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New Guidance, Navigation, and Control
Technologies for Formation Flying
Spacecraft and Planetary Landing
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2.1 Introduction

The recent landing of the massive Mars Science Laboratory (MSL) rover Curiosity
was made possible by the sky-crane touch down system. The sky-crane used a high
rate, six degree-of-freedom guidance, navigation, and control (GN&C) system to
slowly place the rover on the surface, detect touchdown, and fly away. MSL clearly
showed the advantages of on-board closed loop GN&C and has opened the door for
infusion of new GN&C technologies into the next Mars lander missions as well as
other future spacecraft missions. However, MSL was not equipped with the capa-
bilities of pin-point landing and local hazard avoidance. This chapter begins with a
review of recent advances in perception technologies for on-board Hazard Detection
(HD) and Terrain Relative Navigation (TRN) in Sect.2.2. The HD and TRN percep-
tion technologies will enable the next Mars lander missions to recognize landmarks
for pin-point landing or detect landing hazards on the fly for local hazard avoidance.
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This chapter also considers the problem of flying a swarm of spacecraft in Earth
orbit. Distributed spacecraft systems can collectively match or exceed the capability
of a more complex monolithic space system. Spacecraft swarms [11, 27] will push
the envelope of the existing formation flying spacecraft concepts by increasing the
number of spacecraft comprising the swarm by one or two orders of magnitude
(100-1000s), hence maximizing the benefit of distributed spacecraft systems.

The swarm approach opens up the possibility for enabling many new mission con-
cepts like creating massively distributed large space apertures, distributed antennas,
decentralized sensing networks, anti-satellite disruptors, and geometric arrangements
optimized for decoy/camouflage. Moreover, spacecraft swarms can be controlled to
exhibit desired complex behaviors, which cannot be achieved by a single space-
craft. Spacecraft swarms are motivated by nature and are examples of bio-inspired
engineering systems. Examples from nature include a colony of ants searching for
food, or a swarm of bees protecting a bee hive from intruders. Swarming behaviors
observed in nature inspire and guide the development of efficient coordination and
control algorithms for spacecraft swarms.

In order to construct desired formations of spacecraft swarms and permit coordi-
nated maneuvers of spacecraft, the distributed controller needs to efficiently handle
a large of number of spacecraft in the network. Two methods are presented to deal
with the added complexity of large number of spacecraft. First, if the aim is to control
the relative motions of the spacecraft to generate desired formations of spacecraft
swarms, the new method of automatically generating evolving network topologies,
presented in Sect. 2.3, can be used to determine the flow of control information among
the spacecraft. Second, Sect.2.4 presents the novel approach of driving the swarm
to a desired density distribution in a prescribed region of the configuration space.
Instead of controlling individual spacecraft, the probabilistic guidance approach con-
trols the average number of spacecraft per unit volume, ensuring that spatial averages
converge to the desired density distribution. The swarm guidance and control meth-
ods described in Sects.2.3 and 2.4 are predicated on an effective solution to (a)
detect potential changes in existing orbital trajectories that may lead to damaging
collisions; and (b) localize, track, and assess trajectories headed towards collisions.
Hence, Sect.2.5 expands on necessary models, simulations, and methods for deriv-
ing, evaluating, and comparing such optimal constellations that satisfy the stated
objectives (a) and (b) for various swarm collision scenarios.

2.2 GN&C Technologies for Planetary Landing
in Hazardous Terrain

2.2.1 Introduction

All robotic landers to date, including MSL, have landed blindly. They have measured
altitude and surface relative velocity and used these measurements for soft landing,
but they have not had the ability to recognize landmarks for pin-point landing or
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detect landing hazards on the fly for local hazard avoidance. Blind landing has forced
missions to select landing ellipses that are free of hazards. This greatly constrains the
possible landing locations and either limits the science to what is possible in benign
terrain or requires the addition of a long traverse roving capability. For example,
MSL landed on the flat and smooth Gale Crater floor and will have to drive out of
its 10 kilometer landing ellipse to reach the most interesting science locations.

Hazard Detection and Avoidance (HDA) [19, 21] is an on-board function that
collects sensor data to map the landing site, applies an algorithm to determine the
safest place to land and then guides the vehicle to the safe landing site. HDA enables
the selection of landing ellipses that have a large number of know hazards that
can be avoided with a small divert (10-100m divert). It also enables landing at
possibly hazardous locations with limited reconnaissance. HDA requires perception
technology for on-board Hazard Detection (HD) and GN&C technology to land the
vehicle precisely at the safe landing site.

In contrast, Pin-Point Landing (PPL) is an on-board function that collects sensor
data and matches this data to a map of the landing ellipse generated before landing.
This match is then used to obtain a map-relative position fix. From this position fix,
the lander can compute a trajectory that guides the vehicle to the landing site (1-10km
divert). There is no active detection of hazards on-board, but PPL can be used to avoid
large hazards in the landing ellipse. It can also be used for precision deployment of
surface assets (e.g., the multi-mission Mars Sample Return architecture or building
up a lunar outpost). PPL requires Terrain Relative Navigation (TRN) perception
technology [3, 8, 24, 28] and GN&C technology for fuel optimal powered descent
guidance.

Figure 2.1 shows a variety of planetary landing sites that can be made accessible
by pin-point landing or hazard detection and avoidance. For planetary science, PPL
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Fig. 2.1 Planetary landing sites that require pin-point landing or hazard detection and avoidance
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and HDA will enable access to dust flows on comets and asteroids, seepage features
on the side of a crater wall on Mars, the boulder strewn source of water plumes on
Enceladus and the cracked and fissured icy terrain of Europa. For manned exploration,
these technologies will enable access to the peaks of permanent light near the rugged
lunar south pole which are ideal locations for a lunar outpost due to the constant
illumination for solar power generation and thermal management and possible near
sources of volatiles for in-situ resource utilization. It should be noted that the Apollo
lunar program recognized the need for pin-point landing and hazard detection to
avoid small and large hazards, but the capability was implemented manually.

The focus of this section is on the TRN and HD perception technologies; whereas
GN&C technologies for powered descent are described in another chapter.

2.2.2 Design Considerations

The lander’s flight system and descent and landing approach greatly influence TRN
and HD design. The trajectory has a major impact on TRN and HD system design
because it dictates the time available for data collection and processing, the ranges
and off nadir angles for sensor operation, and the attitude rates and velocities for
tracking. The mechanical design of the lander sets thresholds on the hazard detection
capability by dictating the tolerable surface slope and roughness at touchdown. The
performance of the lander’s GN&C and propulsion system provide constraints on
divert sizes and accuracy, which affect the overall pin-point landing accuracy and safe
landing site size. Since TRN and HD algorithms require extensive processing in a
short amount of time, it is necessary to have a dedicated, possibly high performance,
processor. The size of the lander will also influence the mass, power and volume
available for the TRN and HD system.

The environment plays an important role as well. The transmission properties of
the atmosphere and the reflectivity of the terrain will influence sensor range and image
contrast. If present, dust can reduce sensor range or add noise to sensor measurements.
The size and distribution of terrain features (rocks, craters, scarps, hills, etc.) will
determine the density of safe landing areas and influence the area needed for HD
imaging and PPL divert distances. During passive approaches, the terrain as well as
the illumination will influence the appearance of the imaged scene. PPL requires a
map made prior to landing; while the performance of TRN depends on the pixel size
and quality of the map data. Passive TRN approaches could require rendering of a
digital elevation map to generate an image for matching, which makes them more
sensitive to map quality than active sensor based approaches [8].

