
Chapter 2
Exponential Stability and Synchronization
Control of Neural Networks

In this chapter, we are concerned with exponential stability analysis for neural net-
works with fuzzy logical BAM and Markovian jump and synchronization control
problem of stochastically coupled neural networks.

2.1 Global Exponential Stability of NN with Fuzzy Logical
BAM and Markovian Jump

2.1.1 Introduction

It is well known that the bidirectional associative memory (BAM) neural networks
have been deeply investigated in recent years due to its applicability in solving some
image processing, signal processing, optimization, pattern recognition problems, and
other areas.Many researchers have been attracted by this new class of artificial neural
networks and a great deal of research has been done since fuzzy logical BAM neural
networks are introduced by Kosko in [10–12]. Especially, since the global stability
is one of the most desirable dynamic properties of neural networks, there have been
growing research interests on the stability analysis and synthesis for BAM neural
networks. For example, in [2] authors analyzed the global asymptotic stability of
a BAM neural networks with constant time delays and the exponential stability of
periodic solution to Cohen-Grossberg-type BAM neural networks with time-varying
delays has been investigated in [36].

In recent years, the concept of incorporating fuzzy logic into neural networks has
developed into an extensive research topic. Among various method developed for
the analysis and synthesis of complex nonlinear systems, fuzzy logic control is an
attractive and effective rule-based one. Therefore, fuzzyneural networks receive great
attention since they are the hybrid of fuzzy logic and traditional neural networks. In
many of the model-based fuzzy control approaches, the well-known Takagi-Sugeno
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(T-S) fuzzy model is recognized as an convenient and efficient tool in functional
approximations. During the last decades, sufficient attention has been paid to the sta-
bility analysis and control synthesis of T-S fuzzyBAMneural networks [1, 19, 21]. In
[20], researchers discuss the global asymptotic stability problem of T-S fuzzy BAM
neural networks with time-varying delays. Moreover, the robust stability problem for
uncertain fuzzy BAM neural networks with Markovian jumping and time-varying
interval delays is investigated in [3]. However, in [4], a new class of fuzzy logical
bidirectional associative memory (FLBAM) neural networks is introduced and ana-
lyzed. This model not only varies from the traditional BAM neural networks, but
also is different from the T-S fuzzy BAM neural networks. In [37], the authors dis-
cussed the exponential stability and periodic solution for fuzzy logical BAM neural
networks with time-varying delays.

In this section, we are concerned with the development of the exponential sta-
bility of fuzzy logical BAM neural networks with Markovian jumping parameters.
Most scholars investigated the global stability of T-S fuzzy BAM neural networks
withMarkovian jumping parameters. However, the global stability of FLBAMneural
networks with Markovian jumping parameters is seldom researched. The main pur-
pose of this section is to derive some sufficient conditions for the exponential stability
of fuzzy logical BAM neural networks with Markovian jumping parameters by con-
structing a Lyapunov functional and utilizing the linear matrix inequality (LMI)
method.

2.1.2 System Description and Preliminaries

Consider the following FLBAM neural networks:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇i (t) = − ai (t)ui (t) + ∧n
j=1bi j (t) f j (v j (t)) + ∨n

j=1ci j (t) f j (v j (t))

+ ∧n
j=1αi j (t)g j (t) + ∨n

j=1βi j (t)g j (t) + Ii (t),

v̇ j (t) = − d j (t)v j (t) + ∧m
i=1e ji (t) fi (ui (t)) + ∨m

j=1wi j (t) fi (ui (t))

+ ∧m
i=1γ j i (t)hi (t) + ∨m

i=1δ j i (t)hi (t) + J j (t),

(2.1)

for i = {1, 2, . . . , n}, j = {1, 2, . . . , n}, t ≥ 0, where ui (t) and v j (t) denote the
activations of the i th neurons and j th neurons, g j (t) and hi (t) denote the state, respec-
tively; ai (t) and d j (t) are positive constants while fk (k = 1, 2, . . . ,max(m, n)) is
the activation functions; bi j (t) and e ji (t), ci j (t), and w j i (t) are elements of fuzzy
feedbackMIN template, and fuzzy feedbackMAX template;αi j (t) and γ j i (t), βi (t),
and δ j i (t) stand for fuzzy feed-forward MIN template and fuzzy feed-forward MAX
template at the time t; ∧ and ∨ denote the fuzzy AND and fuzzy OR operations,
respectively; Ii and J j denote the external inputs. To draw our conclusion, we pro-
posed following assumption.
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Assumption 2.1 The neuron activation functions in (2.1) satisfy that fz(0) = 0 and
fz are globally Lipschitz continuous, i.e., there exist positive constants λz fulfilling

| fz(x) − fz(y)| ≤ λZ |x − y|,

for all x, y ∈ R and Z = 1, 2, . . . ,max(m, n).

Now, based on the fuzzy logical BAM neural networks of model (2.1), we discuss
the exponential stability of fuzzy logical BAM neural networks with Markovian
jumping parameters.

In this section, we consider the following fuzzy logical neural networks with
Markovian jumping parameters, which is actually a modification of (2.1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i (t,r(t)) = −ai (r(t))ui (t) + ∧n
j=1bi j (r(t)) f j (v j (t))

+ ∨n
j=1ci j (r(t)) f j (v j (t)) + ∧n

j=1αi j (r(t))g j (t)

+ ∨n
j=1βi j (t)g j (t) + Ii (t),

v̇ j (t,r(t)) = −d j (r(t))v j (t) + ∧m
i=1e ji (r(t)) fi (ui (t))

+ ∨m
j=1w j i (r(t)) fi (ui (t)) + ∧m

i=1γ j i (r(t))hi (t)

+ ∨m
i=1δ j i (t)hi (t) + J j (t).

(2.2)

where {r(t), t ≥ 0} is a homogeneous finite-state Markovian process with right-
continuous trajectories on the probability space which takes values in the finite space
S = {1, 2, . . . , S} with its generator Γ = (θηη′) (η, η′ ∈ S). Then, we shall work on
the network model r(t) = η for each η ∈ S.

