
2 Background

This chapter introduces the key concepts that are needed to understand this thesis. First,

we describe the different types of experimental data that are analyzed. Afterwards, the

principles of modeling of chemical kinetics are introduced with a focus on the chemical

master equation (CME) and its approximations. Finally, we show how experimental

data and biological models can be brought together with inference. Inference consists of

parameter optimization, identifiability and uncertainty analysis, and model selection.

2.1 Experimental Data

In this thesis, we consider and distinguish two different types of single-cell data D that

provide information about cell-to-cell variability and are frequently collected in biological

research.

Single-cell snapshot data D = {{yj(tk)}j}nt

k=1 provide single-cell measurements for nt

time instances tk (see Figure 2.1A). Common approaches to generate these data are, e.g.,

flow cytometry (Davey & Kell, 1996) or single-cell microscopy (Miyashiro & Goulian,

2007). A key advantage of these technologies is the possibility of measuring many genes

of plenty of single-cells with low costs. As the cells are not tracked over time, no infor-

mation about the time-course of an individual cell is available.

To obtain temporal information single-cell time-lapse data D = {{yj(tk)}nt

k=1}j (see Fig-

ure 2.1B) are required. Single-cell time-lapse data are typically obtained by conducting

fluorescent time-lapse microscopy (Muzzey & Oudenaarden, 2009) followed by single-cell

tracking (Schroeder, 2011) and image analysis. This approach provides a smaller number

of cells than the technologies described before and the generation of single-cell time series

is expensive and time-consuming. On the other hand, cells are tracked over time yielding

a higher information content of the data.
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A B

Figure 2.1: Measurement data at the single-cell level adopted from Hasenauer (2013):
(A) Illustration of single-cell snapshot data of some measurement y. (B) Il-
lustration of single-cell time-lapse data for five individual cells.

2.2 Modeling Chemical Kinetics

For the detailed analysis of single-cell data, mechanistic mathematical models are used.

One possibility is the use of stochastic chemical kinetics, which model biochemical reaction

networks as continuous-time discrete-state Markov chains (CTMCs). The time evolution

of a CTMC is governed by the CME. A process defined by the CME can either be simulated

with the stochastic simulation algorithm (SSA) or its solution can be approximated e.g.

with the moment equations (ME). While stochastic modeling is especially important in the

case of low-copy numbers, we assume that for high numbers of molecules the system can

be described by its average behavior. This can be modeled in a deterministic way by first

order ordinary differential equations (ODEs) describing the evolution of concentrations of

the species.

2.2.1 Stochastic Chemical Kinetics

Stochastic models are mostly used to describe a biological process, when it is important

to consider that molecules only appear in whole numbers (Wilkinson, 2009; Resat et al.,

2009). This discreteness yields a stochasticity in the dynamics of the molecules and espe-

cially has to be taken into account if only few numbers of molecules are present.

Stochastic chemical kinetics describe the time evolution of a chemical system consist-

ing of L chemical species x1, . . . , xL that interact inside a volume Ω through M reactions

R1, . . . , RM . A reaction Rj has the form
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ν−1jx1 + . . .+ ν−LjxL
kj−→ ν+1jc1 + . . .+ ν+LjxL,

with stochiometric coefficients ν+ij , ν
−
ij ∈ N0 and reaction rate kj . A state of the system is

represented by a vector x(t) ∈ NL
0 . Each entry of the vector is the number of molecules of

the corresponding species. The stochiometric matrix S = (s1, . . . , sM ) ∈ RL×M is defined

by {Sij} =
{
ν+ij − ν−ij

}
:= {νij}. Each entry of the matrix describes the change in the

number of molecules of species xi due to a reaction of type j, i.e., the state x changes to

x+ sj after reaction Rj took place. The probability that reaction Rj happens in the next

infinitesimal time interval [t, t+ dt) is aj(x)dt, with propensity function aj(x).

Several assumptions are typically made when deriving a model of a biological process,

e.g. that the system has a constant volume Ω and is well-stirred, i.e., the probability

of some molecules of a species being in one particular region is uniform over the vol-

ume (Gillespie, 2007). We consider zero-order reactions, which are independent of the

number of molecules, unimolecular reactions, in which just a single molecule is necessary

to conduct the reaction, and bimolecular reactions, for which two molecules need to col-

lide. Higher order reactions can easily be integrated into the methods proposed in this

thesis.

