
2 Preliminaries

In this chapter, we introduce the basic definitions, on which the remainder
of this thesis relies. In particular, we settle the basic notation and define the
underlying model of computation. Moreover, we introduce the most common
network flow problems that will be used and extended throughout the thesis
and define the notion of approximation algorithms. In the very most cases,
we comply with standard notations and definitions, so the familiar reader may
skip parts of this chapter at will.

2.1 Basic Notation

Throughout this thesis, we denote by R (Q, Z, N) the set of real (rational, integral,
natural) numbers. We denote the corresponding subsets of R and Q that contain
all non-negative numbers by R>0 and Q>0, respectively. Similarly, we write R>0

and Q>0, respectively, for the subsets of all positive numbers. The set N of natural
numbers does not contain zero while N>0 does. For two sets A and B, we use the
notation A ⊆ B (A ⊇ B) to denote that A is a subset (superset) of B. If A is a proper
subset (superset) of B, we write A ⊂ B (A ⊃ B). Moreover, we denote the union
(intersection) of the two sets A and B by A ∪ B (A ∩ B). Finally, we write ∅ to denote
the empty set.

We use the notation A ∈ Bm×n to denote that A is a matrix with m rows and
n columns, each of which contains elements from the set B. Moreover, we denote
by Aij the element in the i-th row and the j-th column of A and use Ai· and A·j to
denote the i-th row vector and the j-th column vector of A, respectively.

For a function f : N>0 → N>0, the set O(f(n)) contains all functions g : N>0 → N>0

with the property that there are constants n0 and c such that g(n) 6 c · f(n) for each
n > n0. Similarly, the set Ω(f(n)) contains all functions g : N>0 → N>0 with the
property that there are constants n0 and c such that g(n) > c · f(n) for each n > n0.
The intersection of O(f(n)) and Ω(f(n)) is denoted by Θ(f(n)) := O(f(n))∩Ω(f(n)).

Finally, we denote the logarithm of the number a to the basis b by logb a. Whenever the
basis of the logarithm is omitted, it can be assumed to be 2 without loss of generality.
We denote the natural logarithm of a by lna (i.e., the logarithm to the basis e, where

© Springer Fachmedien Wiesbaden GmbH 2016
M. Holzhauser, Generalized Network Improvement and Packing
Problems, DOI 10.1007/978-3-658-16812-4_2

6 Preliminaries

e is Euler’s number). Moreover, we let sgn : R → {−1, 0, 1} denote the sign function,
which returns −1, 0, or 1 depending on whether the given argument is negative, zero,
or positive.

2.2 Theory of Computation

In this section, we give a short definition of the computational model that is used
throughout this thesis and introduce the tools that will be used to measure the com-
putational complexity of the upcoming problems. Again, we will thereby stick to basic
definitions and notations such that the experienced reader may skip parts of this sec-
tion at will. In-depth treatments of the upcoming topics can be found in (Garey and
Johnson, 1979; Grötschel et al., 1993; Motwani and Raghavan, 1995; Papadimitriou,
1994; Blum et al., 1989).

Instance Encoding

Throughout this thesis, we assume that the instances of the problems that investigate
are encoded by using a “reasonable” encoding scheme into a string over some alpha-
bet Σ. The set of all strings over Σ will be denoted by Σ∗. The encoding length or size
of a problem instance I, denoted by |I|, is then the length of such a string. Although
the number of symbols in Σ will be of no great importance for our results (as long as
|Σ| > 2), we will assume a binary encoding Σ = {0, 1}. As a result, an integer of value n
will, e.g., have a size of

⌈
log2 |n|+ 1

⌉
bits in any instance (Grötschel et al., 1993; Garey

and Johnson, 1979).

