2. Preliminaries

This chapter provides necessary background regarding SystemC, the IVL, symbolic execution,
POR and basic definitions for state transition system, which can be used to model finite SystemC
programs. Some parts of the SystemC and IVL description in Section 2.1 and Section 2.2
already appeared in [Le+13].

2.1. SystemC

SystemC is implemented as a C++ class library. It includes an event-driven simulation kernel
and provides common building blocks to facilitate the development of embedded systems.

The structure of a SystemC design is described with ports and modules, whereas the behav-
ior is described in processes which are triggered by events and communicate through channels.
SystemC provides three types of processes with SC_THREAD being the most general type,
i.e. the other two can be modeled by using SC_THREAD. A process gains the runnable sta-
tus when one or more events of its sensitivity list have been notified. The simulation kernel
selects one of the runnable processes and executes this process non-preemptively. The kernel
receives the control back if the process has finished its execution or blocks itself by executing
a context switch. A context switch is either one of the function calls wait(event), wait(time),
suspend(process). They will be briefly discussed in the following. Basically SystemC offers the
following variants of wait and notify for event-based synchronization [GLD10; IEE11]:

e wait(event) blocks the current process until the notification of the event.

o notify(event) performs an immediate notification of the event. Processes waiting on this
event become immediately runnable in this delta cycle.

o notify(event, delay) performs a timed notification of the event. It is called a delta notifi-
cation if the delay is zero. In this case the notification will be performed in the next delta
phase, thus a process waiting for the event becomes runnable in the next delta cycle.

e wait(delay) blocks the current process for the specified amount of time units. This oper-
ation can be equivalently rewritten as the following block { sc_event e; notify(e,
delay); wait(e); }, where e is a unique event. Thus the wait(delay) variant will not
be further considered in the following.

More informations on immediate-, delta- and timed-notifications will be presented in the next
section which covers the simulation semantics of SystemC.

Additionally, the suspend(process) and resume(process) functions can be used for synchro-
nization. The former immediately marks a process as suspended. A suspended process is not
runnable. The resume function unmarks the process again. It is a form of delta notification, thus
its effects are postponed until the next delta phase of the simulation. Suspend and resume are
complementary to event-based synchronization. Thus a process can be suspended and waiting

V. Herdt, Complete Symbolic Simulation of SystemC Models, BestMasters,
DOI 10.1007/978-3-658-12680-3 2, © Springer Fachmedien Wiesbaden 2016



8 2. Preliminaries

for an event at the same time. In order to become runnable again, the process has to be resumed
again and the event has to be notified.

2.1.1. Simulation Semantics

The execution of a SystemC program consists of two main steps: an elaboration phase is fol-
lowed by a simulation phase. During elaboration modules are instantiated, ports and channels
are bound and processes registered to the simulation kernel. Basically elaboration prepares the
following simulation. It ends by a call to the sc_start function. An optional maximum sim-
ulation time can be specified. The simulation kernel of SystemC takes over and executes the
registered processes. Basically simulation consists of five different phases which are executed
one after another [IEE11].

1. Initialization: First the update phase as defined in step 3 is executed, but without proceed-
ing to the subsequent delta notify phase. Then all registered processes, which have not
been marked otherwise, will be made runnable. Finally the delta notify phase as defined
in step 4 is carried out. In this case it will always proceed to the evaluation phase.

2. Evaluation: This phase can be considered the main phase of the simulation. While the
set of runnable processes is not empty an arbitrary process will be selected and executed
or resumed (in case the process had been interrupted). The order in which processes
are executed is arbitrary but deterministic'. Since process execution is not preemptive,
a process will continue until it terminates, executes a wait statement or suspends itself.
In either case the executed process will not be runnable. Immediate notifications can be
issued during process execution to make other waiting process runnable in this evaluation
phase. Once no more process is runnable, simulation proceeds to the update phase.

3. Update: Updates of channels are performed and removed. These updates have been
requested during the evaluation phase or the elaboration phase, if the update phase is
executed (once) as part of the initialization phase. The evaluation phase together with the
update phase corresponds to a delta cycle of the simulation.

