axis-parallel intervals:

K j = [0, a1 j ] × . . . × [0, anj ].

In this case λ1K1 + . . . + λn Kn is the parallelepiped

⎡

⎣0,
n∑

j=1

a1 jλ j

⎤

⎦ × . . . ×
⎡

⎣0,
n∑

j=1

anjλ j

⎤

⎦ ,

cf. Fig. 3.4,
so that

Fig. 3.4 Parallelepipeds K1,
K2 and their Minkowski sum
K1 + K2

K1

K1+K2

K2
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vol (λ1K1 + . . . + λn Kn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai jλ j

⎞

⎠

and
V (K1, . . . , Kn) = per A where A = (

ai j
)
,

We note that for general convex bodies K1, . . . , Kn , the polynomial vol(λ1K1 +
. . . + λn Kn) does not have to be H-stable, cf. [Kh84].

3.3 The van der Waerden Inequality and Its Extensions

3.3.1 Doubly stochastic matrices. A real n × n matrix A = (
ai j

)
is called doubly

stochastic if

n∑

j=1

ai j = 1 for i = 1, . . . , n,

n∑

i=1

ai j = 1 for j = 1, . . . , n

and
ai j ≥ 0 for all i, j.

In words: a matrix is doubly stochastic if it is non-negative real with all row and
column sums equal 1.

Clearly, permutation matrices (matrices, containing in each row and column
exactly one non-zero entry equal to 1) are doubly stochastic, as well as the matrix

1

n
Jn,

where Jn is the n × n matrix of all 1s.
The main goal of this section is to prove the following result, known as the

van der Waerden conjecture.

3.3.2 Theorem. Let A be an n × n doubly stochastic matrix. Then

per A ≥ n!
nn

.

Moreover, the equality is attained if and only if A = 1

n
Jn.

Theorem 3.3.2 was first proved by Falikman [Fa81] and Egorychev [Eg81] (earlier
Friedland [Fr79] proved a slightly weaker bound per A ≥ e−n). Our exposition
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follows Gurvits’ paper [Gu08] with some simplifications introduced in [Wa11] and
[LS10]. We use the notion of capacity, see Sect. 2.1.5, Theorem 2.4.3 and Corollary
2.4.6.

3.3.3 Lemma. Let A = (
ai j

)
be an n × n doubly stochastic matrix and let

p(x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ .

Then

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn
= 1.

Proof. Clearly, p(1, . . . , 1) = 1 and hence the infimum does not exceed 1. On the
other hand, using the arithmetic-geometric mean inequality, see Sect. 2.1.1.1, we
conclude that for x1, . . . , xn > 0 we get

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ≥
n∏

i=1

⎛

⎝
n∏

j=1

x
ai j

j

⎞

⎠ =
n∏

j=1

(
n∏

i=1

x
ai j

j

)

=
n∏

j=1

(
x
∑n

i=1 ai j

j

)
=

n∏

j=1

x j

and hence the infimum is at least 1. �
To prove the van der Waerden inequality, we use H-stability, see Sect. 3.2.

3.3.4 Proof of Theorem 3.3.2. As in Sect. 3.2.1, we define a polynomial p = pA

in n variables x1, . . . , xn:

p (x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ .

As we discussed in Sect. 3.2.1, the polynomial p isH-stable and hence by Corollary
2.4.6, we have

∂n p

∂x1 · · · ∂xn
≥ n!

nn
inf

x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn
. (3.3.4.1)

By (3.2.1.1), the left hand side of (3.3.4.1) is per A, while by Lemma 3.3.3, the
infimum in the right hand side of (3.3.4.1) is 1.

In the uniqueness proof, we follow [LS10]. Suppose now that A is a doubly
stochastic matrix such that per A = n!/nn . Then inequality (3.3.4.1) is, in fact,
equation. Analyzing the proof of Theorem 2.4.3 in Sect. 2.4.5, we conclude that for

q(x1, . . . , xn−1) = ∂

∂xn

⎛

⎝
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠

⎞

⎠
∣∣
∣∣
xn=0

=
n∑

k=1

akn

∏

i :i �=k

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠ ,

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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we must have

inf
x1,...,xn−1>0

q (x1, . . . , xn−1)

x1 · · · xn−1
=

(
n − 1

n

)n−1

. (3.3.4.2)

Applying the arithmetic-geometric mean inequality, see Sect. 2.1.1.1, we conclude
that for all x1 > 0, . . . , xn−1 > 0, we get

q(x1, . . . , xn−1) ≥
n∏

k=1

∏

i :i �=k

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠

akn

=
n∏

i=1

∏

k:k �=i

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠

akn

=
n∏

i=1

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠

1−ain

.

Using the arithmetic-geometric mean inequality again, we conclude that for all x1 >

0, . . . , xn−1 > 0, we have

q(x1, . . . , xn−1) ≥
n∏

i=1

⎛

⎝(1 − ain)

n−1∑

j=1

ai j

1 − ain
x j

⎞

⎠

1−ain

≥
n∏

i=1

⎛

⎝(1 − ain)
1−ain

n−1∏

j=1

x
ai j

j

⎞

⎠

=
(

n∏

i=1

(1 − ain)
1−ain

)⎛

⎝
n−1∏

j=1

x j

⎞

⎠ .

Therefore,

inf
x1,...,xn−1>0

q (x1, . . . xn−1)

x1 . . . xn−1
≥

n∏

i=1

(1 − ain)
1−ain .

By (3.3.4.2), we must have

n∏

i=1

(1 − ain)
1−ain ≤

(
n − 1

n

)n−1

. (3.3.4.3)

Now, since the function t 	−→ t ln t is strictly convex for t > 0, see Sect. 2.1.1.2, we
conclude that

1

n

n∑

i=1

ti ln ti ≥ t1 + . . . + tn
n

ln
t1 + . . . + tn

n

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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for all t1, . . . , tn with equality if and only if t1 = . . . = tn . Applying it with ti =
1 − ain , we get

1

n

n∑

i=1

(1 − ain) ln (1 − ain) ≥ n − 1

n
ln

n − 1

n

with equality if and only if ain = 1/n for i = 1, . . . , n. In other words,

n∏

i=1

(1 − ain)
1−ain ≥

(
n − 1

n

)n−1

with equality if and only if ain = 1/n for i = 1, . . . , n. Comparing thiswith (3.3.4.3),
we conclude that if per A = n!/n, we must have ain = 1/n for i = 1, . . . , n. Since
the matrix obtained from a doubly stochastic matrix by a permutation of columns
remains doubly stochastic with the same permanent, we conclude that ai j = 1/n for
all i and j as desired. �
3.3.5 Sharpening. Suppose that A is a doubly stochastic matrix and that, addi-
tionally, the j-th column of A contains not more than k j non-zero entries for some
1 ≤ k j ≤ n and j = 1, . . . , n. Using Theorem 2.4.3, we obtain

per A = ∂n

∂x1 · · · ∂xn
p ≥

n∏

j=1

(
k j − 1

k j

)k j −1

(3.3.5.1)

or, even sharply,

per A ≥
n∏

j=1

(
min{ j, k j } − 1

min{ j, k j }
)min{ j,k j }−1

, (3.3.5.2)

where the corresponding factor is 1 if min{ j, k j } = 1. Inequalities (3.3.5.1) and
(3.3.5.2) are also due to Gurvits [Gu08]. In the case when all k j = 3 for all j , the
inequality (3.3.5.2) was obtained by Voorhoeve [Vo79] and in the case when all k j

are equal, the inequality (3.3.5.1) was obtained by Schrijver [Sc98]. In the case of
all k j equal, we will give a different proof of (3.3.5.1) in the particular case when
the non-zero entries of A are 1/k in Theorem 5.3.6, where we also show, following
Csikvári [Cs14], that asymptotically, as n grows, the bound is logarithmically exact.

3.4 The Bregman–Minc Inequality and Its Corollaries

The following inequality was conjectured by Minc, cf. [Mi78], and proved by
Bregman [Br73]. We follow the approach of Radhakrishnan [Ra97], only using the
language of partitions instead that of random variables.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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3.4.1 Theorem. Let A = (
ai j

)
be an n × n matrix such that ai j ∈ {0, 1} for all i, j .

Let

ri =
n∑

j=1

ai j

be the number of 1s in the i th row of A. Then

per A ≤
n∏

i=1

(ri !)1/ri .

Let us define

� = {σ ∈ Sn : aiσ(i) = 1 for i = 1, . . . , n}.

Hence
per A = |�|.

Without loss of generality, we assume that � �= ∅, in which case we consider � as
a probability space with uniform measure.

We start with a probabilistic argument.

3.4.2 Lemma. Let us fix a permutation σ ∈ � and an index 1 ≤ i ≤ n. Let us
choose a permutation τ ∈ Sn uniformly at random, find k such that τ (k) = i and
cross out from A the columns indexed by σ(τ (1)), . . . ,σ(τ (k − 1)). Let x be the
number of 1s remaining in the i th row of A after the columns are crossed out. Then

Pr (x = a) = 1

ri
for a = 1, . . . , ri .

