Chapter 2
Community Detection in Bipartite Networks:
Algorithms and Case studies

Taher Alzahrani and K.J. Horadam

Abstract There is increasing motivation to study bipartite complex networks as a
separate category and, in particular, to investigate their community structure. We
outline recent work in the area and focus on two high-performing algorithms for
unipartite networks, the modularity-based Louvain and the flow-based Infomap. We
survey modifications of modularity-based algorithms to adapt them to the bipartite
case. As Infomap cannot be applied to bipartite networks for theoretical reasons, our
solution is to work with the primary projected network. We apply both algorithms to
four projected networks of increasing size and complexity. Our results support the
conclusion that the clusters found by Infomap are meaningful and better represent
ground truth in the bipartite network than those found by Louvain.

2.1 Introduction

A very large number of clustering algorithms is available for community detection
in networks. These algorithms try to identify subgraphs (often called communities,
clusters or modules) which are more tightly connected internally, according to a
particular measurable rule, than they are connected to the rest of the network. The
practical aim is to derive a coarse-grain picture of a real large-scale network which
will aid understanding of its hierarchical structure. However, there may not be a
strong correlation between the clusters found by an algorithm and the ground truth
of hierarchical structure within the network, since real-world community formation
may be a result of many interacting and potentially unmeasurable rules. In any case,
the ground truth in a real network may not be directly discernable by virtue of the
network’s size and complexity. Thus we would like to have some confidence in the
meaningfulness of the optimal partition arrived at by a clustering algorithm.
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This issue becomes more complicated for bipartite (or, more generally, multipar-
tite) networks. Simple, or unipartite, networks are the typical framework for complex
network study. However, many complex networks can best be described as bipar-
tite [36]. In a bipartite network, the node set consists of two disjoint sets of nodes
such that links between nodes may occur only if the nodes belong to different sets.
Examples of bipartite networks are citation networks between authors and published
papers in academia, recommendation systems in online purchasing, protein interac-
tion networks in biological science and movie-actor networks in social networks.

Obviously, every bipartite network can be treated as unipartite by ignoring the node
partition, but in the last few years, there has been increasing motivation to analyse
bipartite networks as a separate network category, and in particular to investigate
their community structure.

Usually one set of nodes in a bipartite network, the primary set P, is of more
interest for a particular purpose than the other, the secondary set S. In this case, P
may be treated as the node set of a unipartite projection network, whose edges are
derived from linking information in the bipartite network. A battery of unipartite
clustering algorithms may then be applied directly to the projection. The roles of the
two node sets can be switched for different applications.

Many real networks arise naturally as projections of bipartite networks. It has also
been argued [20] that every complex network is a projection of a bipartite network
constructed from its node set (as P) and from a set of cliques that it contains (as ),
and that this bipartite model explains many of the network’s main properties.

There are different ways of defining the edges in a projection on P. Furthermore,
the structure of the projection on P will depend on § in important ways: in [32] it is
shown that the degree distribution of the projection on P depends very strongly on
the degree distribution of S.

So there are really two approaches to identifying clusters in a bipartite network:
the first, and more common, is when our real interest is in community structure
within the primary node set P; and the second is when our real interest is in bipartite
communities within the whole network.

In this chapter we focus on the first approach. We outline recent work on commu-
nity detection algorithms for unipartite networks and how they have been adapted, or
else cannot be applied, to bipartite networks. We apply the two highest-performing
algorithms to several projected networks. Our results support the conclusion that the
clusters found by the flow-based algorithm Infomap better represent ground truth
in the bipartite network than those found by the best modularity-based algorithm
Louvain.

The chapter is organised as follows. In the next Sect.2.2 we give an overview
of clustering algorithms which are used for partitioning nodes into non-overlapping
communities in a large and complex unipartite network. For unipartite networks, two
approaches to community detection have been very popular, one based on modelling
the clustering structure and one based on extracting it from flow calculations on the
network. The best algorithms to cluster very large networks using each approach,
compared using the LFR benchmark datasets [27], are now referred to as the Louvain
algorithm [9] and the Infomap algorithm [47].
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Section 2.3 surveys how these and other algorithms have been modified for the
important class of bipartite networks. As Infomap cannot be directly applied to
bipartite networks, in Sect.2.4 we describe its application to the network found by
weighted projection onto the primary node set P. In Sect. 2.5 we look further at the
critical issue of whether the clusters found by Infomap in the weighted projection
network make sense: that is, whether or not they represent some sort of ground truth.
We present several case studies to support the proposition that they do. Finally, in
Sect.2.6 we describe our intended solution to adapt Infomap to bipartite networks
and propose a list of further research questions.

2.2 Community Detection Algorithms

In complex networks a community (or cluster, or module) is a fundamental qualitative
concept for which there is still no single accepted definition. It may be a node based
idea, as we use here, or an edge based one.

In a node based definition, a cluster is a set of nodes which connect more to each
other than to other nodes of the network, based on the idea that they share the same
resources or have similar properties. This kind of definition is widely accepted and
used. A well-known quality function that evaluates clusters based on this idea is
modularity [35].

One the other hand, in an edge based definition, a cluster is a group of edges
rather than of nodes [1, 13]. The classification of edges into groups is based on their
similarity through sharing nodes of the network. This definition is useful in dealing
with overlapping communities, where each node inherits membership from all its
incident edges and can belong to multiple communities according to the similarity
between these edges.

Such different definitions lead to rapid evolution of a vast number of cluster
detection techniques [15]. From our point of view, the choice of definition depends
on the context and application requirements for a particular network. For example,
on the World Wide Web (WWW) a cluster can be looked at as information or as
physical links and routers connecting to each other. Scientific collaborations can be
classified as clusters of scientists, clusters of papers or both. Social network clusters
can be defined as people relating to each other or as interests that are shared by a
group of people.