4. Delta Notify: Delta notifications are performed and removed. These have been issued
in either one of the preceding phases. Processes sensitive on the notification are made
runnable. If at least one runnable process exists at the end of this phase, or this phase has
been called (once) from the initialization phase, simulation continues with step 2.

5. Timed Notification: If there are timed notifications, the simulation time is advanced to
the earliest one of them. If the simulation exceeds the optionally specified maximum
time, then the simulation is finished. Else all notifications at this time are performed and
removed. Processes sensitive on these notifications are made runnable. If at least one
runnable process exists at the end of this phase, simulation continues with step 2. Else
the simulation is finished.

After simulation the remaining statements after sc_start will be executed. This phase is often
denoted as post-processing or cleanup. Optionally sc_start can be called again, thus resuming
the simulation. In this case the initialization phase will not be called. The simulation will
directly continue with the evaluation phase. An overview of the different phases and transitions
between them is shown in Figure 2.1.

'If the same implementation of the simulation kernel is used to simulate the same SystemC program with the
same inputs, then the process order shall remain the same.



2.2. SystemC Intermediate Verification Language 9

Simulation

simulation

start
Elaboration

simulation
re-start
L i
Notification, =" "7 ______latleast N\ ________________
one process no process
runnable

Timed
Notification

no process
runnable

runnable
> Cleanup

Delta Notify

Figure 2.1.: Execution phases of a SystemC program. The notification phase is defined in this thesis as
additional phase to group the update, delta notify and timed notification phases.

The non-determinism in the evaluation phase of the simulation, due to multiple process
scheduling alternatives, is one of the reasons that give rise to the state explosion problem when
it comes to the verification of SystemC programs. In order to assure that no failure is missed
during simulation, it becomes necessary? to explore all relevant scheduling orders.

Remark. In the following the update, delta notify and timed notification phases will often be
grouped as notification phase. Thus if simulation moves from the evaluation phase to the update
phase, it will be said that the simulation is in the notification phase.

The interested reader is referred to [GD10; Gro02; Bla+09] or the IEEE standard [IEE11] for
more details on SystemC.

2.2. SystemC Intermediate Verification Language

The SystemC Intermediate Verification Language (IVL) [Le+13] has been defined with the pur-
pose of simplifying the verification process of SystemC programs, by separating it into two
independent steps. The idea is that first a front-end converts a SystemC program into an IVL
program, which is then verified by a separate back-end. The IVL has been designed to be
compact and easily manageable but at the same time powerful enough to allow the translation
of SystemC designs. A back-end should focus purely on the behavior of the considered Sys-
temC program. This behavior is fully captured by the SystemC processes under the simulation
semantics of the SystemC kernel. Therefore, a front-end should first perform the elaboration
phase, i.e. determine the binding of ports and channels. Then it should extract and map the

%It becomes sufficient if all possible inputs are considered too, e.g. by employing symbolic simulation.



10 2. Preliminaries

design behavior to the IVL. Separating the verification process of SystemC programs into two
independent tasks makes both of them more manageable. In the following the structure and key
components of the IVL are briefly discussed.

Based on the SystemC simulation semantics described in the previous section, three basic
components of the SystemC kernel can be identified: SC_THREAD, sc_event and channel
update. These are adopted to be kernel primitives of the IVL: thread, event and update, respec-
tively. Associated to them are the following primitive functions in the IVL:

e suspend and resume to suspend and resume a thread, respectively

e wait and notify to wait for and notify an event (the notification can be either immediate
or delayed depending on the function arguments, similar to the corresponding functions
in SystemC)

e request_update to request an update to be performed during the update phase

These primitives form the backbone of the kernel. Other SystemC constructs such as sc_signal,
sc__mutex, static sensitivity, etc. can be modeled using this backbone. The behavior of a thread
or an update is defined by a function. Functions which are neither threads nor updates can
also be declared. Every function possesses a body which is a list of statements. A statement
is either an assignment, (conditional) goto statements or function call. Every structural control
statement (1f-then-else, while-do, switch-case, etc.) can be mapped to conditional goto
statements (this task should also be performed by the front-end). Therefore, the representation
of a function body as a list of statements is general and at the same time much more manage-
able for a back-end. As data primitives the IVL supports boolean and integer data types of C++
together with all arithmetic and logic operators. Furthermore, arrays and pointers of primitive
types are also supported. For verification purpose, the IVL provides the assert and assume
functions. Symbolic values of integer types and arrays are also supported.

