Measuring an Impact of Block-Based Language
in Introductory Programming

Yoshiaki Matsuzawa! ™ Yoshiki Tanaka?, and Sanshiro Sakai?

1" Aoyama Gakuin Univeristy, 5-10-1 Fuchinobe, Sagamiahra, Kanagawa, Japan
matsuzawa@si.aoyama.ac. jp
2 Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan

Abstract. The use of block-based visual language in introductory pro-
gramming is a popular method in education. However, there is little
research which provides evidence showing advantages of block-based lan-
guage. This paper presents the results of learning data analysis with fine
grain logs recorded by students’ development environment where the stu-
dents can select their language in block-based or Java. A total of 400+
students’ logs collected each of four years were analyzed. The results show
that migration from Block to Java can be consistently seen each year,
although the whole block-editing rate was influenced by the method of
the instructor’s introduction. Though block-editing did not affect work-
ing time and Lines of Code (LOC), it could reduce the compile error
correction time, whereas using Java requires approximately 20% of com-
pile error correction time for students. We concluded that block-based
language worked to encourage students to focus high-level algorithm cre-
ation, as well as it provides an advantage to understanding text-based
language.

Keywords: Programming education - Block-based language - Learning
analytics - Working time analysis - Compile error analysis

1 Introduction

The body of introductory programming is not to develop an understanding of
the grammar of particular programming languages, but it should develop the
problem-solving skills with computing that is called “computational thinking” [1].
The similar concept has been proposed by the United Nations Educational, Sci-
entific and Cultural Organization (UNESCO), as “designing a task-oriented algo-
rithm” [2]. Both statements include common sense. One is to focus on the thinking
and creation of algorithms. Another is that computing is not only dependent upon
the use of actual computers, but logical modeling for the required problem-solving.

A use of visual language, especially “building-block approach” [3] is the most
popular way to form the learning environment for the purpose of education.
Many block-based languages for education have been proposed over more than

© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing AG 2016. All Rights Reserved
T. Brinda et al. (Eds.): SaITE 2016, IFIP AICT 493, pp. 16-25, 2016.

DOI: 10.1007/978-3-319-54687-2_2

Measuring an Impact of Block-Based Language 17

two decades, and yet developers continue by trial and error to improve the lan-
guage using modern software technology. The first workshop specifically block-
based language focused was held in the last year (Blocks and Beyond in Visual
Languages and Human-Centric Computing (VL/HCC 2015) [4]). The workshop
was able to collect a remarkable number of submissions, the participants dis-
cussed the design of the next generation of block-based language, including the
topic of how to design the tools as a bridge to text-based language (e.g. [5,6]).

However, as the workshop stated “Despite their popularity, there has been
remarkably little research on the usability, effectiveness, or generalizability of
affordances from these environments” [4], there is little research which provides
evidence showing advantages of block-based language. Practitioners using visual
programming languages believe that the visual programming approach is an
effective way in developing computational thinking because learners can focus
on their problem-solving tasks [7]. The block-based language should be used as
scaffolding to text-based language. However, the belief is not verified, and the
percentage of degree is not clear yet.

Hence, we tried learning data analysis with fine grain logs recorded by
students’ development environment. We conducted the introductory education
using the tools we developed, where the learners can switch their language
between visual-block language (Block) and one for a text-based language (Java)
by bidirectional translation technology. The data analysis was conducted mainly
using the data of time students spent. These include amount of total working
time, the time using block-editor, the time of compile error correction. The tile
representation of each student shows gradual migration to Java on their own
schedule, and reducing compile error correction time shows the success by focus-
ing on high-level algorithm creation.

2 Related Work

There have been many reports of using block languages for introductory pro-
gramming education [8,9], as well as reports on the development of new block
languages [10-14]. Researchers agree that block-based languages feel familiar to
beginners, however they are not a standard for use in introductory programming.
Not a few researchers/practitioners claim disadvantages of block-based language,
particularly that block-based language is different from common practical lan-
guages used in industry, so that students have difficulty in moving to text-based
programming after their introductory programming course.

Hence, which text-based or block-based language we should use in introduc-
tory programming is still an unsolved theme in this field. Lewis et al., conducted
direct comparison using Scratch and Logo [15], however, their results were very
limited to illustrate the advantage of block-based language. Matsuzawa et al.
demonstrated gradual migration from block-based to text-based language using
a bidirectional translation system [16]. Although the limitation of the study is
that they showed only trajectory of their working time, they demonstrated the
capability of transition to text-based language from block-based language.