Computational Models

The complexity results stated throughout this thesis are based on the random access
machine (RAM) model[1234], which is an alternative to the classical Turing machine (Pa-
padimitriou, 1994) that is capable of an infinite set of registers, each of which can store
one integer of arbitrary size and sign. A random access machine supports a set of in-
structions such as direct and indirect addressing of registers, jumping and branching,
comparisons, as well as arithmetic operations such as addition, subtraction, multipli-
cation and division of numbers. More precisely, we will stick to the unit-cost RAM,
in which each of these operations can be performed in constant time, independent of
the size of the involved integers (in contrast to the log-cost RAM, which accounts for

2.2 Theory of Computation 7

the size of the operands). This simplification leads to a “too powerful” model in com-
parison to the Turing machine since we can generate very large numbers too quickly
using repeated multiplication. Nevertheless, an equivalence between the models (up
to a logarithmic factor) holds in case that the encoding length of the involved inte-
gers is polynomially bounded by the encoding length of the instance (Motwani and
Raghavan, 1995). Since the numbers that are used in the Chapters 3 – 6 fulfill this
property, we can use the unit-cost RAM without loss of generality. The (worst case)
time complexity or (worst case) running time of an algorithm is a function f : N>0 →N>0

such that f(|I|) denotes the maximum number of instructions that are executed by the
random access machine at an input of size |I| (Grötschel et al., 1993).

Note that a random access machine is only capable of handling integral (or, more
general, rational) numbers. In Chapter 7, however, we will be confronted with real
numbers, which may have an infinite (explicit) representation. For this reason, we will
stick to the Blum-Shub-Smale model (BSS model) in the corresponding chapter, which is
basically a random access machine that is extended by the possibilities to store real
rather than integral numbers in its registers and to evaluate rational functions on the
register contents at unit cost (Blum et al., 1989; Blum, 1998).

Decision Problems

A decision problem Π is a problem that, for each instance I, either gives the answer
Yes or No. That is, the problem Π can be seen as a subset of Σ∗ × {0, 1} such that,
for each instance I, either (I, 0) or (I, 1) is contained in Π (Grötschel et al., 1993). We
say that a decision problem Π has a time complexity of f(|I|) or is solvable in f(|I|) time
if there is an algorithm with time complexity g(|I|) for g ∈ O(f(|I|)) that decides
whether or not some problem instance I of size |I| is a Yes-instance of Π. A decision
problem Π is solvable in (weakly) polynomial time if it has a time complexity of p(|I|)
for some polynomial p : N>0 → N>0. Moreover, if Π has a time complexity of p(m)

and uses q(|I|) space, where m denotes the number of integers that occur in the
problem instance (regardless of the magnitude of the integers) and p and q are two
polynomials, it is solvable in strongly polynomial time. Conversely, if Π is not solvable in
polynomial time but has a time complexity that is polynomial in |I| and the absolute
value of the integers in I, we call it solvable in pseudo-polynomial time (Grötschel et al.,
1993; Garey and Johnson, 1979).

The class P consists of all decision problems that are solvable in (weakly or strongly,
but not pseudo-) polynomial time. The class NP consists of all decision problems that
are verifiable in polynomial time, i.e., the set of problems Π for which there is a decision

8 Preliminaries

problem Π ′ ∈ P such that, for each Yes-instance I of Π and for some polynomial p ′,
there is a certificate x ∈ Σ∗ with |x| 6 p ′(|I|) and ((I, x), 1) ∈ Π ′ (Grötschel et al., 1993).1

A decision problem Π is polynomial-time reducible to a decision problem Π ′ if there is
a function t that transforms an instance I of Π into an instance I ′ := t(I) of Π ′ in
polynomial time such that I is a Yes-instance of Π if and only if I ′ is a Yes-instance of
Π ′. A decision problem Π is said to be NP-hard if every problem in NP is polynomial-
time reducible to Π. If, in addition, Π ∈ NP, the decision problem is said to be
NP-complete. If the decision problem remains NP-complete even if the numbers that
occur in each problem instance I are polynomially bounded by |I|, the problem is
strongly NP-complete. Otherwise, we call the decision problem weakly NP-complete.
Unless P = NP, an NP-complete decision problem is not solvable in polynomial time
(Garey and Johnson, 1979).