2.2.2 Chemical Master Equation

The CME governs the evolution of the probability that the stochastic process is in a

particular state, given by p(x, t), over time (Gillespie, 1992). The probability p(x, t|x0, t0)

is conditioned on the system being in state x0 at time t0. To obtain an evolution equation

the probability p(x, t+ dt|x0, t0) is first derived in terms of p(x, t|x0, t0), by assuming dt

is small enough that at most one reaction can occur in the time interval [t, t + dt). One

possibility for the system being in state x at time t + dt is that it already has been in

this state and no reaction has taken place since time t, which happens with probability

1−∑M
j=1 aj(x)dt+O(dt). Another scenario is that the system has been in state x− sj

and a reaction of type j occurred with probability aj(x − sj)dt, which yields M more

possibilities. After summing up the probabilities and taking the limit dt → 0, we obtain

the CME
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dp(x, t|x0, t0)
dt

=

M∑
j=1

[p(x− sj , t|x0, t0)aj(x− sj)− aj(x)p(x, t|x0, t0)] ,

with initial condition

p(x, t = t0|x0, t0) =

⎧⎨
⎩ 1, x = x0

0, x �= x0
.

If we neglect x0 and t0 for a simpler notation we obtain

dp(x, t)

dt
=

M∑
j=1

[p(x− sj , t)aj(x− sj)− aj(x)p(x, t)] ,

with initial condition p(x, t0) = p0(x). The CME indeed completely determines the

probability p(x, t|x0, t0) and thus totally describes the system. However, it consists of

a system of coupled ordinary differential equations (ODEs), with one ODE for every

possible state of the system. Since the state space of a biological system is mostly high

dimensional or even infinite dimensional, the CME can only be solved analytically or in

a feasible numerical way for a few simple cases (e.g. (Jahnke & Huisinga, 2007)).

2.2.3 Stochastic Simulation Algorithm

Instead of solving the CME, it is possible to simulate samples in form of trajectories and

thereby recover the underlying probability distribution. This is motivated by the fact

that the chance of a particular trajectory being simulated corresponds to the probabil-

ity given by the CME. A possibility to obtain trajectories is the SSA (Gillespie, 1977).

This algorithm enables an exact simulation of trajectories consistent with the probability

distribution and the transition probabilities that are associated with the CME. For the

direct method of stochastic simulation we define

• the sum over all reaction propensities a0(x) =
∑M

j=1 aj(x),

• the time τ to the next reaction,

• the index j of the next reaction.

It can be shown that τ is exponentially distributed with rate a0(x) and j has density
aj(x)
a0(x)

, which yields the following algorithm:
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Algorithm 2.1: Direct method

Input: Initial condition x0 ∈ NL
0 ,

final simulation time tend,

reaction propensity functions aj(x), j = 1, . . . ,M ,

stochiometric matrix S = (s1, . . . , sM ) ∈ ZLxM .

Result: Time trajectory of state vector x(t).

Set t ← 0 and x ← x0.

while t < tend do

Evaluate reaction propensity functions aj(x) and calculate

a0(x) =
∑M

j=1 aj(x).

Generate two uniformly distributed independent random numbers r1 and r2.

Calculate the time until the next reaction takes places by τ = 1
a0(x)

log(1/r1).

Find the index j of the next reaction that satisfies
∑M

j=1 aj(x) > r2a0(x).

Update the state of the system x ← x+ sj .

Update the time t ← t+ τ .

end

An example of trajectories obtained by this method is shown in Figure 2.2 for a conversion

process (see Section 3.3.2). The computation can be inefficient if lots of events have to be

simulated. Therefore, approximations such as τ -leaping have been introduced (for further

information see (Gillespie, 2007)).