In this section we will first establish some basic concepts about clusters and com-
parison of partitions, then describe the LFR benchmarks for testing performance of
community detection algorithms. We follow with a description of modularity-based
algorithms and the problem of the resolution limit and then conclude by outlining
flow-based algorithms.

We will use the following notation throughout: in a network G = (V, E) with
node set V and edge set E C V x V,wesetn = |V|,m = |E| and let A = [A}]
represent the network’s adjacency matrix. (If the network has multiple edges then
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Ajj is the number of edges from node i to node j.) Node i will have degree k;, and we
observe that k; = > j Aij- The complete graph or clique on n nodes is denoted K,.
In a bipartite network G,V = P Vv Sand E C P x S is the set of edges.

2.2.1 Comparing Clusters and Partitions

Clusters of nodes can be regarded as strong or weak. Probably the simplest definition
of a strong cluster is a set of nodes which forms a clique, that is, the subgraph they
induce is complete [39]. However there are less absolute ideas of community which
are used more commonly.

The crucial idea behind strong and weak clusters in [43] is the degree k; of a node
i that belongs to the cluster. For a particular cluster ¢ to which node i belongs, we
separate k; into two parts: the number of edges kl’.'” => jec Aij connecting node i to
other nodes in ¢, and the number of edges k"' = 3 jde Ajj connecting node i to the
nodes in the rest of the network. A strong cluster has to satisfy the condition:

k"> kM Viec 2.1)

that is for each i € c, it must have more edges to the nodes within the cluster ¢ than
edges connecting to the rest of the network. A weak cluster is defined as:

DSk (2.2)

iec iec

that is, the sum of all degrees for all nodes within c is larger than the sum of all
degrees outgoing to the rest of the network. Obviously, a strong cluster is a weak
cluster as well, but the converse is not true.

An alternative definition is proposed in [24], which relates the cluster under con-
sideration to each other cluster and not to the whole network. Here, a strong cluster
is a set of nodes where each node’s degree within the cluster must be at least as large
as its degree toward any other cluster in the network:

Viec, k"> max ( ZA,] (2.3)
jec

A weak cluster accordingly is one where the sum of all degrees within the cluster

should be at least as large as the sum of degrees outgoing to each cluster in the

network:

STk = gliﬁ[zzmj]. 2.4)

iec iec jec
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Another approach, used in [18], defines a strong cluster using the betweenness
centrality measurement. The betweenness is calculated for a given edge e as the num-
ber of shortest paths between every pair of nodes in the network that run through e.
By iteratively removing the edges with highest betweenness centrality, components
of the network will split from each other forming clusters. These hierarchies of clus-
ters are represented in a binary tree, with nodes in a cluster more closely connected
compared with other nodes in the network.

The aim of clustering algorithms is to reveal the topological structure of the net-
work. To evaluate the communities detected by these algorithms, similarity measures
have been proposed in order to assess the fit of the partition found with a desired
one. A similarity measure very widely used for this purpose is Normalized Mutual
Information (NMI), which tests the “goodness” of a detected partition by measuring
the common information it shares with a targeted partition. The version of NMI that
has been widely accepted in the literature, particularly in the LFR benchmark [27],
is from [11]: given two partitions C and C’,

I (C'C’)— H(C)+H(C)—-H(C,C) 2.5)
T T T (H(C) 4+ H(CY) )2 '

where H(C) = —>_. P(c)log P(c) is the Shannon entropy for partition C and
H(C, C’) is the joint entropy between the two partitions. I, equals 1 if the two
partitions are identical and 0 if they independent.

Another approach uses the Jaccard similarity coefficient for comparing two par-
titions of the network [8]. It is defined as the ratio of the number of node pairs
classified in the same cluster in both partitions, over the number of node pairs which
are classified in the same cluster in at least one partition. Let us say that ap; is the
number of node pairs which are in the same cluster in both C and C’, aj( indicates
the number of node pairs that are put in the same cluster in C but not in C” and ag;
is the number of node pairs put in the same cluster in C’ but not in C. The Jaccard
similarity coefficient for C and C’ is:

ar

JcCc, Y= ——M8M—
ail +ao1 +ao

(2.6)

The ratio of the Jaccard similarity coefficient for the two partitions C and C’ is
between 0 and 1. When J(C, C’) = 1 the clusters in C are identical to the clusters
in C’, while J(C, C") = 0 indicates independent clusters in both partitions, with no
overlap at all.

Of course the ideal situation for measuring performance of a community detection
algorithm is based on the ground truth. It requires deep knowledge of the formation
of relations within and between clusters. Although it is excessively time consuming,
and impractical or impossible in large networks, the result is much more accurate and
more meaningful. In this chapter, we follow this approach as it provides significant
outcomes.
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2.2.2 Benchmarks and Performance

The LFR benchmark [27] allows authors of community detection algorithms to test
their algorithms and evaluate the communities they have detected. It relies on creating
an artificial network belonging to a “planted £-partition” model, which generates a
network with a given community structure. The node partitions generated in such a
network can have different sizes, and different nodes can have different degrees.

This benchmark suite has the ability to test large networks of 10° to 10° nodes, to
deal with overlapping communities and with both directed and undirected networks.
Its novelty is that it is possible for both node degree distribution and community size
to follow the power law distribution.

To run a test on the LFR benchmark, the mixing parameter x has to be tuned
at different values in the range [0, 1]. This mixing parameter w is the ratio of the
number of external neighbors (k") of each node by its total degree. A small value of u
indicates well separated communities, however with a high value of ©, communities
overlap more and more and the community structure is weaker. This mixing parameter
allows the strength of the community structure to be controlled, to be compatible
with realistic topological properties. The test algorithm is run against LFR networks
constructed using a selection of values for p and the partition it finds is compared
with the planted partition using NMI. The complexity of the LFR benchmark is linear
in the number of edges of the constructed network, which makes performing such
testing fast enough to analyse and study.