Optimization Problems

In many problems that occur in practice, one is not only interested in the information
whether or not a given instance is a Yes-instance (as in the case of decision problems)
but wants to determine the somewhat best solution among all feasible solutions to
the underlying problem with respect to some quality measurement. In an optimization
problem, the aim is to determine an optimal solution x out of the set of feasible solutions X
that maximizes (minimizes) some objective function z : X→ R in case of a maximization
problem (minimization problem). The definition of time complexity as well as the notion
of weakly, strongly, and pseudo-polynomial time solvability can then be applied to the
case of an optimization problem without further ado. For the sake of convenience, we
usually say that an optimization problem is weakly or strongly NP-hard (NP-complete) to
solve if the corresponding decision problem that asks if there is a feasible solution x ∈
X with z(x) > k (z(x) 6 k) in case of a maximization problem (minimization problem)
for some given value k is weakly or strongly NP-complete to solve, respectively.

In a k-criteria optimization problem, the aim is to optimize a set of objective func-
tions z(j) : X → R for j ∈ {1, . . . , k} over the set X of feasible solutions, each of which
can either be a maximization or a minimization objective. The objective space Z is then

given by Z :=

{(
z(1)(x), . . . , z(k)(x)

)T
: x ∈ X

}
. The notion of an “optimal solution”

becomes ambiguous in case of a k-criteria optimization problem if k > 2. Instead, we
call a solution x ∈ X efficient if, for every other solution x ′ 6= x ∈ X, there is an index j ∈
{1, . . . , k} such that z(j)(x ′) < z(j)(x) (z(j)(x ′) > z(j)(x)) in case of a maximization (min-

1 An alternative definition of the class P (NP) is that it contains all problems that are solvable in
polynomial time on a deterministic (non-deterministic) Turing machine (Garey and Johnson, 1979).

2.3 Graph Theory 9

imization) objective. The set P :=

{(
z(1)(x), . . . , z(k)(x)

)T
: x ∈ X and x is efficient

}
⊆

Z is then called the pareto frontier of the optimization problem. The corresponding set
of efficient solutions is sometimes called pareto frontier as well.

2.3 Graph Theory

Throughout this thesis, we consider directed (multi-)graphs (or simply graphs) G =

(V ,E), which are induced by a finite node set V and a finite multiset E, called edge
set, that contains ordered pairs of V × V . The elements in V and E are referred to
as nodes and edges, respectively. We denote the cardinalities of V and E by n and m,
respectively. At some points, we restrict our considerations to simple graphs in which
E is a set rather than a multiset. If the edge set contains two-element subsets of V
rather than ordered pairs of V × V , the graph is called a undirected.

For each edge e = (v,w) ∈ E, we call v the starting node and w the end node of e and
say that e heads from v to w. Similarly, we call e both an outgoing edge of v and an
ingoing edge of w or simply say that e leaves v and reaches w. Two nodes v ∈ V and
w ∈ V are furthermore called adjacent if there is an edge e ∈ E that heads from v to
w or vice versa. Likewise, we call a node v and an edge e incident if v is the starting
or the end node of e. Moreover, we call two edges e and e ′ adjacent if they are both
incident to the same node v.

For each node v ∈ V , we denote by δ+(v) := {e ∈ E : e leaves v} and δ−(v) := {e ∈ E :

e reaches v} the set of outgoing edges and ingoing edges of v, respectively. Accordingly,
we call |δ+(v)| and |δ−(v)| the out-degree and in-degree of node v, respectively. For a
set V ′ ⊆ V , we write δ+(V ′) (δ−(V ′)) to denote the set of edges e = (v,w) ∈ E with
v ∈ V ′ and w /∈ V ′ (v /∈ V ′ and w ∈ V ′).

For a given graph G = (V ,E), we call each graph H = (V ′,E ′) with V ′ ⊆ V and E ′ ⊆ E
a subgraph of G. For a given subset V ′ ⊆ V of the node set, we call G[V ′] the subgraph
induced by V ′, which consists of all nodes v ∈ V ′ and all edges e ∈ E ∩ (V ′ × V ′).
Similarly, for a subset E ′ ⊆ E of the edge set, the graph G[E ′] denotes the subgraph
induced by E ′, i.e., the graph with edge set E ′ and the node set V ′ that contains all end
nodes of edges in E ′.