Proof. Let J be the set of indices of columns where the i th row of A contains 1 and
let I = σ−1(J ). Then i ∈ I and x is the number of indices in τ−1(I ) that are greater
than or equal to k = τ−1(i). Since τ ∈ Sn is chosen uniformly at random, τ−1(i) is
equally probable to be the largest, second largest, etc. element of τ−1(I ). �

3.4.3 Proof of Theorem 3.4.1
For a permutation τ ∈ Sn we construct a family of partitions

F τ ,0 
 Fτ ,1 
 . . . 
 Fτ ,n

of � as follows. We let Fτ ,0 = {�}. The partition Fτ ,1 consists of the events

Fi = {
σ ∈ � : σ(τ (1)) = i

}
for i = 1, . . . , n

(note that not more than rτ (1) of the events Fi are non-empty). Generally, the partition
Fτ ,k consists of the events
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Fi1,...,ik = {
σ ∈ � : σ(τ (1)) = i1, . . . ,σ(τ (k)) = ik

}

for distinct 1 ≤ i1, . . . , ik ≤ n

(again, some of the events can be empty). In particular, the non-empty events inFτ ,n

are singletons. From (2.1.2.4), using that H({�}) = 0 and H({Fτ ,n}) = ln |�|, we
obtain

ln |�| =
n∑

k=1

H(Fτ ,k |Fτ ,k−1).

Averaging over all τ ∈ Sn , we obtain

ln |�| = 1

n!
∑

τ∈Sn

n∑

k=1

H(Fτ ,k |Fτ ,k−1). (3.4.3.1)

For a permutation σ ∈ �, let Fτ ,k−1(σ) be the block of Fτ ,k−1 that contains σ. We
consider Fτ ,k−1(σ) as a probability space with conditional probability measure and
let Fτ ,k−1(σ) be the partition of that space by the events of Fτ ,k . Then

H(Fτ ,k |Fτ ,k−1) =
∑

σ∈�

Pr (σ)H
(Fτ ,k−1(σ)

)
,

cf. (2.1.2.3), and by (3.4.3.1) we have

ln |�| = 1

n!
∑

τ∈Sn

n∑

k=1

∑

σ∈�

Pr (σ)H
(Fτ ,k−1(σ)

)

=
∑

σ∈�

Pr (σ)
1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

)
.

(3.4.3.2)

We fix an arbitrary σ ∈ � and consider the sum

1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

)
. (3.4.3.3)

Recall that Fτ ,k−1(σ) is the partition of the probability space � consisting of all
permutations π ∈ � such that π(τ (1)) = σ(τ (1)), . . . ,π(τ (k − 1)) = σ(τ (k − 1))
into the events defined by the choice ofπ(τ (k)).We rearrange (3.4.3.3) in accordance
with the value of i = τ (k):

1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

) =
n∑

i=1

1

n!
∑

τ∈Sn

H
(Fτ ,τ−1(i)−1(σ)

)
(3.4.3.4)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and consider each term
1

n!
∑

τ∈Sn

H
(Fτ ,τ−1(i)−1(σ)

)
(3.4.3.5)

separately.
Now, the partitionFτ ,τ−1(i)−1(σ) looks as follows.We fixed σ ∈ � and 1 ≤ i ≤ n.

For the permutation τ , we find k such that τ (k) = i , consider the probability space of
all permutationsπ ∈ � such thatπ(τ (1)) = σ(τ (1)), . . . ,π(τ (k−1)) = σ(τ (k−1))
endowed with uniform probability measure and partition it according to the value of
π(i). By (2.1.2.2),

H
(Fτ ,τ−1(i)−1(σ)

) ≤ ln a provided Fτ ,τ−1(i)−1(σ) contains a events.

By Lemma 3.4.2, the value of (3.4.3.5) does not exceed

1

ri

ri∑

a=1

ln a = 1

ri
ln(ri !).

Then by (3.4.3.4), the value of (3.4.3.3) does not exceed

n∑

i=1

1

ri
ln(ri !).

By (3.4.3.2), we get

ln |�| ≤
n∑

i=1

1

ri
ln(ri !),

and the proof follows. �

3.4.4 Remark. Let Jr be the r × r matrix filled with 1s. If A is a block-diagonal
matrix with blocks Jr1 , . . . , Jrm , then

per A =
m∏

i=1

ri !,

from which it follows that the bound of Theorem 3.4.1 is sharp.

Theorem 3.4.1 allows us to bound permanents of stochastic matrices.

3.4.5 Corollary. Suppose that A = (
ai j

)
is an n × n stochastic matrix, that is,

ai j ≥ 0 for all i, j and

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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n∑

j=1

ai j = 1 for all i = 1, . . . , n. (3.4.5.1)

Suppose that

ai j ≤ 1

bi
for all i, j (3.4.5.2)

and some positive integers b1, . . . , bn. Then

per A ≤
n∏

i=1

(bi !)1/bi

bi
.

Proof. Let us fix all but the i-th row of an n × n matrix A and allow the i th row
vary. Then per A is a linear function in the i-th row ai = (ai1, . . . , ain). Let us
consider the polytope Pi of all n-vectors ai = (ai1, . . . , ain) such that all entries
ai j are non-negative and the conditions (3.4.5.1) and (3.4.5.2) are met. By linearity,
the maximum value of per A on Pi is attained at a vertex of Pi , in which case we
necessarily have ai j ∈ {0, 1/bi j } for j = 1, . . . , n. Indeed, if 0 < ai j1 < 1/bi for
some j1 then there is another j2 �= j1 such that 0 < ai j2 < 1/bi (recall that bi is an
integer). In that case, we can write ai = (

a1
i + a2

i

)
/2, where a1

i is obtained from ai

by the perturbation ai j1 := ai j1 + ε, ai j2 := ai j2 − ε and a2
i is obtained from ai by the

perturbation ai j1 := ai j1 − ε, ai j2 := ai j2 + ε for a sufficiently small ε > 0, which
implies that ai is not a vertex of Pi .

Hence we conclude that the maximum of per A on the set of n × n non-negative
matrices A = (

ai j
)
satisfying (3.4.5.1) and (3.4.5.2) is attained when ai j ∈ {0, 1/bi j }

for all i, j . Let B be the matrix obtained from such a matrix A by multiplying the
i-th row by bi . Then

per B =
(

n∏

i=1

1

bi

)

per A and per B ≤
n∏

i=1

(bi !)1/bi

by Theorem 3.4.1. �

The author learned Corollary 3.4.5 and its proof from A. Samorodnitsky [Sa01],
see also [So03] for a somewhat more general statement with bi not required to be
integer.

3.4.6 Concentration of the permanent of doubly stochastic matrices. The
van der Waerden bound (Theorem 3.3.2) together with the Bregman - Minc bound
(Corollary 3.4.5) implies that per A does not vary much if A is a doubly stochastic
matrixwith small entries. Indeed, suppose that A is an n×n doubly stochasticmatrix.
Then, by Theorem 3.3.2,

per A ≥ n!
nn

≥ e−n .

Let us fix an α ≥ 1 and suppose that, additionally,
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ai j ≤ α

n
for all i, j.

Let
b =

⌊ n

α

⌋
,

so that

ai j ≤ 1

b
for all i, j

and by Corollary 3.4.5,

per A ≤
(

(b!)1/b

b

)n

= e−nnO(α).

Hence if the entries of an n × n doubly stochastic matrix are within a constant factor
of each other, the permanent of the matrix varies within a polynomial in n factor.

In fact,

n∏

i, j=1

(
1 − ai j

)1−ai j ≤ per A ≤ 2n
n∏

i, j=1

(
1 − ai j

)1−ai j (3.4.6.1)

for any n × n doubly stochastic matrix A (if ai j = 1 the corresponding factor is 1),
where the lower bound is due to Schrijver [Sc98] and the upper bound was recently
established by Gurvits and Samorodnitsky [GS14], who also conjectured that the
upper bound holds with 2n replaced by 2n/2.

The following useful inequality was conjectured by Vontobel [Vo13] and deduced
by Gurvits [Gu11] from the lower bound in (3.4.6.1)

Let A = (
ai j

)
be an n × n positive real matrix and let B = (

bi j
)
be an n × n

doubly stochastic matrix.Then

ln per A ≥
n∑

i, j=1

bi j ln
ai j

bi j
+

n∑

i, j=1

(
1 − bi j

)
ln

(
1 − bi j

)
.

We prove the inequality in Theorem 5.4.2 following the approach of Lelarge [Le15].
Note that if A is doubly stochastic, by choosing B = A we recover the lower bound
in (3.4.6.1).

