Chapter 2
Preliminaries on Dynamical Systems
and Stability Theory

In this chapter, we will review some fundamental concepts on dynamical systems and
stability theory, and give some evaluations and opinions on some problems, which
will be helpful for understanding the main contents of this book.

2.1 Overview of Dynamical Systems

The concept of a dynamical system has its origins in Newtonian mechanics. There, as
in other natural sciences and engineering disciplines, the evolution rule of dynamical
systems is an implicit relation that gives the state of the system for only a short time
into the future. (The relation is either a differential equation, difference equation, or
other timescale.) To determine the state for future time requires iterating the relation
many times, each advancing time a small step. The iteration procedure is referred to
as solving the system or integrating the system. If the system can be solved, given an
initial point it is possible to determine all its future positions, a collection of points
known as a trajectory or orbit.

Before the advent of computers, finding an orbit required sophisticated mathe-
matical techniques and could be accomplished only for a small class of dynamical
systems. Numerical methods implemented on electronic computing machines have
simplified the task of determining the orbits of a dynamical system.

For simple dynamical systems, knowing the trajectory is often sufficient, but
most dynamical systems are too complicated to be understood in terms of individual
trajectories. The difficulties are listed as follows:

(1) The systems studied may only be known approximately—the parameters of
the system may not be known precisely or terms may be missing from the equations.
The approximations used bring into question the validity or relevance of numerical
solutions. To address these questions several notions of stability have been introduced
in the study of dynamical systems, such as Lyapunov stability, Lagrange stability,

© Science Press, Beijing and Springer-Verlag Berlin Heidelberg 2016 37
Z. Wang et al., Qualitative Analysis and Control of Complex Neural

Networks with Delays, Studies in Systems, Decision and Control 34,

DOI 10.1007/978-3-662-47484-6_2



38 2 Preliminaries on Dynamical Systems and Stability Theory

Hurwitz stability, and structural stability or connective stability. The stability of
dynamical systems implies that there is a class of models or initial conditions for
which the trajectories would be equivalent. The operation for comparing orbits to
establish their equivalence changes with the different notions of stability.

(2) The type of trajectory may be more important than one particular trajectory.
Some trajectories may be periodic, whereas others may wander through many dif-
ferent states of the system. Applications often require enumerating these classes or
maintaining the system within one class. Classifying all possible trajectories has led
to the qualitative study of dynamical systems, that is, properties that do not change
under coordinate transformations. Linear dynamical systems and systems that have
two numbers describing a state are examples of dynamical systems where the possible
classes of orbits are understood.

(3) The behavior of trajectories as a function of a parameter may be what is
needed for an application. As a parameter varies, the dynamical systems may have
bifurcation points where the qualitative behavior of the dynamical system changes.
For example, it may go from having only periodic motions to having apparently
erratic behavior, as in the transition to turbulence of a fluid.

(4) The trajectories of the system may appear erratic randomly. In these cases
it may be necessary to compute averages using one very long trajectory or many
different trajectories. The averages are well defined for ergodic systems and a more
detailed understanding has been worked out for hyperbolic systems. Understanding
the probabilistic aspects of dynamical systems has helped to establish the foundations
of statistical mechanics and of chaos.

Many people regard Henri Poincare as the founder of dynamical systems. Poincare
published two classical monographs, “New Methods of Celestial Mechanics” (1892—
1899) and “Lectures on Celestial Mechanics” (1905-1910). In the monographs, he
successfully applied the results of his research to the problem of the motion of three
bodies and studied in detail the behavior of solutions (frequency, stability, asymptotic
property, and so on). These papers included the Poincare recurrence theorem, which
states that certain systems will, after a sufficiently long but finite time, return to a
state very close to the initial state.

Aleksandr Lyapunov developed many important approximation methods. His
methods, which was developed in 1899, make it possible to define the stability of
sets of ordinary differential equations. He created the modern theory of the stability
of a dynamic system. In 1913, George David Birkhoff [1] proved Poincare’s “Last
Geometric Theorem,” a special case of the three-body problem, a result that made
him world famous. In 1927, he published his “Dynamical Systems.” Birkhoff’s most
durable result was his 1931 discovery of what is now called the ergodic theorem.
Combining insights from physics on the ergodic hypothesis with measure theory, this
theorem solved, at least in principle, a fundamental problem of statistical mechanics.
The ergodic theorem has also had repercussions for dynamics. Stephen Smale made
significant advances as well. His first contribution is the Smale horseshoe that jump
started significant research in dynamical systems. He also outlined a research pro-
gram carried out by many others. Oleksandr Mykolaiovych Sharkovsky developed
Sharkovsky’s theorem on the periods of discrete dynamical systems in 1964. One of
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the implications of the theorem is that if a discrete dynamical system on the real line
has a periodic point of period 3, then it must have periodic points of every other period.
Some theories related to dynamical systems are simply described as follows:

(1) Arithmetic dynamics

Arithmetic dynamics is a field emerged in the 1990s that amalgamates two areas
of mathematics, dynamical systems and number theory. Classically, discrete dynam-
ics refers to the study of the iteration of self-maps of the complex plane or real line.
Arithmetic dynamics is the study of the number-theoretic properties of integer, ra-
tional, p-adic, and/or algebraic points under repeated application of a polynomial or
rational function.

(2) Chaos theory

Chaos theory describes the behavior of certain dynamical systems, that is, systems
whose state evolves with time, that may exhibit dynamics that are highly sensitive
to initial conditions (popularly referred to as the butterfly effect). As a result of this
sensitivity, which manifests itself as an exponential growth of perturbations in the
initial conditions, the behavior of chaotic systems appears random. This happens
even though these systems are deterministic, meaning that their future dynamics are
fully defined by their initial conditions, with no random elements involved. This
behavior is known as deterministic chaos or simply chaos.

(3) Complex systems

Complex systems are a scientific field, which study the common properties of
systems considered complex in nature, society and science. It is also called com-
plex systems theory, complexity science, study of complex systems and/or sciences
of complexity. The key problems of such systems are difficulties with their for-
mal modeling and simulation. From such perspective, in different research contexts
complex systems are defined on the basis of their different attributes. The study of
complex systems is bringing new vitality to many areas of science where a more typ-
ical reductionist strategy has fallen short. Complex systems are, therefore, often used
as a broad term encompassing a research approach to problems in many diverse dis-
ciplines including neurosciences, social sciences, meteorology, chemistry, physics,
computer science, psychology, artificial life, evolutionary computation, economics,
earthquake prediction, molecular biology, and inquiries into the nature of living cells
themselves.

(4) Control theory

Control theory is an interdisciplinary branch of engineering and mathematics,
which deals with how to influence the behavior of dynamical systems subjectively.

(5) Ergodic theory

Ergodic theory is a branch of mathematics that studies dynamical systems with
an invariant measure and related problems. Its initial proposal was motivated by
problems of statistical physics.
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(6) Functional analysis

Functional analysis is the branch of mathematics, and specifically of analysis
concerned with the study of vector spaces and operators acting upon them. It has
its historical roots in the study of functional spaces, in particular transformations of
functions, such as the Fourier transform, as well as in the study of differential and
integral equations. This usage of the word “functional” goes back to the calculus
of variations, implying a function whose argument is a function. Its use in general
has been attributed to mathematician and physicist Vito Volterra and its founding is
largely attributed to mathematician Stefan Banach.

(7) Graph dynamical systems

The concept of graph dynamical systems (GDS) can be used to capture a wide
range of processes taking place on graphs or networks. A major theme in the math-
ematical and computational analysis of GDS is to relate their structural properties
(e.g., the network connectivity) and the global dynamics that result.

(8) Projected dynamical systems

Projected dynamical systems are a mathematical theory investigating the behav-
iour of dynamical systems where solutions are restricted to a constraint set. The
discipline shares connections to and applications with both the static world of opti-
mization and equilibrium problems and the dynamical world of ordinary differential
equations. A projected dynamical system is given by the flow to the projected dif-
ferential equation.

(9) Symbolic dynamics

Symbolic dynamics are the practice of modeling a topological or smooth dynam-
ical system by a discrete space consisting of infinite sequences of abstract symbols,
each of which corresponds to a state of the system, with the dynamics (evolution)
given by the shift operator.

(10) System dynamics

System dynamics are an approach to understanding the behavior of complex
systems over time. It deals with internal feedback loops and time delays that affect
the behavior of the entire system. What makes system dynamics different from other
approaches to studying complex systems is the use of feedback loops and stocks and
flows. These elements help describe how even seemingly simple systems display
baffling nonlinearity.

(11) Topological dynamics

Topological dynamics is a branch of the theory of dynamical systems in which
qualitative, asymptotic properties of dynamical systems are studied from the view-
point of general topology.
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2.2 Definition of Dynamical System and Its Qualitative
Analysis

A dynamical system is a concept in mathematics where a fixed rule describes how
a point in a geometrical space depends on time. Examples include the mathematical
models that describe the swinging of a clock pendulum, the flow of water in a pipe,
and the number of fish each spring time in a lake. At any given time a dynamical
system has a state given by a set of real numbers (a vector) that can be represented
by a point in an appropriate state space (a geometrical manifold). Small changes in
the state of the system create small changes in the numbers. The evolution rule of
the dynamical system is a fixed rule that describes what future states follow from the
current state. The rule is deterministic; in other words, for a given time interval only
one future state follows from the current state.

In the following, several types of definitions of dynamical system are provided.

(1) A dynamical system is a four-tuple {7, X, A, S} where T denotes time set, X
is the state space (a metric space with metric d), A is the set of initial states, and S
denotes a family of motions. When T = R* = [0, co), we speak of a continuous-
time dynamical system; and when T = N = {0, 1, 2, ..., }, we speak of a discrete-
time dynamical system. For any motion x(-; xo, fp) € S, we have x(fy; xo, tp) =
X0 € A C X and x(t,x9,t0) € X forall r € [to, 1] N T, t; > ty, where #; may be
finite or infinite. The set of motions S is obtained by varying (ty, xo) over T x A. A
dynamical system is said to be autonomous, if every x(-, xo, to) € S is defined on
T N [ty, 0o) and if for each x (-, xg, f9) € S and for each 7 such that o + 7 € T, there
exists a motion x (-, xg, o + 7) € S such that x(t + 7; xg, to + 7) = x(¢; xg, tp) for
all r and 7 satisfyingt +7 € T.

A set M C A is said to be invariant with respect to the set of motions S if xo € M
implies that x (¢, xq, f9) € M forallt > 1o, forall 7o € T, and for all x(-; xq, tp) € S.
A point p € X is called an equilibrium for the dynamical system {7, X, A, S} if the
singleton { p} is an invariant set with respect to the motion S. The term stability (more
specially, Lyapunov stability) usually refers to the qualitative behavior of motions
relative to an invariant set (resp. an equilibrium), whereas the term boundedness
(more specially, Lagrange stability) refers to the (global) boundedness properties
of the motions of a dynamical system. Of the many different types of Lyapunov
stability that have been considered in the literature, perhaps the most important ones
include stability, uniform stability, asymptotic stability, uniform asymptotic stability,
exponential stability, asymptotic stability in the large, uniform asymptotic stability in
the large, exponential stability in the large, instability, and complete instability. The
most important Lagrange stability types include boundedness, uniform boundedness,
and uniform ultimate boundedness of motions.

(2) A dynamical system (geometrical definition) is the tuple (M, f, T'), with M
a manifold (locally a Banach space or Euclidean space), 7 the domain for time
(nonnegative reals, the integers) and f an evolution rule t — f(¢) (with¢ € T) such
that f(¢) is a diffeomorphism of the manifold to itself. So, f is a mapping of the time
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domain into the space of diffeomorphisms of the manifold to itself. In other terms,
f(t) is a diffeomorphism, for every time ¢ in the domain 7.

(3) A dynamical system (measure theoretical definition) may be defined for-
mally, as a measure-preserving transformation of a sigma-algebra, the quadruplet
(X, X2, u, 7). Here, X is a set, and X is a sigma-algebra on X, so that the pair (X, X)
is a measurable space. y is a finite measure on the sigma-algebra, so that the triplet
(X, X, ) is a probability space. A map 7 : X — X is said to be X'-measurable
if and only if, for every o € X, one has 77 !0 € X. A map 7 is said to preserve
the measure if and only if, for every o € X, one has u(7~'o) = p(o). Combining
the above, a map 7 is said to be a measure-preserving transformation of X, ifitis a
map from X to itself, it is X’-measurable, and is measure-preserving. The quadruple
(X, X, u, 1), for such a 7, is then defined to be a dynamical system.

The map 7 embodies the time evolution of the dynamical system. Thus, for discrete
dynamical systems the iterations 7" = 7 o 7 o - - - o 7 for integer n are studied. For
continuous dynamical systems, the map 7 is understood to be a finite time evolution
map and the construction is more complicated.

(4) A dynamical system is a manifold M called the phase (or state) space endowed
with a family of smooth evolution functions @ (¢) that for any element of ¢ € T,
the time, map a point of the phase space back into the phase space. The notion of
smoothness changes with applications and the type of manifold. There are several
choices for the set 7. When T is taken to be the reals, the dynamical system is called
a flow, and if T is restricted to the nonnegative reals, then the dynamical system is
a semi-flow. When 7 is taken to be the integers, it is a cascade or a map, and the
restriction to the nonnegative integers is a semi-cascade.

For example, the evolution function @(¢) is often the solution of a differential
equation of motion x(#) = v(x(¢#)) or X = v(x) for brevity. The equation gives the
time derivative, represented by the dot, of a trajectory x (¢) on the phase space starting
at some point xq. The vector field v(x) is a smooth function that at every point of the
phase space M provides the velocity vector of the dynamical system at that point.
(These vectors are not vectors in the phase space M, but in the tangent space T,y M
of the point x.) Given a smooth function @ (¢), an autonomous vector field can be
derived from it. There is no need for higher order derivatives in the equation, nor for
time dependence in v(x) because these can be eliminated by considering systems
of higher dimensions. Other types of differential equations can be used to define
the evolution rule: G(x, x) = 0 is an example of an equation that arises from the
modeling of mechanical systems with complicated constraints.

The differential equations determining the evolution function @ (¢) are often or-
dinary differential equations: in this case the phase space M is a finite dimensional
manifold. Many of the concepts in dynamical systems can be extended to infinite-
dimensional manifolds—those that are locally Banach spaces—in which case the
differential equations are partial differential equations. In the late twentieth century
the dynamical system perspective to partial differential equations started gaining
popularity.

The qualitative properties of dynamical systems do not change under a smooth
change of coordinates (this is sometimes taken as a definition of qualitative): a
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singular point of the vector field (a point where v(x) = 0) will remain a singu-
lar point under smooth transformations; a periodic orbit is a loop in phase space
and smooth deformations of the phase space cannot alter it to be a loop. It is in the
neighborhood of singular points and periodic orbits that the structure of a phase space
of a dynamical system can be well understood. In the qualitative study of dynami-
cal systems, the approach is to show that there is a change of coordinates (usually
unspecified, but computable) that makes the dynamical system as simple as possible.

A similar concept to the qualitative properties of dynamical systems is the recti-
fication. A flow in most small patches of the phase space can be made very simple.
If y is a point where the vector field v(y) # 0, then there is a change of coordinates
for a region around y where the vector field becomes a series of parallel vectors of
the same magnitude. This is known as the rectification theorem. The rectification
theorem says that away from singular points the dynamics of a point in a small patch
is a straight line. The patch can sometimes be enlarged by stitching several patches
together, and when this works out in the whole phase space M the dynamical system
is integrable. In most cases the patch cannot be extended to the entire phase space.
There may be singular points in the vector field (where v(x) = 0) or the patches may
become smaller and smaller as some point is approached. The more subtle reason
is a global constraint, where the trajectory starts out in a patch, and after visiting a
series of other patches comes back to the original one. If the next time the orbit loops
around phase space in a different way, then it is impossible to rectify the vector field
in the whole series of patches.