A sequence P := (e1, . . . , ek) of edges in E in which the end node of ei and the starting
node of ei+1 coincide for each i ∈ {1, . . . , k−1} is called a path (of length k). If v0 denotes
the starting node of e1 and vk the end node of ek, then P is also referred to as a v0-vk-
path. Moreover, we say that P connects v0 and vk and that vk is reachable from v0 (via P).
If all of the involved nodes are distinct, we call P a simple path. A path C := (e1, . . . , ek)

10 Preliminaries

in which the end node of ek and the starting node of e1 coincide is called a circuit (of
length k). Furthermore, if the paths P1 := (e1, . . . , ek−1) and P2 := (e2, . . . , ek) are both
simple, we call C a simple cycle (of length k)simple cycle or just cycle. We call a (simple)
path, circuit, or cycle undirected if we obtain a corresponding (simple) path, circuit, or
cycle by reverting the direction of one or more of the contained edges.

For two distinguished nodes s, t ∈ V , an s-t-cut (S, T) is a partition of the node set into
two disjoint sets S and T such that s ∈ S and t ∈ T . We denote by δ+(S) (δ−(S)) the
set of forward edges (backward edges) in the cut. Usually, we also use the set of forward
edges δ+(S) to refer to the s-t-cut (S, T).

We call a graph G = (V ,E) connected if, for each two nodes v1, v2 ∈ V , there is a
(possibly undirected) v1-v2-path P in G. Accordingly, we call G strongly connected if
there is both a directed path from v1 to v2 and a directed path from v2 to v1 for every
pair of nodes v1, v2 ∈ V . Each maximal subgraph (with respect to the edge set) of G
that is (strongly) connected is called a (strongly) connected component.

A graph G = (V ,E) with the property that its node set V can be partitioned into two
sets V1 and V2 such that E ⊆ (V1 × V2) ∪ (V2 × V1) is called bipartite. A graph G is
called acyclic if it does not contain cycles. A topological sorting of a graph G = (V ,E)
with node set V = {v1, . . . , vn} is a sequence (vi1 , . . . , vin) with ij 6= il for j 6= l (i.e.,
a ordering of the node set) such that ij < il for each edge e = (vij , vil) ∈ E. As it
is well-known, a graph is acyclic if and only if it has a topological sorting (cf., e.g.,
(Ahuja et al., 1993)).

A tree is a connected graph that does not contain undirected cycles. A graph G in
which each connected component is a tree is called a forest. We call a tree T = (V ,E)
rooted if there is some distinguished root node r ∈ T . In such a rooted tree T , we say that
a node v ∈ V is on level k if it is connected to the root node by an undirected path Pv
of length k. Every node w 6= v on this path Pv is called an ancestor of v while v itself is
a successor of w. If, in addition, there is an edge from v to w or from w to v in T , we
call v a child node of w and w the parent node of v. Each node v that has no children is
called a leaf node or simply leaf while every other node of T (including the root node)
is called an inner node. If every inner node of the tree has exactly two children, we
call T a binary tree. Furthermore, if every node is reachable from the root node via
a directed path, we call the tree an out-tree. Conversely, if the root node is reachable
from every node via a directed path, we call the tree an in-tree. The subgraph of a
tree T = (V ,E) that is induced by a node v ∈ V and all of its successors is called a
subtree of T . Finally, for a graph G = (V ,E), we call a tree T a spanning tree of G if it is
a subgraph of G and contains all nodes in V .

2.3 Graph Theory 11

Another important class of graphs that is used throughout this thesis is the class
of series-parallel graphs. Each series-parallel graph G = (V ,E) is associated with a
source s ∈ V and a sink t ∈ V and can be recursively defined as follows:

Single edge: Each graph that consists of a single edge e = (s, t) is series-parallel with
source s and sink t (denoted by G = e).

Parallel composition: For two series-parallel graphsG1,G2 with sources si and sinks ti,
i ∈ {1, 2}, the graph G that is obtained by identifying s1 with s2 and t1 with t2 is
series-parallel with source s1 = s2 and sink t1 = t2 (denoted by G = G1 | G2).