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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3.5 Matrix Scaling

Results of Sects. 3.3 and 3.4 provide us with some rather useful estimates of perma-
nents of doubly stochastic matrices. It turns out that computing the permanent of any
positive real matrix can be easily reduced to computing the permanent of a doubly
stochastic matrix.

3.5.1 Matrix scaling. Let A = (
ai j

)
be an n × n matrix. We say that A is obtained

by scaling from an n × n matrix B = (
bi j

)
if

ai j = λiμ j bi j for all i, j

and some numbers λ1, . . . ,λn , μ1, . . . ,μn .
We note that in this case

per A =
(

n∏

i=1

λi

)⎛

⎝
n∏

j=1

μ j

⎞

⎠ per B. (3.5.1.1)

3.5.2 Theorem. For any n × n matrix A = (
ai j

)
such that

ai j > 0 for all i, j,

there exists a unique n×n doubly stochastic matrix B = (
bi j

)
and positive λ1, . . . ,λn

and μ1, . . . ,μn such that

ai j = λiμ j bi j for all i, j. (3.5.2.1)

The numbers λi and μ j are unique up to a rescaling

λi 	−→ λiτ , μ j 	−→ μ jτ
−1

for some τ > 0.

Proof. Without loss of generality, wemay assume that n ≥ 2. Let�n be the polytope
of all n × n doubly stochastic matrices X = (

xi j
)
and let us consider a function

f : �n −→ R defined by

f (X) =
n∑

i, j=1

xi j ln
xi j

ai j
.

Then f is a strictly convex function, cf. Sect. 2.1.1.2, and hence it attains its unique
minimum, say B = (

bi j
)
, on �n .

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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First, we establish that bi j > 0 for all i, j . Indeed,

∂

∂xi j
f (X) = ln

xi j

ai j
+ 1. (3.5.2.2)

If xi j = 0 we consider the right derivative and conclude that it is equal to−∞, while
for any xi j > 0 the derivative is finite. Let 1

n Jn ∈ �n be the matrix with all entries
equal to 1/n and let B(t) = (1− t)B + t 1

n Jn , so that B(0) = B and B(1) = 1
n Jn . If

bi j = 0 for some i, j then for all sufficiently small t > 0 we have

f (Bt ) < f (B),

which contradicts the definition of B as the minimum point of f .
Thus B is a positive matrix and therefore lies in the relative interior of �n . It

follows from (3.5.2.2) by the Lagrange multiplier conditions that there are numbers
α1, . . . ,αn and β1, . . . ,βn such that

ln
bi j

ai j
= αi + β j for all i, j.

Letting
λi = e−αi and μ j = e−β j ,

we obtain (3.5.2.1).
On the other hand, if a doubly stochastic matrix B = (

bi j
)
satisfies (3.5.2.1)

then necessarily bi j > 0 for all i, j and B is a critical point of f on �n . Since f is
strictly convex, B must be the unique minimum point of f on �n , which proves the
uniqueness of B.

From (3.5.2.1) and the uniqueness of B, we obtain the uniqueness of λi and μ j

up to a rescaling. �

Scaling can be obtained by solving a different optimization problem.

3.5.3 Lemma. Let A = (
ai j

)
be an n × n positive matrix. Let us define a function

gA : Rn ⊕ R
n −→ R by

gA(x, y) =
n∑

i, j=1

ai j e
xi +y j where x = (x1, . . . , xn) and y = (y1, . . . , yn)

and let L ⊂ R
n ⊕ R

n be the subspace defined by the equations

n∑

i=1

xi =
n∑

j=1

y j = 0.
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Then g attains its minimum on L at some point (x∗, y∗) where x∗ = (ξ1, . . . , ξn) and
y∗ = (η1, . . . , ηn). Let

λi = e−ξi

√
gA (x∗, y∗)

n
and μ j = e−η j

√
gA (x∗, y∗)

n

for all i, j and let us define an n × n matrix B = (
bi j

)
by

bi j = λ−1
i μ−1

j ai j for all i, j.

Then B is a doubly stochastic matrix.

Proof. First, we claim that the minimum of gA onL is indeed attained at some point.
Let

δ = min
i j

ai j > 0.

Since for all (x, y) ∈ L, we have xi ≥ 0 and y j ≥ 0 for some i and j , we have

gA(x, y) > gA(0, 0) if xi > ln
gA(0, 0)

δ
or y j > ln

gA(0, 0)

δ

for some i, j . On the other hand, if for some (x, y) ∈ L we have xi < −t for some
t > 0 then x j > t/n for some j and, similarly, if yi < −t for some t > 0 then
y j > t/n for some j . Therefore, the minimum of gA on L is attained on the compact
subset

|xi | ,
∣∣y j

∣∣ ≤ n ln
gA(0, 0)

δ
for all i, j.

At the minimum point, the gradient of gA(x, y) is orthogonal to L, so for some α
and β we have

n∑

j=1

ai j e
ξi +η j = α for i = 1, . . . , n

and
n∑

i=1

ai j e
ξi +η j = β for j = 1, . . . , n.

(3.5.3.1)

Summing the first set of equations over i = 1, . . . , n and the second set of equations
over j = 1, . . . , n, we conclude that

n∑

i, j=1

ai j e
ξi +η j = nα = nβ,
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so

α = β = 1

n
gA

(
x∗, y∗)

and the proof follows from (3.5.3.1). �

3.5.4 Remark. Theorem 3.5.2 was proved by Sinkhorn [Si64], who used a different
approach. He showed that, given a positive matrix A, the repeated row and column
scaling (first, scale all rows to row sum 1, then scale all columns to column sum 1,
then again rows, then again columns, etc.) converges to the desired doubly stochastic
matrix B. An approach to scaling via a solution of an appropriate optimization
problem (similar to our Lemma 3.5.3) was used in [MO68] and several other papers
since then.

Clearly, not every non-negative matrix can be scaled to doubly stochastic (for
example, the matrix of all zeros cannot). Some non-negative matrices can be scaled
arbitrarily close to doubly stochastic, but cannot be scaled exactly, for example the
matrix

A =
(
1 0
1 1

)
.

Indeed, multiplying the first column by ε > 0 and the first row by ε−1, we obtain the
matrix

B =
(
1 0
ε 1

)

with row and column sums arbitrarily close to 1, but never exactly 1. It is shown
in [L+00] that a non-negative matrix A can be scaled arbitrarily close to a doubly
stochastic matrix if and only if per A > 0 and that it can be scaled exactly to a doubly
stochastic matrix, if, in addition, whenever for a set I ⊂ {1, . . . , n} of rows and for
a set J ⊂ {1, . . . , n} of columns such that |I | + |J | = n we have ai j = 0 for i ∈ I
and j ∈ J , we must also have ai j = 0 for all i /∈ I and j /∈ J . The conditions for
approximate and exact scaling can be efficiently (in polynomial time) verified. Also
[L+00] contains the fastest known algorithm for matrix scaling.

As is observed in [L+00], formula (3.5.1.1) together with the inequality

n!
nn

≤ per B ≤ 1

for the permanent of a doubly stochastic matrix B allows one to estimate the perma-
nent of any n × n non-negative matrix A within a multiplicative factor of roughly en

and the inequality (3.4.6.1) improves the factor further to 2n (and, conjecturally, to
2n/2). Computationally, matrix scaling is very efficient and in view of Sect. 3.4.6 it is
natural to ask for which matrices A their doubly stochastic scaling B will not have
large entries, so that a better upper bound on per B can be used.
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3.5.5 Definition. Let A = (
ai j

)
be an n × n positive matrix. For α ≥ 1 we say that

A is α-conditioned if

ai j1 ≤ αai j2 for any 1 ≤ i, j1, j2 ≤ n

and
ai1 j ≤ αai2 j for any 1 ≤ i1, i2, j ≤ n.

In words: an n × n positive matrix is α-conditioned if the ratio of any two entries of
A in the same row and the ratio of any two entries of A in the same column do not
exceed α.

3.5.6 Lemma. Let A be an n × n matrix which is α-conditioned for some α ≥ 1.
Let B = (

bi j
)

be the doubly stochastic matrix obtained from A by scaling. Then B
is α2-conditioned. In particular,

bi j ≤ α2

n
for all i, j.

Proof. Let A = (
ai j

)
and let λ1, . . . ,λn and μ1, . . . ,μn be positive real such that

bi j = λiμ j ai j for all i, j.

Then
bi j1

bi j2

= μ j1

μ j2

ai j1

ai j2

≤ μ j1

μ j2

α for all 1 ≤ j1, j2 ≤ n. (3.5.6.1)

Since
n∑

i=1

bi j1 =
n∑

i=1

bi j2 = 1,

we conclude that
μ j1

μ j2

≥ 1

α
for all j1, j2.