Suppose the vector

L(t) = (l1(t), l2(t), . . . , lm+n(t))T = (u1(t), u2(t), . . . , um(t), v1(t)), . . . , vn(t))T.

For any L ∈ R
m+n , we define the norm

||L(t)|| = max
1≤i≤m,1≤ j≤n

(sup
t∈R

|ui (t)|, sup
t∈R

|vi (t)|).

Set B = {L|L = (u1, . . . , um, v1, . . . , vn)T }. For any L ∈ B, we define its
induced model as

||L|| = ||L(t)|| = max
1≤i≤m,1≤ j≤n

(sup
t∈R

|ui (t)|, sup
t∈R

|vi (t)|).

where B is a Banach space.
For any φ,ϕ ∈ B, we denote the solutions of system (2.2) through (0, φ) and (0,

ϕ) as follows:

L(t, r(t),φ) = (u1(t, η,φ), u2(t, η,φ), . . . , um(t, η,φ),

v1(t, η,φ), . . . , vn(t, η,φ))T ,
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L(t, r(t),ϕ) = (u1(t, η,ϕ), u2(t, η,ϕ), . . . , um(t, η,ϕ),

v1(t, η,ϕ), . . . , vn(t, η,ϕ))T ,

where r(t) = η ∈ S, respectively.

Definition 2.2 The system (2.2) is globally exponentially stable if there existing
positive constants k and σ satisfying

||L(t, η,φ) − L(t, η,φ)|| ≥ σ||φ − ϕ||e−kt ,

for all r(t) = η ∈ S and t ≥ 0.

Lemma 2.3 Suppose l and l ′ are two states of system (2.2), then the following
inequalities are established for all r(t) = η ∈ S:

| ∧n
j=1 τi j f j (l j ) − ∧n

j=1τi j f j (l
′
j )| ≤

n∑

j=1

|τi j ||| f j (l j ) − f j (l
′
j )||,

| ∨n
j=1 ζi j f j (l j ) − ∨n

j=1ζi j f j (l
′
j )| ≤

n∑

j=1

|ζi j ||| f j (l j ) − f j (l
′
j )||.

2.1.3 Main Results

In this section, we will discuss the global exponential stability of fuzzy logical BAM
neural networks with Markovian jumping parameters. A new sufficient criterion will
be proposed to prove the exponential stability of the model.

Theorem 2.4 If there exist a positive scalar k > 0 and a position definite matrix
Pη > 0 such that the following linear matrix inequality holds:

k Pη − PηWη + Gη Eη Pη < 0, (2.3)

then the system of (2.2) is global exponential stable for any r(t) = η (∀η ∈ S),
where Gη = diag(λ1, . . . ,λm+n), Wη = diag(a1(η), . . . , am(η), d1(η), . . . , dn(η)),

E1 = (|bi j (η)| + |ci j (η)|)n×m, E2 = (|e ji (η)| + |w j i (η)|)n×m, E =
[
0 E2

E1 0

]

.

Proof To prove our conclusion, we denote that

l(t, r(t)) = L(t, r(t),φ) − L(t, r(t),ϕ),
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then we can obtain from (2.2) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l̇i (t, r(t)) = −ai (r(t))li (t, r(t))

+ ∧n
j=1bi j (r(t)) f j (v j (t,φ)) − ∧n

j=1bi j (r(t)) f j (v j (t,ϕ))

+ ∨n
j=1ci j (r(t)) f j (v j (t,φ)) − ∨n

j=1ci j (r(t)) f j (v j (t,ϕ)),

l̇m + j (t, r(t)) = −d j (r(t))lm+ j (t, r(t))

+ ∧m
i=1e ji (r(t)) fi (ui (t,φ)) − ∧m

i=1e ji (r(t)) fi (ui (t,ϕ))

+ ∨m
j=1w j i (r(t)) fi (ui (t,φ)) − ∨m

j=1w j i (r(t)) fi (ui (t,ϕ)).

(2.4)

For the sake of discussing the global exponentially stability of system (2.2), we
consider the following Lyapunov-Krasovskii functional:

V (t, l(t), η) = e2kt

⎛

⎝
m∑

i=1

Pi (η)l2i (t) +
m∑

j=1

Pm+ j (η)l2m+ j (t)

⎞

⎠ .

Let L be the weak infinitesimal generator of random process {l(t), r(t), t ≥ 0}.
Then, for each r(t) = η ∈ S we can obtain that

LV (t, l(t), η) = 2ke2kt
m∑

i=1

Pi (η)l2i (t) + 2e2kt
m∑

i=1

Pi (η)li (t)l̇i (t)

+ 2e2kt

⎛

⎝k
n∑

j=1

Pm+ j (η)l2m+ j (t) +
n∑

j=1

Pm+ j (η)lm+ j (t)l̇m+ j (t)

⎞

⎠

+
S∑

η′=1

θηη′e2kt

⎛

⎝
m∑

i=1

Pi (η)l2i (t) +
m∑

j=1

Pm+ j (η)l2m+ j (t)

⎞

⎠

= 2ke2kt
m+n∑

i=1

Pi (η)l2i (t) + 2e2kt
m∑

i=1

Pi (η)li (t){−ai (η)li (t)

+ [∧n
j=1bi j (η) f j (v j (t,φ)) − ∧n

j=1bi j (η) f j (v j (t,ϕ))]
+ [∨n

j=1ci j (η) f j (v j (t,φ)) − ∨n
j=1ci j (η) f j (v j (t,ϕ))]}

+ 2e2kt
n∑

j=1

Pm+ j (η)lm+ j (t){−d j (η)lm+ j (t)