A comparative analysis of the performance of 12 community detection algorithms
appears in Lancichinetti et al. [28, 29]. This study enables us to compare the stability
and the accuracy of algorithms by testing them against heterogeneous distributions
of node degree and community size. The outcome of this study is that the Infomap
algorithm is the best algorithm to cluster very large networks, followed by the Louvain
algorithm (but see the next subsection) and a Potts model algorithm. Figure 2.1 from

Fig. 2.1 The performance of Ireess i TN lregeeee
four algorithms against LFR _§ 0.8 e 08 "__
benchmark partitions. g 06 ' 0.6 o
Infomap is at bottom right S 04f )\ d o4l L} 'Q\n ]
and Louvain (Blondel et al.) 5 02 Blondeletal. | ai| 02 MCL .‘l.‘i L A
at top left [28 = L 1 - : ‘Bed
P left [28] g 02 04 06 08 ° 02 04 06 08
S lesssewwyg 1 ::::::::::;:_I-’
E 08 (22000, " 1 O3 e nciono | ol
= 0.6 Tteete 0.6 |==N=1000,B| | |
E 04 ee o4l [l i | )
=) . Bnalslseprsnseidd \
Z. 02| Infomod ‘(L 0.2 Infomap Ry
0 ' “Dese ed

02 04 0608 O 02 04 06 03
Mixing parameter |,



2 Community Detection in Bipartite Networks ... 31

[28]" shows the comparative performance for various u. We describe the first two
algorithms in the following subsections.

Furthermore, a recent evaluation for 11 algorithms appears in [38] where the
emphasis is on the strength of community structure. It used the artificial networks
generated by the LFR benchmark, where node degrees and community sizes are both
power-law distributed, with a different mixing coefficient, and again the NMI is used
to assess the performance of the algorithms. This evaluation concludes that Infomap
is the leading algorithm on performance among all 11 algorithms.

2.2.3 Modularity Based Algorithms and the Resolution Limit

Girvan and Newman [35] initiated recent work on detecting and evaluating commu-
nities in large networks. They introduced a fast greedy technique which relies on
maximising a quality function called modularity, defined for a partition C as

1 kikj . .
0(0) = 5> [y = 5,7 [s(e. e(i) @)

J

where c¢(i) is the community to which node i is assigned, and the Kronecker delta
function &(c(i), c(j)) = 1 if nodes i and j belong to the same community and
0 otherwise. The complexity of the Girvan-Newman algorithm is O(n®) and it is
limited to networks with around n = 103 nodes.

Many efforts have been devoted to upgrade the computational time of modularity
optimization, and extend the limit of network size that can be clustered. For instance,
the Radicchi et al. [45] algorithm, in the spirit of Girvan-Newman, iteratively removes
edges, but in this case removes the edges with highest clustering coefficient instead
of edges with highest betweenness. The complexity of this algorithm is O (n?) which
is an improvement on the greedy technique. Another example of an algorithm that
takes modularity optimization as its main quality function is that of Guimera and
Amaral [21].

The Walktrap algorithm proposed by Pons and Latapy [41] uses random walks
to define a distance which measures the structural similarity between vertices and
between communities. It is based on the idea that at some stage a random walker tends
to be trapped in dense part of a network corresponding to a community. Starting from
an initial assignment of each node to its own community, communities are merged
according to the minimum of their distances and the process iterated. The bottom-up
hierarchy is represented in a dendogram and the algorithm stops when a partition
with maximum modularity is obtained.

IFigure reprinted with permission from Ref. [28]. ©2014 by the American Physical Society.
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Fig. 2.2 Maximisation of
modularity Q will fail to
identify cliques in this
example, e.g. if ¢ > p, there
is higher modularity for the
pair of cliques K, joined by
a single edge than for the
cliques themselves

However, modularity optimisation algorithms are subject to a resolution limit in
the size of communities they can detect. Fortunato and Barthelemy [16] showed that
communities with internal edge numbers < O(+/m) may not be detected. Small
strong communities in large networks may fail to be resolved, even when they are
well defined. An illustrative example appears in Fig.2.2. This is a definite drawback
for modularity-based algorithms.

The fast modularity optimization algorithm by Blondel et al. [9], known as the
Louvain algorithm, has one of the best results in the comparison tests [28]. The
first phase of this algorithm starts by assigning each node in the network to its own
community, then merging neighboring nodes that maximise value in the modularity
equation. The second phase starts by dealing with previously found communities
as super-nodes in a new network and repeats the first phase on this new network
by merging two super nodes to achieve a higher modularity value. These steps are
repeated iteratively until the maximum modularity is reached, resulting in multi-
levels of communities, as super-nodes. The complexity of the Louvain algorithm is
linear in the number of edges in the network, that is O (m). The authors claimed the
multi-level nature seems to circumvent the resolution limit problem of modularity
and this appeared to be born out by its high performance evident in Fig.2.1.

However, a very recent acknowledgement by Lancichinetti et al. [29] admits
that in Fig.2.1 they did not use the subsequent iterates of the Louvain algorithm in
determining its performance, only the first phase, because the performance of the
final level would be very poor, owing to the resolution limit.

2.2.4 Minimum Description Length Based Algorithms

The stochastic block model of Peixoto [40] employs minimum description length
(MDL) to describe the structure of a network, through compressing the total amount
of information on the network. It identifies the blocks (communities) for a network
without needing to specify the number K of blocks in advance. However, there is
a resolution limit in detecting the blocks which is similar to the resolution limit in
modularity based algorithms: the maximum detectable block number K scales as
J/n for a fixed average degree.
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The map equation method proposed by Rosvall and Bergstrom [47], known as
Infomap, identifies communities according to information flow in the networks.
Infomap has two main steps, a deterministic greedy search algorithm and then a
simulated annealing approach to refine the results obtained. In its greedy search
step the algorithm starts by calculating the ergodic node visit frequencies using a
transition matrix to create the stationary distribution for the network.