Series composition: For two series-parallel graphs G1,G2 with sources si and sinks ti,
i ∈ {1, 2}, the graph G that is obtained by identifying t1 with s2 is series-parallel
with source s1 and sink t2 (denoted by G = G1 ◦G2).

In particular, note that series-parallel graphs are acyclic and connected according to
the above definition. If, additionally, in each series composition of G1 and G2 at least
one of G1 or G2 consists of a single edge, the graph is called extension-parallel. A
decomposition tree T of a series-parallel graph G is a binary tree in which the leaves cor-
respond to single edges of G and each inner node v either corresponds to a series or
a parallel composition of the two series-parallel graphs that are induced by the leaves
of the two subtrees of v. Such a decomposition tree T of a series-parallel graph G with
m edges and n nodes contains m leaves, n− 2 inner nodes that correspond to series
compositions, and m − n + 1 inner nodes that correspond to parallel compositions.
Moreover, such a decomposition tree can be constructed from a given series-parallel
graph in O(m) time (cf. Valdes et al. (1982)). A series-parallel graph G and a corre-
sponding decomposition tree T are depicted in Figure 2.1. Note that this graph is not
extension-parallel while the subgraph that is induced by the nodes {s, v,w} is.

s v w t

e1

e2

e3

e4

e5

e6

(a) Series-parallel graph G.

S

P

S

P

e1 e2

e4

e3

P

e5 e6

(b) Decomposition tree T .

Figure 2.1: A series-parallel graph (left) and a possible decomposition tree (right). Inner
nodes representing parallel compositions (series compositions) are denoted by the
letter P (S).

12 Preliminaries

Throughout this thesis, we assume that each graph G = (V ,E) is given in the adjacency-
list representation, in which a list Adj(v) is connected with each node v ∈ V containing
the outgoing edges δ+(v) of v.

2.4 Network Flow Problems

In this section we give a short introduction to the field of network flow problems. In
general, such problems aim at finding the “best” way to send some amount of a
commodity from one point in a network to another one. Thereby, we will concentrate
on the definitions and complexities of the four possibly most important network flow
problems, namely the shortest path problem, the maximum flow problem, the minimum
cost flow problem, and the maximum generalized flow problem. For an in-depth treatment
of these topics, we refer the reader to Ahuja et al. (1993) and Wayne (1999).

In its most general form, each node v ∈ V in a network flow problem is associated with
an integral number bv that represents the supply of the corresponding node. Moreover,
each edge e ∈ E has both a non-negative lower capacity le > 0 and a (possibly infinite)
upper capacity or just capacity ue > le. A pseudoflow is a function x : E → R that
assigns a value xe := x(e) ∈ [le,ue] to each edge, which represents the amount of
goods that are transported along e from the starting node to the end node of e. For
a pseudoflow x, the excess of a node v ∈ V if given as excessx(v) :=

∑
e∈δ−(v) xe −∑

e∈δ+(v) xe and describes the difference of the incoming amount of flow and the
outgoing amount of flow at v. Similarly, the imbalance of a node v ∈ V is given as
excessx(v) + bv and describes the deviation of the excess from the demand −bv of
the node. If a pseudoflow x fulfills excessx(v) > −bv at each v ∈ V , it is called
a preflow. Moreover, if x fulfills the flow conservation constraint excessx(v) = −bv at
each node v ∈ V , the pseudoflow is called a feasible flow or simply flow. The flow
value val(x) of a pseudoflow x is defined as the amount of flow that remains at the
sink, i.e., val(x) := excessv(t). Note that, in order to allow feasible flows, we require
that

∑
v∈V bv = 0. However, as it is well-known, we can assume without loss of

generality that le = 0 and that ue is finite for each e ∈ E. Furthermore, we may
assume that there is a distinct source s ∈ V as well as a distinct sink t ∈ V such
that bs > 0, bt < 0, and bv = 0 for each v ∈ V \ {s, t} (Ahuja et al., 1993). As it is
well known that the polyhedron described by the above constraints is integral, we can
assume without loss of generality that the optimal flow is integral as long as the input
data is integral as well (Ahuja et al., 1993).