On the other hand, since

ai j1

ai j2

≥ 1

α
for all j1, j2,

from (3.5.6.1) we conclude that

bi j1

bi j2

≥ 1

α2
for all j1, j2. (3.5.6.2)
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Similarly, we prove that
bi1 j

bi1 j
≥ 1

α2
for all i1, i2

and hence B is α2-conditioned.
Since

n∑

j=1

bi j = 1 for all i = 1, . . . , n,

we have

bi j ≥ 1

n
for every i and some j

and the proof follows by (3.5.6.2). �
Lemma 3.5.6 together the observation of Sect. 3.4.6 and formula (3.5.1.1) allows

us, given an n × n positive matrix A whose entries are within a constant factor of
each other, to compute per A by scaling within a polynomial in n factor.

Although the scaling factors λ1, . . . ,λn and μ1, . . . ,μn are not uniquely defined
by thematrix, Theorem3.5.2 implies that their productλ1 · · ·λnμ1 · · · μn is a function
of the matrix. It has some interesting convex properties.

3.5.7 Lemma. For an n × n positive matrix A = (
ai j

)
, let us define a number f (A)

as follows: Let B = (
bi j

)
be a doubly stochastic matrix and let λ1, . . . ,λn and

μ1, . . . ,μn be positive numbers such that

ai j = λiμ j bi j for all i, j.

Let

f (A) =
(

n∏

i=1

λi

)⎛

⎝
n∏

j=1

μ j

⎞

⎠ .

Then f is well-defined and satisfies the following properties:

(1) Function f is homogeneous of degree n:

f (αA) = αn f (A) for all α > 0

and all positive n × n matrices A;
(2) Function f is monotone:

f (C) ≤ f (A)

for any positive n × n matrices A = (
ai j

)
and C = (

ci j
)

such that

ci j ≤ ai j for all i, j;
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(3) Function f 1/n is concave:

f 1/n (α1A1 + α2 A2) ≥ α1 f 1/n(A1) + α2 f 1/n(A2)

for any positive n × n matrices A1 and A2 and any α1,α2 ≥ 0 such that
α1 + α2 = 1.

Proof. Theorem 3.5.2 implies that f is well-defined and Part (1) is straightforward.
As in Lemma 3.5.3, let us define

gA(x, y) =
n∑

i, j=1

ai j e
xi +y j

and let L ⊂ R
n ⊕ R

n be the subspace defined by the equations x1 + . . . + xn = 0
and y1 + . . . + yn = 0. Then, by Lemma 3.5.3,

f (A) = 1

nn
min

(x,y)∈L
gn

A(x, y).

Since gC(x, y) ≤ gA(x, y) for all (x, y) ∈ L provided ci j ≤ ai j for all i, j , the proof
of Part (2) follows.

We have

f 1/n(A) = 1

n
min

(x,y)∈L
gA(x, y)

and hence for A = α1A1 + α2 A2 we have

f 1/n(A) = 1

n
min

(x,y)∈L
gA(x, y) = 1

n
min

(x,y)∈L
α1gA1(x, y) + α2g2A2(x, y)

≥α1

n
min

(x,y)∈L
gA1(x, y) + α2

n
min

(x,y)∈L
gA2 (x, y) = α1 f 1/n(A1) + α2 f 1/n(A2),

which completes the proof of Part (3). �
It is not hard to see that the function f of Lemma 3.5.7 is the capacity

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn

of the polynomial

p(x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

cf. Sect. 2.1.5 and Lemma 3.3.3.
We state the scaling theorem in the most general form (we will use it later in

Chap.8).

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_8
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3.5.8 Theorem. Let r = (r1, . . . , rm) and c = (c1, . . . , cn) be positive integer
vectors such that

m∑

i=1

ri =
n∑

j=1

c j = N .

Then for any positive m × n matrix A = (
ai j

)
there exists an m × n positive matrix

B = (
bi j

)
with row sums r1, . . . , rm and column sums c1, . . . , cn and positive real

λ1, . . . ,λm and μ1, . . . ,μn such that

ai j = λiμ j bi j for all i, j.

Moreover, given r , c and A, the matrix B is unique and can be found as the minimum
point of the function

f =
∑

1≤i≤m
1≤ j≤n

xi j ln
xi j

ai j

on the polytope �r,c of non-negative m × n matrices with row sums r and column
sums c. The numbers λi and μ j are unique up to a rescaling

λi 	−→ λiτ , μ j 	−→ μ jτ
−1

for some τ > 0 and can be found as follows:
Let us define gA : Rm ⊕ R

n −→ R by

gA(x, y) =
∑

1≤i≤m
1≤ j≤n

ai j e
xi +y j for x = (x1, . . . , xm) and y = (y1, . . . , yn)

and let Lr,c ⊂ R
m ⊕ R

n be the subspace defined by the equations

m∑

i=1

ri xi = 0 and
n∑

j=1

c j y j = 0.

Then the minimum of gA on Lr,c is attained at some point x∗ = (ξ1, . . . , ξm) and
y∗ = (η1, . . . , ηn) and we may let

λi = e−ξi

√
gA(x∗, y∗)

N
and μ j = e−η j

√
gA(x∗, y∗)

N

for all i, j . �

The proof is very similar to those of Theorem3.5.2 andLemma 3.5.3 and therefore
omitted.



72 3 Permanents

3.6 Permanents of Complex Matrices

In this section, we take a look at the permanents of matrices with complex entries.
Such permanents are of interest in physics, see, for example, [AA13] and [Ka16].
First, we prove that the permanents of matrices sufficiently close to the n × n matrix
Jn of all 1s is not 0.

3.6.1 Theorem. There exists an absolute constant δ0 > 0 (one can choose δ0 = 0.5)
such that for any n × n matrix A = (

ai j
)

with complex entries satisfying

∣∣1 − ai j

∣∣ ≤ δ0 for all i, j

we have
per A �= 0.

Geometrically, the �∞ distance from the matrix Jn to the hypersurface per Z = 0
in the spaceCn×n of n×n complex matrices is bounded below by a positive constant,
independent on n. Later, in Theorem 5.5.3, we prove that per A �= 0 if the �1 distance
of every row and column of an n × n complex matrix A to the vector of all 1 s does
not exceed γn for some absolute constant γ > 0 (one can choose γ = 0.0696).

In view of Theorem 3.6.1, we can choose a branch of ln per A for all matrices
A = (

ai j
)
satisfying

∣∣1 − ai j

∣∣ ≤ δ0 such that ln per Jn is a real number, where Jn is
the n × n matrix of all 1s.

3.6.2 Theorem. Let us fix some 0 < δ < δ0, where δ0 is the constant in Theorem
3.6.1. Then there exists γ = γ(δ) > 0 and for any ε > 0 and positive integer n there
exists a polynomial p = pn,δ,ε in the entries of an n × n complex matrix A = (

ai j
)

satisfying
deg p ≤ γ(ln n − ln ε)

and
|ln per A − p(A)| ≤ ε

provided ∣
∣1 − ai j

∣
∣ ≤ δ for all i, j.

As we will see, the polynomial p(A) can be efficiently computed. The gist of
Theorem 3.6.2 is that ln per A can be efficiently approximated by a low-degree poly-
nomial in the vicinity of the matrix Jn of all 1s, and, in particular, per A can be
approximated there within a relative error of ε in quasi-polynomial nO(ln n−ln ε) time.

Theorems 3.6.1 and 3.6.2 were first proved in [B16b] with a worse constant
δ0 = 0.195. Following [B16+], we give a much simplified proof achieving a better
constant.

First we prove Theorem 3.6.1 and then deduce Theorem 3.6.2 from it. We identify
C = R

2 and measure angles between complex numbers as vectors in the plane.

http://dx.doi.org/10.1007/978-3-319-51829-9_5


3.6 Permanents of Complex Matrices 73

3.6.3 Lemma. Let u1, . . . , un ∈ R
2 be non-zero vectors and suppose that the angle

between any two vectors ui and u j does not exceed α for some 0 ≤ α < 2π/3. Let
u = u1 + . . . + un. Then

|u| ≥
(
cos

α

2

) n∑

i=1

|ui |.

Proof. First, we note that 0 cannot lie in the convex hull of the vectors u1, . . . , un ,
since otherwise by the Carathéodory Theorem it would have lied in the convex hull
of some three vectors ui , u j , uk and then the angle between some two of these three
vectors would have been at least 2π/3, see Fig. 3.5.

Hence the vectors u1, . . . , un lie in an angle measuring at most α. Let us consider
the orthogonal projections of u1, . . . , un onto the bisector of the angle, see Fig. 3.6.

Then the length of the projection of ui is at least |ui | cos(α/2) and the length of
the projection of u is at least (|u1| + . . . + |un|) cos(α/2). Since the length of u is at
least as large as the length of its orthogonal projection, the result follows. �

In [B16b] a weaker bound with
√
cosα instead of cos(α/2) is used (assuming

that α < π/2). The current enhancement is due to Bukh [Bu15].