18 Y. Matsuzawa et al.

From the viewpoint of tool proposition, a rich number of tools have been
proposed on migration from block-based languages or text-based languages, and
it is still growing. Pasternak [17] proposed offering the ability to translate a
program written in Block to a program written in Java. Google Blockly [14] can
be translated into multiple languages (e.g., into Java-script or Python) from its
block representation. In 2012, Dann et al. tackled the problem of figuring out
how students can transfer their knowledge of Alice3 (a block-based language)
to Java programming, and they reported that experience with a block language
behaved as a helpful scaffolding for students learning to program in Java [18].

The present research projects are attempts to raise the “ceiling of program-
ming” up to practical programming levels. One approach is to raise the ceiling
of block-based language. Harvey et al. [19] proposed a functionality they called
BYOB (“Build Your Own Block”) in Scratch. This functionality expands the
descriptive capabilities of the block language. The purpose of the project is to
support a block language suitable for a wide range of users, from beginners to
professionals. The developers of Scratch and Squeak are currently working on
a GP project [6]. GP will be the first block-based language written by itself,
where learners can explore the entire software system by the level of learners’
interest. It means the tool will provide an open-ended, no ceiling environment,
where either text-based or block-based is merely one of the representations.

Another approach is to promote migration from block-based to text-based
language by making educational scaffolding on the tools. The most popular
approach is considered to develop language translation systems. Warth et al.
proposed a bidirectional translation system, “TileScript”, between a block lan-
guage and JavaScript [20], although that research verified only that the techni-
cal requirements could be met to implement the prototype system. Matsuzawa
et al. demonstrated a mutual translation between Block and Java [16]. Similar
attempts are growing a variety of languages. BlockPy [5] is designed for educa-
tion in Python. PencilCode [21] is specially designed for migration to text-based
language using modern Javascript technology.

Improvement of the editing environment of text-based language is another
approach. One distinction of the BBC micro:bit project described above is
providing an intermediate layer of editing system called TouchDevelop, which
provides some scaffolding for text editing and, is designed for the migration
to text-based language. Homer et al. proposes Tiled Grace, which is a tiled
representation of Grace and, was an originally designed text-based language
for education [22]. Kolling et al., who is the founder of GreenFoot, proposes
the “Frame-Based Editing” [23] where the “frame” is added to support novices
with Java.

3 Method

3.1 Tool: Bidirectional Translation System

We conducted empirical studies in our introductory programming class over
the span of four years. The goal of the study was to evaluate the impact of

Measuring an Impact of Block-Based Language 19

Translate to Block r

Fig. 1. Bidirectional translation system between Block and Java.

introducing block-based language. In each year, we used a bidirectional transla-
tion system between Block and Java proposed in the previous study [16]. The
resulting environment has two interfaces, one for the (visual) Block language
and one for the textual Java language, as well as a system for bidirectional
translation between the two languages. Figure 1 shows the user interface for the
environment. All the students in our class were given the opportunity to select
the language they used to solve their programming assignments.

3.2 Research Question

In the previous study, Matsuzawa et al. demonstrated that learners would choose
to use Block first, which will act as scaffolding for learning programming, and
then learners will gradually migrate to Java on their own schedule. We expanded
the research to explore the further impact of the environment. The original two
research questions for this paper are as follows:

RQ1 Can the gradual migration nature be seen consistently every year, even if
some variables change (students, teachers, method of teaching, or tool func-
tionality)?

RQ2 Does the tool (BlockEditor) successfully encourage students to focus their
algorithm creation by removing compile error correction opportunity? If so,
how much wasted time can we save?

3.3 Educational Environment Descriptions

The introductory programming course was designed for art students, rather than
for computer science students. Therefore, the objective of the course was to
develop an understanding of task-oriented programming. The objective was inde-
pendent from any programming language, although Java language was used in
the actual environment. Approximately 100 students participated in this course
each year; two lecturers and six teaching assistants conducted the class.

20 Y. Matsuzawa et al.

Because of RQ1, we conducted an action research. Actions taken each year
in our experimental course were listed as follows:

1st year (2012) The first year we started to use BlockEditor with the Block-
Java translation system.

2nd year (2013) Major improvements in BlockEditor were made, especially
the functionality of the variable scope indicator and the design of the block
for method creation. The improvement was made using the method calling
navigation system MeRV [24].

3rd year (2014) Main lecturer changed from the author of Block Editor to
a teacher who was from outside the research. The lecturer used Java using
sample codes, whereas the former lecturer used Block for explanation.

4th year (2015) Compulsory assignments using Block was reduced from 4
times to once. The opportunity for everyone to use Block was reduced.