Dynamical systems theory is an area of mathematics used to describe the behav-
ior of complex dynamical systems, usually by employing differential equations or
difference equations. When differential equations are employed, the theory is called
continuous dynamical systems. When difference equations are employed, the theory
is called discrete dynamical systems. When the time variable runs over a set that is
discrete over some intervals and continuous over other intervals or is any arbitrary
time—set such as a cantor set—one gets dynamic equations on timescales. Some
situations may also be modeled by mixed operators, such as differential-difference
equations. This theory deals with the long-term qualitative behavior of dynamical
systems, and studies the solutions of the equations of motion of systems that are
primarily mechanical in nature, although this includes both planetary orbits as well
as the behavior of electronic circuits and the solutions to partial differential equations
that arise in biology. Much of modern research is focused on the study of chaotic
systems. This field of study is also called just dynamical systems, mathematical
dynamical systems theory, and mathematical theory of dynamical systems.

Dynamical systems theory and chaos theory deal with the long-term qualitative
behavior of dynamical systems. Here, the focus is not on finding precise solutions to
the equations defining the dynamical system (which is often hopeless), but rather to
answer questions like, “Will the system settle down to a steady state in the long term,
and if so, what are the possible steady states?”” or “Does the long-term behavior of the
system depend on its initial condition?”” An important target is to describe the fixed
points, or steady states of a given dynamical system; these are values of the variable
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that do not change over time. Some of these fixed points are attractive, meaning that
if the system starts out in a nearby state, it converges toward the fixed point.

Similarly, one is interested in periodic points, states of the system that repeat after
several time steps. Periodic points can also be attractive. Sharkovskii’s theorem is
an interesting statement about the number of periodic points of a one-dimensional
discrete dynamical system. Even simple nonlinear dynamical systems often exhibit
seemingly random behavior that has been called chaos. The branch of dynamical
systems that handles the clear definition and investigation of chaos is called chaos
theory.

2.3 Lyapunov Stability of Dynamical Systems

Various types of stability may be discussed for the solutions of differential equations
describing dynamical systems. The most important type is that concerning the sta-
bility of solutions near to a point of equilibrium. This may be discussed by the theory
of Lyapunov. In simple terms, if all solutions of the dynamical system that start out
near an equilibrium point x, stay near x, forever, then x, is Lyapunov stable. More
strongly, if x, is Lyapunov stable and all solutions that start out near x, converge to
Xe, then x, is asymptotically stable. The notion of exponential stability guarantees
a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.
The idea of Lyapunov stability can be extended to infinite-dimensional manifolds,
where it is known as structural stability, which concerns the behavior of different
but “nearby” solutions to differential equations. Input-to-state stability (ISS) applies
Lyapunov notions to systems with inputs.

Lyapunov stability is named after Aleksandr Lyapunov, a Russian mathematician
who published his book “The General Problem of Stability of Motion” in 1892 [2].
Lyapunov was the first to consider the modifications necessary in nonlinear systems
to the linear theory of stability based on linearizing near a point of equilibrium. His
work, initially published in Russian and then translated to French, received little atten-
tion for many years. Interest in it started suddenly during the Cold War (1953-1962)
period when the so-called “Second Method of Lyapunov” was found to be applicable
to the stability of aerospace guidance systems which typically contain strong non-
linearities not treatable by other methods. A large number of publications appeared
then and since in the control and systems literature [3—7]. More recently, the concept
of the Lyapunov exponent (related to Lyapunov’s First Method of discussing stabil-
ity) has received wide interest in connection with chaos theory. Lyapunov stability
methods have also been applied to finding equilibrium solutions in traffic assignment
problems [8].

(1) Definition of Lyapunov stability for continuous-time systems

Consider an autonomous nonlinear dynamical system

x(t) = f(x()) with x(0) = xo, (2.1)



2.3 Lyapunov Stability of Dynamical Systems 45

where x(t) € D C R" denotes the system state vector, D an open set containing the
origin, and f : D — R" continuous on D. Suppose f has an equilibrium at x, so
that f(x.) = 0, then

(1) This equilibrium is said to be Lyapunov stable, if, for every € > 0, there exists a
0 = 6(e) such that, if ||x(0) — x| < J, then forevery ¢t > 0 we have ||x (1) — x| < €.
(2) The equilibrium of the above system is said to be asymptotically stable if it
is Lyapunov stable and there exists 6 > 0 such that if ||x(0) — x.|| < 9, then
lim; o0 [[X(2) — x|l = 0.

(3) The equilibrium of the above system is said to be exponentially stable if it is
asymptotically stable and there exist &« > 0, 3 > 0, § > 0 such thatif || x(0) —x,|| <
8, then [|x (1) — x.|| < a]x(0) — x|le=?, for > 0.

Conceptually, the meanings of aforementioned terms are the following:

(1) Lyapunov stability of an equilibrium means that solutions starting “close enough”
to the equilibrium (within a distance ¢ from it) remain “close enough” forever (within
adistance € from it). Note that this must be true for any e that one may want to choose.
(2) Asymptotic stability means that solutions that start close enough not only remain
close enough but also eventually converge to the equilibrium.

(3) Exponential stability means that solutions not only converge, but in fact converge
faster than or at least as fast as a particular known rate «||x(0) — x, e 5.

The trajectory x is (locally) attractive if ||y(t) — x(¢)|] — O (where y(¢) denotes
the system output) for t — oo for all trajectories that start close enough, and globally
attractive if this property holds for all trajectories. That s, if x belongs to the interior of
its stable manifold, it is asymptotically stable if it is both attractive and stable. (There
are counterexamples showing that attractivity does not imply asymptotic stability.)

(2) Lyapunov’s second method for stability

Lyapunov, in his original 1892 work, proposed two methods for demonstrating
stability. The first method developed the solution in a series which was then proved
convergent within limits. The second method, which is almost universally used nowa-
days, makes use of a Lyapunov function V (x) which has an analogy to the potential
function of classical dynamics. It is introduced as follows for a system having a point
of equilibrium at x = 0.

Consider a function V (x) : R” — R such that
@))] V(x) > ( with equality if and only if x = 0 (positive definite).

) V(x (1) = M < 0 with equality not constrained to only x = 0 (nega-
tive semidefinite. Note. for asymptotic stability, V (x(¢)) is required to be negative
definite!).

Then V (x) is called a Lyapunov function candidate and the system is stable in the
sense of Lyapunov. Furthermore, the system is asymptotically stable, in the sense
of Lyapunov, if V (x(¢)) < 0 with equality if and only if x = 0. Global asymptotic
stability (GAS) follows similarly.

Note that, (1) V(0) = 0 is required; otherwise for example V (x) = 1777 +| 1] would
“prove” that x (t) = x(¢) is locally stable. (2) An additional condition called “proper-
ness” or “radial unboundedness” is required in order to conclude global stability.
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It is easier to visualize this method of analysis by thinking of a physical system
(e.g., vibrating spring and mass) and considering the energy of such a system. If the
system loses energy over time and the energy is never restored, then eventually the
system must grind to a stop and reach some final resting state. This final state is called
the attractor. However, finding a function that gives the precise energy of a physical
system can be difficult, and for abstract mathematical systems, economic systems
or biological systems, the concept of energy may not be applicable. Lyapunov’s
realization is that stability can be proven without requiring knowledge of the true
physical energy, provided that a Lyapunov function can be found to satisfy the above
constraints.

Lyapunov stability method is mainly focused on the system (2.1), i.e., a system
with zero input. In fact, many systems have external control inputs. If the control
law is in the form of state feedback, then the closed-loop systems is equivalent to
the system (2.1). In this case, Lyapunov stability theory can be directly applied. If
the external input exists and is different from the system states, some variants of
Lyapunov stability theory should be investigated. In the following, we will introduce
some other stability analysis methods.

(3) Stability for systems with inputs

A system with inputs (or controls) has the form
xX(t) = f(x(0), u(@)), 2.2)

where the (generally time-dependent) input u () may be viewed as a control, external
input, stimulus, disturbance, or forcing function. The study of such systems is the
subject of control theory and applied in control engineering. For systems with inputs,
one must quantify the effect of inputs on the stability of the system. The main two
approaches to this analysis are BIBO stability (for linear systems) and input-to-state
(ISS) stability (for nonlinear systems)

(4) Barbalat’s lemma and stability of time-varying systems

Assume that f(¢) is function of time only.
(1) Having f (t) — 0 does not imply that f(¢) has a limit at + — oco. For example,
f (@) =sin(In(t)),t > 0.
(2) Having f(¢) approaching a limit as t — oo does not imply that f(r) — 0. For
example, f(¢) = smtﬁ
(3) Having f(¢) lower bounded and decreasing ( f (t) < 0) implies it converges to
a limit. But it does not say whether or not f (t) > 0ast — oo.

Barbalat’s Lemma says: If £ (¢) has a finite limitas r — oo and if f(¢) is uniformly
continuous (or f.(t) is bounded), then f (t) > 0ast — oc.

Usually, it is difficult to analyze the asymptotic stability of time-varying systems
because it is very difficult to find Lyapunov functions with a negative definite deriv-
ative. We know that in case of autonomous (time-invariant) systems, if V(x(1)) is
negative semidefinite, then also, it is possible to know the asymptotic behavior by
invoking invariant set theorems. However, this flexibility is not available for time-
varying systems. This is where “Barbalat’s lemma” comes into picture. It says:
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If V(x(t),t) satisfies following conditions: (1) V(x(¢), ) is lower bounded. (2)
V(x(t), t) is negative semidefinite. (3) V(x(t), t) is uniformly continuous in time
(satisfied if V (x (1), ¢) is finite), then V (x(r), t) — 0 as t — oo.

(5) Differential inequality methods

This kind of stability analysis methods generally do not need the so-called Lya-
punov functions, and can also determine the stability properties of the concerned
system. Such kinds of methods include, but not limited to, Halanay inequality, con-
traction principle, Gronwall’s inequality, comparison theorems, and so on [9-13].
Even by constructing Lyapunov functions, except the Lyapunov stability theory,
there are still many methods to derive the stability criteria for the concerned systems,
e.g., Barbalat’s lemma. However, a key point should be kept in mind, that is, the
definition of stability property must be declared beforehand. In this way, there are
many different senses of stability definition in the literature. In the research of neural
network stability theory, more emphasis is placed on the stability of Lyapunov sense.
Fortunately, other stability definitions in the Hopfield sense and Lagrange sense are
also paid attention. Except Lyapunov function method, input—output method and
differential inequality methods are also powerful to analyze the qualitative charac-
teristics of dynamical systems.

2.4 Stability Theory

In mathematics, stability theory addresses the stability of solutions of differential
equations and of trajectories of dynamical systems under small perturbations of initial
conditions. The heat equation, for example, is a stable partial differential equation
because small perturbations of initial data lead to small variations in temperature at
a later time as a result of the maximum principle. One must specify the metric used
to measure the perturbations when claiming a system is stable. In partial differential
equations one may measure the distances between functions using L, norms or the
sup norm, while in differential geometry one may measure the distance between
spaces using the Gromov—Hausdorff distance.

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of
any point is in a small enough neighborhood or it stays in a small (but perhaps, larger)
neighborhood. Various criteria have been developed to prove stability or instability
of an orbit. Under favorable circumstances, the question may be reduced to a well-
studied problem involving eigenvalues of matrices. A more general method involves
Lyapunov functions. In practice, any one of different stability criteria is applied.

Many parts of the qualitative theory of differential equations and dynamical sys-
tems deal with asymptotic properties of solutions and the trajectories—what happens
with the system after a long period of time. The simplest kind of behavior is exhibited
by equilibrium points or fixed points, and by periodic orbits. If a particular orbit is
well understood, it is natural to ask next whether a small change in the initial condi-
tion will lead to similar behavior. Stability theory addresses the following questions:
(1) will a nearby orbit indefinitely stay close to a given orbit? (2) will it converge to
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the given orbit? (this is a stronger property). In the former case, the orbit is called
stable and in the latter case, asymptotically stable, or attracting.

Stability means that the trajectories do not change too much under small perturba-
tions. The opposite situation, where a nearby orbit is getting repelled from the given
orbit, is also of interest. In general, perturbing the initial state in some directions
results in the trajectory asymptotically approaching the given one and in other direc-
tions to the trajectory getting away from it. There may also be directions for which
the behavior of the perturbed orbit is more complicated (neither converging nor es-
caping completely), and then stability theory does not give sufficient information
about the dynamics.

One of the key ideas in stability theory is that the qualitative behavior of an or-
bit under perturbations can be analyzed using the linearization of the system near
the orbit. In particular, at each equilibrium of a smooth dynamical system with an
n-dimensional phase space, there is a certain n x n matrix A whose eigenvalues
characterize the behavior of the nearby points (Hartman—Grobman theorem). More
precisely, if all eigenvalues are negative real numbers or complex numbers with neg-
ative real parts, then the point is a stable attracting fixed point, and the nearby points
converge to it at an exponential rate. If none of the eigenvalues is purely imaginary
(or zero) then the attracting and repelling directions are related to the eigenspaces of
the matrix A with eigenvalues whose real part is negative and, respectively, positive.
Analogous statements are known for perturbations of more complicated orbits.

(1) Stability of fixed points

The simplest kind of an orbit is a fixed point or an equilibrium. If a mechanical
system is in a stable equilibrium state, then a small push will result in a localized
motion, for example, small oscillations as in the case of a pendulum. In a system
with damping, a stable equilibrium state is moreover asymptotically stable. On the
other hand, for an unstable equilibrium, such as a ball resting on a top of a hill,
certain small pushes will result in a motion with a large amplitude that may or may
not converge to the original state. There are useful tests of stability for the case of a
linear system. Stability of a nonlinear system can often be inferred from the stability
of its linearization.

Let f : R — R be a continuously differentiable function with a fixed point a,
f(a) = a. Consider the dynamical system obtained by iterating the function f:

Xp+1 = f(xp),n=0,1,2,3,..., (2.3)
The fixed point a is stable if the absolute value of the derivative of f at a is strictly

less than 1, and unstable if it is strictly greater than 1. This is because near the point
a, the function f has a linear approximation with slope f (a):

f(x)~ fa)+ f@x — a). (24)

Thus
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XYnt1 —a  flxn) —a
X, —a X, —a

= f(a), (2.5)

which means that the derivative measures the rate at which the successive iterates
approach the fixed point a or diverge from it. If the derivative at a is exactly 1 or —1,
then more information is needed in order to decide stability.

There is an analogous criterion for a continuously differentiable map f : R" —
R" with a fixed point a, expressed in terms of its Jacobian matrix ata, J = J,(f). If
all eigenvalues of J are real or complex numbers with absolute value strictly less than
1 then a is a stable fixed point; if at least one of them has absolute value strictly greater
than 1 then a is unstable. Just as for n = 1, the case of the largest absolute value
being 1 needs to be investigated further—the Jacobian matrix test is inconclusive.
The same criterion holds more generally for diffeomorphisms of a smooth manifold.

For the linear autonomous systems, the stability of fixed points of a system of
constant coefficient linear differential equations of first order can be analyzed using
the eigenvalues of the corresponding matrix. An autonomous system x = Ax, where
x(t) € R" and A is an n x n matrix with real entries, has a constant solution
x(t) = 0. (In a different language, the origin 0 € R” is an equilibrium point of the
corresponding dynamical system.) This solution is asymptotically stable as t — oo
(“in the future”) if and only if for all eigenvalues A of A, Re(\) < 0 (which means
the real part of eigenvalue A is negative). Similarly, it is asymptotically stable as
t — —oo (“in the past”) if and only if for all eigenvalues A of A, Re(\) > 0. If
there exists an eigenvalue A of A with Re(\) > 0 then the solution is unstable for
t — oo. Application of this result in practice, in order to decide the stability of the
origin for a linear system, is facilitated by the Routh—Hurwitz stability criterion. The
eigenvalues of a matrix are the roots of its characteristic polynomial. A polynomial in
one variable with real coefficients is called a Hurwitz polynomial if the real parts of
all roots are strictly negative. The Routh—Hurwitz theorem implies a characterization
of Hurwitz polynomials by means of an algorithm that avoids computing the roots.