+ [∧m
i=1e ji (η) fi (ui (t,φ)) − ∧m

i=1e ji (η) fi (ui (t,ϕ))]
+ [∨m

i=1w j i (η) fi (ui (t,φ)) − ∨m
i=1w j i (η) fi (ui (t,ϕ))]}

= 2ke2kt
m+n∑

i=1

Pi (η)l2i (t)
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+ 2e2kt

⎧
⎨

⎩
−

m∑

i=1

ai (η)Pi (η)l2i (t) −
n∑

j=1

d j (η)Pm+ j (η)l2m+ j (t)

+
m∑

i=1

Pi (η)li (t)[∧n
j=1bi j (η) f j (v j (t,φ))

− ∧n
j=1bi j (η) f j (v j (t,ϕ))]

+
m∑

i=1

Pi (η)li (t)[∨n
j=1ci j (η) f j (v j (t,φ))

− ∨n
j=1ci j (η) f j (v j (t,ϕ))]

+
n∑

j=1

Pm+ j (η)lm+ j (t)[∧m
i=1e ji (η) fi (ui (t,φ))

− ∧m
i=1e ji (η) fi (ui (t,ϕ))]

+
n∑

j=1

Pm+ j (η)lm+ j (t)[∨m
i=1w j i (η) fi (ui (t,φ))

− ∨m
i=1 w j i (η) fi (ui (t,ϕ))]

⎫
⎬

⎭

≤ 2ke2kt
m+n∑

i=1

Pi (η)l2i (t)

+ 2e2kt

⎧
⎨

⎩
−

m∑

i=1

ai (η)Pi (η)l2i (t) −
n∑

j=1

d j (η)Pm+ j (η)l2m+ j (t)

+
m∑

i=1

Pi (η)li (t)

⎡

⎣
n∑

j=1

(|bi j (η)| + |ci j (η)|)

·| f j (v j (t,φ)) − f j (v j (t,ϕ))|
⎤

⎦

+
n∑

j=1

Pm+ j (η)lm+ j (t)

[
m∑

i=1

(|e ji (η)| + |w j i (η)|)

· | fi (ui (t,φ)) − fi (ui (t,ϕ))|
⎤

⎦

⎫
⎬

⎭

≤ 2ke2kt
m+n∑

i=1

Pi (η)l2i (t)
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+ 2e2kt

⎧
⎨

⎩
−

m∑

i=1

ai (η)Pi (η)l2i (t) −
n∑

j=1

d j (η)Pm+ j (η)l2m+ j (t)

+
m∑

i=1

Pi (η)li (t)

⎡

⎣
n∑

j=1

(|bi j (η)| + |ci j (η)|) · λm+ j · |lm+ j (t)|
⎤

⎦

+
n∑

j=1

Pm+ j (η)lm+ j (t)

[
m∑

i=1

(|e ji (η)| + |w j i (η)|) · λi · |li (t)|
]⎫
⎬

⎭

≤ 2e2kt |lT (t)|(k Pη − PηWη + Gη Eη Pη)|l(t)|.

Since k Pη − PηWη + Gη Eη Pη < 0, then we have

LV (t, l(t), r(t) = η) < 0.

That is to say, for each r(t) = η ∈ S, we can conclude that

V (l(t)) ≤ V (l(0)) = lT (0)Pηl(0) ≤ λM (Pη)||φ − ϕ||2,

where λM (Pη) = max{λ1,λ2, . . . ,λm+n}.
On the other hand, it can be shown that the following inequality is established for

each r(t) = η ∈ S:

V (t, l(t), r(t) = η) ≥ e2ktλm(Pη)||l(t)||2,

where λm(Pη) = min{λ1,λ2, . . . ,λm+n}.
Hence, we have

e2ktλm(Pη)||l(t)||2 ≤ λM (Pη)||φ − ϕ||2,

which is equivalent to

||L(t, η,φ) − L(t, η,ϕ)|| ≤
√

λM (Pη)

λm(Pη)
||φ − ϕ||e−kt .

By the Definition2.2, we can draw the conclusion that the system (2.2) is globally
exponentially stable for all r(t) = η ∈ S and t ≥ 0.

Remark 2.5 The conclusion is just content under the Assumption2.1, that is to say
the activation functions must meet Lipschitz conditions. The FLBAM model is dif-
ferent from T-S fuzzy BAM model, which has been investigated in [3].
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Remark 2.6 Note that (2.3) is a linear matrix inequality, which can be solved by
using the Matlab LMI toolbox. The matrix is relatively simple on account of that we
haven’t thought of the time delay. General, time-delay exists in many systems, while
in our model we ignore the time-delay for convenience.

2.1.4 Numerical Examples

In this section, a numerical example will be given to demonstrate the feasible of the
proposed results.

Consider the following fuzzy logicalBAMneural networkswithMarkovian jump-
ing parameters:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i (t,η) = −ai (η)ui (t) + ∧2
j=1bi j (η) f j (v j (t))

+ ∨2
j=1ci j (η) f j (v j (t)) + ∧2

j=1αi j (η)g j (t)

+ ∨2
j=1βi j (η)g j (t) + Ii (t),

v̇ j (t,η) = −d j (η)v j (t) + ∧2
i=1e ji (η) fi (ui (t))

+ ∨2
j=1w j i (η) fi (ui (t)) + ∧2

i=1γ j i (η)hi (t)

+ ∨m
i=1δ j i (η)hi (t) + J j (t).

where a1 = a2 = d1 = d2 = 4.5, b = c = e = w =
[
1 1
1 1

]

, α = β = γ = δ =
[
0.5 0.5
0.5 0.5

]

.

We take the activation functions as follows:

fi (x) = 1

2
(|x + 1| − |x − 1|), (i = 1, 2).