Because planetary landings occur only once, it is difficult if not impossible to test
system performance prior to the actual landing. TRN and HD systems must undergo
extensive validation and must be designed from the bottom up to be robust. Bolton
TRN and HD systems, composed of sensors, processors and algorithms with a low
bandwidth interface to the spacecraft, facilitate validation because the entire system
can be tested in the field under relevant conditions without the rest of the spacecraft.



2 New Guidance, Navigation, and Control Technologies ... 53

Bolt on systems also localize the timing of sensor data and alignment of sensors,
which greatly simplifies integration with the spacecraft.

The mission specific design constraints flow down into requirements on the sen-
sors (field of view, number of pixels, maximum range, measurement errors, etc.),
algorithms (position accuracy, detection rates, map size, etc.) and processing (clock
speed, memory, etc.). As the design space is quite large, there is no generic system for
TRN and HD. Instead TRN and HD need to be tailored to each specific application.
Since algorithms and sensors have already been developed that meet TRN and HD
requirements, the focus has now moved to the development of complete systems.
Below, we describe two systems under development: one for Mars robotic landing
and the other for crewed lunar landing.

2.2.3 Case Study 1: Mars Robotic System

Mars landers have an entry phase which is used to reduce most of the surface velocity
and, in the case of MSL, reduce the landing ellipse size down to 10 Km radius. After
entry, a parachute is deployed and the heat-shield is ejected. At this point sensors
can image the ground and the TRN function can start. The parachute descent phase
lasts from 10km altitude to 2 Km altitude, with vertical velocities near 100 m/s and
horizontal velocities less than 30 m/s. Toward the end of the parachute descent, the
off nadir angle is less than 20° and attitude rates are less than 20°/s. TRN processing
completes when powered descent starts around 2km. Powered descent performs a
TRN commanded large divert and then goes into a vertical descent phase around
250m with a 30m/s vertical velocity. HD occurs quickly at the start of vertical
descent, when the off-nadir angle is low and the nominal landing site is directly
below. Once the safe site is identified, the lander targets it with a small divert. The
entire descent from heat-shield separation to landing, takes on the order of 100s.

Mars landing typically occurs during the day and at low latitudes, to have direct
communication with Earth during landing, so that more accurate and mature camera
based TRN approaches can be employed. As was done for MSL, a 1 m digital ele-
vation map with co-registered images can be generated using Mars Reconnaissance
Orbiter images. This high resolution map enabled TRN accuracy in the order of 10 m.

Robotic landers are small with touchdown areas in the order of 10 m2, but Mars is
also hazardous with plenty of rocks, scarps and craters. Assuming the MSL hazard
tolerance of 55 cm rocks and 22° slopes, studies of the MSL landing sites have shown
that a 12 x 12 m hazard map generated with a single flash LIDAR image followed
by a 6 m divert greatly reduced the chances of landing on a hazard.

Based on these constraints, the Lander Vision System (LVS) was conceived within
NASA’s Science Mission Directorate as a tightly integrated bolt-on smart sensor
system that has well defined path to flight implementation [20]. The LVS measures
terrain relative position, velocity, attitude and altitude while also detecting landing
hazards. The LVS sensor suite includes an imaging camera for the landmark recog-
nition required for terrain relative position estimation and image-to-image feature
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tracking for horizontal velocity estimation [28]. A dual use flash LIDAR is used
for near surface hazard detection and long distance ranging, for measuring altitude
through the entire descent. An inertial measurement unit (IMU) propagates vehicle
motion between image and LIDAR measurements, so that high rate state informa-
tion can be provided to the spacecraft. The sensors are tightly integrated with a high
performance computer that performs all processing required for TRN, HD, altimetry
and velocimetry. The current best estimates for the LVS mass and power are 8 kg and
65 W respectively.

The LVS is optimized to generate robust and accurate measurements from a min-
imal suite of sensors. Each sensor serves multiple purposes, which reduces mass,
volume and development costs. The flash LIDAR is the ideal sensor for hazard
detection because it can generate all the data required with a single, low noise, range
image taken at long distances [23, 29]. By decreasing the width of the laser illumi-
nation, the flash LIDAR can also be used to measure range at high altitude, thereby
removing the need to add a separate altimeter [22]. The camera provides images of
landmarks for position estimation [8]. It also provides image-to-image feature tracks
for velocity estimation, which eliminates the need for a separate velocimeter. Finally,
the IMU provides the attitude propagated from the spacecraft’s cruise phase that is
needed to start TRN and it also allows for high rate updates of the entire navigation
state, which is required for closed loop powered descent guidance.

The LVS sensors have low development risks. Cameras and IMUs have already
flown on many missions and are not a concern for development. Advanced
Scientific Corporation (ASC) has developed a flash LIDAR, and, under NAS A funded
Small Business Innovative Research Grants, ASC has also built a prototype of a flash
LIDAR that satisfies the LVS requirements and also uses parts with flight equiva-
lents [29]. Through extensive field testing, the ASC flash LIDAR has demonstrated
that it can detect hazards at low altitude (; 500 m) [23] and measure accurate ranges at
high altitude (up to 8km) [22]. Given all these advances toward flight qualification,
the flash LIDAR is also a fairly low risk sensor.

The computational tasks are done using a flight qualified processor and a Field Pro-
grammable Gate Array (FPGA). The FPGA interfaces with the sensors for fast data
acquisition and accurate timing. The FPGA also stores the computationally intensive
software vision modules for image normalization, homography-based image warp-
ing, image interest operator, frequency domain image correlation and spatial domain
image correlation. These high speed modules are used for terrain relative position
and horizontal velocity estimation. The processor coordinates the flow of data from
the sensors and the processing of modules on the FPGA. It also runs the navigation
filter [28] that fuses inertial, imaging and range measurements and interfaces with
the spacecraft to receive LVS commands and sends back navigation states and safe
landing site locations. The interface between the compute element and the sensors
has high bandwidth with tight constraints on timing and data latency. In contrast,
the interface with the spacecraft is simpler, with a low data rate and relaxed timetag
requirements.
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Fig. 2.2 Mars robotic lander vision system concept of operation and components

2.2.4 Case Study 2: Crewed Lunar System

The Autonomous Landing and Hazard Avoidance Technology (ALHAT) project
under NASA’s Human Exploration and Operations Mission Directorate is devel-
oping sensors and algorithms to increase safety during crewed and un-crewed lunar
landings [15]. ALHATs charter is to develop a system that can land anywhere, under
any lighting conditions and the lunar south pole is a challenging case that has focused
the ALHAT development. Operation under any lighting conditions has resulted in a
system that employs active sensors for TRN and HD (Fig.2.2).

Following the approach used for Apollo, crewed lunar landing starts with a de-
orbit maneuver that places the lander on a long shallow trajectory to the surface.
During descent, attitude rates are very low and velocities start at 2000 m/s near orbit.
When the lander reaches 15 Km altitude, the braking burn begins and the LIDAR
is activated to take range measurements. For TRN, the ranges are combined into an
elevation contour and this contour is matched with a digital elevation map to obtain
a position fix [22, 24]. Based on the TRN measurement, a trajectory is computed
on board to clean up the trajectory dispersions (<1km). This process repeats until
around 1-2km range and 30 m/s velocity, at which point the lander pitches up for
landing and crew viewing of the landing site.