This approach uses Huffman codes [23] to gives short codewords for commonly
visited nodes, and long codewords for rarely visited nodes. The quality function
used to evaluate a partition is again the minimum description length MDL [19]. It
measures the average length L(C) in bits per step of a random walk on the network
with a node partition C = {cy, ..., ¢}.

l
L(C) = g~H(C)+ D pbH(P') (2.8)
i=1

This equation has two parts: the first one is to explain the movements between the
communities, where g is the probability that a random walker switches commu-
nities and H (C) is the entropy of the community index codewords. The second
part explains movements within the communities, where pé) is the fraction of the
movements within community ¢; and H (P?) is the entropy of the movements within
community ¢;. The complexity of the Infomap algorithm is O (m).

2.3 Algorithms for Bipartite Networks

In this section we discuss community detection algorithms that are intended for
bipartite networks, and the fact that the best-performed algorithm, Infomap, cannot
be applied to them. Figure 2.3 illustrates the structure of a bipartite network.

Fig. 2.3 Bipartite network
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2.3.1 Modularity-Based Algorithms

Most authors follow the modularity method of Newman and Girvan [35] to find
communities in bipartite networks. Since bipartite networks have two distinct node
sets and edges only connect nodes from different sets, modularity optimization needs
to be modified to identify communities in this kind of network. Guimera et al. [22]
introduced a modularity measurement for bipartite networks and checked its perfor-
mance against the communities in the weighted projection on P detected directly by
modularity maximisation. They found no difference between these and the commu-
nities in P that resulted after projecting the communities they found in the bipartite
network.

In [6], Barber developed the modularity matrix for bipartite networks, inspired by
Newman’s idea of a modularity matrix [34]. The modularity equation from Newman
[34] takes the following form (cf. (2.7)):

1
T 2m

0 > (A — Py) (i), c())) 2.9)

ij
where P is the probability of an edge existing between i and j. Barber claims
that there is a profound impact on the modularity using a normal null model in this
equation, since it assigns edges at random with the expected degree of model vertices

constrained to match the degrees in the actual network. Thus, he defines a null model
that obeys the requirement of bipartite networks.

2.3.2 Label Propagation Algorithms

A different technique for detecting communities in unipartite networks is the Label
Propagation Algorithm (LPA), proposed by Raghavan et al. [44], which uses the
local network structure as a guide for finding communities in unipartite networks.
LPA doesn’t perform as well as Louvain and Infomap on the LFR benchmark [27].
Barber and Clark [7] introduced an extended version of LPA, denoted LPAb, for
bipartite networks.

The LPAD is very fast on a bipartite network and it is an efficient method of
detecting communities through maximizing the modularity optimization. Initially, it
starts by assigning a unique label for each node in bipartite network that reflects their
node set, so we have two different colors, say nodes in P are labelled red and in S
are labelled blue. Then, nodes update their label at each step in random sequences to
obtain maximization in bipartite modularity. These processes are repeated iteratively
until a local maximum of bipartite modularity is reached. At the end, modules are
identified as a group of nodes having the same labels. The speed of LPAb makes it the
“fastest bipartite modularity optimization algorithm” [11] because the computational
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time for LPAb is O (m). Liu and Murata introduce an improved version of LPAb,
called LPAb+ [31], which is claimed as the most reliable algorithm with highest
bipartite modularity.

2.3.3 Statistical Modelling and MDL Algorithms

The MDL based stochastic block model of Peixoto [40] can be applied to a bipartite
network without specifying that it is bipartite. When applied to the IMDB bipartite
network (discussed in Sect.2.5.3 below) the resulting communities from this block
model fully reflect the bipartite nature, as the detectable communities partition P
and S separately.

A statistical modelling approach to community detection in bipartite graphs has
been proposed in [3]. The paper first surveys the statistical models used for mod-
elling networks where actors attend events (some of these models are not intended
for community detection), and of which only one (the exponential random graph or
p* model) had previously been applied to the benchmark Southern women network
discussed in Sect.2.4.2 below. It discusses a latent class model, which is a “mixed
Rasch model” where the number of communities, K, is an initial (unknown) vari-
able, and particular choices of K are fitted by assigning different event attendance
probabilities among groups, but identical attendance probabilities within groups. An
assumption of the model is that actors attend events independently. The choice of K
is discussed at some length.

2.3.4 Infomap and the Convergence Problem

Infomap, the best performing algorithm for community detection, cannot run as
intended on a bipartite network. The stationary distribution (probability of being at
node i) for random walks on any network is given by the probability [30]:

k4
T=—, i=1,...,n. (2.10)

On a bipartite network, a walk alternates between the two node sets, so, while the
stationary distribution is computable, the walk doesn’t converge to it as time tends
to oo independent of the start node. For example, if the random walk starts in one
node set of a bipartite network, then it will always be in that set after an even number
of steps, so the probability of being at a node in that set is zero at odd time steps.
Infomap fails at its first step on a bipartite network. Thus, we can not implement
Infomap on bipartite networks because of periodicity.
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2.4 The Weighted Projection Approach

We cannot apply Infomap to bipartite networks directly but we can certainly apply
it to a (weighted) projection onto P. Guimera et al. [22] found no difference in the
node communities detected in P whether they resulted from modularity maximisation
after projection, or projection after bipartite modularity maximisation. The projection
method has been used for a long time in recommendation systems in the business area.
Its strength is the idea that the emphasis is usually on one of the two node sets. These
sets can be switched for different applications. So a weighted projection method
allows us to investigate bipartite networks using powerful one mode algorithms,
after a transforming process.

A projection of P in G = (P Vv S, E) is a graph Gp = (P, Ep) in which two
nodes i and j € P are linked together if they have at least one neighbor in common in
S. A projection can be weighted or unweighted but weighted projections are usually
regarded as more representative of the link information in the bipartite network.
Two nodes in P are more likely to have a meaningful link in reality if they have
many neighbors in common, and this information should not be lost. The number
of common neighbours can be represented by multiple edges between the nodes, or
else by a weighted single edge between the nodes. Moreover, the information that a
node in P connects to a node of degree 1 in S should not be lost.