For a nonlinear autonomous systems, asymptotic stability of fixed points can
often be established using the Hartman—Grobman theorem. Suppose that v is a C'-
vector field in R which vanishes at a point p, v(p) = 0. Then the corresponding
autonomous system X = v(x) has a constant solution x(t) = p. Let J = J,(v)
be the n x n Jacobian matrix of the vector field v at the point p. If all eigenvalues
of J have strictly negative real part, then the solution is asymptotically stable. This
condition can be tested using the Routh—Hurwitz criterion.

For the general dynamical systems, a general way to establish Lyapunov stability
or asymptotic stability of a dynamical system is by means of Lyapunov functions,
which has been introduced above.

(2) Structural stability

Let G be an open domain in R" with compact closure and smooth (n — 1) -
dimensional boundary. Consider the space X' (G) consisting of restrictions to G of
C! vector fields on R” that are transversal to the boundary of G and are inward
oriented. This space is endowed with the C! metric in the usual fashion. A vector
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field F € X!'(G) is weakly structurally stable if for any sufficiently small pertur-
bation Fi, the corresponding flows are topologically equivalent on G: there exists a
homeomorphism 2 : G — G which transforms the oriented trajectories of F into
the oriented trajectories of Fp. If, moreover, for any ¢ > O the homeomorphism %
may be chosen to be C?—close to the identity map when F! belongs to a suitable
neighborhood of F' depending on €, then F is called (strongly)structurally stable.

These definitions are extended in a straightforward way to the case of n-dimen-
sional compact smooth manifolds with boundary. Andronov and Pontryagin originally
considered the strong property. Analogous definitions can be given for diffeomor-
phisms in place of vector fields and flows: in this setting, the homeomorphism # must
be a topological conjugacy.

In mathematics, structural stability is a fundamental property of a dynamical sys-
tem which means that the qualitative behavior of the trajectories is unaffected by
small perturbations (to be exact C!-small perturbations). Examples of such qualita-
tive properties are numbers of fixed points and periodic orbits (but not their periods).
Unlike Lyapunov stability, which considers perturbations of initial conditions for a
fixed system, structural stability deals with perturbations of the system itself. Vari-
ants of this notion apply to systems of ordinary differential equations, vector fields
on smooth manifolds and flows generated by them, and diffeomorphisms.

Structurally stable systems were introduced by Andronov and Pontryagin [14]
under the name “systemes grossiers” or rough systems [14, 15]. They announced a
characterization of rough systems in the plane, the Andronov—Pontryagin criterion.
In this case, structurally stable systems are typical, they form an open dense set in the
space of all systems endowed with appropriate topology. In higher dimensions, this
is no longer true, indicating that typical dynamics can be very complex (e.g., strange
attractor). An important class of structurally stable systems in arbitrary dimensions
is given by Anosov diffeomorphisms and flows.

Structural stability of the system provides a justification for applying the qualita-
tive theory of dynamical systems to analysis of concrete physical systems. The idea
of such qualitative analysis goes back to the work of Henri Poincare on the three-body
problem in celestial mechanics. Around the same time, Aleksandr Lyapunov rigor-
ously investigated stability of small perturbations of an individual system. In practice,
the evolution law of the system (i.e., the differential equations) is never known ex-
actly, due to the presence of various small interactions. It is, therefore, crucial to
know that basic features of the dynamics are the same for any small perturbation of
the “model” system, whose evolution is governed by a certain known physical law.
Qualitative analysis was further developed by George Birkhoff in the 1920s [16], but
was first formalized with introduction of the concept of rough system by Andronov
and Pontryagin in 1937 [14]. This was immediately applied to analysis of physical
systems with oscillations by Andronov, Witt, and Khaikin. The term “structural sta-
bility” is due to Solomon Lefschetz, who oversaw translation of their monograph
into English. Ideas of structural stability were taken up by Stephen Smale and his
school in the 1960s in the context of hyperbolic dynamics [17]. Earlier, Marston
Morse and Hassler Whitney initiated and Rene Thom developed a parallel theory
of stability for differentiable maps, which forms a key part of singularity theory.



2.4 Stability Theory 51

Thom envisaged applications of this theory to biological systems. Both Smale and
Thom worked in direct contact with Mauricio Peixoto, who developed Peixoto’s
theorem in the late 1950s.

When Smale started to develop the theory of hyperbolic dynamical systems, he
hoped that structurally stable systems would be “typical.” This would have been con-
sistent with the situation in low dimensions: dimension two for flows and dimension
one for diffeomorphisms. However, he soon found examples of vector fields on higher
dimensional manifolds that cannot be made structurally stable by an arbitrarily small
perturbation. This means that in higher dimensions, structurally stable systems are
not dense. In addition, a structurally stable system may have transversal homoclinic
trajectories of hyperbolic saddle closed orbits and infinitely many periodic orbits,
even though the phase space is compact. The closest higher dimensional analog of
structurally stable systems considered by Andronov and Pontryagin is given by the
Morse—Smale systems.

(3) Rough system (structurally stable dynamical system)

A smooth dynamical system is called rough systems if the following properties
hold. For any € > 0, there is a & > 0 such that for any perturbation of the system by
not more than ¢ in the C'-metric, there exists a homeomorphism of the phase space
which displaces the points by not more than e and converts the trajectories of the
unperturbed system into trajectories of the perturbed system.

Formally, this definition assumes that a certain Riemannian metric is given on the
phase manifold. In fact, one speaks of a structurally stable system when the phase
manifold is closed, or else if the trajectories form part of some compact domain G
with a smooth boundary not tangent to the trajectories; here the perturbation and the
homeomorphism are considered on G only. In view of the compactness, the selection
of the metric is immaterial.

Thus, a small (in the sense of C!) perturbation of a structurally stable system
yields a system equivalent to the initial one as regards all its topological properties
(however, this definition comprises one additional requirement, i.e., this equivalence
must be realized by a homeomorphism close to the identity). The terms “roughness”
and “(structural) stability” are used in a broader sense, e.g., to mean merely the
preservation of some property of the system under a small perturbation (in such a
case it is preferable to speak of the structural stability of the property in question).

As said above, structurally stable systems were introduced by A.A. Andronov and
L.S. Pontryagin. If the dimension of the phase manifold is small (one for discrete time
and one or two for continuous time), structurally stable systems can be simply char-
acterized in terms of the qualitative properties of behavior of trajectories (then they
are the so-called Morse—Smale systems, cf. Morse—Smale system); in that case they
form an open everywhere-dense set in the space of all dynamical systems, provided
with the C!-topology. Thus, systems whose trajectories display a behavior which
is more complex and more sensitive to small perturbations are considered here as
exceptional. If the dimensions are larger, none of these facts hold, as was established
by S. Smale. He advanced the hypothesis according to which, irrespective of all these
complications, it is possible in the general case to formulate the following necessary
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and sufficient conditions for structural stability in terms of a qualitative picture of the
behavior of the trajectories: (1) the non-wandering points (cf. Non-wandering point)
should form a hyperbolic set £2, in which the periodic trajectories are everywhere
dense (the so-called Smale’s Axiom A); and (2) the stable and unstable manifolds of
any two trajectories from £2 should intersect transversally (the strong transversality
condition). That these conditions are sufficient have now been proved in almost all
cases; as regards their necessity, proof is only available if the definition of structural
stability is somewhat changed.

(4) Absolute stability

Absolute stability practically means that a system is convergent for any choice of
parameters and nonlinear functions, within specified and well-characterized sets.

In 1944, when studying the stability of an autopilot, Lur’e and Postnikov in-
troduced the concept of absolute stability and the Lur’e problem [18]. Since then,
the problem of absolute stability for Lur’e-type systems has received considerable
attention and many fruitful results, such as Popov’s criterion, circle criterion, and
Kalman—Yakubovih—Popov (KYP) lemma have been proposed [19-21]. From the
view of modern robustness theory, absolute stability theory can be considered as the
first approach to robust stability of nonlinear uncertain systems [22].

Absolute stability theory guarantees stability of feedback systems whose for-
ward path contains a dynamic linear time-invariant system and whose feedback path
contains a memoryless (possibly time-varying) nonlinearity. These stability criteria
are generally stated in terms of the linear system and apply to every element of a
specified class of nonlinearities. Hence, absolute stability theory provides sufficient
conditions for robust stability with a given class of uncertain elements. The literature
on absolute stability is extensive. A convenient way to distinguish these results is
to focus on the allowable class of feedback nonlinearities. Specifically, the small-
gain, positivity, and circle theorems guarantee stability for arbitrarily time-varying
nonlinearities, whereas the Popov criterion does not. This is not surprising since the
Lyapunov function upon which the small-gain, positivity, and circle theorems are
based is a fixed quadratic Lyapunov function which permits arbitrary time variation
of the nonlinearity. Alternatively, the Popov criterion is based on a Lur’e-Postnikov
Lyapunov function which explicitly depends on the nonlinearity, thereby restricting
its allowable time variation.

(5) Complete stability

A system is said to be completely stable if each trajectory of the system converges
toward an equilibrium point, as t — oo. Complete stability of neural networks is
one of the most important dynamical properties in view of practical applications to
solve a large number of signal processing tasks, including image processing, pattern
recognition, and optimization problems.

The standard Lyapunov—Krasovskii functional methods or Lyapunov—Razumikhin
function methods are usually used for global asymptotic stability analysis of delayed
neural networks with a unique equilibrium point. For the analysis of complete sta-
bility, the Lyapunov method and the classic LaSalle approach are no longer effective
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because of the multiplicity of attractors [23]. For example, for PWL neuron activa-
tions a nonstrict energy is present both in the generic case where the neural network
equilibrium points are isolated, as well as in the degenerate case where there are
infinite nonisolated equilibrium points [24]. It is well known that to prove complete
stability using LaSalle approach for nonstrict energy functions, it is required to char-
acterize the invariant sets contained in the set where the energy is constant on orbits.
As a matter of fact, such a characterization seems hard to accomplish for the NNs
with PWL function or cellular neural network (CNN), since the sets involved have
a complex structure even in the simplest case where there are finitely many equilib-
rium points. The situation is further complicated in degenerate cases where there are
infinitely many nonisolated equilibrium points. In [25], an example shows that the
existence of a stable equilibrium point does not imply complete stability of a CNN.

In [24], a new method is proposed to study the complete stability of cellular
neural network (CNN). It allows one to completely sidestep the analysis of the
neural network invariant sets. The method is based on a fundamental limit theorem
for the length of the neural network output trajectories. Namely, it has been shown
that the symmetry of the CNN interconnection matrix implies that the total length of
the CNN output trajectories is necessarily finite. This in turn ensures convergence of
the outputs, and also the state variables, toward an equilibrium point. Furthermore,
this result is true regardless of the nature of the set of the CNN equilibrium points, so
that complete stability is naturally proved not only for isolated equilibrium points,
but also when the equilibrium points are not isolated.

(6) Input-to-state stability (ISS)

The input to state stability property provides a natural framework in which to
formulate notions of stability with respect to input perturbations. It is generally
known that ISS and set-ISS are powerful tools in the analysis of the stability and
robustness of control systems [26]. Seminal works on ISS and set-ISS include [27]
which provides a converse Lyapunov theory for set stability, and [28-31] which
introduce ISS, extend the notion to noncompact sets, and generalize to arbitrary
closed invariant sets, respectively. Input-to-state stability was introduced in [32],
and has proved to be a very useful paradigm in the study of nonlinear stability, see
for instance [33—45], as well as its variants such as integral ISS and input/output
stability [46—56]. The notion of ISS takes into account the effect of initial states in a
manner fully compatible with Lyapunov stability, and incorporates naturally the idea
of “nonlinear gain” functions. Roughly speaking, a system is ISS provided that, no
matter what is the initial state, if the inputs are small, then the state must eventually be
small. Dualizing this definition one arrives at the notion of detectability which is the
main subject of input/output-to-state stability (IOSS). A system x = f(x, u) with
measurement “output” map y = h(x) is IOSS if there are some functions 5 € KL
and 71, 72 € K such that the estimate:

[x ()] < max{3(x(0), t), y1(lugo,1 1D, v2(lly0,11D},
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holds for any initial state x (0) and any input u(-), where x(-) is the ensuing trajectory
and y(¢) = h(x(t)) the respective output function. (States x(¢), input values u(¢), and
output values y(7) lie in appropriate Euclidean spaces. We use | - | to denote Euclid-
ean norm and || - || for supremum norm.) The terminology IOSS is self-explanatory:
formally there is “stability from the I/O data to the state.” The term was introduced in
the paper [57], but the same notion had appeared before: it represents a natural com-
bination of the notions of “strong” observability [32] and ISS, and was called simply
“detectability” in [58, 59] and was called “strong unboundedness observability” in
[35].

Roughly, a system is output stable if, for any initial state, the output converges to
zero as t — oo. Inputs may influence this stability in different ways, for instance,
one may ask that output approaches to zero only for those inputs for which input
approaches to zero, or just that output remains bounded whenever input is bounded.
The notion of output stability is also related to that of stability with respect to two
measures [60]. As in the corresponding ISS paper [61], there are close relationships
between output stability with respect to inputs, and robustness of stability under
output feedback. This suggests the study of yet another property, which is obtained
by a “small gain” argument from IOS: there must exist some X € KL so that
ly@®)] < B(x(0), 1) if |u(t)] < X(|y(t)]), V. Combining the traditional stability
definition and input/output stability conception, there may form may new stability
conceptions such as output Lagrange stability, output-Lagrange input-to-output sta-
ble, state-independent IOS, robustly output stable, and so on. Such behavior is of
central interest in control theory [60]. For the stability research of neural networks,
these concepts are also very important.

The relation between stability and ISS can be briefly stated as follows. There
are two very conceptually different ways of formulating the notion of stability of
control systems. One of them, which we may call the input/output approach, relies
on operator-theoretic techniques. In this approach, a “system” is a causal operator
F between spaces of signals, and “stability” is taken to mean that F maps bounded
inputs into bounded outputs, or finite-energy inputs into finite-energy outputs. More
stringent typical requirements are that the gain of F' be finite (in more classical
mathematical terms that the operator be bounded), or that it have finite incremental
gain (mathematically, that it be globally Lispchitz). The input/output approach has
been extremely successful in the robustness analysis of linear systems subject to
nonlinear feedback and mild nonlinear uncertainties, and in general in the area that
revolves around the various versions of the small-gain theorem. Moreover, geometric
characterizations of robustness (gap metric and the like) are elegantly carried out in
this framework. Finally, I/O stability provides a natural setting in which to study the
classification and parameterization of dynamic controllers. On the other hand, there
is the model-based, or state-space approach to systems and stability, where the basic
object is a forced dynamical system, typically described by differential or difference
equations. In this approach, there is a standard notion of stability, namely Lyapunov
asymptotic stability of the unforced system. Associated to such a system, there is an
operator F' mapping inputs (forcing functions) into state trajectories (or into outputs,
if partial measurements on states are of interest). It becomes of interest then to ask



2.4 Stability Theory 55

to what extent Lyapunov-like stability notions for a state-space system are related to
the stability of the associated operator F. It is well known that [62], in contrast to the
case of linear systems, where there is an equivalence between state-space and I/O
stability, for nonlinear systems the two types of properties are not so closely related.
Even for the very special and comparatively simple case of feedback linearizable
systems, this relation is far more subtle than it might appear at first sight: if one
first linearizes a system and then stabilizes the equivalent linearization, in terms
of the original system one does not in general obtain a closed-loop system that is
input/output stable in any reasonable sense. However, it is always possible to make a
choice of a feedback law that achieves such stability, in the linearizable case as well
as for all other stabilizable systems [63].

