
Chapter 1
Introduction

What this book is about. What is a partition function?
The answer depends on who you ask. You get one (multi)set of answers if you ask

physicists, and another (multi)set if you ask mathematicians (we allow multisets, in
case we want to account for the popularity of each answer). In this book, we adopt
a combinatorial view of partition functions. Given a family F of subsets of the set
{1, . . . , n}, we define the partition function ofF as a polynomial in n real or complex
variables x1, . . . , xn ,

pF (x1, . . . , xn) =
∑

S∈F

∏

i∈S
xi . (1.1)

Under typical circumstances, it is unrealistic to try towrite pF as a sumofmonomials
explicitly, for at least one of the following two reasons:

(1) the family F is very large
or
(2) we are not really sure how large F is and it will take us a while to go over all

subsets S of {1, . . . , n} and check whether S ∈ F .

Typically, however, we will have no trouble checking if any particular subset S
belongs toF . A good example is provided by the familyH of all Hamiltonian cycles
in a given graph G (undirected, without loops or multiple edges) with n edges: we
say that a collection S of edges forms a Hamiltonian cycle in G if the set of edges
in S is connected and every vertex of G belongs to exactly two edges from S, see
Fig. 1.1.

A graph with m vertices may contain as many as (m−1)!
2 different Hamiltonian

cycles and it is believed (known, if P �= NP) that it is computationally hard to find
at least one for a graph G supplied by a clever adversary.
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2 1 Introduction

Fig. 1.1 A graph with 7
vertices, 12 edges and a
Hamiltonian cycle (thick
lines)

Sometimes we allow F to be a family of multisets, in which case we replace

∏

i∈S
xi −→

∏

i∈S
xμi
i

in formula (1.1), where μi is the multiplicity of i in S.
Sometimes we know pF perfectly well even if we are unable to write it explicitly

as a sum of monomials due to the lack of time. For example, if F = 2{1,...,n} is the
set of all subsets, we have

p2{1,...,n} (x1, . . . , xn) =
∑

S⊂{1,...,n}

∏

i∈S
xi =

n∏

i=1

(1 + xi ) (1.2)

and it is hard to argue that we can know p2{1,...,n} any better than by the succinct product
in (1.2). Our experience teaches us, however, that the cases like (1.2) are quite rare.
For some mysterious reasons they all seem to reduce eventually to some determinant
enumerating perfect matchings in a planar graph, see [Ba82], [Va08] and Chap.10
of [Ai07] for examples and recall that a perfect matching in a graph is a collection
of edges that contains every vertex of the graph exactly once (see Fig. 4.1) and that
the graph is planar if it can be drawn in the plane so that no two edges can possibly
intersect in a point other than their common vertex (see Fig. 4.8).

Although in Sect. 4.3 of the book we describe the classical Kasteleyn’s construc-
tion expressing the partition function of perfect matchings in a planar graph as a
determinant (more precisely, as a Pfaffian), the focus of the book is different. Since
the efficient exact computation of pF in most interesting situations is believed to be
impossible (unless the computational complexity hierarchy collapses, that is, unless
P = #P), we are interested in situations when pF can be efficiently approximated.
By efficiently approximated we understand that we can compute pF approximately
for all x = (x1, . . . , xn) in some sufficiently interesting domain, but not only.We also
approximate pF by some “nice function”, whose behavior we understand reasonably
well. We concentrate mostly on the following three approaches.
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Scaling. It may happen that there is a sufficiently rich group of transformations,
for example of the type xi �−→ λi xi for some λi , which change the value of the
polynomial pF (x1, . . . , xn) in some obvious way and such that after factoring that
group out, we are left with a function that varies little. This is the case for the
permanent (Sect. 3.5), hafnian (Sect. 4.2) and their higher-dimensional extensions
(Sects. 4.4 and 4.5). A closely related approach expresses pF as the coefficient of
a monomial yα1

1 · · · yαN
N in some explicit polynomial P (y1, . . . , yN ) and obtains

an estimate of pF via solution of a convex optimization problem of minimizing
y−α1
1 · · · y−αN

N P (y1, . . . , yN ) for y1, . . . , yN > 0.We apply this approach to estimate
partition functions of flows (Chap. 8).