2.2.4 Method of Moments

A possibility to approximate the solution of the CME and thereby avoid the computational

costs of the SSA is the method of moments (Engblom, 2006). This method computes the

moments of p(x, t), i.e., the mean

mi(t) =
∑
x∈Ω

xip(x, t), i = 1, . . . , L ,

of species xi, and higher order moments such as the covariance

Cij(t) =
∑
x∈Ω

(xi −mi(t))(xj −mj(t))p(x, t), i, j = 1, . . . , L ,



10 2 Background

of species xi and xj . The time evolution of the moments is described by a set of ODEs,

the so-called moment equations (MEs). If the system comprises bimolecular reactions,

the calculation of higher order moments is recursive, i.e., the evolution of a moment of

order k depends on moments of order k + 1. In this case moment closure techniques

must be applied, introducing an approximation error (Lee et al., 2009). Formulas for

the first and second order moments of system with at most bimolecular reactions, can

be found in (Engblom, 2006, Proposition 2.5.). The first and second order moments,

namely mean and variance, of the solution statistics for a conversion process are depicted

in Figure 2.2. If a system comprises low- and medium/high-copy species the method

of conditional moments (Hasenauer et al., 2014a) can be used. This method conditions

the moments of species with medium or higher abundance on the states of species that

are only present in low-copy numbers. Therefore, it accounts for the stochasticity of

the processes, arising due to the discreteness of the low-abundance species. The method

avoids the computational costs arising from a full stochastic description of the system

using MEs for the medium and high-copy species.

2.2.5 Reaction Rate Equation

In the limit of large numbers of molecules, the system behaves in a more deterministic way

and the importance of considering single molecules vanishes. Therefore, measurements

are at a continuous level, in contrast to the discrete state space of stochastic modeling.

The evolution of the system is captured by the reaction rate equations (RREs) (Resat

et al., 2009; Gillespie, 2007)

dx(t)

dt
=

M∑
j=1

sjaj(x(t)) .

For some simple systems an explicit formula for the solution of the RREs can be derived,

but mostly numerical integration is need. Nevertheless, deterministic simulations of a

system are generally faster than a stochastic simulation (Szekely & Burrage, 2014).
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Figure 2.2: Example of trajectories of one species of a conversion process obtained by
the SSA (gray), the corresponding approximation with MEs (red) and RREs
(blue), where the mean described by ME and the RRE coincident.

2.3 Parameter Inference

The idea of parameter inference is to combine observed data D and a model M, which

for example has been derived with techniques presented in the previous section. Such

a model comprises parameters, for example kinetic rates or initial conditions, and some

of these parameters denoted by θ ∈ Rnθ may be unknown, because either they are not

measured or it is impossible to measure them.

2.3.1 Parameter Estimation

A common approach to estimate the parameters of a model is to maximize the likelihood

function

L(θ) = p(D|θ) ,

which describes the conditional probability of observing D given θ. Due to better numer-

ical properties for optimization, usually the negative log-likelihood function

J(θ) = − logL(θ)

is minimized. The parameters θML that maximize the likelihood function (or minimize the

negative (log-)likelihood function) are called the maximum likelihood estimates (MLE).
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In a Bayesian framework we can additionally incorporate prior knowledge about the pa-

rameters using the prior distribution p(θ) (Hastie et al., 2009). Applying Bayes’ theorem

yields the posterior distribution of the parameters

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ) .

The parameters θMAP that maximize the posterior distribution are the maximum a poste-

riori estimate (MAP), the Bayesian counterpart of the MLE. The evaluation of the normal-

izing constant p(D) =
∫
p(D|θ)p(θ)dθ can be computationally expensive or unfeasible.

However, this constant can be neglected for optimization and uncertainty analysis, as it is

only needed for model selection based on Bayes factors (Raftery, 1999). The minimization

of the negative log-likelihood function can be efficiently performed using multi-start local

optimization. For this, the initial values for the optimizer are e.g. obtained by Latin

hypercube sampling and then are chosen in a sequential way, such that the correspond-

ing objective function values are decreasing (Raue et al., 2013). For the optimization

procedure the calculation of the gradient is of great importance, as the derivative of the

objective function is used to determine the next parameter value. For the calculation

of the derivatives finite differences or sensitivity analysis can be used (Sengupta et al.,

2014). Sensitivity analysis describes the derivatives of the objective function with respect

to the parameters. Using them, the gradient can be calculated numerically more robustly.