To comfort the Assumption2.1, we take λi = 0 (i = 1, 2, 3, 4). Thus, through
the numerical values mentioned above, we can obtain the matrices Wη , Gη , and Eη

as follows:

Wη =

⎡

⎢
⎢
⎣

4.5 0 0 0
0 4.5 0 0
0 0 4.5 0
0 0 0 4.5

⎤

⎥
⎥
⎦ , Gη =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

Eη =

⎡

⎢
⎢
⎣

2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

⎤

⎥
⎥
⎦
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Fig. 2.1 State trajectory of
the system with initial
conditions (4, 2, −2, −4)
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Fig. 2.2 State trajectory of
the system with initial
conditions (2, 1, −1, −2)
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By using Matlab LMI Toolbox, we can solve the LMI (2.3), where the solutions
are as follows:

k = 14.1, Pη =

⎡

⎢
⎢
⎣

15.3 5.6 8.0 8.0
5.6 15.3 8.0 8.0
8.0 8.0 15.3 5.6
8.0 8.0 5.6 15.3

⎤

⎥
⎥
⎦ .

By Theorem2.4, the system is global exponential stable. For this example, the
figures below are the trajectories of the system with different initial conditions. The
initial conditions of Fig. 2.1 is (4, 2, −2, −4) while Fig. 2.2 is (2, 1, −1, −2). The
simulation results show that the system is global exponential stable.

2.1.5 Conclusion

In this section, we have investigated the global exponential stability of fuzzy logical
BAM neural networks with Markovian jumping parameters, which have not been
focus enough attentions on. Based on the Lyapunov functional approach and linear
matrix inequality, a new sufficient stability criteria has been derived, which can be
tested by using the Matlab LMI Toolbox. A numerical example is developed to
demonstrate our proposed results.
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2.2 Synchronization Control of Stochastically Coupled DNN

2.2.1 Introduction

In the past two decades, Delayed neural networks (DNNs) have received considerable
attention from researchers in different fields. As is known, DNNs always present
complex and unpredictable behaviors in practice, besides the traditional stability
and periodic oscillation that have got a great deal of investigated in the past years.
Recently, the synchronization problem of complex dynamical networks [5–9, 13,
17, 18, 27, 35, 38], like the synchronization of DNNs, is becoming the latest focus
of attention.

Thanks to the tireless efforts of the former researchers, several results on neural
network synchronization have been proposed in the literature. For example, in Ref.
[24], synchronization of coupled delayed neural networks was released the first time.
Then, some further studies in this field have appeared in recent years [14–16, 22,
26, 30, 34]. Wang and Cao studied synchronization in an array of linearly coupled
networks with time-varying delay [27], and synchronization in an array of linearly
stochastically coupled networks with time delays [7], respectively. In Ref. [6], via
Lyapunov functional method and LMI approach, synchronization control of stochas-
tic neural networks with time-varying delays has been researched and the estima-
tion gains of controller that can ensure the synchronization have been obtained. In
addition, in Ref. [16], the global exponential synchronization of coupled connected
neural networks with delays was investigated and a sufficient condition was derived
by using the LMI approaching.Meanwhile, through the stability theory for impulsive
functional differential equations, some new criteria to guarantee the robust synchro-
nization of coupled networks via impulsive control were derived in Ref. [26]. And, in
Ref. [30], on the basis of Lyapunov stability theory, time-delay feedback control and
other techniques, the exponential synchronization problem of a class of stochastic
perturbed chaotic delayed neural networks was considered.

It is well known that, time-delays are often encountered in many kinds of neural
networks, which can be the sources of oscillation and instability of neural networks
[25, 28, 29, 31–33]. However, from the literature mentioned above, we can find
that only discrete time-delay has been considered. Another important time-delay,
namely, distributed time-delay, has not attracted wide attention of the researchers.
Ref. [31] pointed out that there is usually a spatial extent in neural networks due
to the presence of many parallel pathways with a variety of axon sizes and lengths,
so, a distribution of propagation delays will appear over a period of time. Although
the signal transmission is sometimes immediate and can be modeled with discrete
delays, it may be distributed during a certain time period [29]. Hence, it is often
the case that modeling a realistic neural network with both discrete and distributed
delays [23].

Cao andWang [7] investigated the synchronization in linearly stochastically cou-
pled networks via a simple adaptive feedback control scheme considering the noises’
influence and the discrete time delays. In Ref. [6], synchronization of stochastic



2.2 Synchronization Control of Stochastically Coupled DNN 23

neural networks with discrete time-delays was researched by using LMI approach.
Motivated by these recently literatures and for the sake of modeling a more realistic
and comprehensive networks, we consider the synchronization of linearly stochasti-
cally coupled networks with both discrete and distributed time-delays.

In this section, we aim to study the synchronization problem in an array of linearly
stochastically coupled neural networks with discrete and distributed time delays. By
employing the Lyapunov-Krasovskii functional method and LMI approach, we give
several new criterions that can ensure the complete synchronization of the system. At
the same time, the estimation gains of the delayed feedback controller are obtained.
Then, an illustrative example is provided to prove the effectiveness of our results.
Finally, we make a conclusion for the section.

2.2.2 Problem Formulation

In Ref. [7], an array of linearly stochastically coupled identical neural networks with
time delays has been considered by Cao and Wang as follows:

dxi (t) = [−Cxi (t) + A f (xi (t)) + B f (xi (t − τ ))]dt + ci

N∑

j=1

Gi jΓ x j (t)dWi1(t)

+ di

N∑

j=1

Gi jΓτ x j (t − τ )dWi2(t) + Ui dt, i = 1, 2, . . . , N , (2.5)

where xi (t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ R
n(i = 1, 2, . . . , N ) is the state vector

associated with the ith DNNs; f (xi (t)) = [ f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t))]T

∈ R
n is the activation functions of the neurons with f (0) = 0; C = diag{c1, c2,

. . . , cn} > 0 is a diagonal matrix that shows the rate of the ith unit resetting
its potential to the resting state in isolation when disconnected from the exter-
nal inputs and the network; A = (ai j )n×n and B = (bi j )n×n stand for, respec-
tively, the connection weight matrix and the discretely delayed connection weight
matrix; Wi = [Wi1, Wi2]T are two-dimensional Brownian motions; Γ ∈ R

n×n and
Γτ ∈ R

n×n denotes the internal coupling of the network at time t and t − τ , where
τ > 0 is the time-delay; ci and di indicate the intensity of the noise;Ui is the input of
the controller; G = (Gi j )N×N describes the topological structure and the coupling
strength of the networks, and it meet the following conditions [27]:

Gii = −
N∑

j=1, j 	=i

Gi j . (2.6)

Though the linearly stochastically coupled neural networks has been investigated
in-depth comparatively, only the discrete time delay was considered. So, in order
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to model a more realistic and comprehensive stochastically coupled DNNs, a novel
model is presented as follows:

dxi (t) =
⎡

⎣−Cxi (t) + A f (xi (t)) + B f (xi (t − τ )) + W

t∫

t−τ

f (xi (s))ds

⎤

⎦ dt

+ ci

N∑

j=1

Gi jΓ x j (t)dWi1(t) + di

N∑

j=1

Gi jΓτ x j (t − τ )dWi2(t)

+ Ui dt, i = 1, 2, . . . , N (2.7)

where W = (wi j )n×n is the distributive delayed connection weight matrix. Then,
we give the form of initial states corresponds with model (2.7) as follows:

For any φi ∈ L
2
F0

([−τ , 0];Rn), we have xi (t) = ϕi (t), i = 1, 2, . . . , N , where
−τ ≤ t ≤ 0.

Remark 2.7 It is obvious to see that both the discrete and distributed time delays
are considered in the new model (2.7). Thus, the model will be more realistic and
comprehensive than (2.5). To the best of the authors’ knowledge, it is the first time
that the synchronization problem of stochastically coupled identical neural networks
with discrete and distributed time delays is proposed. In order to achieve our results,
the following necessary assumption is made:

Assumption 2.8 The activation functions fi (u) are bounded and satisfy the Lip-
schitz condition:

| fi (u) − fi (v)| ≤ βi |u − v| , ∀u, v ∈ R, i = 1, 2, . . . , n, (2.8)

where βi > 0 is a constant.

Remark 2.9 Throughout this literature fi (u), the activation functions of the neurons,
are always supposed to be continuous, differentiable and nondecreasing.Andwe only
need the Lipschitz condition and boundedness to be satisfied. Actually, we can see
this type of activation functions in many papers, such as Refs. [7, 28] etc.

Definition 2.10 Suppose that xi (t; t∗, X∗) is the solution of model (2.7), where
X∗ = (x∗

1 , x∗
2 , . . . , x∗

N ), and r(t) ∈ R
n is the response of an isolated node

dr(t) =
⎡

⎣−Cr(t) + A f (r(t)) + B f (r(t − τ )) + W

t∫

t−τ

f (r(η))dη

⎤

⎦ dt. (2.9)

If there exits a nonempty subset Ψ ⊆ R
n , with x∗

i ∈ Ψ , and for any t ≥ 0, we have
xi (t; t∗, X∗) ∈ R

n and

lim
t→∞ E

∥
∥xi (t; t∗, X∗) − r(t; t∗, x0)

∥
∥2 = 0, (2.10)
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where i = 1, 2, . . . , N , and x0 ∈ R
n , then, it can be said that the DNNs model (2.7)

achieve synchronization.

Next, we denote ei (t) = xi (t)−r(t), which indicates the error signal. From (2.7),
(2.9) and (2.6), the error signal system can be easily obtained as follows:

dei (t) =
⎡

⎣−Cei (t) + Ag(ei (t)) + Bg(ei (t − τ )) + W

t∫

t−τ

g(ei (s))ds

⎤

⎦ dt

+ ci

N∑

j=1

Gi j Γ e j (t)dWi1(t) + di

N∑

j=1

Gi j Γτ e j (t − τ )dWi2(t) + Ui dt, i = 1, 2, . . . , N ,

(2.11)

where g(ei (t)) = f (ei (t) + r(t)) − f (r(t)) and g(ei (t − τ )) = f (ei (t − τ ) + r(t −
τ )) − f (r(t − τ )). From (2.8) and g(0) = 0, it is obvious to see that

‖g(ei (t))‖ ≤ ‖Mei (t)‖ (2.12)

where M = diag{β1,β2,β3, . . . ,βn} > 0 is a known constant matrix.
Considering make the controller more appropriate and realistic, we design a

delayed feedback controller of the following form:

Ui = K1ei (t) + K2ei (t − τ ) (2.13)

where K1 ∈ �n×n and K2 ∈ �n×n are constant gain matrices.

Remark 2.11 As Ref. [6] proposed, in many real applications, the memoryless state-
feedback controller Ui = K ei (t) is more popular, since it has an advantage of
easy implementation, but its performance is not better than (2.13). Though Ui =
K ei (t)+ ∫ t

t−τ K1ei (s)ds is a more general form of delayed feedback controller, it is
difficult for us to handle all the initial states of ei (t). However, the controller (2.13)
is a compromise between better performance and simple implementation. Hence, in
our section, we design the controller as (2.13) shows.

Definition 2.12 If the error signal satisfies that

lim
t→∞ E‖ei (t)‖2 = 0, i = 1, 2, . . . , N (2.14)

then, the error signal system (2.11) is globally asymptotically stable in mean square.
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2.2.3 Main Results and Proofs

In this section, by using a properly designed delayed feedback controller, we will
present a new criteria for the synchronization of stochastically coupled neural net-
works with discrete and distributed time delays on the basis of the Lyapunov-
Krasovskii functional approach.

In order to simplify the description, we denote:

Π11 = P(−C + K1) + (−C + K1)
T P + Q1 + (1 − σi )

−1τ2MT M + cN2ΛλmaxΓ
T Γ,

(2.15)

Π22 = MTM + d N 2ΛλmaxΓ
T
τ Γτ − Q1, (2.16)

Ω = P AAT P + MTM + P B BT P + PW W T P. (2.17)

Theorem 2.13 Let 0 < σi < 1(i = 1, 2, . . . , N ) be any given constants. If there
exit positive definite matrices P = (pi j )n×n and Q1 = (qi j )n×n, such that the
following matrix inequality

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 P K2 P A MT P B PW
∗ ∏

22 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.18)

holds, where Π11 and Π22 are defined in (2.15) and (2.16) respectively, then the
error signal model (2.11) is globally asymptotically stable in mean square.