3.4 Metrics

All the students’ activities in the development environment were recorded by
PPV (Programming Process Visualizer) [25], and the logs used to calculate met-
rics to analyze the learning process. We calculated five kinds of metrics as follows
for both RQ1 and RQ2.

Working Time (WoT) The working time for each assignment. It was calcu-
lated by summing up the time and excluding periods of longer than 5min
with no user operation in the development environment.

Block Editing Working Time Ratio (BWT%) The ratio of working time
to block out of the total working time. We can assume students used Java
outside of BWT.

BWT(WorkingTimewithBlock)

BWT% = WoT

(1)

Compile Error Correction Time (ECT) Compile Error Correction time
calculated by activity logs for each compilation error occurrence. Further
description will be provided below.

Compile Error Correction Time Ratio (ECT%) The ratio of compile
error correction time out of the total working time.

ECT
WoT

Lines of Code (LOC) Lines of Code for finally submitted assignment.

ECT% = (2)

The technical description of the calculation method for ECT was provided by
this paper [26]. The difference in time between the error occurred and resolved,
will be calculated in a general case. However, sometimes multiple errors occur
or are resolved at the same time. For such cases, the system calculates by the
amount of time spent in error collection by the number of errors. An assumption
of the method is the difficulty of corrections is equal in every case.

Measuring an Impact of Block-Based Language 21

Table 1. Descriptive statistics for the calculated metrics.

Year | #student | #task | BWT% | WoT ECT ECT% |LOC

2012 | 102 36 | 36.7(17.5) 47.9(15.8) 6.8(2.9) | 14.3(4.7) | 57.9(14.4)

2013 | 96 38 | 45.9(23.3) 51.7(25.3) 5.3(2.6) | 12.2(4.6) | 66.3(36.6)

2014 | 106 34 20.6(21.8) 44.6(14.4) 5.9(3.5) | 14.6(5.9) | 65.5(59.1)

2015 | 100 48 119.2(23.7) | 43.4(15.5) | 5.8(3.0) | 15.1(5.5) | 65.7(49.2)

Total | 404 156 | 32.7(23.7) | 46.8(18.4) | 6.0(3.1) | 14.1(5.3) | 63.8(43.4)
ST g 0. B

0.10|-0.17||-0.45||-0.13}

U T
00 04 08

WoT

0.521/0.08|/0.36

0 100 200

20

- ECT [
- 0.67||-0.01¢

—
0 5 10

N
t, ’f ;ﬁ{: 0.02

LocC |

e | L i | | sy

00 04 08 051 20 100 400

100 400

Fig. 2. Correlation table between 5 metrics

4 Results

4.1 Results of Statistics

Descriptive statistics for all calculated metrics are summarized in Table 1. For
each metric, the number shows the average of the value, and the number in
parenthesis shows the standard deviation of the distribution. The unit of value
for BWT% and ECT% is the percentage amount per hundred, for WoT and
ECT is minutes, for LOC is the number of lines, respectively. The average of
BWT% was 32.7 for all year, although the data for each year indicates the
variations in value. The total average of ECT% was 14.1. If we assume that
block can swipe ECT, and the fact of BWT%, we estimate the ECT% using
Java as approximately 20%.

We calculated Pearson Correlation for all combinations of the 5 metrics, the
results are shown in Fig. 2. The most significant result is BET% has a negative
correlation with ECT%, which clearly indicates the Block-editing was able to
reduce the compile error correction time. The results also indicate Block-editing
did not affect working time and LOC, which means that the quality of the
outcome by Block-editing is equivalent to the outcome by text-editing.

22 Y. Matsuzawa et al.

2014 2015

Fig. 3. Grid representation of BWT% (Block Editing Rate) for each student.

4.2 Grid Representations

We created a grid representation of the rate of BlockEditor using (BET%) to illus-
trate the nature of the seamless migration from Block to Java. The representation
is shown in Fig. 3. Each column represents one task assigned to students, arranged
in chronological order from left to right. Each row represents one student; the rows
are sorted by course-average BET% with higher rows indicating higher average
use. Each cell represents the value of BET% for a particular student completing
a particular task. High-intensity color indicates a high BET%, and low-intensity
indicates an BET% of 0 (i.e., using only Java). We selected 36 tasks which were
mostly common for all four years, however three of the tasks selected were lacking
in 2014. The tasks can be seen as vertical white belts in 2014.