A system that is ISS exhibits low overshoot and low total energy response when
excited by uniformly bounded or energy- bounded signals, respectively. These are
highly desirable qualitative characteritics. However, it is sometimes the case that
feedback design does not render ISS behavior, or that only a weaker property than
ISS is verified in a step in recursive design. Input-to-state stability concept gives a link
between the two alternative paradigms of stability, I/O and state space. This notion
differs fundamentally from the operator-theoretic ones that have been classically
used in control theory, first of all because it takes account of initial states in a manner
fully compatible with Lyapunov stability. Second, boundedness (finite gain) is far
too strong a requirement for general nonlinear operators, and it must be replaced
by nonlinear gain estimates, in which the norms of output signals are bounded by
a nonlinear function of the norms of inputs, the definition of ISS incorporates such
gains in a natural way. The iss notion was originally introduced in [32] and has
since been employed by several authors in deriving results on control of nonlinear
systems. It can be stated in several equivalent manners, which indicates that it is at
least a mathematically natural concept: dissipation, robustness margins, and classical
Lyapunov-like definitions. The dissipation characterizations are closely related to
the pioneering work of Willems in 1976, who introduced an abstract concept of
energy dissipation in order to unify I/O and state space stability, and in particular
with the purpose of understanding conceptually the meaning of Kalman—Yakubovich
positive-realness (passivity), and frequency domain stability theorems in a general
nonlinear context. Four natural definitions of input-to-state stability are proposed,
that is, from GAS to ISS, from lyapunov to dissipation, gain margins and estimates,
all these case are equivalent for some kind of nonlinear system. More details can
refer to famous reference [63].

(7) Practical stability

For a practical system, engineers concern not only stability in the sense of Lya-
punov but also boundedness properties of the system responses. This is because a
system might be stable or asymptotically stable in theory, while it is actually unstable
in practice because the stable domain of the desired attractor is not large enough.
On the other hand, sometimes the desired states of a system may be mathematically
unstable, and yet the system may oscillate sufficiently near its state such that its
performance is acceptable. That it, it is stable in practice. Taking into this fact, re-
searchers have introduced the notion of practical stability [64—68]. Some important
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results in practical stability analysis over a finite time interval has been obtained in
[68], which is related to the stability definition over a finite time. From this point of
view, finite-time stability is also investigated for dynamical systems [69-72].

(8) Estimation of domain of attraction

The study of the determination of stable region for nonlinear systems is one of the
most interesting aspects [36, 73, 74]. For this reason in the last 20 years several efforts
have been made on the subject, generally arising from Lyapunov stability theory [75—
78]. Among these studies, to construct a Lyapunov function to estimate domain of
attraction is usually adopted. Genesio, etc., used time reversing method (or trajectory
reversing method) and demonstrated the results by a two-dimensional system [76].
Vidyasagar and Vannelli modified the Zubov’s theorem to compute the stable region
[78]. They proposed a method to construct a rational function for Lyapunov function
with the help of Taylor series expansion approximation. Reference [79] discussed
how to maximize the estimation of the domain of attraction by choosing linear state
feedback control law for nonlinear control systems.

In general, the origin of a given nonlinear system is not globally asymptotically
stable, instead, it is locally asymptotically stable. Thus, it is important to know the
stable region (or “domain of attraction) of the operation point of the system. The
domain of attraction of the origin is defined as S = {xo : x(¢,x9) — Oast —
oo}, where x (-, xg) denotes the solution of the system corresponding to the initial
condition x(0) = x¢. In addition, the domain of attraction S is also called “region
of attraction”, “basin” or “stable region (margin).” All trajectories starting within
this neighborhood converge to the origin. For technical systems the knowledge of
the size of such a region is very important because it contains all the initial states
which lead to an asymptotically stable system behavior. Unfortunately, in general,
an algebraic description of this region is not available [80, 81].

As is well known, Hopfield-type neural networks are mainly applied as either
associative memories (pattern recognition) or optimization solvers. When applied as
associative memories, the equilibrium points of the neural networks represent the
stored patterns. The attraction domain of each equilibrium point coincides with the
region from which the corresponding stored pattern can be retrieved even in the exis-
tence of noise, that is, the attraction domain of a stable equilibrium point characterizes
the error-correction capability of the corresponding stored pattern. When applied as
an optimization solver, the equilibrium points of the neural networks characterize
all possible optimal solutions of the optimization problem. The attraction domain of
each equilibrium point then coincides with the region that the network, starting from
any initial guess in it, will evolve to the optimal solution. Therefore, identifying the
attraction domain is important in the application of neural networks.

The approaches extensively used in the existing investigation into this field of
neural networks are mainly based on Lyapunov direct method and so depend on the
construction of Lyapunov function. However, there is no general rule guiding us to
construct an optimal Lyapunov function for a given system, that is, constructing a
Lyapunov function requires skill. Meanwhile, in the existing results, the Lyapunov
functions used to characterize the attraction domain are mostly constructed by the
method of characteristics, which strongly depends on the solutions of system [82].
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Therefore, how to propose simple algorithms to estimate the domain of attraction for
nonlinear system with and without control is still a challenging topic.

Note that, some contents in above two sections are from the Wikipedia on the
internet. Following the trajectories of development of Lyapunov stability theory and
other stability methods, some brief comments can be provided by the authors.

(1) Although the Lyapunov stability theory was proposed in his Ph.D. dissertation
in 1892, its popularization just began in the 1950s, which is a delay over half a
century. Before the 1950s, Lyapunov was a famous scientist only in Russia, while
after 1950s, Lyapunov was a world famous scientist! This phenomenon is mainly due
to the successful application of Lyapunov stability theory to the stability research
of aerospace guidance systems which typically contain strong nonlinearities not
treatable by other methods in the Cold War (1953—-1962) period. Therefore, it is
the famous application that promotes the popularization of one potential theoretical
achievement, along with the discovery’s name.

(2) Almost all theoretical findings and achievements have potential application
value in practice. One theoretical achievement can be significantly recognized after
a long time, for example, some decades or centuries. This may be attributed to the
assonance or synchronization of theory and application. After all, all the theoretical
achievements are used to deal with the matters encountered in the real life world.
Significant and large-scale application projects may produce or promote the rapid
development of some kinds of technical theories. Small scale applications may keep
the development of some technical theories gradually. Almost all the theories in the
application fields belong to the technical theory, or more accurately the techniques.
Therefore, it is not reasonable to expect one theoretical achievement to have signif-
icant scientific value in real world in a short time. How to evaluate the theoretical
achievement should be systematically considered, for example, by the peer review
of authorities and public evaluations.

(3) No matter what the theoretical researchers do, their projects or interests must
have some relations to the reality, for example, social science and natural science.
Therefore, theoretical research achievement may not be a direct application in indus-
trial fields, but it can be very useful in social science. Keeping in mind, research or
problem is doomed to come from the reality, the mixed world of livings and nature.
There are many phenomena to be discovered and explained. How to build or find
a relation or bridge to the real word is a key way to demonstrate the value of the
theoretical research.

(4) If one researcher has no a specific research direction in his speciality, he can
trace the plan and demand of the state’s project to find a topic, which is better to
relate to the field of his research interest. Therefore, with the development of the
state’s project, theoretical problems occurred in the real world are indispensable and
need to be solved. Under such kind of background, some theories associated with
the projects or the problems may be emphasized gradually. Thus, it is not difficult to
understand that much theoretical research has its historical roles in the developments
of human society.

(5) Along with the same line as above arguments, we can consider the importance
of the stability research of recurrent neural networks. In the 1980s, the digital and
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electronic computers encountered many difficulties to be dealt with. In this case, ana-
log computer began to appear, and neural computer as one of typical representatives
began to be studied intensively. One of the fundamental problem of neural computer
is the calculation ability. In this circumstance, Hopfield studied a kind of additive
neural networks model and found their calculating capability. Then in 1984, Hopfield
designed a circuit implementation of neural optimizer, which lay a solid foundation
for the analog computer. Because the neural optimizer is a dynamical system, and its
dynamics effect the stability of the equilibrium point, which is directly related to the
optimal solution of the corresponding optimization problems, the stability analysis
of recurrent neural networks began to be developed since 1982 or 1983. Up to now, it
has gone thirty years for the research of stability theory of recurrent neural networks.
There are many different achievements to be obtained.

(6) For a given equilibrium point of a dynamical system (i.e., the considered
equilibrium point must be known in advance), how the initial values or the boundary
values of the dynamical systems affect the stability property of the given equilibrium
point is the main topic of Lyapunov’s stability theory. Interestingly, the size of the
stability degree € or the initial size of neighbor § in the definition of stability is not
deterministic. Therefore, there are more space to define different kind of stability
concept. In contrast, Hopfield studied the stability problem of the so-called Hopfield
neural networks in the sense of Hopfield’s stability instead of Lyapunov’s stability
(for example, the energy function introduced by Hopfield is not a standard Lyapunov
function, which has been pointed by X. Liao in [83]). In fact, no matter what kind of
definitions of stability, the common purpose of the definition is to solve the practical
problems both in engineering and theory. Therefore, there are many different kind
of stability concepts being proposed such as structure stability, practical stability,
connective stability, synchronization stability, periodic stability, and so on. Keeping
in mind, there is no fixed form of stability definition (correspondingly, the stability
theory), all the theoretical researches must adapt to the different demands of practical
applications.

(7) Lyapunov second method in essence is the gradient descent method of solving
the numerical computation. This method is fundamental in the numerical analy-
sis, which can be equivalent to the Euler method or the tangents method. All these
methods are the local methods, which means the boundedness of the initial space or
universe. According to the construction of Lyapunov’s energy function, many opti-
mization problems can be solved based on the gradient descent algorithms. Hopfield
neural network itself is just a kind of gradient dynamical system, which can be di-
rectly applied to the optimization problems. How to build the relationship between
dynamical neural network model and its energy function is the key problems. It is
Hopfield who creatively proposed the energy function in the sense of Hopfield’s de-
finition, and gave the stability analysis of the concerned neural network in the sense
of Hopfield’s stability. Note that, as pointed out in Chap. 1, Professor Grossberg used
the concept of energy function in neural networks field more earlier than hopfield
did. However, since Professor Hopfield used a kind of additive neural networks to
solve the optimization problems and, meanwhile, used the energy function concept
to analyze the stability property of the concerned neural networks successfully in
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1982-1984, researches on neural networks began to recover. It is the Hopfield’s
pioneering work that initiated the new era of optimization computation in neural
network community. As far as this point is concerned, Hopfield is more excellent
than Grossberg in control and optimization engineering fields. For convenience to
mention the work by Hopfield, the additive neural network model studied by Hop-
field is called Hopfiled neural networks, while the energy function used by Hopfield
is called Hopfield energy function, and the corresponding stability concept is also
called Hopfield stability by the later researchers. Due to the introduction of Hop-
field’s energy function into recurrent neural networks, optimization problems based
on RNNs in many engineering fields such as mechanics, dynamic engineering, ar-
chitecture, operation research, computational science, and so on have been solved or
promoted significantly.

(8) In Lyapunov stability theory, the concerned system is in the absence of inputs,
i.e., X(t) = f(x(1)), and the equilibrium point is usually assumed to be zero, that is,
f(0) = 0. This requirement in fact is the most important assumption in the applica-
tion of Lyapunov method. How to guarantee the zero solution being the equilibrium
point was not discussed in the Lyapunov stability theory. After all, in 1892, the con-
sidered system was only limited to the isolated systems (respect to the concept of
complex systems or complex networks at present), and the stability of the concerned
system on its own is existent or objective. There is no need to discuss the existence
and uniqueness of the equilibrium point of the concerned systems. Therefore, from
the viewpoint of energy, a system must be stable when the energy approached to
the minimum, i.e., zero. Therefore, zero, as an objective existence, is believed to be
a natural way to understand the world. However, with the emergence of complex
systems or complex phenomena, how to determine the stable states is not easy, how
to find the minimal point is not easy either. Equivalence is not necessarily equiva-
lent. Hence, Lyapunov’s stability theory falls into the scope of Newton mechanism,
which is based on the reference frame or reference coordinate system. Different se-
lection of reference frame may have different influence on the stability analysis of
the concerned system. On the Earth, it is natural to choose the Earth as the reference
frame. However, when studying the relative motion among different objects, how to
select the frame is important for the considered problems. For example, synchroniza-
tion stability as an extension of classical stability, is now intensively emphasized by
the researchers due to the emergence of world wide web, interconnection networks,
internet of things, and so on. In fact, in the research of synchronization problem, Lya-
punov stability theory is still valid. Recalling the Lyapunov stability theory again, we
can find that the nonlinear systems studied by Lyapunov is just an error system. This
is the underlying reason why Lyapunov stability theory can be used in the observer
design, filter design and synchronization! Therefore, Lyapunov stability is about the
stability of error system. Since the intrinsic equilibrium point of the nonlinear sys-
tem x(¢t) = f(x(¢)) is zero, then the error system between the state and the intrinsic
equilibrium point is just the nonlinear system itself x(¢) = f(x(¢)). The zero in
f(0) = 0is just the relative distance or the error between one state and an reference
point. The reference point can be the intrinsic equilibrium point of the nonlinear sys-
tem itself or the desired target out side the nonlinear system. If the relative motion
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is static or the zero solution of error system is stable, it is the fundamental meaning
of Lyapunov stability theory (i.e., relative stability or stability is just the relatively
static movement). This also implies that idea of relativity has been used in Lyapunov
stability theory, which is the fundamental reason of the universality of Lyapunov sta-
bility theory. When the input is considered in the system, i.e., X (t) = f(x(t), u(t))
and y(t) = h(x(z)), stability with respect to different variables may form differ-
ent stability concepts [84], for example input-state stability, integral input-to-state
stability, and so on. Therefore, in the new environments, Lyapunov stability theory
should be kept with the times, which can make the idea or thoughts of Lyapunov
stability theory be carried forward and further developed. For example, Lyapunov
synchronization stability theory (LSST) should be regarded as an upgrade of classical
Lyapunov stability theory (LST) in the networks era. The most outstanding features
of LSST include: 1) The equilibrium point of each node system is not required. The
synchronous state or synchronous target can be the dynamics of any node system
or their combinations, or the external specified target. 2) Synchronization stability
is a relative stability. Many existing stability definitions such as Lyapunov stabil-
ity, ISS, I0SS, stability of fixed points, stability of orbits, stability of sets can be
unified in the framework of synchronization stability. 3) Many synthesis problems
such as regulation/tracking problems, observer, filter, master-slave synchronization,
drive-response synchronization, state/parameter estimation, system/parameter iden-
tification can be unified in the frameworks of synchronization stability theory. While
classical Lyapunov stability theory has already promoted the development of auto-
matic control theory for isolated systems, Lyapunov synchronization stability theory
would be sure to promote the development of automatic control theory for complex
interconnected networks.

(9) Referring to the stability definition in the sense of Lyapunov, there may have
many different stability definitions existing in practice according to different appli-
cations. One of remarkable stability concepts is the stability of living systems. This
kind of system has many stably periodic trajectories, limited cycles or other com-
plex dynamics, except the fixed equilibrium points. For example, the heart rate and
biological cycle in a living creature are all sinusoidal wave. This kind of sinusoidal
signal may include two parts: frequency and amplitude. Therefore, stability defini-
tion may be a mixed concept of time domain, frequency domain, and space domain.
Inspired by the Lyapunov stability theory, many different kinds of stability definition
can be proposed. So does the stability theory of complex neural networks.