Proof Define the following Lyapunov-Krasovskii functional candidate V (t, ei (t))
by

V (t, ei (t)) =
N∑

i=1

eT
i (t)Pei (t) +

N∑

i=1

t∫

t−τ

eT
i (s)Q1ei (s)ds

+
N∑

i=1

∫ 0

−τ

∫ t

t+s
eT

i (η)Q2ei (η)dηds (2.19)

where P = (pi j )n×n , Q = (qi j )n×n are positive definite matrices that to be deter-
mined, and Q2 ≥ 0 is given by

Q2 = (1 − σi )
−1τMTM. (2.20)
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By I t ô differential formula, the stochastic derivative of V (t, ei (t)) along error system
(2.11) can be obtained as follows:

dV (t, ei (t)) = LV (t, ei (t))dt +
N∑

i=1

2eT
i (t)P

⎡

⎣ci

N∑

j=1

Gi jΓ x j (t)dWi1(t)

+ di

N∑

j=1

Gi jΓτ x j (t − τ )dWi2(t)

⎤

⎦ , (2.21)

where the weak infinitesimal operator LV of the stochastic process is given by

LV (t, ei (t)) =
N∑

i=1

2eT
i (t)P

⎡

⎣− Cei (t) + Ag(ei (t)) + Bg(ei (t − τ))

+ K1ei (t) + K2ei (t − τ ) + W

t∫

t−τ

g(ei (s))ds

⎤

⎦

+
N∑

i=1

⎡

⎣eT
i (t)(Q1 + τ Q2)ei (t) − eT

i (t − τ )Q1ei (t − τ )

−
t∫

t−τ

eT
i (s)Q2ei (s)ds

⎤

⎦

+ c2i

N∑

i=1

⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦

+ d2
i

N∑

i=1

⎡

⎣
N∑

j=1

Gi jΓτ e j (t − τ )

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓτ e j (t − τ )

⎤

⎦

=
N∑

i=1

⎧
⎨

⎩
2[eT

i (t)P(−C + K1)ei (t) + eT
i (t)P K2ei (t − τ )

+ eT
i (t)P Ag(ei (t)) + eT

i (t)P Bg(ei (t − τ )) + eT
i (t)PW

×
t∫

t−τ

g(ei (s))ds] + eT
i (t)(Q1 + τ Q2)ei (t) − eT

i (t − τ)Q1ei (t − τ )



28 2 Exponential Stability and Synchronization Control of Neural Networks

−
t∫

t−τ

eT
i (s)Q2ei (s)ds + c2i

⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦

+ d2
i

⎡

⎣
N∑

j=1

Gi jΓτ e j (t − τ )

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓτ e j (t − τ )

⎤

⎦

⎫
⎪⎬

⎪⎭
. (2.22)

Then, following from the relation (2.12) and Lemma1.13, we can obtain

eT
i (t)P Ag(ei (t)) ≤ 1

2
eT

i (t)P AAT Pei (t) + 1

2
gT (eT

i (t))g(ei (t))

≤ 1

2
eT

i (t)P AAT Pei (t) + 1

2
eT

i (t)MTMei (t) (2.23)

eT
i (t)P Bg(ei (t − τ )) ≤ 1

2
eT

i (t)P B BT Pei (t) + 1

2
gT (eT

i (t−τ ))g(ei (t − τ ))

≤ 1

2
eT

i (t)P B BT Pei (t) + 1

2
eT

i (t−τ )MTMei (t − τ ) (2.24)

eT
i (t)PW

t∫

t−τ

g(ei (s))ds ≤ 1

2
eT

i (t)PW W T Pei (t)

+ 1

2

⎛

⎝

t∫

t−τ

g(ei (s))ds

⎞

⎠

T ⎛

⎝

t∫

t−τ

g(ei (s))ds

⎞

⎠ (2.25)

where M = diag{β1,β2, . . . ,βn} is a known constant matrix. Moreover, it can be
seen from Lemma1.20, (2.12) and (2.20) that

1

2

⎛

⎝

t∫

t−τ

g(ei (s))ds

⎞

⎠

T ⎛

⎝

t∫

t−τ

g(ei (s))ds

⎞

⎠ ≤ 1

2
τ

∫ t

t−τ
gT (ei (s))g(ei (s))ds

≤ 1

2
τ

∫ t

t−τ
eT

i (s)MTMei (s)ds = 1

2
(1 − σi )

t∫

t−τ

eT
i (s)Q2ei (s)ds. (2.26)

Hence, from (2.25) and (2.26), we have

eT
i (t)PW

t∫

t−τ

g(ei (s))ds ≤ 1

2
eT

i (t)PW W T Pei (t)+ 1

2
(1−σi )

t∫

t−τ

eT
i (s)Q2ei (s)ds

(2.27)

http://dx.doi.org/10.1007/978-3-662-47833-2_1
http://dx.doi.org/10.1007/978-3-662-47833-2_1
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Next, we can estimate the two following terms by

⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓ e j (t)

⎤

⎦ ≤ N G2
i j

N∑

j=1

eT
j (t)Γ T Γ e j (t)

≤ N G2
i jλmax(Γ

T Γ )

N∑

j=1

eT
j (t)e j (t),

(2.28)
⎡

⎣
N∑

j=1

Gi jΓ τ e j (t − τ )

⎤

⎦

T ⎡

⎣
N∑

j=1

Gi jΓτ e j (t − τ )

⎤

⎦

≤ N G2
i j

N∑

j=1

eT
j (t − τ )Γ T

τ Γτ e j (t − τ )