We can observe that the seamless migration both overall (by the number of
students who used Java in the class) and at the individual level for all 4 years
were consistent. A sudden drop of the whole rate could be seen in the middle
of 2012; however, it improved to a milder migration in 2013. As the class con-
tent involved introducing method/function, the improvement was caused by the
action of improvement of tool functionality, as we described in Sect. 3.3. Although
the pattern of gradation of migration can be seen each year, the entire density is
different; 2014 and 2015 are low-density. The density corresponds to the average
ratio of the year as shown in Table 1. In the classes of 2014 and 2015, we could

Measuring an Impact of Block-Based Language 23

>0.5

0.25

T e

I

0
=4
>

2014 2015

Fig. 4. Grid representation of ECT% (Compile Error Correction Rate) for each student.

not observe any other difference with the exception of the actions described in
Sect. 3.3; the cause of the difference is influenced by the method of the instruction
by the teacher, and opportunities to use Block.

We created another grid representation using Compile Error Correction Time
Rate (ECT%). The representation is shown in Fig. 4. When we compare Figs. 3
and 4, we can observe that inverted illustration. This means the Block reduces
the compile error correction rate, the result corresponds with the result of statistic
correlation (Fig. 2) and our intuitive sense. Cells with high ratio focus on the latter
part of the class (right-side on charts), because more advanced grammar content
(e.g. Method/Function, collection) was introduced. Another significant result we
can observe is that the factor of task was bigger than the BET% in the past. For
example, the latter part of 2012 clearly illustrates that density of ECT% shows no
difference between the high BET% group and the low BET% group.

5 Discussion

RQ1 asked “Can the gradual migration nature be seen consistently each year,
even with some variable changes?”. The results were generally positive: we can
consistently see the migration nature. These results reinforced evidence that
a block language can successfully act as scaffolding for students learning text-
based programming. However, the factor of the method of instruction, especially

24 Y. Matsuzawa et al.

which language is used in the explanation in the lecture affects the selection of
language. The impact can be calculated by comparing the lowest 19% of BET%
(2015) to the highest 46% (2013). The result indicate that not only the tools,
but also the educational design including the use of tools is important.

RQ2 asked “Does Block encourage students to focus their algorithm creation
by removing compile error correction opportunity?”. Both statistics and micro-
analysis using grid representations indicate that Block clearly eliminates compile
error correction time. The result itself is not surprising; however, it is not a small
thing that the research revealed the amount (approx. 20%) of overhead which
was wasted for compile error correction. We can eliminate 20% of overhead by
Block, also can reduce to 10% in mixture usage. Additional observation shows
that some students select Block-editing after being plagued with compile error
correction. Hence, we concluded that block-based language worked to encourage
students to focus on high-level algorithm creation.

The lack of direct evidence of the learners’ understanding is still a limitation
and requires further consideration. We believe that the results could reinforce
existing evidence to encourage teachers who use a block language in introductory
programming education.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP25730203, JP26280129.

References

1. Wing, J.: Computational thinking. Commun. ACM 49(3), 33-35 (2006)

2. UNESCO: ICT Curriculum for School/Program of Teacher Development (2002).
http://unesdoc.unesco.org/images/0012/001295/129538e.pdf

3. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M.: Scratch:
a sneak preview. In: Proceedings Second International Conference on Creating
Connecting and Collaborating Through Computing, pp. 104-109 (2004)

4. Turbak, F. (Chair): Blocks and beyond: lessons and directions for first program-
ming environments. http://cs.wellesley.edu/~blocks-and-beyond/. Accessed 3 Feb
2016

5. Bart, A., Tilevich, E., Shaffer, C., Kafura, D.: Position paper: from interest to
usefulness with blockpy, a block-based, educational environment. In: Blocks and
Beyond Workshop (Blocks and Beyond), pp. 87-89 (2015)

6. Monig, J., Ohshima, Y., Maloney, J.: Blocks at your fingertips: blurring the line
between blocks and text in GP. In: Blocks and Beyond Workshop (Blocks and
Beyond), pp. 51-53 (2015)

7. Fal, M., Cagiltay, N.: How scratch programming may enrich engineering education.
In: 2nd International Engineering Education Conference (IEEC 2012), pp. 107-113
(2012)

8. Lewis, C.: What do students learn about programming from game, music video,
and storytelling projects? In: Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education (SIGCSE 2012), pp. 643-648 (2012)

9. Ogzoran, D., Cagiltay, N., Topalli, D.: Using scratch in introduction to program-
ming course for engineering students. In: 2nd International Engineering Education
Conference (IEEC 2012), pp. 125-132 (2012)

http://unesdoc.unesco.org/images/0012/001295/129538e.pdf
http://cs.wellesley.edu/~blocks-and-beyond/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Measuring an Impact of Block-Based Language 25