The hazard detection phase begins at 1 Km slant range and 30° angle from hor-
izontal. As shown in Fig.2.3, the ALHAT Hazard Detection System (HDS) raster
scans a gimbaled flash LIDAR across a 100 x 100 m area; the LIDAR combines the
flash LIDAR detector from ASC with large collection optics and a high power laser to
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Fig. 2.3 The ALHAT hazard detection system concept of operation and hardware components

obtain the 1 Km imaging range required for ALHAT [3]. The multiple flash LIDAR
images are stitched together into a single digital elevation map (DEM) using the
onboard navigation solution for coarse placement and a LIDAR data-driven align-
ment process for fine alignment. The DEM is then passed to an HD algorithm that
detects multiple safe landing sites for a lander with a touchdown area around 200 m?
and sensitive to rocks greater than 30 cm high and slopes greater than 12°.

Once a single safe site is selected by the crew, a trajectory is generated to bring
the vehicle to a point 30 m above the target. The HDS then performs Hazard Relative
Navigation (HRN) [23] to keep the lander on trajectory to the safe site. During HRN,
the LIDAR is pointed at a prominent elevation feature near the landing site, and
the feature position is tracked during descent to provide safe site relative navigation
updates. The tracked feature actually changes during descent to keep the tracked
feature in front of the lander and deal with the large change in sensor footprint.
Due to dust kicked up by the propulsion system, the vehicle descends the final 30 m
using inertial sensors only. Fortunately, the HRN measurements and velocity from
a Doppler LIDAR velocimeter, also developed in ALHAT [3], provide navigation
state that is accurate enough to seed this inertial propagation and bring the lander to
within 1 m of the selected safe landing site.

There are boulder fields on the Moon, but the more prevalent hazards are small
craters and steep slopes. The best lunar terrain maps have been generated from Lunar
Reconnaissance Orbiter (LRO) data. LRO is in a polar orbit and has provided a polar
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DEM with a ground resolution of 25 m. Near the equator, stereo imaging from the
LRO Narrow Angle Camera must be used to generate DEMs of sufficient resolution
for TRN.

The hazard detection data collection and processing must be completed in 10s
to leave time for safe site selection by the pilot. The HDS uses a hybrid processing
approach to meet this requirement. An FPGA collects and times the data from the
sensors. The FPGA then passes the data to a multi-core general purpose processor
which runs all of the algorithms for DEM generation, HD and HRN [32]. The mul-
ticore processor allows parallelization of time consuming processes and is straight
forward to program.

2.2.5 System Comparison

Figure 2.4 shows a side-by-side comparison the LVS and ALHAT systems. The LVS
has less challenging requirements because of the daytime landing, small size of
the robotic lander and the significant hazard tolerance of the lander. These enabled a
system that can perform TRN with the mature computer vision algorithms and sensors
derived from the Descent Image Motion Estimation System on Mars Exploration
Rover [25] and HD with a single flash LIDAR image, which mitigates the need for a
gimbal or stitching of flash LIDAR images. Since the LVS is being developed for the
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Fig. 2.4 A comparison of TRN and HD systems for Mars robotic missions and Lunar crewed
missions
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next Mars lander (2016-2022), the design focused on using components that could
be flight qualified in the short term. A major early design choice to maintain the short
duration path to flight was the selection of an FPGA based processor architecture
over one utilizing multi-core processing.

The requirements on the ALHAT system are more challenging than what is needed
for robotic landing and the infusion period is farther in the future (2020-2030).
Consequently, the ALHAT development has focused more on meeting performance
requirements and less on detailed path to flight designs. The ALHAT system must
detect hazards from far away, with high resolution over a large area to safely land the
‘not very hazard tolerant’ crewed lunar lander. This drove the design to a gimbaled
flash LIDAR and the associated increase in complexity, mass and power. The ’any
lighting condition’ requirement drives the TRN approach to use the less mature
LIDAR sensors and contour matching algorithm. The multi-core processing approach
is better from flexibility and ease of programming stand point, but its path to flight
requires flight qualification of rad-hard processors.

Both the LVS and ALHAT developments are needed to meet short and long term
goals of NASA. Moreover, TRN and HD remain fertile technology development areas
for applications beyond planetary landing. Proximity operations around comets and
near earth asteroids will use very similar algorithms and sensors. Satellite servicing
and orbital debris mitigation could probably use similar algorithms and sensors. On
the Earth, autonomous helicopters are being developed for cargo delivery and ship
board landing, that will rely on TRN and HD functions to deal with unknown and
unprepared landing sites. For all of these application domains, TRN and HD can be
expanded to include additional sensing modalities like high frequency radar, thermal
imaging and multi-return scanning LIDAR.

2.3 Phase Synchronization Control of Spacecraft Swarms

The objective of this section is to present an effective method for automatically
generating evolving network topologies that determine how control information flows
among the agents, thereby reducing the complexity of controlling a large number of
spacecraft in the swarm. Directed graphs are used instead of undirected graphs to
account for heterogeneous sensing or communication capabilities of spacecraft in
the swarm network.

We review the recent results from our prior work [7, 9-11, 13, 27] in this section.
The proposed framework of adaptive graphs is useful especially when we deal
with a large number of spacecraft that perform arbitrary reconfiguration maneuvers.
Another benefit of the proposed method is that the required gain for stabilization is
smaller than the gain of an uncoupled control law by employing an adaptive graph
Laplacian. Also, the error bound of the proposed synchronization control law is
shown to be smaller than that of an uncoupled tracking control law. This justifies
the use of a synchronization framework that can help to maintain a desired shape,
even if individual spacecraft are shifted from their desired locations, as illustrated in
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Fig.2.5. The high-fidelity nonlinear dynamic model of swarm spacecraft motions,
that include the effects of both Earth’s oblateness and air drag in LEO [27], is used
to derive the nonlinear stability proof of robust synchronization of coupled Euler-
Lagrange equations, first derived in [9, 13].

2.3.1 Problem Statement—Controlling the Phase Differences
in Periodic Orbits

Consider multiple spacecraft following some relative elliptical orbits as shown in
Fig.2.5. We use the term relative, since the elliptical motions are generated in the
local-vertical local-horizontal (LVLH) frame attached to the chief orbital motion.
Hence, it should not be confused with an elliptical orbit around the Earth. The relative
orbital motions (g, ; € R3, 1 < j < p) in the LVLH frame, of each (possibly
heterogeneous) spacecraft comprising the swarm network, is governed by

m B3dsr, j + Cor j (@) ir, j + Gir j @i, j, () + Dy j (er, j, Qir j» (1)) = Tyre
2.1

where m is the mass of each spacecraft and the nonlinear terms, including the
graviation orces with J, effects and the dissipative forces due to air drag, are given
in [27]. In particular, the vector of six orbital parameters, ce(¢), which defines the
origin of the LVLH frame, as shown in Fig.2.5, is governed by &¢ = f(ce) [27].
Furthermore, the attitude dynamics of each spacecraft can be represented by the EL
form as

Mrot,j(qrot,j)drot,j + Crot,j(qrot,jv qrot,j)('Irot,j + Grot,j(qrot,j» (B(t)) = Trot,j
(2.2)

where the attitude vector q,.,,; can be represented by the first three values of
quaternions or the modified Rodrigues parameters [9]. note that we can combine



60 F.Y. Hadaegh et al.

Fig. 2.6 Transformation of elliptical orbit in 3D to two circles for phase rotation

the dynamics of (2.1) and (2.2) to derive the dynamics of q; = (qum’ It thr’ j)T
Since Cy, j (ce(t)) is skew-symmetric, Myor, j (Qror, j) — 2Cror, j (Qror, j» Qror, j) 1 also
skew-symmetric. This property is essential for the stability proof used in this section.