2.2.1. Example

Basically an IVL program consists of a list of declarations. These include functions, threads,
global variables and events. The execution of an IVL program starts by evaluating all global
variable declarations. Then the (unique) main function will be executed. The start statement?
starts the actual simulation. An optional maximum simulation time can be passed as argument.
If none or a negative value is passed, the simulation will not be time bounded. The simulation
semantics directly correspond to those of SystemC, as described in Section 2.1.1.

Remark. The syntax for the main function and threads is slightly different to normal functions,
since they neither take arguments nor return a result. Internally all of them are represented as
functions though.

In the following an example SystemC and corresponding IVL program are presented. The
main purpose of the example is to demonstrate some elements of the IVL. The example ap-
peared in similar form in [Le+13]. It is presented here for convenience. For the sake of clarity,
in this example and also in the following high level control structures are used in IVL programs
instead of (conditional) gotos. Some slight syntactic adaptions have been performed to make
the IVL easier to parse and read.

30ne can think of it as a function too.



2.3. Symbolic Execution 11

1 SC_MODULE (Module) { 1 event e;

2 sc_core::sc_event e; 2 uint x = ?(uint);
3 uint x, a, b; 3 uint a = 0;

4 4 uint b = 0;

5 SC_CTOR (Module) 5

6 : x(rand (), a(0), b(0) { 6 thread A {

7 SC_THREAD (4) ; 7 if (x % 2)
8 SC_THREAD (B) ; 8 a = 1;

9 SC_THREAD (C) ; 9 else

10 } 10 a = 0;

11 1}

12 void AQ) { 12

13 if (x % 2) 13 thread B {

14 a = 1; 14 wait e;

15 else 15 b =x/ 2;
16 a = 0; 16 ¥

17 } 17

18 18 thread C {

19 void B() { 19 notify e;
20 e.wait(); 20 )

21 b=x/ 2 21

22 b 22 main {

23 23 start;

24 void €c() { 24 assert (2 * b + a == x);
25 e.notify(); 25

26 }

27 };

28 Listing 2.2: The example program of Listing 2.1
29 int sc_main() { in IVL
30 Module m("top");

31 sc_start ();

32 assert(2 * m.b + m.a == m.x);

33 return 0;

34}

Listing 2.1: A SystemC example program

SystemC example Listing 2.1 shows a simple SystemC example. The design has one mod-
ule and three SC_ THREADs A, B and C. Thread A sets variable a to 0, if x is divisible by 2, and
to 1 otherwise (line 13-16). Variable x is initialized with a random integer value on line 6 (i.e. it
models an input). Thread B waits for the notification of event e and sets b = x / 2 subsequently
(line 20-21). Thread C performs an immediate notification of event e (line 25). If thread B is
not already waiting for it, the notification is lost. After the simulation the value of variable a
and b should be x % 2 and x / 2, respectively. Thus the assertion (2% b+ a == x) is expected to
hold (line 32). Nevertheless, there exist counter-examples, for example the scheduling sequence
CAB leads to a violation of the assertion. The reason is that b has not been set correctly due to
the lost notification.

IVL example Listing 2.2 shows the same example in IVL. As can be seen the SystemC
module is “unpacked”, i.e. variables, functions, and threads of the module are now global dec-
larations. The calls to wait and notify are directly mapped to statements of the same name.
Variable x is initialized with a symbolic integer value (line 2) and can have any value in the
range of unsigned int. The statement start on line 24 starts the simulation.

2.3. Symbolic Execution

In principle symbolic execution [Kin76; CDEOS8] is similar to normal execution. A program
is simulated by executing its statements one after another. The difference is that symbolic



12 2. Preliminaries

execution allows to store and manipulate both symbolic and concrete values. A symbolic value
can represent all or a subset of possible concrete value for each state part in the program. Thus
it can be used to exhaustively check a single execution path for some or all input data. During
execution a path condition pc is managed for every path. This is a Boolean expression that is
initialized as pc = True. It represents constraints that the symbolic values have to satisfy for
the corresponding path, thus effectively selecting the possible values a symbolic expression can
evaluate to.