≤ N G2
i jλmax(Γ

T
τ Γτ )

N∑

j=1

eT
j (t − τ )e j (t − τ ) (2.29)

Therefore, applying (2.23), (2.24), (2.27)–(2.29) to (2.22), one yields

LV (t, ei (t)) ≤
N∑

i=1

2eT
i (t)P(−C + K1)ei (t) + 2eT

i (t)P K2ei (t − τ )

+ eT
i (t)P AAT Pei (t) + eT

i (t)MTMei (t) + eT
i (t)P B BT Pei (t)

+ eT
i (t − τ )MTMei (t − τ ) + eT

i (t)PW W T Pei (t)

+ (1 − σi )

t∫

t−τ

eT
i (s)Q2ei (s)ds + eT (t)(Q1 + τ Q2)ei (t)

− eT
i (t − τ )Q1ei (t − τ ) −

t∫

t−τ

eT
i (s)Q2ei (s)ds + cNΛλmax(Γ

T Γ )

×
N∑

j=1

eT
j (t)e j (t) + d NΛλmax(Γ

T
τ Γτ )

N∑

j=1

eT
j (t − τ )e j (t − τ )}
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=
N∑

i=1

⎧
⎨

⎩
eT

i (t)[2P(−C + K1) + P AAT P + MTM + P B BT P

+ PW W T P + Q1 + τ Q2 + cN 2Λλmax(Γ
T Γ )]ei (t)

+ 2eT
i (t)P K2ei (t − τ ) + eT

i (t − τ )[MTM + d N 2Λλmax(Γ
T
τ Γτ )

−Q1]ei (t − τ ) − σi

t∫

t−τ

eT
i (s)Q2ei (s)ds

⎫
⎬

⎭

≤
N∑

i=1

{
[

ei (t) ei (t − τ )
]
[∏

11 + Ω P K2

K T
2 P

∏
22

] [
ei (t)

ei (t − τ )

]}

=
N∑

i=1

{
[

ei (t) ei (t − τ )
]

N

[
ei (t)

ei (t − τ )

]}

(2.30)

where N =
[∏

11 + Ω P K2

K T
2 P

∏
22

]

,Λ = max1≤i, j≤N

{
G2

i j

}
, c = max1≤i≤N

{
c2i
}
and

d = max1≤i≤N
{
d2

i

}
.

From Lemma1.21, the form of N =
[∏

11 + Ω P K2

K T
2 P

∏
22

]

< 0 can be transformed

to (2.18), and the two forms are equivalent. It is obvious to see from (2.29) and I t ô
rule that

EV (t, ei (t)) − EV (t0, ei (t0)) = E

∫ t

t0
LV (s, ei (s))ds (2.31)

For the positive constant ηi > 0(i = 1, 2, . . . , N ), it can be concluded that

ηiE‖ei (t)‖2 ≤ EV (t, ei (t)) ≤ EV (t0, ei (t0)) + E
∫ t

t0
LV (s, ei (s))ds

≤ EV (t0, ei (t0)) + λmaxE

∫ t

t0
‖ei (t)‖2ds (2.32)

whereλmax < 0 indicates themaximal eigenvalue of N . Therefore, fromall the above
proofs and results (2.32), together with the study in Ref. [30], we can conclude that
the error signal model (2.11) is globally asymptotically stable in mean square. This
completes the proof.

Remark 2.14 As it is presented in Theorem2.13, the synchronization of an array of
linearly stochastically coupled identical neural networkswith discrete and distributed
time delays can be guaranteed if the matrix inequality (2.18) is feasible. Since (2.18)
is linear with P > 0 and Q1 > 0, by utilizing the Matlab LMI toolbox, we can
check the feasibility of (2.18) directly. Meanwhile, the estimate gain matrix K1 and
K2 can also be obtained.

http://dx.doi.org/10.1007/978-3-662-47833-2_1
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Remark 2.15 In this section, for the sake of simplifying the description, we are
concerned with the constant time delay. As for time-varying delay, we can derive the
similar results without difficulties, which will be more realistic and comprehensive.

Corollary 2.16 Let 0 < σi < 1(i = 1, 2, . . . , N ) be any given constants. If
there exits a positive definite matrix Q1 = (qi j )n×n, such that the following matrix
inequality:

N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 ρK2 ρA MT ρB ρW
∗ Ξ22 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.33)

holds, where
Ξ11 = ρ(−C + K1)+ρ(−C + K1)

T + Q1+(1 − σi )
−1τ2MTM+cN 2ΛλmaxΓ

T Γ

and Ξ22 = MTM + d N 2ΛλmaxΓ
T
τ Γτ − Q1 then the error signal model (2.11) is

globally asymptotically stable in mean square.

Proof Let P = ρI , where ρ is a positive constant and I is the identity matrix. From
Theorem2.13 we can obtain Corollary2.16 immediately.

For the sake of presenting the designed estimate gain matrix K1 and K2 by using
the LMI toolbox in Matlab conveniently, we made a simple transformation. Then,
the following theorem can be easily derived.

Theorem 2.17 Let 0 < σi < 1(i = 1, 2, . . . , N ) be any given constants. If there
exits positive definite matrices P = (pi j )n×n and Q1 = (qi j )n×n, such that the
following matrix inequality

N2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11 K ∗
2 P A MT P B PW

∗ Ω22 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.34)

holds, where Ω11 = −PC + K ∗
1 − CT P + K ∗T

1 + Q1 + (1 − σi )
−1τ2MTM +

cN 2ΛλmaxΓ
T Γ and Ω22 = MTM + d N 2ΛλmaxΓ

T
τ Γτ − Q1, furthermore, K ∗

1 =
P K1 and K ∗

2 = P K2, then the error signal model (2.11) is globally asymptotically
stable in mean square.

Proof In Theorem2.13, let K1 = P−1K ∗
1 and K2 = P−1K ∗

2 . Then Theorem2.17
can be derived directly.