Correlation decay. We choose a variable (or a small set of variables), say xn ,
and define pFn as the sum of the monomials of pF containing xn . It may happen
that there is some metric on the set {x1, . . . , xn} of variables such that the ratio
pFn (x1, . . . , xn) /pF (x1, . . . , xn) does not depend much on the variables xi that are
sufficiently far away from xn in that metric. This allows us to fix values of those
remote variables to our convenience and quickly approximate the ratio. We then
recover pF by iterating this procedure and telescoping. As a result, we approximate
ln pF (x1, . . . , xn) by a sum of functions, each of which depends on a small number
of coordinates. We apply this method to the matching polynomial (Sect. 5.2) and to
the independence polynomial of a graph (Sects. 6.3 and 6.4).

Interpolation. Suppose that the polynomial pF has no zeros in a domain
� ⊂ C

n . It turns out that ln pF is well approximated in a slightly smaller domain
�′ ⊂ � by a low degree Taylor polynomial, sometimes after a change of coordinates
(Sect. 2.2). We demonstrate this approach for the permanent (Sects. 3.6 and 3.7) and
hafnian (Sect. 4.1), their higher-dimensional extensions (Sect. 4.4), for the matching
polynomial (Sect. 5.1) and the independence polynomial of a graph (Sect. 6.1), and
for the graph homomorphism partition function (Chap. 7). In our opinion, this is the
most general approach.

The correlation decay approach appears to be closely related to a probabilis-
tic approach, known as the Markov Chain Monte Carlo method. Assuming that
x1 > 0, . . . , xn > 0, we consider the family F as a finite probability space, with

Pr (S) =
(

∏

i∈S
xi

)
/pF (x1, . . . , xn) for S ∈ F . (1.3)

Suppose that we can sample a random set S ∈ F in accordance with the probability
distribution (1.3). Then we can measure the frequency of how often a random S
contains a particular element of the ground set, say n, and hence we can estimate
the ratio pFn (x1, . . . , xn) /pF (x1, . . . , xn), which is also the goal of the correlation
decay method. To sample a random S ∈ F , we perform a random walk on F by
starting with some particular S and, at each step, trying to modify S �−→ Ŝ by a
random move of the type Ŝ := (S \ I ) ∪ J for some small sets I, J ⊂ {1, . . . , n}
performed with probability proportional to
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Pr (Ŝ)

Pr (S)
=

⎛

⎝
∏

j∈J

x j

⎞

⎠
(

∏

i∈I
x−1
i

)
.

It stands to reason that if the ratios of the type pFn (x1, . . . , xn) /pF (x1, . . . , xn)
depend effectively only on a small set of variables, then we can expect the resulting
walk to mix rapidly, that is, we should hit more or less random S after performing a
moderate number of moves.

The Markov Chain Monte Carlo method resulted in a number of remarkable
successes, most notably in a randomized polynomial time approximation algorithm
for the permanent of a non-negative matrix [J+04]. However, we do not discuss it
in this book. First, there are excellent books such as [Je03] describing the method
in detail and second, we are interested in analytic properties of partition functions
that make them amenable to computation (approximation). Granted, the fact that
randomized algorithms are often very efficientmust be telling us something important
about analytic properties of the functions they approximate, but at the moment we
hesitate to say what exactly.

Why this is interesting. Why do we care to approximate pF in (1.1)?
For one thing, it gives us some information about complicated combinatorial

families. As an example, let us consider the family H of all Hamiltonian cycles
in a complete graph Km (undirected, without loops or multiple edges) with m ver-
tices 1, . . . ,m. Hence to every edge (i, j) of Km we assign a variable xi j , to every
Hamiltonian cycle in Km we assign amonomial that is the product of the variables xi j
on the edges of the cycle, and we define pH by summing up all monomials attached
to the Hamiltonian cycles in Km . If we let xi j = 1 for all edges (i, j) then the value
of pH is just the number of Hamiltonian cycles in Km , which is (m − 1)!/2. If we
assign xi j = 1 for some edges of Km and xi j = 0 for all other edges of Km , then the
value of pH is the number of Hamiltonian cycles in the graph G consisting of the
edges selected by the condition xi j = 1 (generally, it is computationally hard even
to tell pH from 0).