There are basically two different ways to extend a path condition: either by adding an as-
sumption or executing a conditional goto. In order to add an assumption ¢, which itself is just
a boolean expression, to the current path condition pc, e.g. by executing an assume statement,
the formula pc A ¢ will be checked for satisfiability by e.g. an SMT solver. If it is satisfiable,
the path condition is update as pc := pc A c. Otherwise the current execution path is considered
unfeasible and will be terminated.

When a conditional goto with branch condition c is executed in a state s, which represents an
execution path, an i.e. SMT solver is used to determine which of the branch condition and its
negation is satisfiable with the current path condition. If both are satisfiable, which means both
branches are feasible, then the execution path s is forked into two independent paths. One that
will take the goto s7 and one that will not sr. The path conditions of both paths are updated
accordingly as pc(s7) := pc(st) Ac and pe(sr) := pe(sp) A —c respectively.

The symbolic execution effectively creates a tree of execution paths where the path condition
represents the constraints under which a specific position in the program will be reached. In
order to check whether an assertion of condition c is violated, the formula pc A —¢, where pc is
the path condition under which the assertion is reachable, will be checked for satisfiability. The
assertion is violated iff the formula is satisfiable.

The combination of symbolic execution with complete exploration of all possible process
scheduling sequences enables exhaustive exploration of state spaces. The combined approach
is called symbolic simulation. 1t is used by the symbolic simulator SISSI [Le+13] to discover
assertion violations and other types of errors, such as memory access errors in SystemC IVL
programs, or prove that none of them exists.

2.4. State Transition System

A state transition system (STS) is a finite state automaton describing all possible transitions
of a system. In principle the definitions with regard to an STS follow the example of [FGO05;
KGGO08; EP10].

Definition 1 (State Transition System (STS) or State Space)

A state transition system (STS), or state space, is a five tuple A = (S, so, T, A, s.) where
S is a finite set of states; so € S is the initial state of the system; T denotes all possible
transitions; A C S x T x S is the transition relation; s, € S is a unique distinguished error
state.

Let A=(S, so, T, A, s¢) be an STS. If (s,7,s") € A than 5 is the (unique) successor of s when

executing transition ¢. It will be denoted as s Ly ¢/, Sometimes the notation s = will be used to
refer to s'. The transition ¢ is said to be enabled in s. The set of enabled transitions in a state s
is defined as enabled(s) = {t | (s,t,s") € A}. A state s with enabled(s) = 0 is called deadlock
or terminal state. The function enabled(s) will sometimes be abbreviated as en(s).



2.4. State Transition System 13

A (finite) sequence of transitions w =1;..t, € T* is called a frace. A trace is executable from
s € S iff there exists a sequence of states s1..5,4+1 such that s = s; and #; € en(s;) and s; LN Sit1
for i € {1..n}. The notation s, LN Sp+1 can be used to express the above situation. Thus
the notation s = s’ can be used for single or multiple transitions. Normally it is clear from the
context which definition is used.

A state s’ is said to be reachable from s iff there exists a trace w such that s — s, which can
also be written as s — s’ if the actual trace w is irrelevant. A state s is reachable in an STS
iff 59 — 5. Two transitions 7 and 1" are co-enabled if they are both enabled in some reachable
state s. Two traces wy = t1..t, and wp = ay..a,, can be concatenated by the - operation, thus
Wy -wp = t..tyay ..ay. Concatenation can also be used to prepend or append a single transition
to a trace.

In the following the term state space will be used synonymously to refer to an STS. Some-
times it will even be referred to as (transition) automaton. The complete (global) state space is
denoted as A to distinguish it from the reduced state space Ag that will be defined later during
the presentation of state space reduction techniques. Instead of writing s € S it will often be
simply said that s is in A or even s € A, where A is an STS.

As a convention the existence of a (single) distinguished error state s, € S is assumed. Once
an error state is reached, the system will not leave it anymore, thus Vr € T : (s,1,s.) € A. The
predicate L (s) will return True iff s is an error state, which by convention means that s = s.. A
transition that violates an assertion during execution will lead to an error state.