3.6.4 Lemma. Let u1, . . . , un ∈ C be non-zero complex numbers, such that the
angle between any two vectors ui and u j does not exceed α for some 0 ≤ α < 2π/3
and let 0 ≤ δ < cos(α/2) be a real number. Let a1, . . . , an and b1, . . . , bn be complex
numbers such that

Fig. 3.5 If the origin lies in
the convex hull of the vectors
then the angle between some
two vectors is at least 2π/3

u

u

i

j
k

0

u

Fig. 3.6 Projecting vectors
onto the bisector of the angle

ui

0
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∣∣1 − a j

∣∣ ≤ δ and
∣∣1 − b j

∣∣ ≤ δ for j = 1, . . . , n.

Let

v =
n∑

j=1

a j u j and w =
n∑

j=1

b j u j .

Then v �= 0, w �= 0 and the angle between v and w does not exceed

2 arcsin
δ

cos(α/2)
.

Proof. Let u = u1 + . . . + un . Then, by Lemma 3.6.3, u �= 0 and

|u| ≥ cos
(α

2

) n∑

j=1

|u j |.

By the triangle inequality, we have

|v − u| ≤
n∑

j=1

∣∣1 − a j

∣∣ |u j | ≤ δ

n∑

j=1

|u j |.

Therefore, the angle between v = (v − u) + u and u does not exceed

θ = arcsin
|v − u|

|u| ≤ arcsin
δ

cos(α/2)
,

see Fig. 3.7.
Similarly, the angle between w and u does not exceed θ and hence the angle

between v and w does not exceed 2θ. �

3.6.5 Proof of Theorem 3.6.1. Let us choose

δ0 = 0.5 and α = π

2
.

Fig. 3.7 The angle between
a and a + b does not exceed
arcsin |b|

|a| provided |b| < |a|

a

b
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We denote by Un the closed polydisc Un ⊂ C
n×n consisting of the n × n complex

matrices A = (
ai j

)
such that

|1 − ai j | ≤ δ0 for all i, j.

We prove by induction on n the following statement.
For every matrix Z ∈ Un we have per Z �= 0 and, moreover, if A, B ∈ Un are two

matrices that differ in one row (one column) only, then the angle between non-zero
complex numbers per A and per B does not exceed α.

If n = 1 then any a ∈ U1 is necessarily non-zero, since δ0 < 1. Moreover, the
angle between any two a, b ∈ U1 does not exceed 2 arcsin δ0 = π/3 < α, cf. Fig. 3.7.

Suppose that n ≥ 2 and assume that the above statement holds for matrices
from Un−1. Let A, B ∈ Un be two matrices that differ in one row or in one column
only. Without loss of generality, we assume that the matrix B is obtained from A
by replacing the entries a1 j in the first row by some complex numbers b1 j , where
j = 1, . . . , n. Using the row expansion (3.1.1.2), we obtain

per A =
n∑

j=1

a1 j per A j and per B =
n∑

j=1

b1 j per A j ,

where A j is the (n − 1) × (n − 1) matrix obtained from A by crossing out the first
row and the j-th column. We have A j ∈ Un−1 and, moreover, up to a permutation
of columns, any two matrices A j1 and A j2 differ in at most one column. Therefore,
by the induction hypothesis per A j �= 0 for j = 1, . . . , n and the angle between any
two non-zero complex numbers per A j1 and per A j2 does not exceed α.

We apply Lemma 3.6.4 with u j = per A j , a j = a1 j and b j = b1 j for j =
1, . . . , n. Since δ0 < cos(α/2), by Lemma 3.6.4 we have per A �= 0 and per B �= 0
and the angle between per A and per B does not exceed

2 arcsin
δ0

cos(α/2)
= 2 arcsin

0.5

cos(π/4)
= 2 arcsin

1√
2

= π

2
= α,

which completes the proof. �

The value of δ0 = 0.5 is the largest value of δ for which the equation

α = 2 arcsin
δ

cos(α/2)

has a solution α. Indeed, the above equation can be written as

(
sin

α

2

) (
cos

α

2

)
= δ, that is, sinα = 2δ.
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3.6.6 The optimal value of δ0. What is the optimal value of δ0 in Theorem 3.6.1?
To be more precise, since it is not even clear whether the optimal value δ0 exists,
what is the supremum of all possible values of δ0 in Theorem 3.6.1? Since

per

( 1+i
2

1−i
2

1−i
2

1+i
2

)
= 0

we must have

δ0 <

√
2

2
≈ 0.7071067810.

Moreover, Bukh [Bu15] showed that for

a = 1 + i

2
and b = 1 − i

2

we have

per

⎛

⎜⎜⎜⎜
⎝

a b a b . . . a b
b a b a . . . b a
. . . . . . . . . . . . . . . . . . . . . . . .

a b a b . . . a b
b a b a . . . b a

⎞

⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
n≡2 mod 4

= 0

and hence there is no hope that the value of δ0 might improve as n grows.

Now we deduce Theorem 3.6.2 from 3.6.1.

3.6.7 Proof of Theorem 3.6.2. Let A = (
ai j

)
be an n×n complex matrix satisfying

|ai j − 1| ≤ δ for all i, j and let J = Jn be the n × n matrix of all 1s. We define a
univariate polynomial

g(z) = per
(
J + z(A − Jn)

)

with deg g ≤ n. Let

β = δ0

δ
> 1.

By Theorem 3.6.1,
g(z) �= 0 provided |z| ≤ β.

Let
f (z) = ln g(z) for |z| ≤ 1,

where we choose the branch of the logarithm that is real for z = 0. We note that by
Theorem 3.6.1 the function f is well defined and we have

f (0) = ln n! and f (1) = ln per A.
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We consider the Taylor polynomial of f at z = 0:

pm(z) = f (0) +
m∑

k=1

zk

k!
dk

dzk
f (z)

∣∣∣
z=0.

(3.6.7.1)

By Lemma 2.2.1, we have

|pm(1) − ln per A| = |pm(A) − f (1)| ≤ n

(m + 1)βm(β − 1)

In particular, to approximate ln per A within an additive error of ε > 0, we can choose
m ≤ γ(ln n − ln ε) in (3.6.7.1) for some γ = γ(δ) > 0.

It remains to show that pm(1) is a polynomial of degree m in the matrix entries
ai j of A. Our first observation is that the k-th derivative g(k)(0) is a polynomial of
degree k in the entries of the matrix A, which can be computed in nO(k) time. Indeed,

dk

dzk
g(z)

∣∣
∣
z=0

= dk

dzk

∑

σ∈Sn

n∏

i=1

(
1 + z

(
aiσ(i) − 1

)) ∣∣
∣
z=0

=
∑

σ∈Sn

∑

(i1,...,ik )

(
ai1σ(i1) − 1

) · · · (aikσ(ik ) − 1
)
,

where the last sum is taken over all ordered k-subsets (i1, . . . , ik) of indices 1 ≤ i j ≤
n. Since there are (n − k)! permutations σ ∈ Sn that map a given ordered k-subset
(i1, . . . , ik) into a given ordered k-subset ( j1, . . . , jk), we can write

g(k)(0) = (n − k)!
∑

(i1,...,ik )
( j1,..., jk )

(
ai1 j1 − 1

) · · · (aik jk − 1
)
, (3.6.7.2)

where the last sum is taken over all pairs of ordered k-subsets (i1, . . . , ik) and
( j1, . . . , jk) of indices between 1 and n. As follows from Sect. 2.2.2, the deriva-
tives f (k)(0) for k = 1, . . . , m can be found in O(m2) time as linear combinations
of the derivatives g(k)(0) for k = 1, . . . , m with coefficients depending on k only,
which completes the proof. �

Kontorovich and Wu [KW16] implemented the algorithm of Sect. 3.6.7 for com-
puting the polynomial p(A) and performed numerical experiments. Computing
g(k)(0) reduces to computing the sum of permanents of k × k submatrices of A − Jn

and Kontorovich and Wu used for that purpose an efficient algorithm of [FG06]. It
turned out that for n × n matrices A = (

ai j
)
satisfying |1 − ai j | ≤ 0.5 and n ≤ 20

(so that the exact value of per A can be computed for comparison), polynomials p
of degree 3 already provide reasonable approximations (they approximate ln per A
within an about 1% error). On the other hand, polynomials p of degree 3 can be
easily computed for 100 × 100 matrices.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Let A be an n × n complex matrix such that per A �= 0 and suppose that the
�∞-distance from A to the complex hypersurface per Z = 0 is at least δ0 for some
δ0 > 0. It follows from the proof of Sect. 3.6.7 that for any 0 < δ < δ0 there is a
constant γ = γ(δ) > 0 and for any 0 < ε < 1 there is a polynomial p = pA,δ,ε in
the entries of an n × n matrix B = (

bi j
)
such that deg p ≤ γ(ln n − ln ε) and

∣
∣ln per B − pA,δ,ε(B)

∣
∣ ≤ ε provided

∣
∣ai j − bi j

∣
∣ ≤ δ for all i, j.