Looking at the problem of counting Hamiltonian cycles through the prism of
the partition function pH allows us to interpolate between a trivial problem (count-
ing Hamiltonian cycles in the complete graph) and an impossible one (counting
Hamiltonian cycles in an arbitrary graph) and find some middle ground. Given a
graph G with vertices 1, . . . ,m, let us fix a small ε > 0 (think ε = 10−10) and let us
define

xi j =
{
1 if (i, j) is an edge of G

ε otherwise.

In this case, pH still enumerates Hamiltonian cycles in the complete graph Km , but
it does so deliberately. It counts every Hamiltonian cycle in G with weight 1, while
every Hamiltonian cycle in Km that contains r non-edges ofG is counted with weight
εr . In Sect. 3.8, we show that it is quite easy to approximate pH within a factor of
mO(lnm), where the implicit constant in the “O” notation depends on ε. This gives us

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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some idea about Hamiltonian cycles in G: for example, we can separate graphs G
with many Hamiltonian cycles (the value of pH is large) from graphs G that do not
acquire a single Hamiltonian cycle unless sufficiently many new edges are added to
G (the value of pH is small).

Two particular topics discussed in this book are

(1) connections between the computational complexity of partition functions and
their complex zeros

and
(2) connections between computational complexity and “phase transition” in

physics.

In statistical physics, one deals with the probability space F defined by (1.3)
(sets S ∈ F are called “configurations”), where xi = eβi /t for some constants βi > 0
and a real parameter t , interpreted as temperature. As the ground set {1, . . . , n}
and the set F of configurations grow in some regular way, one can consider two
related, though not identical notions of phase transition. The first notion has to do
with a complex zero of pF , as a function of t , approaching the positive real axis
at some “critical temperature” tc > 0. This implies the loss of smoothness or even
continuity for various physically meaningful quantities, expressed in terms of ln pF
and its derivatives [YL52]. The second notion of phase transition has to do with
the appearance or disappearance of “long-range correlations”. Typically, at a high
temperature t (that is, when xi are close to 1), there is no long-range correlation:
the probability that S contains a given element i of the ground set is not affected by
whether S contains another element j , far away from i in some natural metric. As the
temperature t falls (and hence xi grow), such a dependence may appear. These two
notions of phase transition are related though apparently not identical, see [DS87]
and [Ci87], we discuss this when we talk about the Ising model in Sect. 7.4 .

The correlation decay approach emphasizing (2) was introduced by Bandyopad-
hyay and Gamarnik [BG08] and independently by Weitz [We06] and is generally
well-known in the computational community, while (1) is relatively less articulated
but appears to be no less interesting. Curiously, while the first type of phase tran-
sition is associated with complex zeros of the partition function approaching the
positive real axis, as far as our ability to approximate is concerned, a priori this
does not represent an insurmountable obstacle. What hinders our ability to compute
are the complex zeros “blocking” the reference point in the vicinity of which pF
looks easy, such as the point xi j = 1 for the partition function pH of Hamiltonian
cycles, see also our discussion in Sect. 2.2. The ways of statistical physics and those
of computational complexity diverge at this point, which is probably explained by
the fact that the temperature in the physical world is necessarily a real number, while
for computational purposes we can manipulate with a complex temperature just as
easily.

We stick to the language of combinatorics but the objects and phenomena dis-
cussed in this book have also their names in physics. Thus the “matching polynomial”
of Chap.5 corresponds to the “monomer-dimer model”, the “graph homomorphism
partition function” in Chap. 7 corresponds to a “spin system”, while the cut partition

http://dx.doi.org/10.1007/978-3-319-51829-9_7
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function of Sect. 7.4 corresponds to a “ferromagnetic spin system”. Some of our
results, such as in Sects. 3.6, 3.7, 3.8, 4.2, 4.4, 7.1 and 7.2 correspond to the “mean
field theory” approach, while some others, such as in Chaps. 5 and 6 correspond
to the “hard core” model. For still others, such as in Sects. 3.4, 3.5 and Chap.8,
we were unable to think of an appropriate physics name (though “renormalization”
may work for those in Sects. 3.4 an 3.5). We talk about physical implications of
results in Sect. 7.4 while discussing the Ising model, which connects several direc-
tions explored this book: zeros of partition functions, phase transition, correlation
decay, graph homomorphisms and enumeration of perfect matchings.