Remark. Due to symbolic execution, a single transition can lead to multiple successor states,
when a conditional goto is executed where the branch condition and its negation are both satis-
fiable. For simplicity it will be assumed, and has been in the above description, that each tran-
sition has a single unique successor for each state. This is not a real limitation of the theoretical
framework, since every non-deterministic automaton can be transformed into a deterministic
one. Also this extension can be integrated quite naturally into the state space exploration al-
gorithms that will be presented in this thesis, since all successor states are independent of each
other. In practice, multiple successor states that arise due to symbolic execution can be handled
quite efficiently. A state space exploration algorithm that explicitly handles multiple successors
due to symbolic execution is provided in the Appendix. It will be specifically referred to during
the presentation of state space exploration algorithms in Chapter 3.

2.4.1. Modeling IVL Programs as STS

As described in Section 2.2 the behavior of a SystemC program can be represented as IVL
program. This section describes how finite IVL programs, i.e. the number of different states
is finite and each transition runs for a finite number of steps, can be formally modeled as state
transition systems.

A transition moves the system from one state to a subsequent state. In the IVL (and analo-
gously SystemC) basically two different kinds of transitions can be identified, that change the
state of the system in the simulation phase: thread and notification transitions.

Thread transitions change the state by executing a finite sequence of operations of a chosen
thread followed by a context switch operation or termination of the same thread. Thus every
thread can be separated into a list of transitions. The first transition begins with the first state-
ment of the thread. All other transitions continue from a context switch statement that has
interrupted the previous transition. All transitions either end with a context switch or the ter-
mination of the thread, which means that all statements of the process have been completely
executed. Thus every thread 7', that has not been fully executed, has a unique currently active



14 2. Preliminaries

Figure 2.2.: Complete state space for the program in Listing 2.3

s5 s6 s7 s8 s9

Figure 2.3.: Simplified state space for the program in Listing 2.3

transition in each state s, denoted as next(s, T'). This transition can either be enabled or disabled
in s. Basically thats the transition that will be executed next when thread 7 is selected for ex-
ecution in state s. A transition is enabled in a state s if it is the current active transition of a
runnable thread.

For verification purposes, the SystemC IVL supports the assume and assert statements.
Whenever an assertion violation is detected during the execution of a thread, the system will
reach the designated error state s,. The assume statement can be handled similarly, by introduc-
ing a designated terminal state, that is reached whenever the assumed condition is unsatisfiable.

A notification transition changes the state of the system by performing the update, delta notify
and fimed notification phases as necessary. The notification transition will be denoted as #y in
the following. A state s where ty € en(s) is called a notification or notify state. According to
the simulation semantics of SystemC, a notification transition will only be enabled if no thread
transitions are runnable. Thus 7y € en(s) always implies that en(s) = {ry}. All transitions
between two notification states belong to the same delta cycle.

Thread and notification transitions are sufficient to model the simulation phase, which begins
with the start statement. The execution of statements before and after the start statement can be
modeled by introducing two additional distinguished transitions 7z and #¢ respectively, similarly
to the notification phase transition 7y. For the sake of simplicity these transitions will not be
further considered in the following. The next section provides an example to illustrate the
concepts of this section.

2.4.2. Example

Consider the simple IVL program in Listing 2.3. It consists of two threads A and B. Both of
them consist of two transitions, separated by context switches, called Aj,A; and B},B, respec-



2.4. State Transition System 15

1 int a = 0; 8 ¥ 15 notify el;
2 int b = 0; 9 assert (b == 0); 16 )

3 10} 17

4 thread A { 11 18 main {

5 if (b > 0) { 12 thread B 19 start;

6 wait el; 13 b = 1; 20 }

7 b = 0; 14 wait_time O;

Listing 2.3: Example to demonstrate the correspondence between IVL programs and state transition sys-
tems

tively. The transitions can* execute the statements at lines:
A} ={5,6,9}
A, ={7,9}
By ={13,14}
B, ={15}

The STS for this program is defined as A=(S, sq, T, A, s.) with:

T ={A1,A2,B1,By,1c,tg,IN}

A= {(SoJE,S]), (S1,A1 7Sz), (S1 ,B; ,Sg), (Sz,Bl.,S3)7 (S3,I‘N,S4)7 (54,32.,5‘5), (S5.,2‘N7S6)7
(S6,2c,57), (58,A1,59), (59,2n,510), (510, B2, 511), (511,42, 512), (512, I3, 513 ),
(s1357C,514) }