In this section we describe the weighted projection algorithm we use, and we
compare its community detection outcomes with others in the literature on a small
database, which is nonetheless a benchmark for bipartite clustering techniques, the
“Southern women” database [12].

2.4.1 Description and Method

Multiple edges are computationally time-consuming to process, and here we use
weighted edges. Moreover, Infomap and Louvain can accept weighted networks as
input.
Given G, the adjacency matrix for G p is defined by:
1, if nodes i and j have a common neighbor
A= 1, if node i has a neighbor which has no other
neighbors in P (resulting in a self loop ati )
0, otherwise
For node i € P, let I"(i) denote the set of neighbors of i ; all these are nodes in S.
To measure similarity between distinct nodes i and j in P we choose the common
neighbors index,

Wiy =100 i # ] 2.11)
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Fig. 2.4 Example of weighted projection. a Bipartite network withn = 12, m =15, |P| = 7 and
b weighted projection of P using (2.11) with |Ep| =19

due to its simplicity and efficiency [48] on large scale networks. Then Wj; is the
weight of the edge between i and j in the projected one mode network. This enables
us to generate a weighted projected one mode network from the bipartite network
in an efficient way. Further, we avoid the loss of information for a node of degree
one in the secondary set S. An illustration of the weighted projection method we use
appears in Fig.2.4.

We have programmed our projection algorithm in C* for compatibility with
the implementations we have of the Infomap and Louvain algorithms. We start by
reading the bipartite network edges as a pair of nodes, the first from P and the second
from S. The labels on the nodes in this dataset do not have to be numbers, they can
be post codes, book serials, bank card numbers, names of social networks or even
names of people. Then, we use special techniques in C*™ that affect the efficiency of
the projection method [42]. Using a C™ container called Mapvector which requests
a key and a value, we choose each key as an element of S and its value to be a vector
of nodes in P to which it is adjacent. Then, we create pairs in a one mode network
and store the result in container called “Multiset”.

To solve the labeling issue we use a mapping between strings and integers and
generate new numbers that represent list of pairs with the links between nodes.
After the projection we will have only (number, number) pairs which is exactly
what Infomap requires. However, another issue arises here, that of losing the initial
strings/labels of nodes. When we generate the final network picture we will see only
links between these numbers but without any label on them. Therefore, we use the
Pajek format because when declaring the nodes, we can also give a label for each
node. We then input the projected network data into the Infomap? (and Louvain®)
algorithms.

The pseudocode is given in Algorithm 1. We illustrate the intermediate steps of
Algorithm 1 as it applies to the toy network in Fig.2.4.

2Infomap available for download on the link: www.mapequation.org/.
3Louvain available for download on the link: https:/sites.google.com/site/findcommunities/.
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Table 2.1 Time complexity

. . P Algorithm Order

for algorithms on bipartite

networks with n nodes and m LPAb O(@m)

edges LPAb+ O(m log? n)
Algorithm 1 O(m?) + O(m)

Example 2.1 In Fig.2.4 we have P = {1,2,3,4,5,6,7}, S = {A,B,C, D, E}.
The operation of Algorithm 1 on this network at the following lines will be:

4 Mapvector(string) = [(A, 1)(A, 2)(A, 4)(A, 5)(B, 1)(B, 2)(B, 4)(B, 6)
(C, 3)(C,4)(C, 6)(D, 2)(D, 5)(D, T)(E, 4)]
13 Mapvector[i, j1=[(A, 1245)B,1246)(C,346)([D,247) (E, 4)]
25 Multiset[i, j1=[(1,2)(1, 4)(1, 5)(2, 4)(2, 5)(4, 5)
(1,2)(1, 4)(1, 6)(2, 4)(2, 6)(4, 6)
(3,4)(3,6)(4, 6)
2,52, 75,7
4, 4)]

We can compute the time complexity for the whole operation starting from con-
verting bipartite networks to weighted unipartite networks followed by clustering
them using either algorithm. The reason the projection method is also applied to the
Louvain algorithm is to be able to compare the performance of Infomap with that
of Louvain. The complexity for both Infomap and Louvain is O (m) where m is the
number of the edges in G. Our projection takes O (m?). Table2.1 summarizes the
complexity of the integrated algorithm. Although the efficiency of our algorithm is
comparable with those applying bimodularity, it is not as good as those employing
label propagation, as Table 2.1 shows. The running time needs to be improved.

To evaluate the quality of community detection in a bipartite network using Algo-
rithm 1, we look to examples where it is possible to extract some ground truth. There
is no suite of existing benchmark bipartite networks for testing purposes compara-
ble to the LFR benchmarks [27] for one mode networks. The most-studied bipartite
network is the very small “Southern women” network and it has been used as a
de-facto benchmark for testing community detection algorithms, both for bipartite
graphs (obviously not Infomap, though) and for the projection onto P.

2.4.2 Benchmark “Southern Women’’ Dataset

The “Southern women” network collected by Divas et al. [12] has become a bench-
mark for testing community detection algorithms on bipartite networks. This network
has 18 women (who form the primary set P) who attended 14 different events (the
secondary set S). An edge exists between two women for each event they attend
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Algorithm 1: Weighted projection method for bipartite network integrated with
Infomap or Louvain algorithm.

Require: A bipartite network.