Remark 2.18 The method in Theorem2.17 of solving the estimate gain matrix K1
and K2 once be used in Ref. [6], and it is very useful to design the controller that can
ensure the system (2.7) achieve synchronization.
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Corollary 2.19 Let 0 < σi < 1(i = 1, 2, . . . , N ) be any given constants. If
there exits a positive definite matrix Q1 = (qi j )n×n, such that the following matrix
inequality:

N3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δ11 K ∗
2 ρA MT ρB ρW

∗ Δ22 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.35)

holds, where Δ11 = −ρC + K ∗
1 − ρCT + K ∗T

1 + Q1 + (1 − σi )
−1τ2MTM +

cN 2ΛλmaxΓ
T Γ and Δ22 = MTM + d N 2ΛλmaxΓ

T
τ Γτ − Q1, furthermore, K ∗

1 =
ρK1 and K ∗

2 = ρK2, then, the error signal model (2.11) is globally asymptotically
stable in mean square.

Proof Let P = ρI in Theorem2.17, where ρ is a positive constant and I is the
identity matrix. Then, we can obtain Corollary2.19 immediately.

Remark 2.20 Through Corollaries2.16 and 2.19, it is obvious to see that our main
result in Theorem2.13 is general enough to contain some special cases, such as
P = ρI .

2.2.4 Illustrative Example

In this section, our main purpose is to authenticate the global asymptotical stability
of the error signal model (2.11). In order to illustrate the effectiveness of our results,
an example is presented here.

Example
Consider, the following chaotic DNNs with discrete and distributed time delays:

dx(t) =
⎡

⎣−Cx(t) + A f (x(t)) + B f (x(t − τ )) + W

t∫

t−τ

f (x(s))ds

⎤

⎦ dt (2.36)

where x(t) = [x1(t), x2(t)]T is the state vector of the single node in the DNNs,
f (x(t)) = [tanh(x1(t)), tanh(x2(t))]T , τ = 1,

C =
[
1 0
0 1

]

, A =
[

2 −0.1
−4.8 4.5

]

, B =
[−1.7 −0.1

−0.3 −4.1

]

, W =
[−1.2 −0.3

−0.4 −3.2

]

.

In the condition that the initial value is chosen as x1(t) = 0.4, x2(t) = 0.6,∀t ∈
[−1, 0], the chaotic phase trajectories can be easily obtained as Fig. 2.3 shows.
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Fig. 2.3 Chaotic phase
trajectories
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In order to verify the effectiveness of our results that can make the model (2.11)
achieve synchronization, we just need to test the global asymptotical stability of the
error signal model as the following shows:

dei (t) =
⎡

⎣−Cei (t) + Ag(ei (t)) + Bg(ei (t − τ )) + W

t∫

t−τ

g(ei (s))ds

⎤

⎦ dt

+ ci

N∑

j=1

Gi jΓ e j (t)dWi1(t) + di

N∑

j=1

Gi jΓτ e j (t − τ )dWi2(t)

+ [K1ei (t) + K2ei (t − τ )]dt, (2.37)

where i = 1, 2, . . . , N , ei (t) = [ei1(t), ei2(t)]T . Let ci = √
0.1, di = √

0.1, N = 4,

Γ =
[
1 0
0 1

]

, Γτ =
[
1 0
0 1

]

, and the coupling matrix Gi j =

⎡

⎢
⎢
⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎤

⎥
⎥
⎦

4×4

.

The constant matrix M referred in (2.12) is chosen as M =
[
1.2 0
0 1.2

]

. Then accord-

ing to Theorem2.13 and by utilizing the Matlab LMI toolbox, the following feasible
results are derived:

P =
[
4.9114 0.4327
0.4327 1.4143

]

, Q1 =
[
21.4806 0.1140
0.1140 20.5590

]

,

K ∗
1 =

[−45.4784 0.0047
0.0047 −45.5166

]

, K ∗
2 =

[−7.0969 −0.0766
−0.0766 −6.4766

]

Next, from K1 = P−1K ∗
1 and K2 = P−1K ∗

2 , we can obtain the estimate gain
matrix
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Table 2.1 Initial states of
model (2.37)

i 1 2 3 4

ei1(t) 0.4 1.4 2.4 3.4

ei2(t) −1.6 −0.6 0.4 1.4

Fig. 2.4 Synchronization
error of ei1
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Fig. 2.5 Synchronization
error of ei2
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K1 =
[−9.5166 2.9151

2.9151 −33.0759

]

, and K2 =
[−1.4801 0.3987

0.3987 −4.7022

]

immediately.
Under the Initial states as given in Table2.1 applying the above-mentioned results

to the error signal model (2.37), we can derive the wave diagrams of the error signal
ei1(t) and ei2(t) as Figs. 2.4 and 2.5 show, respectively (i = 1, 2, 3, 4).

In Figs. 2.4 and 2.5, it is obvious to see that the error signal model (2.37) or
(2.11) is globally asymptotically stable. That is to say, from our simulation results, it
can be found that the synchronization of an array of linearly stochastically coupled
identical neural networks with discrete and distributed time delays is achieved by
using the delayed feedback controller that we designed. Thus, our theoretical results
have been tested to be true by the simulations, and we can conclude that our study in
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the synchronization control problem of stochastically coupled neural networks with
discrete and distributed time delays is practical and effective.

2.2.5 Conclusion

The synchronization control problem for an array of coupled DNNs has been thor-
oughly studied in this section. Several sufficient conditions to guarantee the synchro-
nization have been obtained by constructing a Lyapunov-Krasovskii functional and
using the LMI approach. Especially, the discrete and distributed time delay terms
have been considered in the model, together with the stochastic coupling term. The
delayed feedback controller gains have been gained based on the stability condition of
error system. Finally, an illustrative example has been given to verify the theoretical
analysis. The results are novel, because there are few works about the synchroniza-
tion of system with both discrete and distributed time delays. At the same time, it is
possible to apply the results to the realistic systems in practice.
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