Finally, this book may be interesting because it contains an exposition of quite
recent breakthroughs (available before, to the best of our knowledge, only as
preprints, journal or conference proceedings papers). These include the Gurvits
approach connecting certain combinatorial quantities with stable polynomials
(Sects. 3.3 and 8.1), Csikvári and Lelarge approach to the Bethe-approximation of
the permanent (Sects. 5.3 and 5.4) and Weitz correlation decay method for the inde-
pendence polynomial (Sect. 6.4).

Prerequisites, contents, notation, and assorted remarks.Weuse some concepts of
combinatorics, but only very basic, such as graphs and hypergraphs. All other terms,
also very basic, such as matchings, perfect matchings and colorings are explained in
the text. We also employ some computational complexity concepts. As we are inter-
ested in establishing that some functions can be efficiently computed (approximated),
and not in proving that some functions are hard to approximate, we use only some
very basic complexity concepts, such as polynomial time algorithm, etc. The book
[PS98] will supply more than enough prerequisites in combinatorics and computa-
tional complexity (but see also more recent and comprehensive [AB09] and [Go08]).
We also require modest amounts of linear algebra, real and complex analysis. This
book should be accessible to an advanced undergraduate.

In Chap.2, we develop our toolbox. First, we discuss various topics in convexity:
convex and concave functions, entropy and Bethe-entropy, Gauss-Lucas theorem on
the zeros of the derivative of a complex polynomial, the capacity of real polynomials
and the Prékopa-Leindler inequality. Then we present one of our main tools, inter-
polation, which allows us to approximate the logarithm of a multivariate polynomial
p by a low degree polynomial in a domain, given that there are no complex zeros
of p in a slightly larger domain. We discuss interlacing polynomials, H-stable poly-
nomials (polynomials with no roots in the open upper half-plane of C) and D-stable
polynomials (polynomials with no roots in the closed unit disc in C).

Then we begin our study of partition functions in earnest.
In Chap.3, we start slowlywith the permanent, as it is very easy to define and it has

a surprisingly rich structure. All this makes the permanent a very natural candidate
to try our toolbox on.

InChap.4,we consider extensions of the permanent to non-bipartite graphs (hafni-
ans) and hypergraphs (multi-dimensional permanents). We also consider the mixed
discriminant, which is a generalization of the permanent and of the determinant
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simultaneously. We observe that some properties of the permanent can be extended
to those more general objects, while some other cannot.

In Chap.5, we consider the matching polynomial of a graph, a relative of the
permanent and hafnian. Here we introduce the correlation decay method, which, as
Bayati, Gamarnik, Katz, Nair and Tetali showed [B+07], looks particularly elegant
and simple in the case of the matching polynomial. It turns out to be very useful too
and provides some additional insight into the permanent.

In Chap.6, we discuss the independence polynomial of a graph. We prove
Dobrushin’s bound on the complex roots and also present the correlation decay
approach at its most technical. We discuss an open question due to Sokal [S01b],
which, if answered affirmatively, would allow us to bridge the gap between different
degrees of approximability afforded by the interpolation and by correlation decay
approaches.

In Chap.7, we present combinatorial partition functions at their most general.
Here we rely entirely on our interpolation technique, although some of the results
can be obtained by the correlation decay approach [LY13]. We also prove the Circle
Theorem of Lee and Yang and discuss the Ising model in some detail.

In Chap.8, we consider partition functions associatedwithmultisets.We study the
partition functions of 0-1 and non-negative integer flows, which present yet another
extension of permanents. Permanents also supply our main technical tool.

Sections, theorems, lemmas, and formulas are numbered separately inside each
chapter. Figures are numbered consecutively in each chapter. For example, Fig. 4.3
is the third figure in Chap.4.

Weuse	 to denote the real part of a complexnumber and
 to denote the imaginary
part of a complex number, so that 	 z = a and 
 z = b for z = a + ib. We denote
by |X | the cardinality of a finite set X .

Finally, the product of complex numbers from an empty set is always 1.
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