1
2
3
4
5:
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:

: initialization
: while end of dataset not reached do

read each pair from dataset
store pairs in Mapvector[string]
end while
Find common neighbors:
for all i = 1 end of mapvector‘keys’ do
print(i)
for all j = 1 end of mapvector‘value’ do
print(j)
end for
end for
return :Mapvector[i,j]
Create pairs for one mode network:
for all i = 1 — end of Mapvector[i, j] do
if size of commonneighbor = 1 “self loop” then
insert the duplicate [4, /] into multiset
else
for i =1 — end of Mapvector —1 do
for j =i + 1 — end of commonneighbors do
insert the pair [, j] into multiset
end for
end for
end if
end for
return : Multiset[i, j]
Create the associated pairs of vertices and store them in Pajek format from this Multiset:
for i = 1 — end of Multiset[i, j] do
store vertices in string variable <— List of vertices with its Labels
end for
while the end of Multiset not reached do
currentpair = xbegin of Multiset
if the both pair numbers are the same then
print edges|i, i]
count (duplicate pairs) /* to avoid the redundant pairs */
else
save current pair
count to list of edges string
erease current pair from Multiset /* to enhance the computational time */
end if
end while
store edges in string variable <— list of the edges with weights
Reading input network from string variable rather than from screen
while string variable not empty do
read the input from weighted projection approach as Pajek format
end while
process the normal Infomap or Louvain algorithm
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Table 2.2 The Southern women network: Number of communities of women detected by different
algorithms

Algorithm Quality function Network applied to Modules in P
Alzahrani et al. [5] Modularity Weighted projection 2
Guimera et al. [22] Modularity Weighted projection 2
Crampes and Plantie [10] Bimodularity Bipartite 3
Barber [6] Bimodularity Bipartite 4
Liu and Murata [31] Bimodularity Bipartite 4
Alzahrani et al. [5] Map equation Weighted projection 4

together. Most studies conducted before 2003 identify two (sometimes overlapping)
communities of women while one identifies three communities [17]. In many stud-
ies, members within each community are further partitioned into core or peripheral
members. More recent studies using bimodularity find more communities (3 and 4).
Consequently, at least two communities are expected. In Table 2.2, we list the com-
munity numbers found in the Southern women dataset by the more recent bipartite
network algorithms described in Sect.2.3 and by our implementation of projection
in Infomap and Louvain.

We compare our results for the Southern women network with results in the lit-
erature, in more detail. Using Infomap, we have community A consisting of Evelyn
and Theresa (women 1 and 3, respectively), community B consisting of Katherine
and Nora (women 12 and 14, respectively), and two others C = {8, 9, 16, 17, 18}
and D = {2,4,5,6,7,10, 11, 13, 15}, as shown in Fig.2.5. Our groups A and B
consist of women frequently identified as core members of each of the two com-
munities found in earlier studies. By contrast, Barber’s two smaller communities
consist of women who tended to be identified as peripheral members of each of the
two communities found in earlier studies [17]. Barber also tested the success of his
partition into four communities, found using the maximum bipartite modularity (as
described in Sect.2.3), as a partition in the corresponding unweighted projection
network, and found it to have negative modularity [6]. As this is worse than consid-
ering the women as a single community, it further supports our use of the weighted
projection network. Guimera et al. [22] found only two communities of women (red
and blue) whether modularity on the unweighted projection, the weighted projec-
tion or bipartite modularity was used. They found the communities were inaccurate
with unweighted projection, but identical and in agreement with supervised results
in [17] for the other two methods. The total number of edges in the Southern women
network after weighted projection is 139 edges. Our community A (Evelyn and
Theresa) has internal edge weight 7 and lies inside the red group, while our commu-
nity B (Katherine and Nora) has internal edge weight 5 and lies inside the blue group.
These two “core” strong small communities are not detected by the modularity based
algorithm, probably because their edge numbers fall below the resolution limit of
modularity, which in this case is 12 (since 11 < /139 < 12). By comparison the



2 Community Detection in Bipartite Networks ... 41

Fig. 2.5 The four communities of women found in the Southern women network. Red nodes
represent S, the events the women attended, and the four other colors represent four communities
within P, with nodes labelled by first name [5]

2 communities found by our projection input into Louvain have 45 and 33 internal
edges. This demonstrates that, in this benchmark bipartite case, Louvain is subject
to the resolution limit for modularity but Infomap is not.

2.5 Case Studies

Application of Infomap to the small and much analysed “Southern women” bipar-
tite network shows that the communities detected represent meaningful associations
between the women grouped together. In this section we continue to apply Infomap
and Louvain to weighted projections of three larger bipartite networks as case stud-
ies. We demonstrate that Infomap produces meaningful communities representing
some sort of ground truth, and does so better than Louvain. The case studies are pre-
sented in order of increasing size, as each highlights a different feature of Infomap
commmunity detection.

2.5.1 Noordin Top Terrorist Network

The Noordin Top terrorist group data linking individuals with relationships or affil-
iations first appeared in [25]. The ties or links between actors represent one or more
common affiliations or relationships. Common attendance of actors at events was
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Table 2.3 Communities in

. : Algorithm Communities Sizes
the Noordin Top terrorist -
network [4] Louvain 4 29, 16, 15, 14
Infomap 5 25,30,12,4,3

inferred from their mention together in public reports in newspapers and elsewhere.
The data were coded as network data by Naval postgraduate students and the informa-
tion was published in 2012 in [14]. We work with the cleaned affiliation subnetwork
and thank Assoc. Prof. Murray Aitkin for providing it. It forms a bipartite network
with 79 actors and 45 events (affiliations), classified into six categories (Operations,
Logistics, Organizations, Training, Finance, Meeting). We excluded the actors who
did not present at any of the 45 events.

In [2] the Bayesian latent class model of [3] (see Sect.2.3.3) is applied directly
to this terrorist network for K = 1, ..., 4. The researchers find the K = 3 model
fits best and use an actor’s degree to assign them to a community. Their first group
consists of two important leaders and planners (Noordin Top and Azahari Husin), and
they conclude that the other two groups are: the “footsoldiers”; and the intermediaries
who meet the planners and train the footsoldiers.

Weighted projection of the Noordin Top bipartite network onto the actor set P
determines a network with |Ep| = 759 edges in total weight. Using the Infomap
algorithm we found 5 communities and using Louvain we found 4 communities,
see Table2.3. The modularity resolution limit for this network is L«/7_59J = 27.
Therefore, a community with strong ties and < 27 edges may not be detected by
modularity based methods. The 5 communities found by the Infomap algorithm are
displayed in detail in Fig.2.6.