(10) In the qualitative research of dynamical systems, most efforts are placed
on the external evolutionary dynamics of dynamical systems, for example, the infi-
nite state behavior of dynamical systems as time approaches to infinity. This leads
to the different definitions of stability and their corresponding stability results. It
is well known that most fixed point or equilibrium point is locally stable. Starting
from different domain of attraction of equilibrium may lead to different dynamical
trajectories. This feature of initial domain is especially important in the learning of
neural networks when choosing the initial weight values, as well as in the associative
memory and pattern formation. Therefore, there are two directions in the qualitative
analysis of dynamical systems. One is concerned with the ultimate state behavior
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as time approached to infinity, such as many kinds of qualitative characteristic re-
searches as global asymptotical stability, input-to-state stability, passivity, domain
of attraction of equilibrium and dissipativity. The other is concerned with the initial
condition set as time just begins, which is a inverse mapping of the infinite dynamical
behavior of a dynamical system. The origin or the beginning of the initial condition
is the definition domain of the concerned problem, from which the ultimate dynamic
behavior of the concerned system begins to evolve as time approaches to infinity.
In general, a good initial condition may trigger a better solution of the concerned
problem and a less cost of the design procedure.

(11) Nowadays, more emphasis is placed on the stability of dynamical systems.
This kind of system can be modeled by differential equation, difference equation,
or other kind of recurrent forms. However, in the real world, too many systems
can not be defined or modeled by the mathematical analytical equations. For this
kind of nonanalytical systems, the results for the dynamical systems can not be
used. For example, for a complex data-driven system, it is impossible to model it
by mathematical model accurately. Any approximated description method including
differential equation and difference equation can be suitable for the case of small
scale systems, and not suitable for the large-scale complex systems. This evolution
is similar to the principle of using distributed delay to replace the discrete delay for
the large-scale circuits. Therefore, how to establish data-driven stability theory for
the large-scale complex system is an urgent project in the contemporary era. This
will be similar to the emergence of Lyapunov stability theory in the 1900s.

In brief, doing research with great concentration is a basic principle. One cannot
expect his findings to be popularized in a short time. A good attitude for a researcher
is a prerequisite for his great achievement, no matter when his achievements have
been recognized and popularized.

2.5 Applications of Dynamical Systems Theory

In the following, some application fields are listed for the significant contribution of
dynamical systems theory.

(1) In biomechanics

In sports biomechanics, dynamical systems theory has emerged in the movement
sciences as a viable framework for modeling athletic performance. From a dynam-
ical systems perspective, the human movement system is a highly intricate network
of codependent subsystems (e.g., respiratory, circulatory, nervous, skeletomuscular,
perceptual) that are composed of a large number of interacting components (e.g.,
blood cells, oxygen molecules, muscle tissue, metabolic enzymes, connective tissue
and bone). In dynamical systems theory, movement patterns emerge through generic
processes of self-organization found in physical and biological systems.
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(2) In cognitive science

Dynamical system theory has been applied in the field of neuroscience and cogni-
tive development, especially in the neo-Piagetian theories of cognitive development.
It is the belief that cognitive development is best represented by physical theories
rather than theories based on syntax and artificial intelligence (AI). It also believed
that differential equations are the most appropriate tool for modeling human be-
havior. These equations are interpreted to represent an agent’s cognitive trajectory
through state space. In other words, dynamicists argue that psychology should be the
description (via differential equations) of the cognitions and behaviors of an agent
under certain environmental and internal pressures. The language of chaos theory is
also frequently adopted. In it, the learner’s mind reaches a state of disequilibrium
where old patterns have broken down. This is the phase transition of cognitive de-
velopment. Self-organization (the spontaneous creation of coherent forms) sets in as
activity levels link to each other. Newly formed macroscopic and microscopic struc-
tures support each other, speeding up the process. These links form the structure of
a new state of order in the mind through a process called scalloping (the repeated
building up and collapsing of complex performance). This new state is progressive,
discrete, idiosyncratic, and unpredictable. Dynamical systems theory has recently
been used to explain a long-unanswered problem in child development referred to
as the A-not-B error.

(3) In human development

Dynamical systems theory is a psychological theory of human development. Un-
like dynamical systems theory, which is a mathematical construct, dynamical systems
theory is primarily nonmathematical and driven by qualitative theoretical proposi-
tions. This psychological theory does, however, apply metaphors derived from the
mathematical concepts of dynamical systems theory to attempt to explain the exis-
tence of apparently complex phenomena in human psychological and motor devel-
opment.

As it applies to developmental psychology, this psychological theory was de-
veloped by Esther Thelen, Ph.D. at Indiana University Bloomington [85]. Thelen
became interested in developmental psychology through her interest and training
in behavioral biology. She wondered if “fixed action patterns,” or highly repeatable
movements seen in birds and other animals, were also relevant to the control and
development of human infants.

According to Miller [86], dynamical systems theory is the broadest and most
encompassing of all the developmental theories. Theory attempts to encompass all
the possible factors that may be in operation at any given developmental moment,
i.e., it considers development from many levels (from molecular to cultural) and
timescales (from milliseconds to years). Development is viewed as constant, fluid,
emergent or nonlinear, and multidetermined. Dynamical systems theory’s greatest
impact lies in early sensorimotor development. However, researchers working in
fields closely related to (developmental) psychology such as linguistics have built
upon Thelen’s work in order to, for example, model the development of language
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in an individual using dynamic systems theory by linking language development to
overall cognitive development.

Esther Thelen believed that development involved a deeply embedded and con-
tinuously coupled dynamic system. It is unclear, however, if her utilization of the
concept of “dynamic” refers to the conventional dynamics of classical mechanics
or to the metaphorical representation of “something that is dynamic™ as applied in
the colloquial sense in common speech, or both. The typical view presented by R.D.
Beer showed that information from the world goes to the nervous system, which
directs the body, which in turn interacts with the world. Esther Thelen instead of-
fers a developmental system that has continual and bidirectional interaction between
the world, nervous system and body. The exact mechanisms for such interaction,
however, remain unspecified.

The dynamical systems view of development has three critical features that sepa-
rate it from the traditional input—output model. Firstly, the system must be multiply
causal and self-organizing. This means that behavior is a pattern formed from mul-
tiple components in cooperation with none being more privileged than another. The
relationship between the multiple parts is what helps provide order and pattern to
the system. Why this relation would provide such order and pattern, however, is
unclear. Secondly, a dynamic system depends on time making the current state a
function of the previous state and the future state a function of the current state. The
third feature is the relative stability of a dynamic system. For a system to change, a
loose stability is needed to allow for the components to reorganize into a different
expressed behavior. What constitutes a stability as being loose or not loose, however,
is not specified. Parameters that dictate what constitutes one state of organization
versus another state are also not specified, as a generality, in dynamical systems
theory. The theory contends that development is a sequence of times where stability
is low allowing for new development and where stability is stable with less pattern
change. The theory contends that to make these movements, you must scale up on a
control parameter to reach a threshold (past a point of stability). Once that threshold
is reached, the muscles begin to form the different movements. This threshold must
be reached before each muscle can contract and relax to make the movement. The
theory can be seen to present a variant explanation for muscle length-tension reg-
ulation but the extrapolation of a vaguely outlined argument for muscle action to a
grand theory of human development remains unconvincing and unvalidated.

2.6 Notations and Discussions on Some Stability Problems

This section is divided into two parts. One is for the symbol notations, basic lemmas,
basic definition of stability and equilibrium point. The other is for the discussions on
some stability concepts, which will show the diversity of stability definitions.



64 2 Preliminaries on Dynamical Systems and Stability Theory

2.6.1 Notations and Preliminaries

Throughout this book, the following notations are used if no confusion occurs.

Let R" denote the n-dimensional Euclidean space, and R denote the real space.
Let A = [a;j]uxn denote an n X n matrix. Let wT, w1 denote the transpose and
the inverse of a square matrix W, respectively. Let W > 0(< 0) denote a positive
(negative) definite symmetric matrix. / denote an identity matrix with compatible
dimension. A = diag(a;) denotes the diagonal matrix. Matrices, if not explicitly
stated, are assumed to have compatible dimensions. The symbol x* is used to denote
a matrix which can be inferred by symmetry. If A is a matrix, ||A|| denotes its
operator norm or Euclidean norm. A\pax (A), Amin(A) or Ay (A) and A\, (A) mean the
maximum/largest and minimum/smallest eigenvalue of A respectively. Re(\) < 0
means the real part of eigenvalue ) is negative, where A is the eigenvalue of a square
matrix A. For & > 0, C([—h, 0]; R") denotes the family of continuous functions
¢ from [—h, 0] to R" with the norm ||¢|| = sup_j, -, |¢(s)|, where | - | is the
Euclidean norm in R”. o

Definition 2.1 (Positive (semi)definite function) A function V : D — R, where
D C R" is said to be positive semidefinite if V (0) = 0 and for every x € D it holds
that V (x) > 0. It is called positive definite if additionally for every x € D — {0} it is
true that V(x) > 0. A function V is called negative (semi)definite if —V is positive
(semi)definite.

Definition 2.2 (Positive (semi)definite matrix) A matrix Q € M, (R) is called posi-
tive (semi)definite if the corresponding quadratic function V (x) = x” Qx is positive
(semi)definite.

An algebraic criterion exists to test whether a given symmetric matrix is positive
definite or positive semidefinite.

Definition 2.3 (Criterion for positive semidefiniteness) Let Q be a symmetric matrix
with appropriate dimension. Then, it is positive (semi)definite if and only if all its
eigenvalues are (nonnegative)positive.

Definition 2.4 (Derivative along the trajectories of a system, see [87]) Given a
dynamical system X : x(t) = f(x(t)), where f : R* — R", and a function
V : R" — R, we define the derivative of V along the trajectories of the system X
as: %—‘I/|E = %—‘t/|x(,) = %—‘;f(z)|2=x(,). (LfV)(x) or V(x) is widely used to denote
the derivative of V.

Lemma 2.5 (Lyapunov stability theorem, see [87]) Let x = 0 be an equilibrium
point for the system x = f(x) with x € R" and D € R" with D > 0. The vector
field f is locally Lipschitz (so that the differential equation admits unique solutions).
Let V : D — [0, 00) be a continuously differentiable function such that: 1) V is
positive definite in D. 2) L ¢V is negative semidefinite in D. Then x = 0 is stable. If
additionally L ¢V is negative definite in D, then the origin is locally asymptotically
stable.
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Lemma 2.6 (Krasovskii—LaSalle principle) The Krasovskii—LaSalle principle (also
known as the invariance principle) is a criterion for the asymptotic stability of an
autonomous (possibly nonlinear) dynamical system.

The global Krasovskii-LaSalle principle: given a representation of the system
X = f(x), where x is the vector of variables, with f(0) = 0. If a C" function V (x)
can be found such that (1) V(x) > 0 for all x # 0 (positive definite); (2) V(x) <0
for all x(negative seminegative); (3) V(x) — oo if x — oo and V(0) = V(O) =0
(Such functions can be thought of as “energy-like”).

Let T be the union of complete trajectories contained entirely in the set {x :
V(x) = 0}. Then the set of accumulation points of any trajectory is contained in I.
In particular, if T contains no trajectory of the system except the trivial trajectory
x(t) = 0 for t > 0, then the origin is globally asymptotically stable.

Local version of the Krasovskii—LaSalle principle: if V(x) > 0 when x # 0,
V(x) < 0 holds only for x in some neighborhood D of the origin, and the set
{V(x) = 0YN D does not contain any trajectories of the system besides the trajectory
x(t) = 0,t > 0, then the local version of the Krasovskii—LaSalle principle states
that the origin is locally asymptotically stable.

Relation to Lyapunov theory. If V(x)is negative definite, the global asymptotic sta-
bility of the origin is a consequence of Lyapunov’s second theorem. The Krasovskii—
LaSalle principle gives a criterion for asymptotic stability in the case when V (x) is
only negative semidefinite.

Definition 2.7 (Lyapunov—Krasovskii functional, see [88-91]) Generalizations of
the Lyapunov method to delay differential equations have been found, notably by
Krasovskii [90]. As an example in [91] (see [Sect. 5.3, Corollary 3.1]), for a general
system

x=f(x), f:C([-7,0],R") - R", (2.6)

under usual regularity assumptions, the existence of a so-called Lyapunov—Krasovskii
functional V : C([—7, 0], R") — R and of a1, ap : Rt — R, o] is unbounded,
and « is positive definite, such that

dV(x;)
dr

ar(x(D)) = V(x), < a(|x (), 2.7)

along the trajectories, ensures asymptotic stability of the origin. Here, one defines as
usual x;(s) = x(t +s), 7 <5 <0.
In particular, simple quadratic Lyapunov—Krasovskii functionals of the type

t
Vi) =x" () Px(t) + / xT () Qx (m)dn, (2.8)
t—7

for positive definite matrices P, Q € R"*" have been used early [91, 92].
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Definition 2.8 (infinitesimal generator, see [93]) Consider the stochastic system
dx(t) = fx@)dr + g(x(1))dw, (2.9)

where x (1) € R” is the system state, w is a r-dimensional standard Wiener process,
and f(-), g(-) : R* — R" are locally Lipschitz functions and satisfy f(0) = ¢g(0) =
0.

For any given V (x) € C2, associated with the stochastic system (2.9), the infini-
tesimal generator L is defined as follows:

v

av 1
LV() = 5 ) + zTr[ng 0z g(x)], (2.10)

where Tr(A) is the trace of a matrix A = (a;j)nxn, 1.€., Tr(A) = Z?:l a;;, a;j; is the
element on the main diagonal of square matrix A.

Lemma 2.9 (Schur Complement, see [94]) For a given symmetric matrix S € R™*",

| S S
and § = |:SIT2 S
dimensions, the following statements are equivalent:(1) S < 0; (2) S11 < 0,
S2o — 85,81, S12 < 0;(3) S22 < 0, Si1 — S1285,' ST, < 0.

i|, where S;; € R"*" are matrix blocks with appropriate

Definition 2.10 (Nonsingular M-matrix, see [95]) An n x n matrix P with nonposi-
tive offdiagonal elements is called a nonsingular M -matrix if all its principal minors
are positive.

Definition 2.11 (Nonsingular M-matrix, see [95]) P is a nonsingular M-matrix if
and only if there exists a positive diagonal matrix D such that P D is a diagonally
dominant matrix.

Lemma 2.12 (see [95]) Let Dy be an n x n positive diagonal matrix and P be
an n X n matrix with P = (p;j)nxn. If Do — | P| is a nonsingular M-matrix with
|P| = (IpijDnxn, then Do + P is nonsingular.

In mathematics and, specifically, real analysis, the Dini derivatives are a class
of generalizations of the derivative. They were introduced by Ulisse Dini (1845—
1918), who was an Italian mathematician, and is known for his contribution to real
analysis [96].

Definition 2.13 (Dini derivative)
(1) The upper Dini derivative, which is also called an upper right-hand derivative
of a continuous function f : R — R, is denoted by f.." and defined by

DY) = 1) £ im sp LUED SO
h—04

where limsup is the supremum limit.
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(2) The lower Dini derivative f_’ is defined by

D_f(t)=f-'(t) = 1imhing M

S0, h

where liminf is the infimum limit.
(3) I f(z) is defined on a vector space, then the upper Dini derivative at ¢ in the
direction d is defined by

D*f@) = £/ £ tim sup LEFED =T
h—04

where limsup is the supremum limit.

(4) If f(¢) is locally Lipschitz, then f'(¢) is finite. If f(¢) is differentiable at ¢,
then the Dini derivative at ¢ is the usual derivative at ¢.

Also,

D™ f(t) & limsup w
h—0— h

N R 0
D-j = hm ol === ——

are used to denote the upper Dini derivative and lower Dini derivative, respectively.

Therefore, when using the D notation of the Dini derivatives, the plus or minus
sign indicates the left-hand or right-hand limit, and the placement of the sign indicates
the infimum or supremum limit.

Lemma 2.14 (Schauder fixed-point theorem) The Schauder fixed-point theorem is
an extension of the Brouwer fixed-point theorem to topological vector spaces, which
may be of infinite dimension. It asserts that if K is a convex subset of a topological
vector space V and T is a continuous mapping of K into itself so that T (K) is
contained in a compact subset of K, then T has a fixed point.