Fuel efficient, J>-invariant elliptical orbits in the LVLH frame can be written as
qa,ir (1) = (Xe sin(nt + ey ), ye COS(nt + Ve, ), Ze Sin(nt + 1//10))T and they are used
as the desired elliptical trajectory [27].

In this section, the complexity of controlling multiple spacecraft is reduced by
setting a common phase angle for each desired elliptical orbit (¢ and ¢, as shown in
Fig.2.5). This common phase difference in each ellipse also sets some safe collision-
free distance between each pair of spacecraft. For spacecraft swarm applications,
such as sparse aperture arrays, it is more important to maintain a formation shape,by
ensuring constant phase differences between the spacecraft, than exactly following
a desired elliptical trajectory. Such a phase control of oscillators, called engineered
central pattern generators, has been successfully applied to control multi-joint loco-
motive systems [12, 13, 26]. Hence we define a common phase angle in an elliptical
orbit in 3D. It turns out that q4 ,-(#) can be transformed into qé,’tr ()in the new
x'-y’-z' frame, comprised of a circular motion in the x’-y’ plane and a sinusoidal
function in the z’ axis (see (Fig. 2.6) and [10] for details).

We can now perform a phase rotation by applying a rotation matrix T; | =
L,3®T({(j— 1)) ®R((j — 1)¢) for both the x’-y’ frame and the 7z’ and Z’, where
7' is introduced to perform this phase rotation on the z’ coordinate [10]. For the
attitude dynamics of ¢, j, we do not apply phase synchronization, although it is
also a straightforward extension (see [9]).

The control objective is to drive the tracking control error for each j, v;.’ =
T}_IS;( = [V'j V/j Z’] = T}_lq;./ —q; + A (T}_lq;f —q))) or V;- exponentially
to zero. In other words, in the presence of modeling errors, we should show

tlim HV; (1) H < Ar. The phase synchronization control should yield a smaller syn-
— 00

chronization error than the trackin gerror, such that for each connected pair j and &,
lim ”v;(z) - v,;(z)” < As < Ar.

—>0o0
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A conventional consensus controller without tracking control, results in undesir-
able drifting of the synchronized states. Then, the synchronization control ensures a
smaller synchronization error that helps to maintain a formation shape as shown in
Fig.2.5. In contrast with prior work, this section uses an adaptive control scheme to
automatically compute a time-varying network topology. In other words, the adap-
tive Laplacian matrix determines not only which neighbors each member should
communicate with, but also the actual values of the time-varying gains.

2.3.2 Phase Synchronization Control Law with Adaptive
Graphs

The matrices and functions in (2.1) and (2.2) are converted to the new x’-y’-z’ frame
by the matrix R that defines q/j = Ryq; and q; = Ryqq. Then, the dynamics in
the new frame and the controllers are given as

. Reti(t
M@ + CJ(a), a)d] + Gl(a;) + D) (q,,qp—[ e )] (2.3)
J

Rzt .. Lo
[ ];];( )} = Mj(q)d}, +C}@;,a)d}, + G

+ DJ(q;), q;) — (ki +¢jj(@)s] — T W/ (v}, hje; (2.4

where W/ ({V'}, ;) = [—Aj1v] -+ =7 j(i-)V)_y =Aj(j+) V4 -+ —jpV,]and
~ T
cji = D i@ |eip®] Also, ¢j = [cji cjp - ¢jgj-n iy -+ Cjp)
k=1k#j

is adapted by &; = > Proj (¢;, W (v}, #,))v}) = D S¢, (e))e;.
j j

The nonnegative function 7i; = [fij; -+ 7i; p]T sets the adaptation rate based on the
relative distance with its neighbors and the synchronization errors. Note that 71 j, is
a nonzero scalar only if the relative distance is within the maximum communication
or sensing distance (djx < djimit,;): for j # k,

tanh (e v = vi ) +7i0 1 = tanh (8; (@3 = 12)))
’d. =
Jk) 1 + g 1+tanh(ﬂjrcgj)

~ / /
Njp (ij — VY

(2.5)
Furthermore, each positive element of the diagonal matrix Sc; switches to zero if the
distance is outside the communication/sensing boundary or the corresponding cjx
exceeds the maximum allowable value. This means that outside the communication
boundary, the coupling gain exponentially tends to zero.
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The closed-loop systems from (2.3) and (2.4) are coupled through a diffusive
term in each controller, whose coupling gains are computed by an adaptive control
law. Then, the information flow in the network is epitomized by the adaptive graph
Laplacian matrix [L(t)], defined [L(t)], = diag([c11 -+ ¢pp]) @, +[c(1)] where

0 —nip®)cp) - —nip®)cip(t)
—7in1(t)ca1(2) 0 e =Tp(t)cap(t)
[e(H)] = ) ) . ) ®I, (2.6)
_ﬁpl(t)cpl(t) _ﬁpZ(t)CpZ(t) 0

Note that many elements of [c(¢)] are zero, since many pairs of the agents have no
directed communication link. Hence, [L(¢)], of a large network will inevitably be a
sparse matrix.

2.3.3 Main Stability Theorems and Simulation Results

Theorem 2.1 ([10]) The network EL systems from (2.3) and (2.4) globally expo-
nentially converge to their desired trajectories with bounded errors such that the

T gy
distance Ra(1) = fq(;, i) 18z]| between each (T]T._lq;f)’ = [I, Onxl]T}_lq;f

and the desired trajectory q);(t) exponentially tends to the ball of radius Ra(t) <

max H . .
Wﬁ%ﬂ) (1{A4}) with a contraction rate of ko/ max ((H(q)]) for s/j’ and A"
for q’j/ , if each diagonal element Ui of Sc; satisfies £y > ko for the design parameter

ko > 0 chosen, and if

Ki(0) = ko + min (degyinCman /2. /2ty + deg)imemac) — (2.7)

Note that cjax denotes the known boundary value of ¢;;, used for the adaptive control
law, and deg, < p — 1 the maximum out-degree of each member (vertex). The out-
degree for each vertex defines how many other agents are receiving information
from that member. Also, m,, is the maximum in-degree of each system, that is, the
maximum number of nonzero elements in each row of [c(?)].

The results of Theorem 2.1 can also be applied when the adaptive graph Laplacian
[L(#)], is augmenting a certain (fixed) baseline digraph constructed by a graph
Laplacian [L (k1, k2)] in the closed-loop system. For this purpose, the main control
law (2.4) can be modified as

Reti(t .. .y ,
KO ) wg @i, + Caanal, + G
+ DY(q;. ) — (ki +cj )|+ D kas{ = Tj We,
kENj
(2.8)
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where k1 > 0,ky > 0. The fixed baseline topology is determined by the set of
(incoming) neighbors N;.

Theorem 2.2 Adaptive coupling gain augmentation. For the closed-loop system
obtained by (2.3) and (2.8), Theorem 2.1 holds by replacing k1 in (2.7) by Amin ([ L (k1,
k2)Isym) by using Weyl’s theorem [18].

We now show that the proposed control law guarantees both faster convergence
and smaller error bounds of synchronization between the coupled variables than
those of tracking control.