The smallest Louvain community (14 actors) wholly contains the third Infomap
community (12 actors), and we regard them as essentially equivalent. The largest
Louvain community (of 29 actors) contains 23 of the 25 actors belonging to the
largest Infomap community. It also contains the smallest Infomap community (a
clique of 3 actors with weighted edge sum 6). The second small Infomap commu-
nity (a clique of 4 actors with weighted edge sum 6) has three actors in the largest
Louvain community and one in the second largest Louvain community. Essentially,
Infomap detects three communities inside the largest Louvain community. The two
small clique communities are half an order of magnitude smaller than the modular-
ity resolution limit. This is a real-world illustration of the phenomenon illustrated
theoretically in Fig.2.2.

Consequently, to test the communities found for meaningfulness, we concentrate
on the structure found by the Infomap algorithm.

Community 4 contains actors Abdul Rauf, Imam Samudra, Apuy and Baharudin
Soleh. Community 5 contains actors Enceng Kurnia, Anif Solchanudin and Salik
Fridaus. These two small cliques have no recorded direct links between them, nor does
Community 5 have any recorded direct links with Community 3. Identifying these
small clique communities in the original bipartite network described in [46] recovers
very meaningful link information. For instance, Anif Solchanudin and Salik Fridaus
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Fig.2.6 Noordin Top terrorist network actor communities found using Infomap: Community 1 (red,
top, 25 actors), Community 2 (green, bottom, 30 actors), Community 3 (purple, left, 12 actors),
Community 4 (pink, below right, 4 actors), Community 5 (blue, above right, 3 actors)

were trained together to be suicide bombers for Bali Bomb II in 2005. Community
4 also reflects useful information. Abdul Rauf, Imam Samudra and Apuy came from
the same organization, Ring Baten, while Apuy and Baharudin Soleh were involved
directly in the Australian Embassy bombing in 2004. These two smallest communities
are new structure, not found by the Louvain algorithm or in [2], and are significant
from a defence analysis perspective.

In [4] we related Fig.2.6 back to the 6 categories of events, as was done in [2]
for only 3 communities, and listed the “Top Ten” actors by four different centrality
measures. Community 1 contains the two principal leaders and planners (Noordin
Top and Azhari Husin). In total, 8 of the 14 actors appearing in the Top Ten lists are in
Community 1. The most significant common property of this group is that 17 out of
25 of its actors were affiliated to the same Organization (Jemaah Islamiyah, a transna-
tional Southeast Asian militant Islamist terrorist organisation linked to Al-Qaeda),
and we can conclude it is the most significant community.
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2.5.2 NSW Crime

This publically available Australian crime data from the state of New South Wales
(NSW) was published in 2012 [37]. It was collected by the NSW Bureau of Crime
Statistics and Research from January 1995 to 2009, and it provides rich information
about every crime that occurred in each month, categorised by offence type. There are
21 offence categories; some of these categories have subcategories that are related
to the main category of the offences. For instance, “Homicide”, as a category of
offence, has four subcategories (Murder, Attempted Murder, Accessory to Murder
and Manslaughter) that all relate one way or another to the main category. The
underlying social network of offenders is reflected in the reported crimes.

The data reports the crime according to the local government area (LGA) it was
committed in. There are 155 LGAs in NSW. The bipartite network we extract has
as node sets the offence categories and the LGAs that they were committed in, and
has m = 8761. We are interested in identifying where similar patterns of crime
have occurred, and which are the more dangerous areas, so P is the LGAs and S is
the categories of offence. Weighted projection onto P results in an extremely dense
network with |Ep| = 3,478,084 edges in total weight.

We applied both the Infomap and Louvain algorithms to the weighted projection
on P. The Louvain algorithm did not determine any community structure at all.
Consequently it is of no use for analytic purposes. However the Infomap algorithm
found 2 communities of LGAs, one containing 82 LGAs and the other containing
73 LGAs. We expect there is more frequent connection between some subset of
crimes for Community 1 of LGAs versus the more frequent connection between
some other subset of crimes for Community 2. The modularity of this structure
is higher than that for a single community, see Table 2.4, indicating it is a better
structure, so the modularity-maximising Louvain algorithm should have found more
than one community.

In fact it is somewhat surprising that so few communities were found. The number
of internal edges in the larger community found by Infomap is 112,374, almost two
orders of magnitude greater than the modularity resolution limit of | /3, 478, 084 | =
1, 864. A possible explanation is that the communities are very weak, having a high
average mixing parameter, and so are difficult for any algorithm to detect.

However, when the LGAs in NSW are mapped and coloured according to commu-
nity, a very strong geographical divide is visible. It provides a dramatic explanation
of the community partition found by Infomap. Generally speaking, Community 1
includes the more populated LGAs and Community 2 includes the majority of rural
and “Outback” LGAs. The 38 LGAs in the main metropolitan area, Sydney, are all
in Community 1.

Table 2.4 Comparison of
algorithm performance on -
NSW crime network [4] Louvain 1 155 0

Infomap 2 82,73 0.026

Algorithm Communities | Sizes Modularity
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Fig. 2.7 Map of NSW local goverment areas and related crimes. a The 2 communities of LGAs
found by Infomap: Community 1 contains 82 LGAs and Community 2 contains 73 LGAs. The
unclassified area is the Australian Capital Territory, which is not part of NSW. Underlying crime
statistics are also mapped by LGA: b Homicide rate; ¢ Theft rate and d Total crime rate [4]

Analysis of the underlying crime statistics by LGA shows that for homicide
(Fig.2.7b), 90 % of the shaded LGAs occur in Community 1; for theft (Fig.2.7¢c)
85 % of the shaded LGAs occur in Community 1 and for total crime rate (Fig.2.7d),
86 % of the shaded LGAs occur in Community 1. The correlation coefficient of the
crime rates between the two communities is 0.992. Deeper analysis of this network
will be undertaken elsewhere.