A consequence, called Schaefer’s fixed-point theorem, is particularly useful for
proving existence of solutions to nonlinear partial differential equations. Schaefer’s
theorem is in fact a special case of the far reaching Leray—Schauder theorem which
was discovered earlier by Juliusz Schauder and Jean Leray. The statement is as
follows: Let T be a continuous and compact mapping of a Banach space X into
itself, such that the set

{xeX:x=ATxforsome0 <\ <1}

is bounded. Then T has a fixed point.

Lemma 2.15 (Brouwer’s fixed-point theorem) Brouwer’s fixed-point theorem is a
fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any
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continuous function f mapping a compact convex set into itself there is a point x
such that f(xo) = xo. The simplest forms of Brouwer’s theorem are for continuous
functions f from a closed interval I in the real numbers to itself or from a closed
disk D to itself. A more general form than the latter is for continuous functions from
a convex compact subset K of Euclidean space to itself.

Among hundreds of fixed-point theorems, Brouwer’s is particularly well known,
due in part to its use across numerous fields of mathematics. In its original field, this
result is one of the key theorems characterizing the topology of Euclidean spaces,
along with the Jordan curve theorem, the hairy ball theorem and the Borsuk—Ulam
theorem. This gives it a place among the fundamental theorems of topology. The
theorem is also used for proving deep results about differential equations and is
covered in most introductory courses on differential geometry. It appears in unlikely
fields such as game theory. In economics, Brouwer’s fixed-point theorem and its
extension, the Kakutani fixed-point theorem, plays a central role in the proof of
existence of general equilibrium in market economies as developed in the 1950s by
economics Nobel prize winners Kenneth Arrow and Grard Debreu.

Lemma 2.16 (Contraction mapping principle) In mathematics, a contraction map-
ping, or contraction or contractor, on a metric space (M, d) is a function f from M
to itself, with the property that there is some nonnegative real number 0 < k < 1
such that for all x and y in M,

d(f(x), f(y) = kd(x,y).

The smallest such value of k is called the Lipschitz constant of f. Contractive maps
are sometimes called Lipschitzian maps. If the above condition is instead satisfied
for k <1, then the mapping is said to be a non-expansive map.

More generally, the idea of a contractive mapping can be defined for maps between
metric spaces. Thus, if (M, d) and (N, dl) are two metric spaces, and f : M — N,
then there is a constant k < 1 such that

d'(f(x), f(») < kd(x,y),

forall x and y in M. Every contraction mapping is Lipschitz continuous and hence
uniformly continuous (for a Lipschitz continuous function, the constant k is no longer
necessarily less than 1).

A contraction mapping has at most one fixed point. Moreover, the Banach fixed-
point theorem states that every contraction mapping on a nonempty complete metric
space has a unique fixed point, and that for any x in M the iterated function sequence
x, fx), f(fx), FF(f(X))), ..., converges to the fixed point. This concept is
very useful for iterated function systems where contraction mappings are often used.
Banach’s fixed-point theorem is also applied in proving the existence of solutions
of ordinary differential equations, and is used in one proof of the inverse function
theorem.
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In mathematics, in the field of differential equations, an initial value problem (also
called the Cauchy problem by some authors) is an ordinary differential equation
together with a specified value, called the initial condition, of the unknown function
at a given point in the domain of the solution. In physics or other sciences, modeling
a system frequently amounts to solving an initial value problem; in this context, the
differential equation is an evolution equation specifying how, given initial conditions,
the system will evolve with time.

Definition 2.17 (Initial value problem) An initial value problem is a differential
equation y/(t) = f(t,y(t)) with f : 2 C R x R*" — R", where §2 is an open set
of R x R”, together with a point in the domain of f (¢, yo) € 2 called the initial
condition.

A solution to an initial value problem is a function y, that is, a solution to the
differential equation and satisfies y(f9) = yo.

In higher dimensions, the differential equation is replaced with a family of equa-
tions y; = fi(t, y1(t), 2(t), ..., ) and y(¢) is viewed as the vector (y; (¢), . . ., Y (?)).
More generally, the unknown function y can take values on infinite dimensional
spaces, such as Banach spaces or spaces of distributions. Initial value problems are
extended to higher orders by treating the derivatives in the same way as an indepen-

dent function, e.g. y (1) = f(z, y(1), y ().

Brouwer’s fixed-point theorem, Schauder fixed-point theorem, contraction map-
ping principle and initial value problem are from Wikipedia, the free encyclopedia
on the internet.

Definition 2.18 (Solution in the sense of Caratheodory, see [10]) Consider the fol-
lowing ordinary differential equation (ODE) in R”,

%= f(x,1),t>0,x(0) = xo. @2.11)

By a solution of Eq.(2.11) we mean a continuously differentiable function of time
x(t) satisfying

t
x(t)=x0+/ F(x(s), s)ds. 2.12)
0

Such a solution to Eq.(2.11) is called a solution in the sense of Caratheodory.

Definition 2.19 (Local existence and uniqueness, see [10]) Consider the system
(2.11). Assume that f(x, t) is continuous in ¢ and x, and that there exist T, r, k, h
such that for all + € [0, T'], we have

[f(x,0) = f(y, D) <klx —y|,Vx,y € B(xo, r),
| f (xo, )| <h, (2.13)
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with B(xg,r) = B, = {x € R" : |x — xo| < r} is a ball of radius r centered at
xo. Then Eq.(2.11) has exactly one solution of the form of (2.12) on [0, §] for §
sufficiently small.

Definition 2.20 (Global existence and uniqueness, see [10]) Consider the system
(2.11) and assume that f (x, t) is piecewise continuous with respect to # and for each
T € [0, 00) there exist finite constants k7, A7 such that for all r € [0, T], we have

|f(x, 1) — f(y, D] <krlx —y|,Vx,y e R",
| f(x0, )| <hrT. (2.14)

Then Eq. (2.11) has exactly one solution on [0, T'] for all T < oo.

Definition 2.21 (Continuous dependence on initial conditions, see [10]) Consider
the system (2.11) and let f (x, t) satisfy the hypothesis (2.14). Let x(-), y(-) be two
solutions of this system starting from xo and yq respectively. Then for given € > 0,
there exists d(e, T) such that

lxo — yol =0 = |x() —y()| < e (2.15)

Definition 2.22 (Lipschitz continuous, see [10]) The function f is said to be locally
Lipschitz continuous in x if for some # > 0 there exists L > 0 such that

| f(x1,8) = f(x2,0)] < Llx1 — x2], (2.16)

forall xq, xo € Bj,t > 0.The constant L is called the Lipschitz constant. A definition
for globally Lipschitz continuous functions follows by requiring Eq.(2.16) to hold
for x1, xo € R". The definition of semi-globally Lipschitz continuous functions hold
as well by requiring that Eq. (2.16) hold in By, for arbitrary /# but with L possibly a
function of 4. The Lipschitz property is by default assumed to be uniform in 7.

If f is Lipschitz continuous in x, it is continuous in x. On the other hand, if f
has bounded partial derivatives in x, then it is Lipschitz. Formally, if Dy f(x, t) £

[%] denotes the partial derivative matrix of f with respect to x (the subscript 1
J

stands for the first argument of f(x, 7)), then |Dj f(x, )] < L implies that f is
Lipschitz continuous with Lipschitz constant L (again locally, globally, or semi-
globally depending on the region in x that the bound on | D, f (x, )] is valid).

Definition 2.5 provides a universal definition on the stability and asymptotic sta-
bility. However, to meet the needs of this book, we will use the following delayed
neural networks (DNN5s),

x(t) = —Ax(t) + Bg(x(1)) + Cg(x(t —7(2))) + U, (2.17)

to present some stability definitions for convenience, where x(t) = (x1(¢),...,
()T € R, g(x(1) = g1 (1 (1)), -, gaGin ()T € R, g;(x; (1)) is the neuronal
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activation function, A = diag(ay, ..., a,),a; > 0, B and C are connection matrices
with appropriate dimensions, 7(¢) is a time-varying delay, 0 < 7(¢) < 7,7(t) < u,
7 and p are positive constants, U = (Uy, ..., U,)T e R" is the external constant
input vector, xo(s) = ¢(s) € C,i =1, ..., n. As usual, the solution x(z, xq) is also

called a trajectory of (2.17).

Let D C R" be asubset. D is said to be invariant under the system (2.17) if xg € D
implies I'7(xg) € D, where I (xg) is the trajectory of system (2.17) through xo. A
point x* is called a w-limit point of I'1 (xp) if there is a subsequence {¢;} such that
x* = lim;,  x(#;, x0). All the w-limit points constitute the w-limit set w (I (xp))
of I'1(xp). The w-limit set is invariant under the dynamics. Recall that a constant
vector x™* is said to be an equilibrium state of the system (2.17) if x* is a zero point
of operator Fi(x(t)) defined by [97, 98],

Fi(x*) = —Ax* 4+ Bg(x*) + Cg(x*) + U = 0. (2.18)

The equilibrium state x* is said to be stable if any trajectory of (2.17) can stay within
a small neighborhood of x* whenever the initial x is close to x*, and is said to be
attractive if there is a neighborhood = (x*), called the attraction basin of x*, such
that any trajectory of (2.17) initialized from a state in & (x*) will approach to x* as
time goes to infinity. An equilibrium state x* is said to be asymptotically stable if it is
both stable and attractive, whilst the equilibrium state x* is said to be exponentially
stable if there exist a constant o > 0 and a strictly increasing function M : R — R™
with M (0) = 0 such that the following inequality holds,

(2, x0) — x™[| < M(Jlx(t, x0) — x*[)e"" (2.19)

Further, x* is said to be globally asymptotically stable if it is asymptotically stable,
and & (x*) = R". System (2.17) is said to be globally convergentif x (¢, xo) converges
to an equilibrium state of (2.17) for every initial point (the limit of x (¢, xo) may not
be the same for different x(), whilst it is said to be exponentially convergent if it is
globally convergent with x (¢, xp), and its limit x* satisfying (2.19) [97].

Note that, some exponential stability definitions are required to satisfy the form
lx(t, x0) — x*|| < M(||x(t, x0) — x*||)e® for some positive value M > 0 and
a > 0. However, some scholars define M > 1 instead of M > 0. Although this is a
trivial problem, when 0 < M < 1, the exponential characteristic of the dynamical
behavior is difficult to achieve. According to the contraction mapping principle,
the state may be convergent but may not be exponentially convergent. As far as
the exponential form of stability is concerned, many stability definitions satisfy this
form. Therefore, strictly speaking, to the authors’ knowledge, it is better to define
M > 1 in the exponential stability definition.
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2.6.2 Discussions on Some Stability Definitions

In this subsection, we will introduce the evolution of equilibrium from fixed, sta-
ble flow to invariant set, along with different stability understandings and stability
definitions. This will help us to understand different kinds of stability definitions in
depth.

Definition 2.23 (Absolute stability, see [22]) The neural network (2.17) is said
to be robustly absolutely stable in the sector [Ki, K»] if the system is glob-
ally uniformly asymptotically stable for any nonlinear function g(x) satisfying
(g(x () — K1x()T (g(x(1)) — K2x(1)) < 0.

Definition 2.24 (Absolute stability) There exists a unique equilibrium point for
DNNSs (2.17) attracting all trajectories in phase space and, moreover, that this prop-
erty is valid for all neuron activations within a specific class of nonlinear functions
and for all constant input stimuli to the networks.

Definition 2.25 (Delay-independent condition, see [99]) The system (2.17) with
g(x(t)) = x(t) and U = 0 is said to be stable independent of delay if it is asymp-
totically stable for every 7(¢) € [0, T]. In this case one says that the system (2.17) is
absolutely stable.

Definition 2.26 The dynamical system defined by (2.17) is globally asymptotically
stable (GAS) if there exits a unique equilibrium point, x*, which is stable and to
which every system trajectory converges.

The concept of absolute stability for DNNs (2.17) concerns the persistence of GAS
when the input U is varied. (In general, one also varies the activation functions g(-),
but the DNNs model assumes the activation functions belonging to a form of specific
Class). When the types of activation function are given in (2.17), the following ABST
definition is given in [100].

Definition 2.27 (see [100]) The dynamical system described by (2.17) with fixed
activation function is said to be absolutely stable if it possesses a GAS equilibrium
point for each input U € R".

Definition 2.28 (Absolute stability, see [101 ])'Consider the system (2.17), if we can
find a Lyapunov function V (x(¢)) such that V(x(¢)) < O for any initial condition
x(t9) = ¢(t) € C, then the system (2.17) is absolutely stable.

Neural network is called absolutely stable (ABST), i.e., that it possesses a globally
asymptotically stable (GAS) equilibrium point for every neuron activation function
and for every constant input vector. It is easily realized that the property of absolute
stability is really desirable in view of solving many signal processing tasks. Consider,
for example, self-organizing neural networks. Absolute stability guarantees that con-
vergence is preserved even during the learning phase when parameters are slowly
adjusted in an unpredictable way. Moreover, absolute stability ensures convergence
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of the neural network also when, for some parameter values, there are infinitely
many nonisolated equilibrium points (e.g., a manifold of equilibria). This feature is
useful in practical problems, requiring convergence even in the presence of noniso-
lated equilibria. For instance, concerning minimization of multilinear polynomials
with nonisolated minima, it was noted that the natural choice of the neural network
parameters leads to a network with nonisolated equilibria. Another significant case
is related to the neural network for the solution of linear or quadratic programming
problems with infinite solutions. Once more, the design procedure naturally leads
to the presence of manifolds of equilibria. A third case is that of gradient systems,
which possess manifolds of equilibria in the generic case. It is also worth to mention
that there are interesting problems where it is explicitly required to implement an
associative memory, which is able to store and retrieve some pattern within a set of
infinitely many nonisolated equilibrium patterns.

Definition 2.29 (Complete stability-1, see [95]) DNNs (2.17) is said to be completely
stable if for any initial continuous function ¢(¢), the solution x (¢, ¢(t)) of (2.17)
satisfies lim;—, ~ x (¢, ¢) = constant.

Definition 2.30 (Complete stability-11, see [95, 102]) DNNs (2.17) is said to be
completely stable if for any initial value starting from xq at ¢ = #y, the trajectory
x(t; ty, xo) of (2.17) satisfies

lim [|x(t; 10, x0) — x*|| = 0 (2.20)
11— 00

where x* is an equilibrium point of neural networks (2.17).

Above definitions of complete stability mean that each trajectory converges toward
an equilibrium point (a stationary state), possibly within a set of many equilibrium
points. In [103], the property of complete stability is referred to as global pattern
formation, in order to highlight the ability of the neural networks to produce a steady-
state pattern, i.e., lim;_, o x(¢) in response to any input pattern U and initial activity
pattern xo.

It is shown that several classes of real-value neural networks (RVNNSs) can be
completely stable by combining energy minimization and the LaSalle invariant
principle. The equilibrium points of such networks were required to be isolated.
However, under the framework of combining the energy minimization method and
the Cauchy convergence principle to study complete stability for RVNNSs, the equi-
librium points of such networks were no longer required to be isolated. Meanwhile,
complete stability for continuous-time and discrete-time RVNNs was further con-
sidered by combining the energy minimization method and the Cauchy convergence
principle, respectively. Furthermore, as the extensive versions of the existing com-
plete stability results for RVNNs, complete stability for discrete-time complex-value
neural networks (CVNNs) was investigated by the energy minimization method.
Note that GAS implies complete stability, but not vice versa [95].
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Definition 2.31 (Strict Lyapunov function, see [24]) An energy function V is said
to be strict if and only if the set {x € R"|V(x) = 0} coincides with the set of
equilibrium points. This is equivalent to the fact that the energy is strictly decreasing
along nonstationary solutions.

Remark 2.32 1t is necessary to give some comparisons among absolute stability,
complete stability, asymptotical stability, and global stability.

(1) As one of the basic enabling properties of multistable neural networks, com-
plete stability, which allows each trajectory converges toward an equilibrium point,
possibly within a set of many equilibrium points. In contrast, absolute stability has
a unique equilibrium point.