For a flow x in a network that is based on a graph G = (V ,E), the residual network G(x)
contains at most two edges for each e = (v,w) ∈ E in the original graph G: Unless

2.4 Network Flow Problems 13

xe = ue, there is some forward edge e(1) heading from v to w with a (positive) capacity
of ue(1) := ue − xe. Moreover, unless xe = 0, a backward edge e(2) heads from w to v
with a (positive) capacity of ue(2) := xe.

Shortest Paths

For a given graph with edge labels ce for each e ∈ E, the shortest path problem in general
aims at finding a (directed) path P between two nodes v,w ∈ V with a minimum
length c(P) :=

∑
e∈P ce among all such paths. In the single-source shortest path problem,

one seeks to find a shortest path from some node v ∈ V to every other nodew ∈ V \ {v}.
Conversely, in the all-pairs shortest path problem, the task is to determine a shortest path
between every pair of nodes in V . In particular, the shortest path problem is in fact a
network flow problem since it can be seen as the problem of shipping one unit of a
good from one point in the network to each of the n− 1 other points in the cheapest
possible way. As we will see later, the problem can be seen as a special case of the
more general minimum cost flow problem.

At present, the best bound for the single-source shortest path problem in a simple
graph with non-negative lengths ce is given by

SP(m,n,C) ∈ O
(

min
{
m+n logn,m log logC,m+n

√
C
})

,

with C := maxe∈E ce, where the corresponding bounds are due to Fredman and Tar-
jan (1987), Johnson (1981), and Ahuja et al. (1990), respectively. The best strongly
polynomial time bound is consequently given by SP(m,n) ∈ O(m+ n logn). More-
over, in an acyclic graph, the single-source shortest path problem can be solved in
O(m+n) time (Ahuja et al., 1993). Algorithms for the all-pairs shortest path problem
will be investigated in Chapter 4.

Maximum Flows

In the maximum flow problem, the task is to determine a flow that sends the maxi-
mum possible amount of flow from the source s to the sink t of the network without
violating any edge capacity. More precisely, the aim is to find a feasible flow x with
maximum flow value val(x) among all feasible flows or, equivalently, to determine the
largest value bs = −bt that allows a feasible flow x. Hence, we are able to leave out
the flow conservation constraints for s and t and can maximize over −bt = excessx(t)

14 Preliminaries

instead. Stated as a linear program, we then obtain the following formulation for the
maximum flow problem:

max
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe (2.1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}, (2.1b)

0 6 xe 6 ue for all e ∈ E. (2.1c)

Note that we can transform each instance of the maximum flow problem on a multi-
graph into an equivalent instance on a simple graph in linear time without increasing
the number of nodes and edges by simply aggregating the capacities of all parallel
edges between two nodes into the capacity of a new artificial edge and deleting the
previous edges in O(m) time.

The maximum flow problem is probably the network flow problem with the longest
history of steady improvements. The first algorithm for the maximum flow prob-
lem was introduced in 1956 by Ford and Fulkerson (1956) with a pseudo-polynomial
running time of O(nmU) for U := maxe∈E ue. The underlying idea of repeatedly
sending flow on s-t-paths with positive capacity in the residual network was later
independently refined by Dinic (1970) and Edmonds and Karp (1972), resulting in
strongly polynomial running times of O(n2m) and O(nm2), respectively. Another
class of algorithms, called push-relabel algorithms, in which flow is augmented along
single edges rather than full s-t-paths, was introduced by Karzanov (1974) and Gold-
berg and Tarjan (1986). It resulted in running times of O(nm logm/(n logn) n) and

O(min{n2/3,m1/2} ·m log(n2/m) logU)) due to King et al. (1994) and Goldberg and
Rao (1998), respectively. In 2013, after there was no significant progress in the field
of maximum flows for about 15 years, Orlin (2013) was able to give an affirmative
answer to the long standing open question whether there is an algorithm with a run-
ning time in O(nm) by combining the ideas of King et al. (1994) and Goldberg and
Rao (1998) with a new algorithm for sparse graphs. At present, the best bound for the
maximum flow problem is given by

MF(m,n,U) ∈ O
(

min
{

min{n2/3,m1/2} ·m log(n2/m) logU,nm
})

due to Goldberg and Rao (1998) and Orlin (2013), respectively. The best strongly
polynomial time bound is given by MF(m,n) ∈ O(nm) due to Orlin (2013).