2.5.3 Internet Movie Database Network

The Internet Movie Database IMDB) is downloadable from [26]. We thank Dr Tiago
Peixoto for the cleaned dataset from [40] that we use here. The dataset includes details
about internet media and actors in them from different perspectives such as country
and year of production, genre, language and rating. The “Internet Movie” term covers
a range of film types, including movies, video shows, TV shows and video games;
the actors are the cast members.

We are interested in the bipartite network formed from this database, where films
form the primary set P and actors who have acted in a film listed in P form the
secondary set S. Initially we have 275,805 actors who participated in 96,982 films.
The number of edges is ~1,812,697, each edge represents an actor appearing in a
film. The actors and films with degree k < 1 have been removed since they provide no
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significant information on the overall network structure, giving | P| = 96,881. The
corresponding weighted edge number is | E p| = 18,772,909 and | /18,772,909 | =
4,332.

The MDL stochastic block model (see Sect.2.3.3) was applied to the whole net-
work directly in [40] and K = 332 communities found, which, remarkably, perfectly
reflected the underlying bipartiteness, with 165 communities entirely in P and 167
entirely in S. Note that n = |P| + | S| = 372,787 so [+/n] = 611 and the maximum
number of communities this algorithm can detect in the whole network is of this
order.

Clustering the weighted projected network using Infomap results in 682 clusters of
films in P. When we apply Louvain, only 64 clusters in P result. However, checking
the four levels of the Louvain algorithm shows decreasing cluster numbers (level O:
96,881 nodes; level 1: 528 nodes; level 2: 80 nodes; level 3: 64 nodes). In accordance
with the Erratum [29], to avoid the resolution limit for modularity we take 528 as
the number of film communities found by Louvain.

Thus, it seems likely that the 165 film clusters in P found by [40] is an underes-
timate, and the MDL stochastic block model suffers from its resolution limit in this
case.

In Fig. 2.8 we plot the log degree distribution of P and the distribution of commu-
nity sizes found by Infomap in P. Both demonstrate a clear heavy tail. The community
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Fig. 2.8 IMDB projected film network: a Node degree distribution (log scale) and b Infomap
community sizes, relative to network size
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Fig. 2.9 IMDB projected film network: The largest 100 out of 682 clusters for the weighted
projected network found using Infomap. It shows two giant clusters, the more central one with
10, 240 nodes and the other with 22,727 nodes

size distribution is immune to any resolution limit: the smallest communities in P
have 2 nodes. We conclude that in this projected network the hierarchical structure
is well-defined and the communities are well separated.

For clarification, in Fig.2.9 we show the largest 100 clusters as supernodes that
clarify the structure of the projected film network. Two of the Infomap clusters
are giant components; the first one has 22,727 nodes, all of which are the same
film type (movie), and includes almost a quarter of P, and the second has 10,240
nodes all of which are movies as well. We checked the IMDB data briefly to see
if these two clusters make sense, and they do indeed represent some ground truth.
For example in the second giant cluster, almost all movies all have the same country
of production (USA) and genre classification (Drama). The top 5 hubs (nodes with
highest degree) [33] belong to these two giant components.

The second giant cluster is more central, even though it has fewer nodes than the
other, for intrinsic reasons. The betweenness centrality for nodes in the second giant
cluster (the number of shortest paths between node pairs in the network that pass
through that node), is higher than for nodes belonging to the first giant cluster. The
top three nodes for betweenness (the highest is for the 2009 movie “Never” (Part 1)
and the second highest is for the 2008 movie “Around June”) and the largest hub
(“Around June” with k = 7251) are in the second largest component.
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2.6 Conclusions and Further Work

In this chapter we have reviewed a collection of community detection algorithms,
including variants specifically designed for bipartite networks, that have previously
been used to cluster bipartite networks. Modularity based algorithms suffer from a
well-known resolution limit but the best-performing algorithm for large networks,
the random-walks based Infomap, cannot be applied to a bipartite network directly.

For four bipartite networks of increasing size, we have applied Infomap to the
weighted network projected onto the primary node set and compared its performance
with the most popular modularity based algorithm, Louvain, and with other algo-
rithms reported in the literature. Evaluation of detected clusters has shown that the
clusters found using Infomap do embody meaningful information about the ground
truth of hierarchical structure within network. Infomap can detect meaningful small
communities such as cliques with sizes below the resolution limit of modularity based
algorithms (the Southern women and Noordin Top terrorist networks). Infomap can
detect weak large clusters better than Louvain at the upper limit of mixing coefficient
(NSW crimes network). Infomap can detect a full hierarchy of clusters, that is, with
no resolution limit, when they are well-defined (IMDB network).

There are number of reasons that a random walks based algorithm should be
considered for community detection in bipartite networks. First, as has been our
focus in this paper, it is frequently the case that the principal interest in the network
is in the clustering within only one of the node sets. In this case, we believe we have
shown a clear advantage in applying Infomap to detect meaningful communities in
the primary projected network.

More generally, Infomap has the best performance against the LFR benchmark,
so it is worthwhile to try to adapt it to bipartite networks. Moreover, the lack of
existence of a benchmark for clustering algorithms on bipartite networks underlines
the flexibility for researchers to employ new approaches that might suit the bipartite
framework. A further reason that Infomap should be considered for bipartite networks
is that it provides the sense of ground truth behind the cluster formation.

We intend to project the two sets P and S of the bipartite network in parallel, cluster
them separately using the random walks based algorithm and merge their results
within the bipartite network. Finally we plan to compare these bipartite communities
with those clusters found by modularity-based bipartite clustering and those using
multi assignment clustering.

One important observation made during the detailed study in this chapter is that
nodes of the primary set might in fact belong to more than one community when the
information from the secondary set is taken into account. Investigation of overlapping
communities is possible future work.
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