Of course, depending on A, the polynomial p might be hard to compute (it is easy
when A = Jn , the matrix of all 1s).

3.6.8 Remark. If the entries of an n×n realmatrix A = (
ai j

)
are (weakly) decreasing

down each column, that is, if ai j ≥ a(i+1) j for all i, j then the roots of the polynomial
p(z) = per (Jn + z A) are real. Moreover, the n-variate polynomial

p (z1, . . . , zn) = per (Jn D(z1, . . . , zn) + A) ,

where D (z1, . . . , zn) is the diagonal matrix having z1, . . . , zn on the diagonal, is
H-stable [B+11].

A different approach to approximation of permanents by Taylor polynomial
expansions around Jn is described in [Mc14].

3.7 Approximating Permanents of Positive Matrices

As follows from Sect. 3.5, for any α ≥ 1, fixed in advance, the permanent of an
α-conditioned n × n positive matrix A can be approximated in polynomial time
within an nO(α2) factor. Understanding permanents of complex matrices allows us to
approximate permanents of such matrices better: we show that we can approximate
the permanent within arbitrarily small relative error in quasi-polynomial time. More
precisely, we prove the following result.

3.7.1 Theorem. For any 0 ≤ δ < 1, there exists γ = γ(δ) > 0 such that for any
positive integer n and any real 0 < ε ≤ 1 there exists a polynomial p = pn,δ,ε with
deg p ≤ γ

(
ln n − ln ε

)
in the entries ai j of an n × n real matrix A = (

ai j
)

such that

|ln per A − p(A)| ≤ ε

provided ∣∣1 − ai j

∣∣ ≤ δ for all i, j.

We show that the polynomial pn,δ,ε can be computed in nO(ln n−ln ε) time, where the
implicit constant in the “O” notation depends on δ alone.

We deduce Theorem 3.7.1 from the following result.
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3.7.2 Theorem. Let us fix a real 0 ≤ δ < 1 and le

τ = (1 − δ) sin
(π

4
− arctan δ

)
> 0.

Let Z = (
zi j

)
be an n × n complex matrix such that

∣∣1 − � zi j

∣∣ ≤ δ and
∣∣� zi j

∣∣ ≤ τ for all 1 ≤ i, j ≤ n.

Then
per Z �= 0.

We note that

(1 − δ) sin
(π

4
− arctan δ

)
≥ (1 − δ)2

2
for all 0 ≤ δ ≤ 1

and so

τ = (1 − δ)2

2

satisfies the condition of Theorem 3.7.2.
We prove Theorem 3.7.2 first and then deduce Theorem 3.7.1 from it.
As in Sect. 3.6, we identify C = R

2 and measure angles between non-zero com-
plex numbers as between non-zero vectors in the plane. We start with a simple
geometric lemma.

3.7.3 Lemma. Let u1, . . . , un ∈ C be non-zero complex numbers such that the angle
between any two ui , u j does not exceed π/2.

(1) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where α1, . . . ,αn are non-negative real and β1, . . . ,βn are real such that

|β j | ≤ α j for j = 1, . . . , n.

Then
|w| ≤ |v|;

(2) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where α1, . . . ,αn and β1, . . . ,βn are real such that
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∣∣1 − α j

∣∣ ≤ δ and
∣∣1 − β j

∣∣ ≤ δ for j = 1, . . . , n

and some 0 ≤ δ < 1. Then v �= 0, w �= 0 and the angle between v and w does
not exceed

2 arctan δ.

(3) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where ∣∣1 − �α j

∣∣ ≤ δ,
∣∣1 − �β j

∣∣ ≤ δ and
∣∣�α j

∣∣ ≤ τ ,
∣∣�β j

∣∣ ≤ τ for j = 1, . . . , n

and some 0 ≤ δ < 1 and 0 ≤ τ < 1 − δ. Then v �= 0, w �= 0 and the angle
between v and w does not exceed

2 arctan δ + 2 arcsin
τ

1 − δ
.

Proof. We consider the standard inner product in R2 = C, so

〈a, b〉 = � ab.

Hence
〈ui , u j 〉 ≥ 0 for all i, j.

We have
|w|2 =

∑

1≤i, j≤n

βiβ j 〈ui , u j 〉 ≤
∑

1≤i, j≤n

αiα j 〈ui , u j 〉 = |v|2

and the proof of Part (1) follows.
To prove Part (2), let

u =
n∑

j=1

(
α j + β j

2

)
u j and x =

n∑

j=1

(
α j − β j

2

)
u j ,

so that v = u + x and w = u − x , see Fig. 3.8. Clearly, |u| > 0.
Now, if |1 − α| ≤ δ and |1 − β| ≤ δ for some 0 ≤ δ < 1 and α ≥ β we have

α

β
≤ 1 + δ

1 − δ
and hence α(1 − δ) ≤ β(1 + δ)
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Fig. 3.8 Given |u| and |x |,
the angle between v = u + x
and w = u − x is the largest
when u is orthogonal to x

−x

u u
v

vw
w

x
x−x

and
α − β

α + β
− δ = α − β − δ(α + β)

α + β
= α(1 − δ) − β(1 + δ)

α + β
≤ 0.

Therefore for all α and β such that |1− α| ≤ δ and |1− β| ≤ δ for some 0 ≤ δ < 1
we have |α − β|

α + β
≤ δ.

Therefore, by Part (1),
|x | ≤ δ|u|.

The angle between v and w is

arccos
〈v,w〉
|v||w| ,

where
〈v,w〉 = |u|2 − |x |2.

We have
|v|2 + |w|2 = 2|u|2 + 2|x |2

and hence
|v||w| ≤ |u|2 + |x |2

with equality attained when |v|2 = |w|2 = |u|2 + |x |2, that is, when x is orthogonal
to u. Therefore, the angle between v and w does not exceed

arccos
|u|2 − |x |2
|u|2 + |x |2

with equality attained when x is orthogonal to u and the angle is

2 arctan
|x |
|u| ≤ 2 arctan δ,

see Fig. 3.8. The proof of Part (2) now follows.
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In Part (3), let

v′ =
n∑

j=1

(�α j
)

u j , v′′ =
n∑

j=1

(�α j
)

u j , w′ =
n∑

j=1

(�β j
)

u j

and w′′ =
n∑

j=1

(�β j
)

u j .

By Part (2), the angle between non-zero vectors v′ andw′ does not exceed 2 arctan δ.
By Part (1), we have

|v′′| ≤ τ

1 − δ
|v′| and |w′′| ≤ τ

1 − δ
|w′|.

Hence v = v′ + iv′′ �= 0 and w = w′ + iw′′ �= 0 and the angle between v and v′ and
the angle between w and w′ do not exceed

arcsin
τ

1 − δ
,

see Fig. 3.7. The proof of Part (3) now follows. �

Now we are ready to prove Theorem 3.7.2.

3.7.4 Proof of Theorem 3.7.2. For a positive integer n, let Un = Un(δ, τ ) be the
set of n × n complex matrices Z = (

zi j
)
such that

∣∣1 − � zi j

∣∣ ≤ δ and
∣∣� zi j

∣∣ ≤ τ for all i, j.

We prove by induction on n a stronger statement:
For any Z ∈ Un we have per Z �= 0 and, moreover, if A, B ∈ Un are two matrices

that differ in one row (or in one column) only, then the angle between the non-zero
complex numbers per A and per B does not exceed π/2.

Since τ < 1 − δ, the statement holds for n = 1. Assuming that the statement
holds for matrices in Un−1, let us consider two matrices A, B ∈ Un that differ in one
row or in one column only. Without loss of generality, we assume that B is obtained
from A by replacing the entries a1 j in the first row with complex numbers b1 j for
j = 1, . . . , n. Let A j be the (n − 1) × (n − 1) matrix obtained from A by crossing
out the first row and the j-th column. Applying the row expansion (3.1.1.2), we get

per A =
n∑

j=1

a1 j per A j and per B =
n∑

j=1

b1 j per A j .

We have A j ∈ Un−1 for all j = 1, . . . , n, and, moreover any two matrices A j1 and
A j2 differ, up to a permutation of columns, in one column only. Therefore, by the
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induction hypothesis, we have per A j �= 0 for j = 1, . . . , n and the angle between
any two non-zero complex numbers A j1 and A j2 does not exceed π/2. Applying Part
(3) of Lemma 3.7.3 with

u j = per A j , α j = a1 j and β j = b1 j for j = 1, . . . , n,

we conclude that per A �= 0, per B �= 0 and the angle between per A and per B does
not exceed

2 arctan δ + 2 arcsin
τ

1 − δ
= π

2
.