2.4 Network Flow Problems 15

Minimum Cost Flows

The minimum cost flow problem is the most fundamental network flow problem, partic-
ularly since it subsumes both the shortest path and the maximum flow problem and
is strongly related to the maximum generalized flow problem that is described in the
next subsection (Truemper, 1977). For given edge costs ce ∈ Z for each e ∈ E, we seek
to obtain a flow x that minimizes the total flow costs c(x) =

∑
e∈E ce · xe among all

feasible flows. Note that we obtain the shortest path problem by setting bs := 1 and
bt := −1 (if the flow is integral, which we can assume without loss of generality as
described above) and the maximum flow problem by setting ce = −1 for e ∈ δ−(t)
and ce = 0 for e ∈ E \ δ−(t).

Throughout this thesis, we usually restrict our considerations to the case that no flow
value is prescribed, i.e., we drop the flow conservation constraints both for the source
and the sink of the network (similar to the case of minimum cost circulations, cf. (Ahuja
et al., 1993)). This assumption, however, does not constrain the capabilities of the
model, which can be seen as follows: On the one hand, it can be shown that every
minimum cost flow with a flow value of F decomposes into some flow with value F
(which can be found by a maximum flow computation in O(nm) time as shown before)
and a minimum cost circulation in the residual network of this flow. On the other
hand, we can model a desired flow value of F > 1 by adding an artificial edge e
heading from the original sink t to a new artificial sink t ′ with capacity ue := F and
cost ce := −(mCU + 1). Since the absolute cost of any flow is bounded by mCU,
the cost of a minimum cost flow in this transformed network is then smaller than
−(F− 1)(mCU+ 1) if and only if it has a value of F and is minimum among all such
flows. Note that this transformation is only connected with no loss of generality
when talking about exact algorithms. For approximation algorithms (see Section 2.5),
the transformation has an influence on the approximation guarantee of an algorithm.
Nevertheless, as one usually needs to make assumptions in order to guarantee a
non-negative or non-positive objective function value for a proper definition of an
approximation guarantee, we restrict our considerations on the flow model described
above.

Hence, we can formulate the minimum cost flow problem as a linear program as
follows:

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t},

0 6 xe 6 ue for all e ∈ E.

16 Preliminaries

Note that the total flow costs are non-positive for each minimum cost flow in this
setting since the all-zero flow is always feasible.

Similarly to the case of the maximum flow problem, the minimum cost flow prob-
lem has a long history of steady research and improvements. At present, the best
bound MCF(m,n,C,U) for the minimum cost flow problem is given by

MCF(m,n,C,U) ∈ O(min{nm · log(n2/m) log(nC),nm · log logU log(nC),

m logn · (m+n logn)}).

These bounds are due to Goldberg and Tarjan (1987), Ahuja et al. (1992), and Orlin
(1993), respectively. The best strongly polynomial time bound MCF(m,n) is achieved
by Orlin’s enhanced capacity scaling algorithm (cf. Ahuja et al. (1993) and Orlin (1993))
and is given by MCF(m,n) ∈ O(m logn · (m+n logn)).

Note that each of these bounds only applies to simple graphs. Clearly, we can con-
vert every multigraph into a simple graph by replacing each edge e = (v,w) by two
edges e1 = (v, v ′) and e2 = (v ′,w) for an artificial node v ′. This transformation in-
creases the number of edges from m to 2m and the number of nodes from n to n+m.
However, in Chapter 4, we will see that we can avoid this transformation for the case
of the enhanced capacity scaling algorithm, which in turn yields a time bound of
O(m logm · (m+n logn)) for the problem on multigraphs.