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: the
story of squeak, a practical smalltalk writtern in itself. In: Proceedings of ACM
OOPSLA 1997, p. 318 (1997)

Scratch Team Lifelong Kindergarten Group MIT Media Lab: Scratch -
imagine.program.share-. http://scratch.mit.edu/

Cooper, S., Dann, W., Pausch, R.: Teaching objects-first in introductory computer
science. In: Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 2003, pp. 191-195. ACM, New York (2003)

Cheung, J.C., Ngai, G., Chan, S.C., Lau, W.W.: Filling the gap in programming
instruction: a text-enhanced graphical programming environment for junior high
students. In: SIGCSE 2009 Proceedings of the 40th ACM Technical Symposium
on Computer Science Education, New York, NY, USA (2009)

Google Inc.: Blockly: a visual programming editor. http://code.google.com/p/
blockly/. Accessed 17 Mar 2013

Lewis, C.: How programming environment shapes perception, learning and goals:
logo vs. scratch. In: Proceedings of the 41st ACM Technical Symposium on Com-
puter Science Education (SIGCSE 2010), pp. 346-350 (2010)

Matsuzawa, Y., Ohata, T., Sugiura, M., Sakai, S.: Language migration in non-cs
introductory programming through mutual language translation environment. In:
Proceedings of the 46th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2015, pp. 185-190 (2015)

Pasternak, E.: Visual programming pedagogies and integrating current visual pro-
gramming language features. Master’s thesis, Carnegie Mellon University Robotics
Institute Master’s Degree (2009)

Dann, W., Cosgrove, D., Slater, D., Culyba, D., Cooper, S.: Mediated transfer:
Alice 3 to java. In: Proceedings of the 43rd ACM Technical Symposium on Com-
puter Science Education, SIGCSE 2012, pp. 141-146 (2012)

Harvey, B., Monig, J.: Bringing no ceiling to scratch: can one language serve kids
and computer scientists? In: Constructionism 2010, Paris (2010)

Warth, A., Yamamiya, T., Ohshima, Y., Scott, W.: Toward a more scalable end-
user scripting language. In: Proceedings Second International Conference on Cre-
ating Connecting and Collaborating Through Computing, pp. 172-178 (2008)
Bau, D., Bau, D.A., Dawson, M., Pickens, C.S.: Pencil code: block code for a text
world. In: Proceedings of the 14th International Conference on Interaction Design
and Children, pp. 445-448 (2015)

Homer, M., Noble, J.: Combining tiled and textual views of code. In: 2014 Second
IEEE Working Conference on Software Visualization (VISSOFT), pp. 1-10 (2014)
Kolling, M., Brown, N.C.C., Altadmri, A.: Frame-based editing: easing the transi-
tion from blocks to text-based programming. In: Proceedings of the Workshop in
Primary and Secondary Computing Education, WiPSCE 2015, pp. 29-38 (2015)
Ohata, T., Matsuzawa, Y., Sakai, S.: Merv: a scaffold to promote creating 2D map
of method call structure in block-based programming language. In: IFIP TC3 2015,
pp. 352-362 (2015)

Matsuzawa, Y., Okada, K., Sakai., S.: Programming process visualizer: a proposal
of the tool for students to observe their programming process. In: Innovation and
Technology in Computer Science Education (ITiCSE 2013), pp. 46-51 (2013)
Hirao, M., Matsuzawa, Y., Sakai, S.: Compile error collection viewer: visualization
of learning curve for compile error correction. In: IFIP TC3 2015, pp. 310-309
(2015)

http://scratch.mit.edu/
http://code.google.com/p/blockly/
http://code.google.com/p/blockly/

2 Springer
http://www.springer.com/978-3-319-54686-5

Stakeholders and Information Technology in Education
IFIP TC 3 International Conference, SalTE 2016,
Guimaraes, Portugal, July 5-8, 2016, Revised Selected
Fapers

Brinda, T.; Mavengere, N.; Haukijarvi, |.; Lewin, C.;
Passey, D. (Eds.)

2016, ¥, 183 p. 34 illus., Hardcover

ISBM: 978-3-319-54686-5

	Measuring an Impact of Block-Based Language in Introductory Programming
	1 Introduction
	2 Related Work
	3 Method
	3.1 Tool: Bidirectional Translation System
	3.2 Research Question
	3.3 Educational Environment Descriptions
	3.4 Metrics

	4 Results
	4.1 Results of Statistics
	4.2 Grid Representations

	5 Discussion
	References