�

3.7.5 Proof of Theorem 3.7.1. Let A = (
ai j

)
be an n × n real matrix such that

∣
∣1 − ai j

∣
∣ ≤ δ for all i, j,

let Jn = J be the n ×n matrix filled with 1 s and let us define a univariate polynomial

r(z) = per
(
J + z(A − J )

)
for z ∈ C.

Hence
r(0) = per J = n!, r(1) = per A and deg r ≤ n.

First, we observe that as long as −α ≤ � z ≤ 1+ α for some α > 0, the real part
of each entry of the matrix J + z(A − J ) lies in the interval

[1 − δ(1 + α), 1 + δ(1 + α)].

Similarly, as long as |� z| ≤ ρ for some ρ > 0, the imaginary part of each entry of
the matrix J + z(A − J ) does not exceed ρδ in the absolute value. Let us choose an
α = α(δ) > 0 such that δ′ = δ(1 + α) < 1 and choose

ρ = ρ(δ) = 1 − δ′

δ
sin

(π

4
− arctan δ′

)
> 0.

It follows from Theorem 3.7.2 that

r(z) �= 0 provided − α ≤ � z ≤ 1 + α and |� z| ≤ ρ. (3.7.5.1)

Let φ(z) = φδ(z) be the univariate polynomial constructed in Lemma 2.2.3, such
that

φ(0) = 0, φ(1) = 1

and
−α ≤ �φ(z) ≤ 1 + α and |�φ(z)| ≤ ρ

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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provided
|z| ≤ β for some β = β(δ) > 1.

The degree of φ(z) is bounded by a constant depending on δ alone.
Let us define

g(z) = r(φ(z)).

Then g(z) is a univariate polynomial and deg g = (deg r)(degφ) = O(n) where the
implicit constant in the “O” notation depends only on δ. We have

g(0) = r(0) = n!, g(1) = r(1) = per A

and from (3.7.5.1) it follows that

g(z) �= 0 provided |z| ≤ β.

Let us choose a branch of f (z) = ln g(z) in the disc |z| ≤ 1 so that

f (0) = ln n! and f (1) = ln per A

and let pm be the Taylor polynomial of degree m of f (z) computed at z = 0, so

pm(z) = f (0) +
m∑

k=1

(
dk

dzk
f (z)

∣∣∣
z=0

)
zk

k! .

By Lemma 2.2.1, we have

| f (1) − pm(1)| ≤ deg g

(m + 1)βm(β − 1)
.

Hence one can choose m ≤ γ
(
ln n − ln ε

)
for some constant γ = γ(δ) > 0 such

that
|ln per A − pm(1)| ≤ ε.

It remains to show that

pm(1) = f (0) +
m∑

k=1

f (k)(0)

k!

is a polynomial of degree at most m in the entries ai j of the matrix A that can be
computed in nO(m) time.

As follows from Sect. 2.2.2, the derivatives f (k)(0) for k = 1, . . . , m can be found
in O(m2) time as linear combinations of the derivatives g(k)(0) for k = 1, . . . , m
with coefficients depending on k only.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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For a univariate polynomial q(z) and a positive integer m, let q[m](z) be the
truncated polynomial obtained from q by erasing all monomials of degree higher
than m.

Since φ(0) = 0, the constant term of φ(z) is 0 and to compute g[m](z), we com-
pute the truncated polynomials φ[m](z), r[m](z) and then truncate the composition
r[m](φ[m](z)) by discarding all terms of degree higher than m. As in Sect. 3.6.7, we
observe that the k-th derivative r (k)(0) is a polynomial of degree k in the entries of
the matrix A, which can be computed in nO(k) time. Hence g(k)(0) and thus f (k)(0)
are polynomials of degree at most k in the entries ai j of the matrix A = (

ai j
)
. The

proof now follows. �

3.8 Permanents of α-Conditioned Matrices
and Permutations with Few Cycles

Let A = (
ai j

)
be an n × n positive matrix which is α-conditioned for some α ≥ 1,

cf. Definition3.5.5. Let us fix α and let n grow. It turns out that the bulk of the
permanent of A is carried by permutations with a small (logarithmic) number of
cycles. We interpret permanents as sums over cycle covers, see Sect. 3.1.3.

The following result was proved in [Ba15].

3.8.1 Theorem. Let c(σ) denote the number of cycles of a permutation σ ∈ Sn. For
an α-conditioned n × n matrix A = (

ai j
)
, we have

∑

σ∈Sn :
c(σ)<3α2 ln n+6

n∏

i=1

aiσ(i) ≥ 1

2
per A.

Given a positive matrix A = (
ai j

)
, we consider the symmetric group Sn as a

probability space, where

Pr (σ) = (per A)−1

(
n∏

i=1

aiσ(i)

)

for σ ∈ Sn.

3.8.2 Lemma. Let us define random variables

li : Sn −→ R for i = 1, . . . , n,

where li (σ) is the length of the cycle of permutation σ that contains i . Assuming that
A is α-conditioned, we have

Pr
(
σ ∈ Sn : li (σ) = m

) ≤ α2

n − m
for i = 1, . . . , n

and m = 1, . . . , n − 1.
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Fig. 3.9 Merging two cycles

r

1

1

r

Proof. Without loss of generality, we assume that i = 1. Let X ⊂ Sn be the set of
permutations σ ∈ Sn such that l1(σ) = m. We construct a set Y ⊂ Sn as follows.
Each permutation σ ∈ X contributes n − m permutations into Y : we write the cycle
of σ containing 1 as

1 = j1 → j2 → . . . → jm → 1, (3.8.2.1)

pick an element r of the n − m elements not in the cycle, write the cycle of σ
containing r as

r = jm+1 → jm+2 → . . . → jm+k → r (3.8.2.2)

and produce a permutation τ ∈ Y by merging the two cycles together:

1 = j1 → j2 → . . . → jm → r = jm+1 → jm+2 → . . . → jm+k → 1, (3.8.2.3)

see Fig. 3.9.
Since A is α-conditioned, we have

Pr (σ) ≤ α2Pr (τ ). (3.8.2.4)

Next, we observe that each permutation τ ∈ Y is obtained from a unique permutation
σ ∈ X . To reconstruct σ from τ , we find the cycle of σ containing 1, write it as in
(3.8.2.3) and cut into the cycles (3.8.2.1) and (3.8.2.2), see Fig. 3.10

Using (3.8.2.4), we conclude that

Pr (X) ≤ α2

n − m
Pr (Y ) ≤ α2

n − m
.

�

3.8.3 Proof of Theorem 3.8.1. Let li be the random variables of Lemma 3.8.2.
Using Lemma 3.8.2, we estimate
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Fig. 3.10 Cutting a cycle
into two

r

1

1

r

E
(
l−1
i

) =
n∑

m=1

1

m
Pr

(
σ : li (σ) = m

)

=
∑

1≤m≤n/3

1

m
Pr

(
σ : li (σ) = m

) +
∑

n/3<m≤n

1

m
Pr

(
σ : li (σ) = m

)

≤3α2

2n

∑

1≤m≤n/3

1

m
+ 3

n

∑

n/3<m≤n

Pr
(
σ : li (σ) = m

)

≤3α2 ln n

2n
+ 3

n
.

Next, we note that

c(σ) =
n∑

i=1

l−1
i (σ),

since the sum of l−1
i (σ) for all i in a cycle of σ is 1. Therefore,

E c(σ) =
n∑

i=1

E
(
l−1
i (σ)

) ≤ 3α2 ln n

2
+ 3.

Applying the Markov inequality, we conclude that

Pr
(
σ : c(σ) ≥ 3α2 ln n + 6

) ≤ 1

2
,

and the proof follows. �

As is shown in [Ba15], one immediate corollary of Theorem 3.8.1 is that on
α-conditioned matrices, the permanent of A and the Hamiltonian permanent of A,
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ham A =
∑

σ∈Sn :
c(σ)=1

n∏

i=1

aiσ(i)

differ by a factor of nO(α2 ln n) (permutations consisting of a single cycle are called
Hamiltonian cycles). Similarly to the proof of Lemma 3.8.2, the result is obtained by
patching a permutation with O

(
α2 ln n

)
cycles into a single cycle. Consequently, for

α fixed in advance, using the scaling algorithm of Sect. 3.5, we obtain a polynomial
time algorithm for computing ham A within a factor of nO(α2 ln n). As is discussed
in [Ba15], this allows one to distinguish in polynomial time directed graphs on n
vertices that contain many Hamiltonian cycles (at least εn(n − 1)! for some fixed
ε > 0) from graphs that are sufficiently far from having a Hamiltonian cycle (need at
least εn new edges added to acquire one). The algorithm is obtained by approximating
per A and hence ham A for a “soft” version A = (

ai j
)
of the adjacency matrix of the

graph,

ai j =
{
1 if i → j is an edge

δ otherwise

for a sufficiently small δ = δ(ε) > 0.
Vishnoi [Vi12] used the van der Waerden bound for the permanent (see Sect. 3.3)

to prove the existence of long cycles (and of an efficient algorithm to find such cycles)
in regular graphs.