Theorem 2.3 ([10]) Faster synchronization. A balanced graph with the symmetric
Laplacian matrix [L(t)]p can be constructed for each [L(t)], as

L®) = (ILOL +LOT) /2 - diag (IO 1., 17/2)

IfTheorem 2.1 holds, there exists a subset (Vi {v,.} = 0) of the original synchroniza-

tion manifold, (VE{V;r} = 0), with Vs being a subset of orthonormal eigenvectors
(V) of [L(t)]p such that

1. synchronization occurs faster than tracking:

_ ki + )Lmin(V;r[L]u,symVx) - _ ki
Amax ([1T[M][1]) " e (VIIMIV))

As (2.9)

2. the synchronization error is smaller than the tracking error if the disturbance
field is more co-directional (i.e., |[117d(r) || > ||VSTSd(t) ||)

/V3{v;,} P Amax(VIIM'TVy) [VId() | 210
Yol = )\min(Vrgr ’

[M'1V) (ki + Amin (V [La,sym Vi)

Hence, the control objective in Sect.2.3.1 is met despite disturbances and modeling
errors. Again, the benefit of Theorem 2.3 is that a formation shape on relative ellip-
tical orbits can be maintained more precisely than tracking some desired positions.
Moreover, the adaptive graphs of communication or relative sensing connections are
automatically determined by synchronization errors and relative distances. Figure 2.7
shows a result of simulation of reconfiguring 275 spacecraft moving in the LVLH
relative frame by using (2.1) and the proposed adaptive phase-synchronization con-
trol (2.4). Also, the figure shows the changes in the network topology during the
reconfiguration maneuver, due to changes in the adaptive graph Laplacian matrix.
These results demonstrate that spacecraft can automatically determine in a distributed
manner, an evolving digraph topology of a large network of spacecraft swarms based
on the synchronization errors and relative distances. The adaptive graph Laplician
matrix represents a time-varying digraph that considers the heterogeneous capabil-
ities of communication or relative sensing among the spacecraft members in the
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Fig. 2.7 Reconfiguration of 275 spacecraft using the proposed control law (left); Change of the
network topology when we reconfigure 32 spacecraft (Images taken from [10])

swarm network. The objective of phase synchronization control is to maintain a
desired phase difference on a periodic orbit. This implies that the complexity of con-
trolling such a large number of spacecraft moving in relative elliptical orbits reduces
to setting a proper phase difference. Interestingly, this method of phase synchro-
nization is conceptually similar to phase synchronization of CPG oscillators that
generate phase synchronized rhythms in a self-sustained fashion on spinal cords of
vertebrates [12, 30].

2.4 Application of Probabilistic Guidance to Swarms
of Spacecraft Operating in Earth Orbit

2.4.1 Introduction

This section reviews the theory behind a probabilistic guidance approach to guiding
an arbitrary swarm of agents [1], and reviews its application to coordinating a space-
craft swarm operating in Earth orbit [2]. The main idea is to drive the swarm to a
desired density distribution in a prescribed region of the configuration space. Rather
than control individual spacecraft, the probabilistic guidance approach controls the
average number of spacecraft per unit volume, ensuring that spatial averages converge
to the desired targeted density distribution (see Fig. 2.8 for an example scenario). The
targeted density distribution is achieved as an emergent behavior of the swarm, and
is associated mathematically with achieving a statistical steady-state condition, i.e.
a fixed point of a spatial Markov process.

In its simplest form, the probabilistic guidance approach is completely decen-
tralized and does not require communication or collaboration between spacecraft.
Specifically, spacecraft make statistically independent probabilistic decisions based
solely on their own state, which ultimately guides the swarm toward the desired tar-
geted density distribution. In addition to being completely decentralized, the prob-
abilistic guidance approach has a novel autonomous self-repair property: Once the
desired swarm density distribution is attained, the spacecraft automatically repair
damage to the swarm distribution without collaborating and without explicit knowl-
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Fig. 2.8 In this example
scenario, thousands of
spacecraft are deployed in
Earth orbit. First they match
their periods to ensure that
they do not quickly drift
apart. Then they configure
themselves in order to
achieve a desired prescribed
pattern. The motion of this
pattern is determined by the
Earth orbital dynamics

edge that damage has occurred. First, the probabilistic guidance method is reviewed
for swarms operating in deep space. Then an adaptation of the probabilistic guid-
ance concept relevant to Earth orbiting swarms is reviewed, where orbital dynamics
are explicitly considered based on Hill’s equations. An illustrative example is given
showing theoretical swarm convergence and emergent behaviors.

2.4.2 Probabilistic Guidance Problem

This section describes the swarm distribution guidance problem. The physical domain
over which the swarm agents are distributed is denoted as R. It is assumed that region
R is partitioned as the union of m disjoint sub-regions, which are referred to as bins:

m
R;,i=1,...,m, such that R = UR,-
i=1

Let an agent have position r(¢) at time index ¢. Let x (#) be a vector of probabilities
such that the sum of its entries is one and the i’th element x[i](¢) is the probability
of the event that this agent will be in the i’th bin R; at time ¢,

x[i1(z) := Prob(r () € R;) @2.11)

The time index ¢ will also be referred to as the “stage” in the remainder of the section.
Consider a swarm comprised of N agents. Each agent is assumed to actindependently
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of the other agents, so that (2.11) holds for N separate events,
x[i](t) :=Prob(ry(t) € R}), k=1,...,N

where 7 (t) denotes the position of the k’th agent at time index ¢, and the probabil-
ities of these N events are jointly statistically independent. We refer to x(¢) as the
swarm distribution. This is to be distinguished from the ensemble of agent positions
{re(t)}k=1.ny which, by the law of large numbers, has a distribution that approaches
x(t) as the number of agents N is increased.

The distribution guidance problem is defined as follows: Given any initial distrib-
ution x (0), it is desired to guide the agents toward a specified steady-state distribution
described by a probability vector v,

lim x[i](¢) =v[i]fori=1,...,m
11— 00

m

where v[i] > 0, Zv[i] =1

i=1
subject to motion constraints specified in terms of an adjacency matrix A, as follows:
AZ[i, J1=0=r(+1) ¢ R; whenr(t) € R, Vt.

Here, the adjacency matrix A, of the edges of a directed graph specifies the
allowable transitions between bins.

The desired distribution v has the following interpretation: We have m bins in
the physical space corresponding to where agents can be located, and the element
v[i] is the desired probability of finding an agent in the i’th bin. If there are N
agents, then Nv[i] describes the expected number of agents to be found in the i’th
bin. Let n = [n[1], ..., n[m]]T denote the actual number of agents in each bin.
Then the number of agents n[i] found in the i ’th bin will generally be different from
Nvl[i], although it follows from the independent and identically distributed (iid) agent
realizations that v = E[n]/N, and from the law of large numbers thatn/N — v as
N becomes large. Hence the vector v is a discrete probability distribution specifying
the desired average fraction of agents in each bin of the physical domain, which,
in practice, will only be approximated by the histogram n/N of agents. However,
the nature of the approximation is that v is equal to the mean E[n/N] of the agent
histogram, and by the law of large numbers, n/N — v as N becomes large.