(2) Complete stability of (2.17) can hold both in the generic case where (2.17)
has finitely many equilibrium points, as well in degenerate situations where there are
infinitely many nonisolated equilibrium points [24].

(3) Consider the neural networks (2.17) with symmetric interconnection matrices,
and neuron activation is a continuous, nondecreasing, and bounded piecewise linear
(PWL) function, such that g(0) = 0. Then, within this class global pattern formation
is absolutely stable, i.e., complete stability holds for any choice of the parameters
defining A, B, C, U and g(-) in neural network [24]. Few results are reported on
absolute stability of global pattern formation [24]. In some constraints, complete
stability and absolute stability can be equivalent.

(4) In the analysis of complete stability, the Lyapunov method and the classic
LaSalle approach are no longer effective because of the multiplicity of attractors,
some new method must be proposed, for example, a convergence theorem of Gauss—
Seidel method [23-25]. While for the absolute stability, the Lyapunov method and
the classic LaSalle approach are very effective.

(5) Both absolute stability and asymptotical stability are concerned with the neural
networks with unique equilibrium point. That is, for a specified equilibrium point,
how to determine the stability property of the unique/specific equilibrium point.
By contrast, complete stability and global stability is about the total dynamics of
the concerned networks, not for a specific equilibrium state. Therefore, for neural
networks with given equilibrium point, the Lyapunov stability theory can be effective,
while for the nonisolated equilibrium point, Lyapunov stability theory can not be
applied.

(6) Global stability of neural network (2.17) has been extensively investigated
in the context of absolute stability theory, i.e., global absolute stability. When the
input nonlinearities satisfy the sector constraints for only some finite range of their
arguments, the network can only be guaranteed to be locally asymptotically stable.
By contrast, complete stability itself is the global dynamics. Therefore, there is no
global/local complete stability concept.

Definition 2.33 (Global dynamic behavior, see [104]) A stable system equilibrium
point of the neural network (2.17) is defined to be the state vector with all its com-
ponents consisting of stable equilibrium states.
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Definition 2.34 (Global stability, see [13]) If every nonequilibrium solution of
neural network (2.17) converges to an equilibrium, then neural network (2.17) is
said to be global stable. In order to ensure that neural network (2.17) is globally sta-
ble, one requires that the set of equilibria for the networks (2.17) is discrete set. Thus,
any point in the limit set of state is an equilibrium of networks (2.17) as t — oo, and
this point approaches to some equilibrium of networks (2.17).

It follows from the above definition that a cellular neural network is always at one
of its stable system equilibrium point after the transient has decayed to zero. From
the dynamical systems theory point of view, the transient of a cellular neural network
is simply the trajectory starting from some initial state and ending at an equilibrium
point of the system. Since any stable equilibrium point of a cellular neural network
is a limit point of a set of trajectories of the corresponding differential equations
(2.17), such an attracting limit point has a basin of attraction, namely, the union
of all trajectories converging to this point. Therefore, the state space of a cellular
neural network can be partitioned into a set of basins centered at the stable system
equilibrium points.

Definition 2.35 Neural network (2.17) is said to be bounded if its each trajectory
are bounded.

Definition 2.36 (Globally attractive set, see [98]) Let S be a compact subset of R”.
Denote the e-neighborhood of S by Sc. A compact set S is called a globally attractive
set of neural network (2.17) if, for any € > 0, all the trajectories of neural network
(2.17) ultimately enter and remain in S..

As a special class of RNNs, cellular neural networks have many outstanding
features with stable dynamics when it is applied in pattern recognition and storage
memory. Generally, cellular neural networks can be characterized by a large system
of ordinary differential equations. Since all of the cells are arranged in a regular array,
one can exploit many spatial properties, such as regularity, sparsity, and symmetry in
studying the dynamics of cellular neural networks. There are two mathematical mod-
els which can characterize dynamical systems having these spatial properties. One
is partial differential equation and the other is cellular automata. Partial differential
equation, cellular automata, and cellular neural networks share a common property,
namely, their dynamic behavior depend only on their spatial local interactions.

In general, the limit set of a complex nonlinear system is very difficult, if not
impossible, to determine, either analytically or numerically. Although, for piecewise
linear circuit, it is possible to find all dc solutions by using either a brute force algo-
rithm or some more efficient ones, it is nevertheless very time consuming for large
systems. For a cellular neural network, in view of the nearest neighbor interactive
property, one can solve for all system equilibrium points by first determining the
stable cell equilibrium states, and then using the neighbor interactive rules to find the
corresponding system equilibrium. As presented above, the dynamic behavior of a
cellular neural network with zero control operators and nonzero feedback operators
is reminiscent of a two-dimensional cellular automaton. Both of them have the par-
allel signal processing capability and are based on the nearest neighbor interactive



76 2 Preliminaries on Dynamical Systems and Stability Theory

dynamic rules. The main difference between a cellular neural network and a cellular
automata machine is in their dynamic behaviors. The former is a continuous time
while the latter is a discrete-time dynamical system. Because the two systems have
many similarities, one can use cellular automata theory to study the steady-state be-
havior of cellular neural networks. Another remarkable distinction between them is
that while the cellular neural networks will always settle to stable equilibrium points
in the steady state, a cellular automata machine is usually imbued with a much richer
dynamical behavior, such as periodic, chaotic, and even more complex phenomena.
Of course, one can train a cellular neural network by choosing a sigmoid nonlinear-
ity. If one chooses some other nonlinearity for the nonlinear elements, many more
complex phenomena will also occur in cellular neural networks.

Definition 2.37 (IC-class function, see [63]) A function @ : [0, a] — [0, +0o0) is
said to be positive if @(s) > 0 for all s > 0 and @ (0) = 0. A continuous function
a : [0,a] — [0, +00) is said to belong to class /C if it is positive, strictly increasing
and a(0) = 0. It is said to belong to class K if a = oo and a(r) — 400 as
r — oo. Similarly, the continuous function (3 : [0, a] x [0, c0) — [0, 00) is said to
belong to class ICL if, for each fixed s, the mapping 3(r, s) belongs to class K with
respect to r and, for each fixed r, the mapping ((r, s) is decreasing with respect to
s and B(r,s) — oo as s — 00.

An example of a class K function is a(r) = r¢ with ¢ > 0. An example of a
class KL function is B(r, s) = r€e™* with ¢ > 0.
The system

x(t) = f(x(0), u@), y(1) = h(x(1)), 2.21)

is said to be forward complete if for every initial state xg = x(0) = ¢ and for
every input u defined on RY, f;.x = +00. The corresponding output is denoted by
y(t; &€, u) = h(x(t; &, u)) on the domain of definition of the solution, where the input
means a measurable and locally essentially bounded function, x(¢; &, #) denotes the
unique maximal solution of the initial value problem of (2.21) with xg = x(0) = &.

Definition 2.38 (see [105]) Let u = 0. For some region D C R”, if for any € > 0,
there exists ad = §(e) such that when xg € D and || xg|| < 4, the following inequality
holds: ||x (¢, x0)|| < €, V¢t > 0. Then, system (2.21) is said to be uniformly stable
(US) in D and D is called to be a stable region of system (2.21).

Definition 2.39 (see [105]) Let u = 0. system (2.21) is said to be uniformly as-
ymptotically stable (UAS) in D if it is US in D, and moreover the equality holds:
lim; o0 X (2, x0) || = 0, V2 = 0.

Definition 2.40 (see[105]) Letu = 0. If there exist positive constants « > 0, K > 1
such that for any xg € D, ||x(¢, x0)|| < K|xolle™®,Vt > 0. Then system (2.21)
is said to be uniformly exponentially stable (UES) in D and D is called to be an
exponential stable region of system (2.21).



2.6 Notations and Discussions on Some Stability Problems 77

Definition 2.41 (see [60]) A forward complete system (2.21) is
(1) input-to-output stable (10S) if there exist a KL-function /3 and a K-function
~ such that

ly@: & w)l = BAEL ) +~y(lul). Vi = 0; (2.22)

(2) output-Lagrange input-to-output stable (OLIOS) if it is IOS and there exist
some /C-functions oy, o such that

ly(z; & w)| < max{o1(|A(E)]), o2([[ul)}, Vi = 0; (2.23)

(3) state-independent IOS (SIIOS) there exist some 5 € KL and some v € K
such that

ly(: & w] = BRG], 1) + y(lulD), Vi = 0. (2.24)

Definition 2.42 (see [59]) The system (2.21) without u(t) is output-to-state stable
(OSS) if there exist some 5 € L and some € K such that

|x (2, )| < max{B(I€]. 1), vl yelio.nD}, (2.25)

for all £ € X and all r € [0, fimax], where |¢] indicates the Euclidean norm, and
lvelio,501l is the sup-norm of the restriction of y¢ to real interval [0, 7], that is

SUP;e(0, 1] Ve (1)-
Definition 2.43 (see [110]) The system (2.21) is globally asymptotically stable

(GAS) if there exists a function 3(s, t) € KL, such that, with the control u = 0,
given any initial state £, the solution exists for all # > 0 and it satisfies the estimate

lx(@)] < BUEL D), (2.26)

forall ¢ > 0.

Definition 2.44 (see [110]) The system (2.21) is input-to-state stable (ISS) if there
exist functions 5 € KL and v € K, such that for each measurable essentially
bounded control u(¢) and each initial state &, the solution exists for each ¢ > 0, and
furthermore it satisfies

lx(O)] = BAUEL 1) +~(Ju®)]), (2.27)

forallt > 0.

The above definition of GAS is of course equivalent to the usual one (stability
plus attractivity) but it is much more elegant and easier to work with. The definition
of an ISS system is a natural generalization of this. Since y(0) = 0, an ISS system
is necessarily GAS. For linear systems X = Ax + Bu with asymptotically stable
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matrix A, an estimate (2.27) is obtained from the variation of parameters formula,
but in general, GAS does not imply ISS. The notion of ISS is somewhat related to
the classical rotal stability notion, but total stability typically studies only the effect
of small perturbations (or controls), while ISS concerns with the bounded behavior
for arbitrary bounded controls [110].

Definition 2.45 (Integral input-to-state stability (iISS), see [49]) System (2.21) is
iISS if there exist functions o € Ko, 8 € KL and v € I, such that, for all £ € R”
and all u, the solution x (¢, &, u) is defined for all # > 0, and

t
aflx (@, & w) = BAUEL 1) +/0 y(u(s))ds, (2.28)

forall ¢ > 0.

Observe that a system is iISS if and only if there exist functions 8 € L and
1, v2 € K such that

t
allx(t, & 0D = 600+ ( /0 (Ju(s)Dds), (2.29)

for all + > 0, all ¢ € R”, and all u. Also note that if system (2.21) is iISS, then it
is 0-GAS, that is, the O-input system x = f(x, 0) is globally asymptotically stable
(GAS). (That is, the zero solution of this system is globally asymptotically stable.)

Definition 2.46 (see [49]) A continuously differentiable function V : R — R is
called an iISS-Lyapunov function for system (2.21) if there exist functions aq, an €
K~ and o € I, and a continuous positive definite function «3, such that

ar([Eh) = V() = aa(I€]) (2.30)

forall £ € R”, and

DV f (& u) = —a3z(|ED) + o (lul), (2.31)

for all £ € R"*, and all u € R™.

Note that the estimate (2.30) amounts to the requirement that V must be positive
definite (i.e., V(x) > 0 for all x # 0 and V(0) = 0), and proper (i.e., radially
unbounded, namely, as V (x) — oo as |x| — 00).

Stability so far is studied with respect to equilibrium points. Stability, however,
can be studied with respect to invariant sets.

Definition 2.47 (Stability of Sets, see [87]) A set M is said to be stable for the system
X = f(x) if for every € > 0, there is a § = d(e) > 0 such that disty;(x) < § =
distps (x(f, x9)) < € for all + > 0. Where disty; (x) denotes the distance of x from
the set M defined as disty; (x) = infep ||Xx — z]|.
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Definition 2.48 (Asymptotic stability of Sets, see [87]). A set M is said to be lo-
cally asymptotically stable for the system x = f(x) if it is stable and additionally
lim,_,  distys (x (¢, x9)) = O for all x such that disty; (x (¢, x9)) < 7 for some n > 0.
If the limitation holds true for all x € R", then M is called a globally asymptotically
stable set.

Definition 2.49 (LaSalle’s Principle, see [87]). Let 2 C D be a compact set that
is positively invariant with respect to x = f(x). Let V : D — R be a continuously
differentiable and positive definite function such that the derivative of V,i.e., Ly V,
is negative semidefinite. Define the set: E 2 {x € D, (LyV)(x) =0}. Let C E be
a maximal invariant set in E. Then M is globally asymptotically stable.

Aforementioned stability definitions are mainly for the nonlinear autonomous
systems. In the following, we will consider a kind of systems that may be represented
by equations of the form [84],

L fon (232)
- = X, 1), -
dr

wherex € R, x = (x1,...,x,)T, F : R" x J — Rare considered, J = [1g, 00), fo

is an finite initial time instant. It is assumed that f is continuous on R” x J, which
denote their Cartesian product. The solutions of (2.32) are denoted by x(¢; xo, fo)
with x (to; xo, fp) = xo. In general it is not required that £ (0, ) = 0.

Let S(t) € R" for all ¥+ € J. Assume that S(¢) is a connected open region. Let
S ft) denote the closure of S(¢) and let 0S(¢) denote the boundary of S(¢). Assume
that S(#) is bounded for all + € J, and lim;—,;, S(¢) exists for all 7, € J, and
that lim;—,,, S(#) = S(#,). Henceforth, whenever the symbol S(t) (with appropriate
subscripts) is used to denote a set, it is assumed that this set possesses the properties
described above. Let[S(t) — So(1)] = {x e R" : x € S(t), x ¢ So(¥)}, B(a) = {x €
R" : ||x|| < a},9B(a) = {x € R" : ||x|| < a}. Lett; be any point (initial time) in J,
and let x; = x(#;; x;, t;). Then the following definitions are presented in [84].

Definition 2.50 (Uniformly stable) System (2.32) is stable with respect to {So (),
S(t), 1o}, if xo € So(tp) implies x(¢; xo, fo) € S(¢) for all + € J. System (2.32) is
uniformly stable with respect to (So(?), S(¢)), if forall t; € J, x; € So(¢;) implies
that x(¢; x;, ;) € S(¢) forall ¢ € [t;, 00).

Definition 2.51 (Unstable) System (2.32) is unstable with respect to {So(?),
S(1), to}, So(tg) C S(tg), if xog € So(tg) and a . € J such that x(z.; xo, tg) € IS(t.).

Definition 2.52 (Uniformly asymptotically stable) System (2.32) is asymptotically
stable with respect to {So(¢), S(7), Sy, to}, if it is stability respect to {So (), S(2), f0},
and if in addition, xo € So(fo) implies x(t; xo, fo) — Sy as t — oo (d(x(t; xo,
1), Sf) — 0 ast — oo, where d(x, S¢) = infyeg; ||y — x|1). System (2.32) is
uniformly asymptotically stable with respect to {So(?), S(¢), Sr}, if it is uniformly
stable with respect to {So(¢), S(¢)}, and if in addition, for all ; € J, x; € So(t)
implies x(¢; x;, t;) — Sy, ast — oo.
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Definition 2.53 (Practically stable) If in Definition 2.50, if S(t) = B(8) = {x €
R" : |x|l < B}, So(t) = So(tg) = B(a), « < (3, then system (2.32) is said to be
practically stable with respect to o, 3, o, || - ||, and uniformly practically stable with
respect to «, 0, || - ||. If in Definition 2.52, S(¢) = B(f), So(t) = So(tp) = B(«),
Sr = B(0), a < 3, then system (2.32) is said to be practically asymptotically stable
with respect to («, 3, to, || - ||), and uniformly practically asymptotically stable with
respect to (v, 3, || - ||). Finally, system (2.32) is said to be practically exponentially
stable with respect to (o, 3,7, %0, || - ), @« < 8,7 > 0, if ||xgo|| < « implies
x(t; x0, 10) || < Be 70 forallt € J.