Additionally, we use log-transformed parameters ξ = log(θ) due to better convergence

properties.

If the likelihood cannot be expressed analytically or is computationally too costly to

evaluate, so-called likelihood-free parameter estimation methods are required. This class

of methods circumvents the calculation of the likelihood function and is also known under

the name approximate Bayesian computing (ABC) (Csilléry et al., 2010). We explain

these methods in more detail in Section 4.2, as they are the focal point of the work

described in Chapter 4.

2.3.2 Identifiability and Uncertainty Analysis

Due to the structure of the examined system and limitations of the available data some

parameters can be non-identifiable (Raue et al., 2009), i.e., the parameter can not be
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determined from the data. If this is the case even for perfect data, the parameter is

structurally non-identifiable. If the parameter can not be identified due to measurement

noise or too little data, the parameter is practically non-identifiable. Studying these un-

certainties is an important step of parameter inference and explained in the following.

A common approach to analyze uncertainties of the parameters is to calculate confidence

intervals, e.g. asymptotic confidence intervals based on the curvature of the likelihood,

such as the hessian, or finite sample confidence intervals based on profile likelihoods (for

further information see (Raue et al., 2009)). A parameter θ is practically identifiable from

the corresponding data, if the corresponding confidence intervals are finite.

In a Bayesian context, in which parameters are treated as random variables, we can

get information about the uncertainty of the estimates by considering the whole posterior

distribution. Because of a possibly high dimension of the parameter space or the lack of

a closed form for the posterior, the use of numerical sampling from the posterior distri-

bution is required. Samples from the posterior distribution can be obtained by Markov

chain Monte Carlo (MCMC) methods (Gilks et al., 1996).

2.3.3 Model Selection

The last step of parameter inference is to select an optimal model of out a given set

of candidate models M1, . . . ,Ml that have been derived for some data D. On the one

hand, the chosen model should fit the data very well, which can be easily improved by

increasing the number of parameters. On the other hand, the model should be as simple

as possible to provide reliable predictions and avoid unnecessary uncertainties. We intro-

duce two existing criteria for model selection that try to solve the trade-off between over-

and underfitting of the data. Both criteria consist of a term with the likelihood value of

the maximum likelihood estimate and a penalization term for a higher complexity of the

model.

The Akaike information criterion (AIC) is based on information theoretical concepts

(Akaike, 1998). It gives an estimate for Kullback-Leibler divergence between the den-

sities of the true unknown model and of a candidate model Mk by
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AICk = −2 log(p(D|θML,k)) + 2nθ,k ,

with θML,k denoting the MLE for model Mk and nθ,k denoting the number of parame-

ters of the model. A low value of the AIC indicates that less information has been lost

considering the candidate model and therefore a higher reliability. We reject models with

ΔAIC = AICk − AICmin > 10 as proposed by Burnham & Anderson (2002).

A Bayesian criterion for model selection can be derived by examining the posterior prob-

ability p(k|D) of model Mk (see (Schwarz et al., 1978) for further information). This

criterion is called the Bayesian information criterion (BIC),

BICk = −2 log(p(D|θML,k) + log(nD)nθ,k ,

with nD denoting the number of data points. As with the AIC, the model with the lowest

BIC is chosen and we reject models with ΔBIC = BICk − BICmin > 10 (Raftery, 1999).

In summary, this chapter outlined the key principles that are used in the following chap-

ters of this thesis. We introduced single-cell snapshot data and single-cell time-lapse data,

which possess different information contents and number of data points. We discussed

different approaches to solve the CME, ranging from exact solutions obtained with the

SSA to approximations with MEs and showed the link to deterministic modeling by RREs.

Moreover, this chapter contains an introduction to parameter inference, including parame-

ter estimation, identifiability and uncertainty analysis, and model selection. We presented

the approach of maximum likelihood estimation using multi-start local optimization, and

defined the posterior distribution that is used in a Bayesian context. For identifiability

and uncertainty analysis, profile likelihoods and MCMC sampling schemes can be used.

Finally, we introduced the AIC and BIC, two criteria used for model selection.
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