2.4.3 Probabilistic Guidance Algorithm (PGA)

The key idea of the probabilistic guidance law is to synthesize a column stochastic
matrix [6, 18] M, which we call Markov matrix for PGA, withv as its eigenvector
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corresponding to its largest eigenvalue 1 [16, 18], that is, M must satisfy
M=>0 1"TMm=1"

where 1 is a vector of ones. The entries of matrix M are defined as transition proba-
bilities. Specifically, for any time instance,

Mli, j1=Prob(r(t + 1) € Rilr(t) € R}), i, j=1,...m

i.e., an agent in bin j transitions to bin i between two consecutive stages with proba-
bility M[i, j]. The matrix M determines the time evolution of the probability vector
X as

x(t+1)=Mx@),t=0,1,2,... (2.12)

Note that the probability vector x () stays normalized in the sense that the sum of
its entries is one for all time instances. The probabilistic guidance problem becomes
one of designing a specific Markov process (2.12) for x that converges to a desired
distribution v.

It is desired for x(¢) to asymptotically converge to v, i.e., for v to be a globally
attractive stationary distribution for M. The main result of this section shows that
asymptotic convergence to v is ensured by imposing an additional constraint on the
design of matrix M, denoted as the spectral radius condition,

oM —v1T) <1 (2.13)

The synthesis of the Markov matrix for PGA can be achieved by using a vari-
ety of methods. Methods to synthesize PGA using convex optimization and the
“Metropolis-Hastings Algorithm” have been developed in [1]. Once the Markov
matrix is synthesized, the following PGA can be used to implement it by providing
a copy of the matrix M to each of the agents, and then having each agent propagate
its position as an independent realization of the Markov chain as follows:

Probabilistic Guidance Algorithm (PGA)

1. Each agent determines its current bin, e.g., ¢ (t) € R;.

2. Each agent generates a random number z uniformly distributed in [0, 1].
j—1 j

3. Each agent goes to bin j, i.e., re(r + 1) € R}, ifZM[l, il<z< ZM[Z, il.
=1 =1

The first step determines the agent’s current bin number. The last two steps sample
from the discrete distribution defined by the column of M corresponding to the agent’s
current bin number.

The following theorem (see [1, 2] for a proof) gives a necessary and sufficient
condition for asymptotic convergence of x to v for the generic PGA.
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Theorem 2.4 Consider the PGA below with column stochastic matrix M such that
Mv = v. Then for any at probability vector x(0), it follows that x(t) —> v as
t — oo for the system in (2.11) if and only if Eq. (2.13) is satisfied.

Theorem 2.4 is important because it indicates that a probabilistic guidance law for
aswarm is asymptotically convergent if and only if the spectral radius condition (2.13)
is satisfied. This condition has been interpreted in the context of Perron-Frobenius
theory and can be used as a basis for applying modern control theory to synthesizing
asymptotically convergent swarm guidance laws in [2].

2.4.4 Adaptation of PGA to Earth Orbiting Swarms

We consider spacecraft swarms in circular orbits around Earth. The dynamics of
each spacecraft relative to the circular orbit are given by Hill’s equations [31], also
referred to as the Clohessy Wiltshire equations,

56:260)'1+3a)2x+fx
¥ =—2wx + fy
P=—0’z4+ f;

Here x, y and z are the spacecraft’s local-vertical local-horizontal (LVLH) cartesian
coordinates associated with an orbital frame, which is defined at a point on the orbit,
and oriented such that the x-axis points in the zenith direction, the z-axis is normal
to the orbital plane, and the y-axis completes the right-hand system; f, fy and f;
are the specific forces applied to each axis; and w is the orbital frequency. From
the analytic solution to the Hill’s equations it can be shown that the swarm remains
bounded if all spacecraft initial states satisfy the following condition (in the absence
of any other external forces than the central gravitational field),

—6wx(0) —3y(0) =0

In this case, all the spacecraft are period matched. From this point on we will only
consider spacecraft swarms that are period matched. Furthermore, all spacecraft are
assumed to be in-plane, i.e., z(¢) = O for all . This latter constraint is not necessary
but imposed to keep the discussion contained according to the space limitations. The
complete generalization of all subsequent results to out-of-plane motion is given
in [2]. We now define useful notion of a swarm that is Orbit Type Matched (i.e., an
OTM swarm).

Definition 2.1 A swarm is referred to as a planar OTM swarm if it satisfies the
following conditions: Foralli =1, ..., N,

1. Period Matched with parameter w, y; = —2wx; (0)
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2. Centroid Matched with parameter y,, y,.; := ¥i(0) — 2x; (0)/w = y,
3. zi(t) =0 forall ¢

A new set of position coordinates is introduced and denoted as Scaled Rotated
(SR) coordinates that are instrumental in defining the motion of a planar OTM swarm:

xO0)| _ o7 1 x(t) _ | cos(wt) sin(wt) |10
[y(O)} =R (DS |:y(t) _ yg} where R(wt) = [—sin(wt) cos(wz)]’ = [0 2]

Note that the coordinate transformation is time dependent while the SR coordinates
of any spacecraft in a planar OTM swarm are time-invariant. In a planar OTM swarm,
there are only two degrees of freedom that determine the motion of each spacecraft.
Out SR coordinates naturally capture this fact. Next we can describe the PGA adap-
tation for in-plane OTM swarms, where each agent follows the following steps:

e Step 1: At ¢, map current position (x(¢), y(¢)) in LVLH to SR coordinates r(t) =
- — T
[x(O), y(O)]t as,

_ T —1|  x(@)
r(t) =R (wt)S |:y(t) o y0i|

e Step 2: Determine current region R; s.t. r(#) € R;, and propagate the Markov
Chain one step to calculate the next desired state r(t + 1) € R; using,

MJi, j1(t) = Prob(r(t + 1) € R;|r(t) € Rj)

Step 3: Map r (¢ + 1) back to LVLH according to,

[ x(t+1)
ye+1) —yo

} =SR(@@+ D)ri+1)

Step 4: Complete the desired state in LVLH by OTM,

zt+1) =0
i+ 1) = §<y<r+1>—yo>
yit+1) = 2wx(t+1)

e Step 5: Command agent to new state [x, y, z, X, y, z](t + 1).
e Step 6: ¢t <t + 1, and go back to Step 1.

The idea behind this sequence of steps is to have each agent move according to a
Markov chain in SR coordinates. Physically, this corresponds to each agent moving
from one Hill’s trajectory to another in the plane of motion. Since the statistics of the
swarm propagate as the Markov chain, the swarm will converge asymptotically to
the desired distribution v in SR coordinates, regardless of the initial distribution. The
converged asymptotic distribution in LVLH, in turn, will be a rotated and stretched
version of v, corresponding to the time-varying mapping from SR coordinates to
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Fig. 2.9 An in-plane OTM swarm of 16,000 spacecraft in a near-circular Earth orbit starts as a
uniform distribution and evolves over time into a representative (18 hexagon) large aperture pattern

LVLH coordinates. Within this parameterization, PGA can guide the swarm to attain
a wide variety of shapes and distributions useful for a diverse range of potential
applications. A simulation is performed that demonstrates 16,000 spacecraft in a
near-circular Earth orbit. The spacecraft start at a random initial distribution and
converge out to a prescribed swarm distribution. Figure 2.9 shows four instances of
the swarm density evolution. A concluding remark is given in Sect.2.6.