In the following, suppose f : R x C — R”" is continuous and consider the
following retarded functional differential equation or delayed nonlinear system,

¥ = f(t,x), (2.33)

where x;(6) = x(t + 0) for § € [—r, 0]. The function f will be supposed to be
completely continuous and to satisfy enough additional smoothness conditions to
ensure the solution x (o, ¢)(¢) through (o, ¢) is continuous in (o, ¢, t) in the domain
of definition of the function. A function x is said to be a solution of Eq.(2.33) on
[c —r,0 + q] if there are 0 € R and ¢ > O such that x € C([c — r, 0 + ¢q], R"),
(t,x;) € D, and x(¢) satisfies equation (2.33) for r € [0, 0 + ¢], where C =
C([—r, 0], R™), which is the Banach space of linear functions mapping the interval
[—r, 0] into R" with the topology of uniform convergence. For given o € R, ¢ € C,
we say x(o, ¢, f) is a solution of Eq.(2.33) with initial value ¢ at o or simply a
solution through (o, ¢). Finding a solution of Eq. (2.33) through (o, ¢) is equivalent
to solving the integral equation

Xg =0
t
x (1) =¢(0) +/ f(s,x5)ds, t > 0. (2.34)

Definition 2.54 (Uniformly asymptotically stable, see [91]) Suppose f(¢,0) = 0
for all + € R. The solution x = 0 of system (2.33) is said to be stable if for any
o €R,e>0,thereisad = d(e, o) such that ¢ € B(0, §) implies x; (o, ¢) € B(0, €)
fort > 0. The solution x = 0 of system (2.33) is said to be asymptotically stable if it
is stable and thereisabg = bg(0) > Osuchthat¢ € B(0, by) implies x (o, ¢)(t) — 0
as t — o0o. The solution x = 0 of system (2.33) is said to be uniformly stable if the
number ¢ in the definition is independent of ¢. The solution x = 0 of system (2.33)
is said to be uniformly asymptotically stable if it is uniformly stable and there is a
bo > 0 such that, for every n > 0, there is a fy(n) such that ¢ € B(0, bg) implies
x: (o, ¢) € B(0,n) fort > o + to(n) for every o € R.

If y(¢) is any solution of system (2.33), then y is said to be stable if the solution
z = 0 of the equation

2t) = ft, 2+ yo) — [, ), (2.35)
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is stable.

Definition 2.55 (Uniformly ultimately bounded, see [91]) A solution x (o, ¢) of
system (2.33) is bounded if there is a 3(o, ¢) such that |x(o, ¢)(t)| < B(o, ¢) for
t > o —r,r > 01is the maximal bound of time delay. The solutions are uniformly
bounded if, for any a > 0, there is a # = (a) > 0 such that, forall o € R, ¢ € C,
and |¢| < a, we have |x(o, ¢)(t)| < B(«) forall t > o. The solutions are ultimately
bounded if there is a constant 3 such that, for any (o, ¢) € R x C, there is a constant
to(o, @) such that |x (o, ¢)(t)| < Bfort > o+ 19(o, ¢). The solutions are uniformly
ultimately bounded if there is a § > 0 such that, for any o > 0, there is a constant
to(a) > Osuchthat |x(o, ¢)(¢)| < Bfort > o+1y(a) forallo € R, ¢ € C, |¢]| < a.

If V: R" — R”" is a given positive definite continuously differentiable function,
the derivative of V along a solution of system (2.33) is given by

oV (x(1))

V(x(n) = o

[, x). (2.36)

In order for V to be nonpositive for all initial data, one would be forced to impose
very severe restrictions on the function f(¢). In fact, the point ¢(0) must play a
dominant role and therefore, the results will apply only to equations which are very
similar to ordinary differential equations.

A few moments of reflection in this proper direction indicates the tit is unnecessary
to require that Eq. (2.36) be nonpositive for all initial data in order to have stability. In
fact, if a solution of the Eq. (2.33) begins in a ball and is to leave this ball at some time
t, then |x;| = |x(¢)|, thatis, |x(r + s)| < |x(¢)| for all [s € [—r, 0]]. Consequently,
one need only consider initial data satisfying the latter property. This is the basic
idea of Razumikhin-type stability theorem.

Lemma 2.56 (Razumikhin uniform stability theorem, see [91]) Suppose f : R x
C — R takes R x bounded sets of C into bounded sets of R"* and consider the sys-
tem (2.33). Suppose u, v, w : Rt — RT are continuous, nondecreasing functions,
u(s), v(s) positive for s > 0, u(0) = v(0) = 0. If there is a continuous function
V :R x R" — R such that

u(lx]) <V, x) <v(x]),r e R, x € R",
V(t, (0) < — w(p0)]) if V(z + s, ¢(s)) < V(t, p(0)),s € [-r,0], (2.37)

then the solution x = 0 of system (2.33) is uniformly stable.

Lemma 2.57 (Razumikhin uniform asymptotical stability theorem, see [91]) Sup-
pose all of the conditions of Lemma 2.56 are satisfied and in addition w(s) > 0 if
s > 0. If there is a continuous nondecreasing function p(s) > s for s > 0 such that

u(lx]) <V, x) <v(x)),r e R, x € R",
V(t, 5(0)) < — w(p0)]) if V(z + s, ¢(s)) < p(V (2, $(0), s € [-r,0], (2.38)
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then the solution x = 0 of system (2.33) is uniformly asymptotically stable. If u(s) —
oo ass — 09, then the solution x = 0 is also a global attractor for the system (2.33).

Lemma 2.58 (Razumikhin uniformly ultimately bounded theorem, see [91]) Sup-
pose f : R x C — R" takes R x bounded sets of C into bounded sets of R" and
consider the system (2.33). Suppose u, v, w : Rt — R are continuous nonde-
creasing functions, u(s) — oo as s — oo. If there is a continuous nondecreasing
function V : R x R* — R, a continuous nondecreasing function p : R™ — RT,
p(s) > s fors > 0, and a constant H > 0 such that

u(lx)) <V(t,x) <v(x|),t e R, x € R?,

V(t, 9(0)) < — w(|$(0)])
if [p(s)] = H, V(t + 5, $(s)) < p(V(t, (0))), s € [-1,0], (2.39)

then the solutions of system (2.33) are uniformly ultimately bounded.

With the coupling of neural networks, complex neural networks (CNN) have
become the hot topic in the scientific community. For this kind of CNN, new dy-
namics such as synchronization have been proposed and studied. For this purpose,
synchronization stability is necessary to be introduced.

Colloquially, synchronization means correlated in-time behavior between dif-
ferent processes [106, 107]. Indeed, the Oxford Advanced dictionary, 12 defines
synchronization as “to agree in time” and “to happen at the same time.” From this
intuitive definition we propose that synchronization requires the following four tasks
[108, 109]: (1) Separating the dynamics of a large dynamical system into the dy-
namics of subsystems. (2) Measuring properties of the subsystems. (3) Comparing
properties of the subsystems. (4) Determining whether the properties agree in time.
If the properties agree then the systems are synchronized.

Consider the following dynamical system:

. 2.40
¥ = F(x, y. 1), 240

[J’c = Fi(x,y,1),
where x € X C RY, yeY C R%, and r € R. The space of all trajectories is
defined by Z = X x Y, and the global trajectory is denoted by @ (z), z = (x,y) €
R4 otimesR®, dy and d; are positive integers, respectively. The trajectory properties
of each subsystem are defined by the functionals: g, : X x R — R, gy : Y xR —
R*. An example of functional commonly used is g, = x(¢). The comparison of the
functionals is made by the function i : R¥ x R — R*, that is called comparison
function. By using these functionals two synchronization definitions can be given.

Definition 2.59 (Synchronization-1) [108, 109]: The subsystems of equation (2.40)
are synchronized on the trajectory @(z), with respect to the properties gy, g, and
synchronization norm | - || if there is a time independent mapping % such that

1 (gx> gy)lls = 0.
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Definition 2.60 (Synchronization-2) [108, 109]: The subsystems of equation (2.40)
are synchronized with respect to the properties gy, gy and synchronization norm || - ||
if there is a time independent mapping % such that [|A(gy, gy)lls = 0.

The synchronization definition 2.60 is what many papers in the literature call
synchronization. However, synchronization depends strongly on the trajectory. Two
subsystems can be synchronized on some trajectories and not synchronized on other
trajectories. Therefore, the trajectory dependence in synchronization definition 2.59
cannot be ignored.

The stability of synchronous motion is another issues raised by these two defin-
itions. Specifically, stability is not required by the synchronization definition 2.59.
This definition only requires that ||2]] = O exists for properties measured on the
trajectory. If the trajectory of one of the sub-systems is perturbed then this condition
may no longer hold. As a trivial example of this, consider two uncoupled identical
Lorenz systems with parameter values that produce chaotic trajectories. If both sys-
tems have the same initial condition then they will follow the same trajectory and
their motion will clearly be synchronous. However, because of chaos, this type of
synchronization is very unstable. In contrast, the second synchronization definition
2.60 implicitly requires the notion of stability because it requires ||z|| = O for all
trajectories.

A strength of the definition is that the properties and comparison functions are
not specified, a priori. Due to different synchronous target, different applications
require different properties and comparison functions. Those that are suitable for
one application are often completely unsuitable for another. This also implies that
synchronization stability is a relative stability with respect to specified or virtual
target.

The major point about this definition is the appropriated choice of the functionals
gx, gy and the synchronization norm. The appropriated choice of the functional and
synchronization norm depends upon the required type of synchronization.

In the majority of chaotic applications the required synchronization is the one re-
ferred as identical. In this case the functional are given by g, = x(¢) and g, = y(¥).
The synchronization stability of identical subsystems coupled in a master-slave con-
figuration exhibiting chaotic behavior is now presented, based on a criterion that
assures based on a criterion that assures the stability of the synchronous motion
under small perturbations.

Definition 2.61 (Synchronization stability): The subsystems of equation (2.40) are
synchronous stable with respect to the properties g, = x(¢),g9y, = y(t) and
synchronization norm | - || if there is a time independent mapping %~ such that
1A (gx, g)lls = Ix(@) — y@I = 0.

When ||x(#) — y(®)| = 0, it implies x(r) = y(¢t) = s(t), where s(¢) is the
synchronous state, and s(#) can be an equilibrium point, a limit cycle, an aperiodic
orbit, or a chaotic orbit.

Based on above different definitions of stability, we can present a brief review on
the evolution process of stability theory.
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(1) In the original stability definition, it is about a fixed equilibrium point of sys-
tem x(t) = f(x(¢)) under some restrictions on the nonlinear function. In the phase,
asymptotical stability, exponential stability, attractivity, and so on have been studied.
For the multiple fixed or discrete equilibrium point, global stability, complete stabil-
ity, convergence, etc., have been developed. When the solution of X (r) = f(x(¢)) is
periodic or chaotic, such concepts as invariant sets and limit sets have been proposed.
In general, stability in the sense of Lyapunov is about the nonlinear system without
input, or the system with zero input and nonzero initial states.

(2) With the development of nonlinear system theory, some external actions can
affect the dynamics of the autonomous system x(#) = f(x(¢)) In this case, such
systems as x(z) = f(x(¢), u(¢)) have been studied. In this phase, the external control
input has direct influence on the nonlinear system. In order to more precisely describe
the qualitative behavior of nonlinear system, such concepts as ISS, iISS, OSS, 10S,
SIOS, passive, dissipative, and so on have been proposed, and the relations among
global asymptotical stability and ISS, OSS have been discussed. These concepts have
generalized the stability conception in the sense of Lyapunov.

(3) Besides the internal states and certain input, a system always suffers from
the external disturbance. Therefore, a more accurate description of the concerned
nonlinear system is x () = f(x(¢), u(t), w(t)), where w(t) can represent uncertain
input such as disturbance, noise, fault, and so on. In this phase, generalized input
(u(t), w(t)) can be used to evaluate the stability in the sense of boundedness. Mean-
while, in the aspect of control performances, such concepts as £, performance and
‘Hoo performance have been proposed. All above three-phased, the concerned non-
linear systems are isolated or are not connected to other systems (e.g., node system
with respect to complex system with couplings).

(4) For the complex systems with couplings, such as complex networks and multi-
agent systems, such concepts as synchronization used consensus have been proposed.
Synchronization and consensus stresses the identical behavior among all the node
dynamics. Even though the complex network is synchronous, the global dynamics
of this complex networks can not be stable. This is a significant difference between
synchronization and stability in the sense of Lyapunov (or called stability of fixed
point). The reference frame of stability of fixed point is itself, or the origin of the
system without any input. Stability of fixed point is the internal dynamical behav-
ior of a system, while synchronization is the external dynamical behavior among
different systems. The reference frame of synchronization can be the dynamics of
any node systems or other external reference target. Therefore, synchronization is
the upgrade of stability in the sense of Lyapunov. The essence of stability of fixed
point is a relative stability with the inherent equilibrium of the concerned system.
For the system x(¢) = f(x(t)), its inherent equilibrium is naturally the origin. This
reflects that f(0) = O is the fundamental assumption on the nonlinear function. Or
in another way, one can say that x(r) = f(x(¢)) with f(0) = O is just an error
system required in the research of stability of fixed point, state estimation, system
identification, regulation, tracking, and synchronization. Therefore, where there is
the research of relative motion such as tracking and regulation, where there is the
Lyapunov stability theory.
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(5) The systems concerned in [84] is an interconnected large-scale systems, in
which f(0,¢) = 0 is not required. However, there is no any explanation on this
features. Although some similar ideas to the present book may contain, to the best
of the authors’ knowledge, it is not explicitly noted in his series of studies on the
stability of dynamical systems. Except the work in [84], above stability definitions
are about the total variables of the systems x(t) = f(x(t)) or x(¢t) = f(x(t), u(t)).
That is to say, Lyapunov stability theory, synchronization, ISS, and its variants are
all about the total variables or the whole systems. The global dynamics of the whole
system ultimately have the same characteristics, for example, asymptotic stability,
or synchronization, or chaos. These qualitative concepts are relative to the whole
systems. In fact, there may coexist many different dynamics in a system, for ex-
ample, periodic solution and stable equilibrium point. This phenomenon relates to
the concept of partial stability. Partial stability is an important variants and comple-
ments to the original Lyapunov and Lagrange stability concepts. For a given motion
of a dynamical system, say x(t, xo, fo) = (y(¢, xo, to), 2(¢, X0, to)), partial stabil-
ity concerns the qualitative behavior of the y-component of the motion, relative to
disturbances in the entire initial vector x (¢y, xo, f0) = x0 = (Yo, z0), or relative to
disturbances in the initial component yg. In the former case one speaks simply of
y-stability, while in the latter case, one speaks more explicitly of y-stability under
arbitrary z-perturbations [111-114]. We note in passing that problems concerning
partial stability of dynamical systems are closely related to problems of stability with
respect to two measures [115].

Thus, stability is relative to some reference frame. If the reference frame is the
total variable, then the stability result is global; while if the reference frame is partial
variables, then the stability result is partial.

2.7 Summary

This chapter is mainly concerned with the preliminaries of the dynamical systems and
stability theory, since neural network is also a special kind of dynamical systems. For
the stability analysis of dynamical systems, the famous Lyapunov stability concept is
emphasized here. From the background of the different stability definitions, we can
find that all the theory researches must conform to the contemporary requirement
including the industry and information technology. Practical production demands
need the scientific innovation and technical revolution. Therefore, by understanding
the history of different stability concepts and analysis methods, one may have a
deep insight into the research of science and technology, and arousing the study
interests and enthusiasm of researchers. Note that, some contents about the research
background and partial stability theory and definitions of this chapter are from the
Wikipedia—the free encyclopedia on the internet, while some original comments
for the development of stability theory and stability concepts are presented by the
authors.
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