3.9 Concluding Remarks

3.9.1 Permanents and determinants. It is tempting to compare the permanent

per A =
∑

σ∈Sn

n∏

i=1

aiσ(i)

with the syntactically similar determinant

det A =
∑

σ∈Sn

(sgn σ)

n∏

i=1

aiσ(i)

and try exploit the similarity. Godsil and Gutman [GG78] suggested the following
construction.

Suppose that A = (
ai j

)
is an n×n non-negative real matrix. Let ξi j be real-valued

independent random variables such that

E ξi j = 0 and var ξi j = 1 for all i, j = 1, . . . , n
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and let us define a random n × n matrix B = (
bi j

)
by

bi j = ξi j
√

ai j for all i, j = 1, . . . , n.

It is not hard to show that
E (det B)2 = per A

and one can ask how well det2 B is likely to approximate per A, see also Chap.8 of
[LP09]. Since det2 B is non-negative, the Markov inequality implies that det2 B is
unlikely to overestimate per A by a lot (for example, the probability that det2 B >

10 per A does not exceed 1/10). However, it may happen that det2 B grossly under-
estimates per A. For example, if n = 2m and A is a block-diagonal matrix consisting

of m blocks J2 =
(
1 1
1 1

)
then per A = 2m . If we choose ξi j to be random signs, so

that

Pr (ξi j = 1) = 1

2
and Pr (ξi j = −1) = 1

2

then det B = 0 with probability 1 − 2−m . This effect can be mitigated if ξi j are
continuous random variables. In [Ba99] it is shown that if ξi j are standard Gaussian
with density

1√
2π

e−x2/2

then with probability approaching 1 as n grows, we have

(det B)2 ≥ (0.28)n per A (3.9.1.1)

(the worst-case scenario is when A = In , the n × n identity matrix). It is also shown
that if ξi j are complex Gaussian with density

1

π
e−|z|2 for z ∈ C,

in which case E |det B|2 = per A then with probability approaching 1 as n grows,
we have

| det B|2 ≥ (0.56)n per A (3.9.1.2)

(again, the worst case scenario is when A = In).
Finally, let us choose ξi j to be quarternionic Gaussian with density

4

π2
e−|h|2 for h ∈ H

(so that E |h|2 = 1, here H denotes the skew field of quaternions and not the upper
half-plane of C as elsewhere in the book). Then B is an n × n quaternionic matrix
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which we write as
B = R + i S + j T + k U,

where R, S, T and U are n × n real matrices. Let BC denote the 2n × 2n complex
matrix

BC =
(

R + i S T + iU
−T + iU R − i S

)
.

It is show in [Ba99] that det BC is a non-negative real number such that E det BC =
per A and that

det BC ≥ (0.76)n per A (3.9.1.3)

with probability approaching 1 as n grows (again, the worst-case scenario is when
A = In).

The idea behind the inequalities of (3.9.1.1)–(3.9.1.3) is roughly as follows. We
note that det B is linear in every row of B. We consider det B as a function of n inde-
pendentGaussiann-vectors xi = (ξi1, . . . , ξin). In the real case (det B)2 is a quadratic
form in each xi , once the values of the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn

are fixed. In the complex case, | det B|2 is a Hermitian form in each xi , once the
values of the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn are fixed. In the quater-
nionic case, det BC is a quaternionic Hermitian form in each xi , once the values of
the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn are fixed.

We deduce (3.9.1.1) from the following: if q : Rn −→ R is a positive semidefinite
quadratic form on the space Rn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ − ln 2 − γ, (3.9.1.4)

where γ ≈ 0.5772156649 is the Euler constant and the bound (3.9.1.4) is attained if
q is a form of rank 1, for example,

q (x1, . . . , xn) = x2
1 where (x1, . . . , xn) ∈ R

n.

Since every positive semidefinite quadratic form is a convex combination of positive
semidefinite forms of rank 1, by Jensen’s inequality the minimum in (3.9.1.4) is
indeed attained on forms of rank 1. The constant in (3.9.1.1) is e− ln 2−γ ≈ 0.28.

We deduce (3.9.1.2) from the following: if q : Cn −→ R is a positive semidefinite
Hermitian form on the space Cn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ −γ, (3.9.1.5)

and the bound in (3.9.1.5) is attained if q is a form of rank 1, for example,

q (z1, . . . , zn) = |z1|2 where (z1, . . . , zn) ∈ C
n.



3.9 Concluding Remarks 91

Similarly to the real case, since every positive semidefinite Hermitian form is a
convex combination of positive semidefinite Hermitian forms of rank 1, by Jensen’s
inequality the minimum in (3.9.1.5) is indeed attained on forms of rank 1. We get a
better bound than in the real case, because a complex Hermitian form of rank 1 can
be viewed as a real quadratic form of rank 2. The constant in (3.9.1.2) is e−γ ≈ 0.56.

We deduce (3.9.1.3) from the following: if q : Hn −→ R is a positive semidefinite
Hermitian form on the space Hn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ 1 − γ − ln 2 (3.9.1.6)

and the bound in (3.9.1.6) is attained if q is a form of rank 1, for example,

q (h1, . . . , hn) = |h1|2 where (h1, . . . , hn) ∈ H
n.

The constant in (3.9.1.3) is e1−γ−ln 2 ≈ 0.76.
For various special classes of matrices, a subexponential approximation factor is

achieved by (real) Gaussian [F+04], [RZ16] and some non-Gaussian [CV09] random
variables ξi j .

3.9.2 Algorithms for computing permanents. For a general n ×n real or complex
matrix A, themost efficientmethod knownof computing per A exactly, is, apparently,
Ryser’smethod and itsmodifications, seeChap.7 of [Mi78],which achieves O(n22n)

complexity. Essentially, it uses the formula

per A = ∂n

∂x1 · · · ∂xn
p(x1, . . . , xn) where p(x1, . . . , xn) =

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

and computes the derivative as

∂n

∂x1 · · · ∂xn
p(x1, . . . , xn) =

∑

I⊂{1,...,n}
(−1)|I | p(xI ), (3.9.2.1)

where xI is the 0–1 vector with 0 s in positions I and 1s elsewhere (as is easy
to see, formula (3.9.2.1) holds for any homogeneous polynomial p of degree n in
x1, . . . , xn). The exact computation of the permanent is a #P-hard problem already
for 0–1 matrices [Va79], which makes a polynomial time algorithm rather unlikely.
Efficient (polynomial time) algorithms for computing permanents exactly are known
for some rather restricted classes of matrices, for example, for matrices of a small
(fixed in advance) rank [Ba96] and for 0–1 matrices with small (fixed in advance)
permanents [GK87].

Given an n ×n matrix A = (
ai j

)
, let G(A) be the bipartite graph with 2n vertices

1L , . . . nL and 1R, . . . , nR , where vertices iL and jR are connected by an edge if
and only if ai j �= 0, see Sect. 3.1.2. Cifuentes and Parillo found a polynomial time
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algorithm to compute per A exactly provided the treewidth of G(A) is bounded by
a constant, fixed in advance [CP16]. The algorithm is applicable to matrices over
any commutative ring. One can obtain graphs G(A) of a small treewidth provided A
is sufficiently sparse, that is, contains relatively few non-zeros. This is the case, for
example, if A has a band structure, that is, ai j = 0 provided |i − j | ≥ ω for some ω,
fixed in advance.

The greatest success in approximation algorithms is achieved by Jerrum,
Sinclair and Vigoda [J+04] who constructed a Markov Chain Monte Carlo based
fully polynomial time randomized approximation scheme for computing permanents
of non-negative matrices. A scaling based deterministic polynomial time algorithm
approximating permanents of n×n non-negativematriceswithin a factor of en is con-
structed in [L+00], see also Remark 3.5.4. The approximation factor was improved
to 2n [GS14] and it is conjectured that the same algorithm actually achieves a 2n/2

approximation factor, cf. (3.4.6.1). Using the “correlation decay” idea from statis-
tical physics, Gamarnik and Katz obtained a (1 + ε)n approximation factor for any
ε > 0, fixed in advance, when A is a 0–1 matrix of a constant degree expander graph
[GK10].

Less is known about approximation algorithms for not necessarily non-negative
matrices (but see Sects. 3.6, 5.5 and also [Mc14]). Gurvits [Gu05] presented a ran-
domized algorithm, which, given an n × n complex matrix A approximates per A in
O(n2/ε2) time within an additive error of ε‖A‖n , where ‖A‖ is the operator norm of
A, see also [AA13] for an exposition. The idea of the algorithm is to use the formula

per A = E x1 · · · xn

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

where xi = ±1 are independent Bernoulli random variables and replace the expec-
tation by the sample average.

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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