2.5 Nonlinear State Estimation And Sensor Optimization
Problems for Detection of Space Collision Events

The objective of the collision event detection and tracking is to prevent damaging
collisions of currently active LEO satellites with other space objects. This includes
efficient detection and tracking of changes in trajectories of Resident Space Objects
(RSOs) that might cause the collisions. The collision concept considered here is
presented in Fig.2.10. An important challenge in achieving the collision avoidance
objective is the possibility of a short warning time, that is, the time between the
change to a collision trajectory and the collision itself may be as short as a few
minutes. In this case, we have very stringent requirements on timing of collision
RSO’s detection and estimation of its new dynamic state values that would allow
possible effective avoidance actions.

An effective solution to the collision and avoidance problem is to design and
deploy constellations of LEO satellites equipped with EO/IR sensors that can: (1)
detect potential changes in existing orbital trajectories that may lead to damaging
collisions; and (2) localize, track, and assess trajectories headed towards collisions.
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Fig. 2.10 Collision event concept: An event is a collision interval [t,ln, t,‘;] during which a RSO
can change from its current orbit (dark blue) to a collision trajectory (red) that leads to a collision
location on the asset orbit (cyan). The collision interval is determined from a limit on the collision
satellite’s change in velocity (Avm/s)

We have developed necessary models, simulations, and methods for deriving, eval-
uating, and comparing such constellations and also derived optimal constellation
designs that satisfy the stated objectives for given collision scenarios. In the follow-
ing sections, we give short summary of our results. In Sect.2.5.1, we summarize the
design of collision event testbed and candidate LEO sensor constellation designs.
Satellite collision modeling and algorithms for tracking, collision detection, and
sensor management are presented in Sect.2.5.2.

2.5.1 LEO Sensor Constellation Design and Collision Event
Testbed

The scenario that we consider assumes that there are three asset satellites that can
possibly collide with 23 other satellites during the day of April 1st of 2006. The
three satellites are AQUA, PARASOL, and AURA with the Two Line Elements
(TLEs) given from the NORAD catalog (http://www.space-track.org). We derive
LEO trajectories by using “standard” Simplified General Perturbations-4 (SGP4)
propagator [17] that may include higher fidelity orbital perturbations caused by envi-
ronmental factors such as gravity, atmosphere, and solar pressure and also satellite
physical properties such as ballistic coefficient. In a similar way,

EO/IR sensor constellation design: We considered a large number of constellation
designs for sensor orbits in order to obtain the best coverage of collision events with
minimal number of sensors [34, 35]. We considered sensor constellation designs
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Fig. 2.11 Three EO/IR constellations for collisions event comparisons: design in Fig.2.11a is
shown to be optimal for detecting collisions. a N, = 2, N% =4bN, =3, N% =2.¢cN, =

3,Ns =3
»

_——— Collision Point
L ,Q% 00

Collision Trajectory

Non-Collision

EO Sensors Trajectory

Asset Trajectory
(Green)

Fig.2.12 Testbed snapshot showing collision satellite OPS 0203 colliding with satellite PARASOL
at 11:26:06 (Hms) with collision trajectory length 21.4 min and collision interval 28.42 min

using symmetry requirement, number of orbital planes N, and number of satellites
per orbital plane N 5. An example of candidate constellations designs considered
in[35]isshowninFig.2.11. By considering Space Based Visible (SBV) observations,
our analysis reported in [14] demonstrated that it is enough to have four observations
of the collision satellite locations after the end of the event interval to determine if
the collision related to that event is going to happen or not. This result was derived
by assuming that the time between observations is At = 50s. Testbed simulation
snapshot for one of collision events is shown in Fig.2.12.
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2.5.2 Satellite Collision Modeling and Estimation

From a given TLE set, we derive six Kepler parameters (orbital elements) & =
(ot er, it, 82¢, ¢, My) that slowly change with time ¢ > 0, where the semi-major
axis a; and the eccentricity e;, describe the form of the orbit, the mean anomaly M,
defines the position along the orbit, and the three other elements that include the right
ascension of the ascending node $2;, the inclination i;, and the argument of perigee
w;, define the orientation of the orbit in space [26]. The derived state variable is
& = [ét, Et] where the first six coordinates are derivatives of the Kepler parameters
&. More sophisticated stochastic modeling of the satellite states were derived and
applied in [36] as extension of simplified state model in [35]. The measurement model

of azimuth angle o,/ and elevation angle ,Bf’] looking from j’th sensor platform

toward i ’th collision satellite at time ¢ > 0, for y,i’j = [ocf’j , ﬂ,i’j ], is given by

~

,J i,j i,j
W=y +ov) t >0,

where the error standard deviation is o, = 1 arcsec, and v;’] N (0, Ip) are normalized
Gaussian variables.

A measurement is collected by a sensor only if the following three conditions are
satisfied: (a) the sensor points its CCD array toward the predicted location of the
target; (b) the true location of the target is within the sensor field of view (FoV);
and (c) the target has “star background” looking from the sensor. Condition (c) is
necessary for accurate sensor attitude determination.

For each event interval, we collect observations to determine if the collision satel-
lite has changed its trajectory to any one of the candidate collision trajectories. Since
for realistic bound on change in velocity (usually denoted by and called “delta v”),
the collision can happen only on a small part of the asset’s orbit and therefore, as
an realistic approximation, we choose one point on the asset orbit as a location of
the collision that then corresponds to a unique intercept time. Then for any given
time inside the event interval, by using the Generalized Parametrized Battin (GPB)
method presented in [35] and derived from [5], we can determine a unique collision
trajectory that is parametrized by & (e.g. Kepler elements). By discretizing the event
interval at every second, we have a finite number of possible collision trajectories
that we denote by slq and its corresponding hypothesis by qu, where superscript
q denotes event (event index) and subscript / is an index of hypothesis for each
event. As time progresses (in our case at each second), we are creating hypotheses
corresponding to candidate collision trajectories. The zero hypothesis (I = 0) cor-
responds to the non-collision trajectory. Each hypothesized trajectory is initialized
with an appropriate uncertainty matrix to account for time discretization approxi-
mation of the event interval. Also, each hypothesis is tracked by applying a given
tracking algorithm, e.g. see a version described in Sect.2.5.2.2. As observations are
collected, we calculate posterior probability of each hypothesis by applying the col-
lision detection algorithm described in Sect. 2.5.2.2. The hypotheses with very small
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Fig. 2.13 Hypotheses posteriors at each scan (50s between scans) after the collision satellite
moved from its non-collision trajectory (hypothesis 0) to a collision trajectory (hypothesis 1): (a)
after t = 8s, collision probability is 0.055, i.e. collision threat is not detected; (b) after t = 58,
collision probability is one, i.e. collision threat is detected; (c¢) after # = 108s, collision trajectory
is singled out (probability > 0.6); (d) after + = 158s, number of hypotheses decreases and true
collision trajectory probability is > 0.7; (e) after t = 208s, true collision trajectory probability is
> 0.8; (f) after r = 258, true trajectory probability is one and all other hypotheses disappeared,
i.e. collision trajectory is uniquely determined

probabilities are discarded and ones with higher probabilities are kept till they are
fully resolved as shown in Fig.2.13. The sensors management algorithm is discussed
in Sect.2.5.2.3.

2.5.2.1 Tracking Algorithm

A simplified version of state perturbation model and its corresponding filter are
derived and demonstrated in [35]. The more advanced stochastic model of state
perturbations, i.e. stochastic target state model, with nonlinear particle filter based
tracking and estimation algorithm is derived and demonstrated in [36].