S = {50,51,52,53,54,55,56,57, 58,559,510 511,512, 5135514, Se }

A graphical representation of the STS is shown in Figure 2.2. Circles denote normal states,
i.e. states where a transition can be selected, whereas squares denote states where the either one
of the designated transitions {rg,fc,ty} is explored. In the following the 7 and f¢ transitions
will not be explicitly considered. Furthermore the last notification transition and unreachable
error state will also normally be omitted. A graphical representation incorporating these sim-
plifications is shown in Figure 2.3. Sometimes even the notification transitions in between will
be omitted, since they can be unambiguously inferred given the original program. Error states
will be shaded, as shown in Figure 2.2.

2.4.3. Remarks

This modeling requires not only that a SystemC program is finite but also that every transition
considered in isolation will terminate. For example consider the simple IVL program in Listing
2.5. It would be invalid according to the above definition, since the transition of the thread A
will not terminate, thus not reach a successor state. On the other hand a program with finite
cyclic state space as shown in Listing 2.4 is valid, since every transition will eventually either
finish execution or hit a context switch. While programs that loop without context switches
are very interesting and challenging in the context of formal verification of generic programs,
they are rather uncommon in the context of SystemC. For this reason such programs will not
be further considered, though the methods presented in this thesis can be extended to support
them.

4Whether the transition A, takes the branch in Line 5 depends on the state it is executed from.



16 2. Preliminaries

1 thread A { 1 thread A {

2 while (true) { 2 while (true) {

3 wait_time O0; 3 ¥

4 ¥ 4 ¥

5} 5

6 6 main {

7 main { 7 start;

8 start 8 }

9 }
Listing 2.5: IVL program that cannot be mod-

Listing 2.4: IVL program that can be modelled eled as STS due to non-terminating

as STS. transitions.

Algorithm 1: Complete Stateful DFS
Input: Initial state

1 H « Set()
2 explore(initialState)

3 procedure explore(s) is
4 if s ¢ H then
5 H.add(s)
6 for z € en(s) do
7
8

L n < succ(s,t)

explore(n)

2.5. Basic Stateful Model Checking Algorithm

This section presents a basic stateful DFS algorithm that will explore the complete state space.
It is shown in Algorithm 1. A set H is managed to store already visited states. The algorithm
starts by calling explore with the initial state.

The explore procedure takes a state s as argument and will recursively explore all reachable
states from s. First it checks whether s has already been explored. If not, s is added to the set of
visited states H (line Line 5) and all enabled transitions in s are recursively explored one after
another.

This basic algorithm performs a complete stateful exploration and thus suffers from the well-
known state explosion problem. As has already been mentioned, POR and SSR will be applied
in this thesis to alleviate the problem. The former explores only a subset of enabled transitions
in Line 6. The latter uses a different equality predicate for the check s ¢ H in Line 4. Both
reduction techniques can be applied together.

2.6. Partial Order Reduction

Partial Order Reduction (POR) is a widely used and particularly effective technique to combat
the state explosion problem that arises in model checking of concurrent systems. The idea is
to explore only a subset of the complete state space that is provably sufficient to verify the
properties of interest.

It is based on the observation, that concurrent systems allow for the execution of many differ-
ent transition interleavings, which yield the same resulting state. Thus it is sufficient to explore



2 Springer
http://www.springer.com/978-3-658-12679-7

Complete Symbolic Simulation of SystemC Models
Efficient Formal Verification of Finite Mon-Terminating
Frograms

Herdt, V.

2016, XX, 162 p. 26 illus., Softcover

ISBN: 978-3-658-12679-7



	2. Preliminaries
	2.1. SystemC
	2.1.1. Simulation Semantics

	2.2. SystemC Intermediate Verification Language
	2.2.1. Example

	2.3. Symbolic Execution
	2.4. State Transition System
	2.4.1. Modeling IVL Programs as STS
	2.4.2. Example
	2.4.3. Remarks

	2.5. Basic Stateful Model Checking Algorithm
	2.6. Partial Order Reduction