Maximum Generalized Flows

The is an extension of the traditional maximum flow problem in which the implicit
assumption of flow being conserved when it traverses an edge is dropped. Instead, the
flow xe that enters some edge e will have a value of γe · xe for some gain factor γe > 0
when it leaves that edge. For different values of these gain factors, one can model
effects like evaporation in a gas pipeline (if γe < 1) or money exchanges among
different currencies (Wayne, 1999). Clearly, the resulting polyhedron is no longer
integral, so we cannot assume a maximum generalized flow to be integral as well.
The maximum generalized flow problem can be formulated as a linear program as
follows:

max
∑

e∈δ−(t)

γe · xe −
∑

e∈δ+(t)

xe

s.t.
∑

e∈δ−(v)

γe · xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t}

0 6 xe 6 ue for all e ∈ E.

2.5 Approximation Algorithms 17

Note that the capacity of an edge bounds the flow that enters an edge (rather than the
flow that leaves the edge). At present, the best bound for the maximum generalized
flow problem is given by

MGF(m,n,B) ∈ O
(

min
{
nm · (m+n logn) logB),m5

})
if the capacities are integers between 1 and B and the gain factors are fractions of
numbers between 1 and B. The first time bound is due to (Radzik, 2004) while the
strongly polynomial time bound is due to Végh (2013), who recently showed that
the generalized maximum flow problem can be solved in strongly polynomial time
MGF(m,n) ∈ O(m5).

2.5 Approximation Algorithms

For a maximization (minimization) problem Π with non-negative objective function z,
an algorithm is called an approximation algorithm with performance guarantee α ∈ [1,∞)

or simply α-approximation algorithm if, for each instance I of Π, it computes a feasible
solution x with objective value z(x) > 1

α · z(x
∗) (z(x) 6 α · z(x∗)) in polynomial time,

where x∗ denotes an optimal solution of I.

An algorithm that receives an instance I of a maximization (minimization) problem Π

and a real number ε ∈ (0, 1) as its input is called a polynomial-time approximation
scheme (PTAS) if, on input (I, ε), it computes a feasible solution x with objective value
z(x) > (1− ε) · z(x∗) (z(x) 6 (1+ ε) · z(x∗)) with a running time that is polynomial
in the encoding size |I| of I. If this running time is additionally polynomial in 1

ε ,
the algorithm is called a fully polynomial-time approximation scheme (FPTAS). Similarly,
for a k-criteria optimization problem Π with objective functions z(j) for j ∈ {1, . . . , k},
we call an algorithm a k-criteria fully polynomial-time approximation scheme (k-criteria
FPTAS) if, on input (I, ε) with I ∈ Π and ε ∈ (0, 1), it computes a feasible solution x
with objective value z(j)(x) > (1− ε) · z(j)(x∗) for each maximization objective z(j) and
z(j)(x) 6 (1+ ε) · z(j)(x∗) for each minimization objective z(j).

The notion of a k-criteria FPTAS is strongly related to the concept of ε-approximate
pareto frontiers: For some instance I of a k-criteria optimization problem, the ε-approx-
imate pareto frontier P(ε) is a subset of the feasibility set X such that, for each x ∈ X,
there is a point xP ∈ P(ε) that fulfills z(j)(xP) > 1

1+ε · z
(j)(x) for each maximization

objective and z(j)(xP) 6 (1+ ε) · z(j)(x) for each minimization objective (cf. (Papadim-
itriou and Yannakakis, 2000)). Intuitively, the ε-approximate pareto frontier is a “suffi-
ciently good” approximation of the real pareto frontier P with respect to the precision

18 Preliminaries

parameter ε. Note that, for ε ∈ (0, 1), the fact that z(j)(xP) > 1
1+ε · z

(j)(x) also implies
that z(j)(xP) > (1− ε) · z(j)(x) as in the definition of an FPTAS above.

Finally, an optimization problem Π is said to be NP-hard to approximate if the existence
of an approximation algorithm with a specific performance guarantee α would imply
that an NP-hard decision problem is solvable in polynomial time.

http://www.springer.com/978-3-658-16811-7

	2 Preliminaries
	2.1 Basic Notation
	2.2 Theory of Computation
	2.3 Graph Theory
	2.4 Network Flow Problems
	2.5 Approximation Algorithms