Tracking algorithms developed and demonstrated in [14, 33—36] consists of the
following five steps:

Step 1:  Initialization

Step 2:  Derivation of prediction state estimate

Step 3:  Estimation of optimal sensor parameters (Sensor Management and
Tracking)

Step 4:  Collection of measurements

Step 5:  Updating of state estimates
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Nonlinear state and measurement equations are used in posterior propagation and
update using Particle Filtering algorithms involving propagation of particle states and
update of particle weights, respectively. The selected tracking results are summarized
in Fig. 2.15.

2.5.2.2 Collision Detection Algorithm

The collision detection algorithm is based on multi-hypothesis testing, using likeli-
hood derivation and initialization [14] as follows:

1. Attime step k, we create N, ,ﬁ‘ "1 hypotheses for each current event g.

2. For event ¢ at time step k, we have hypothesis qu that is associated with element
set & o

3. From the measurement model, we derive hypotheses likelihoods:

1

1 t, 7 HDHZ
og p(t, v, |H") 207

177 = (&) 1®

where y;/ (Ef ’l) is an azimuth-elevation pair associated with hypothesis H,” and

p(t, -|qu). conditional probability of azimuth-elevation pairs given hypothesis
qu attime ¢t > 0

4. We derive hypotheses conditional posterior p(t, qu |y¢) given all measurements
Y; up to the current time ¢ > 0 by using Bayes’ Theorem and then select a set of
hypotheses that have posteriors above a given threshold.

Selected results from [14] are shown in Fig. 2.13 demonstrating the effectiveness
of the collision detection algorithm. Assuming 50s between any two consecutive
observations (SBV scans), plots (a) and (b) in Fig.2.13 demonstrate that it takes
two measurements to get that probability of non-maneuver to be zero (hypothesis
indexed by zero in Fig.2.13). The rest of the plots (c)—(f) of Fig.2.13 demonstrate
that it takes extra two to four measurements (four to six from the change of the
trajectory) to uniquely determine the collision trajectory (hypothesis index one).

2.5.2.3 Sensor Management Algorithm

The details of sensor management algorithms and its effectiveness for LEO col-
lision detection and tracking using a SBV sensor platform are described in [14].
The algorithm is extended to disparate and dispersed sensors (radars and SBV plat-
forms) and also its effectiveness is demonstrated for continuous tracking of LEO
satellites in [33]. Our sensor management algorithm is based on maximization of the
Posterior Expected Number of Targets of Interest (PENTI) objective function fi(-)
that is information-theoretic representation of the expected number of well localized
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Fig. 2.14 Results of sensor management for collision detection and tracking: (a) simulation snap-
shot example of a typical LEO complex environment; and (b) number of observations per event

targets that are of tactical interest [26]. The sensor management is reduced to find-

ing pairs (j1, /1), ..., (ju, [) chosen from available sensors (ji, ..., j,) and targets
(I, ...,1,) which are a subset of all collision satellites of interest.

The sensor management problem then consists in determining the pointing
angles (v, j,» - - - Yk, j,) that are approximate solution of the following optimization
problem:

Vhjis - Vi jp) = argmax fi(yjp, ..., ¥j,)-
le s Vijn

The sensor management simulation results are shown in plots (a) and (b) of
Fig.2.14. Plot (a) of Fig.2.14, is a snapshot of LEO complex environment that con-
sists of EO/IR sensor platforms (blue squares), assets that are not currently in danger
of collisions (green diamonds), assets that are in danger of being intercepted (magenta
diamonds), collision satellites that are in event interval (red circles), collision satel-
lites that are not currently associated with any event (white circles), and collision
satellites that might be on collision trajectories (yellow circles). Possible observation
collections and actual observations are represented by yellow and dash black lines.
In plot (b) of Fig.2.14, we show the total number of collected measurements for each
event.

We implemented and demonstrated multisensor-multitarget sensor management
and multi-hypothesis based collision detection and tracking on the SSCI's LEO
environment testbed [35]. The simulation results for sensor constellation in plot (a)
of Fig.2.11, are shown in plots (a)—(c) of Fig.2.15. Note that the standard deviations
in plot (a) of Fig.2.11 are very low (shades of blue) for all collision satellites during
collision intervals which indicates good observability of the collision events and
therefore excellent sensor management. Oscillatory property of location and velocity
errors indicates an accurate modeling of state dynamics [35]. All collision events are
tracked with high accuracy and on a timely basis for effective collision avoidance.
A conclusion is given in Sect.?2.6.
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2.6 Conclusion

This chapter discusses new guidance and control technologies for planetary land-
ing and guidance, navigation, estimation, and control for swarms of spacecraft in
low Earth orbit. In Sect.2.2, we compared the Lander Vision System (LVS) and
Autonomous Landing and Hazard Avoidance Technology (ALHAT) systems for
planetary landing applications. The LVS has less challenging requirements because
of the day-time landing, small size of the robotic lander, and the significant hazard
tolerance of the lander. These enabled a system that could perform TRN with the
mature computer vision algorithms and other sensor measurements such as a single
flash LIDAR image. On the other hand, the requirements on the ALHAT system are
more challenging. The ALHAT system must detect hazards from far away at high
resolution over a large area to safely land the crewed lunar lander. This resulted in the
design of a gimbaled flash LIDAR and the associated increase in complexity, mass,
and power. In Sect. 2.3, the new formation control and phase synchronization strategy
for swarms of spacecraft was discussed, in which orbital and attitude motions could
be modeled as coupled Langrangian systems moving in elliptical periodic orbits. The
adaptive control strategy of automatically computing evolving network topologies
eliminated the need for defining a fixed communication or relative sensing topol-
ogy on a digraph for synchronization stability. Such an evolving communication
network gave rise to the adaptive graph Laplacian matrix. The error bound of the
proposed synchronization control law with an adaptive graph Laplacian was shown
to be smaller than that of an uncoupled tracking control law. This justified the use of a
synchronization framework, for application where synchronization errors should be
kept smaller than tracking errors, like stellar interferometry applications. In Sect. 2.4,
the Probabilistic Guidance Algorithm (PGA) was applied to the problem of guid-
ing swarms of spacecraft, operating under dynamic constraints imposed by being in
Earth orbit. The main simplifying assumption was that all agents have nearly circu-
lar orbits and they obey Hill’s linearized equations of motion. A simulation example
showed the basic feasibility of the method. Due to space limitation, the discussion
was restricted to in-plane motion only, but references have been provided that gener-
alized all results to the out-of-plane case. Section2.5 demonstrated that it is possible
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Fig.2.15 Collision events (left triangles and dots represent event intervals and right triangle repre-
sents approximate intercept time) tracking and detection results: (a) estimation standard deviations;
(b) location errors; and (¢) velocity errors for all satellites
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to detect and avoid space collision events using a small number of space-based EO/IR
sensors. We implemented realistic scenarios and models for LEO collisions, devel-
oped appropriate metrics for the evaluation of different EO/IR sensor constellations,
and evaluated the tracking and sensor management performance for different LEO
EO/IR sensor constellations. The constellation that is designed on two orbital planes
with four satellites on each offers the best compromise between the number of satel-
lites and overall performance. The developed capabilities are expected to lead to
significant improvement in Space Situational Awareness (SSA). The Space Based
Visible sensors/constellations can be used for enhancing the capabilities of Space
Surveillance Network (SSN). Future developments of an effective space surveillance
system can utilize a swarm of spacecraft. The algorithms developed during our study
will be applicable to those designs and lead to cost-effective implementations.
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