
Enhancing Dataset Processing in Hadoop
YARN Performance for Big Data
Applications

Ahmed Abdulhakim Al-Absi, Dae-Ki Kang and Myong-Jong Kim

Abstract In Hadoop MapReduce distributed file system, as the input dataset files
get loaded and split to every worker, workers start to do the required computation
according to user logic. This process is done in parallel using all nodes in the cluster
and computes output results. However, the contention of resources between the map
and reduce stages cause significant delays in execution time, especially due to the
memory IO overheads. This is undesired because the task execution in the Hadoop
MapReduce induces an overhead in considering redundant data in case of imprecise
applications which increases the execution time. Thus, in this paper we present our
approach to optimize local worker memory management mechanism to reduce the
presence of null schedule slots. Efficient utilization of slots leads to reduce exe-
cution times. The local memory management mechanism adopted enables efficient
parallel execution and reduced memory overheads. The approach effectively
reduced the MapReduce computation time which minimizes the budget for appli-
cation execution in the cloud.

Keywords Dataset � Hadoop YARN � MapReduce � Big data � Cloud computing

A.A. Al-Absi (&) � D.-K. Kang
Division of Computer and Information Engineering, Dongseo University, Busan, Korea
e-mail: absiahmed@gmail.com; ahmed_absi2005@yahoo.com

D.-K. Kang
e-mail: dkkang@dongseo.ac.kr

M.-J. Kim
School of Business, Pusan National University, 63 Beon-gil 2, Busandaehag-ro,
Geumjeong-gu, 609-735 Busan, Korea
e-mail: mjongkim@pusan.ac.kr

© Springer-Verlag Berlin Heidelberg 2016
J.J. (Jong Hyuk) Park et al. (eds.), Advanced Multimedia and Ubiquitous Engineering,
Lecture Notes in Electrical Engineering 354,
DOI 10.1007/978-3-662-47895-0_2

9



1 Introduction

With the increase in population and beneficiary of internet services, data size is
getting increased day by day where 100s of quadrillion of data files are there in
cloud available in unstructured nature [1]. On the other hand the application of
data-insensitive applications does need certain optimum approach to manage these
data files and retrieve the data even without mammoth task and complexity. Various
applications like IaaS and PaaS do need the applications which can be effective for
providing optimum data access in real time operations. Taking into account of these
all circumstances, now days, a number of research works being going on, and
Hadoop was one of the significant outcomes that is being used extensively for cloud
frameworks.

Hadoop [2] is open-source software in the form of a highly scalable and fault
tolerant distributed system which plays a very significant role in data storage and its
processing. This framework Hadoop encompasses two dominant parts, first Hadoop
distributed file system (HDFS) while second refers for MapReduce. HDFS is the
mechanism to classify data on nodes or clusters and provide an interface for data
management between users, tasks trackers and nodes or machines. The space where
there is certain optimization scope is MapReduce.

According to [3] the main issue with MapReduce framework is its
batch-processing oriented nature, which means stateless mapper followed by a
stateless reducer, that are executed by a batch job scheduler. This paradigm makes
repeated querying of datasets difficult and imposes limitations. Moreover, the
process of mapping and converting to intermediate combiner is a time consuming
and need to be optimized. In cloud context and due to the cloud heterogeneous
behavior existing between the central servers and storing disks, there must be
something parallel architecture that could enhance the processing speed and data
retrieval rate in MapReduce [4].

A number of researches like in [5, 6] have been done for optimization for
MapReduce framework, but still there exists a huge scope for further optimization
with diverse cloud platform to come up with the optimum cloud computing model.
Taking into consideration of these factors, here in this paper, we introduce a parallel
execution model based on MapReduce framework. The major contributions of the
parallelized model are in the local worker memory management mechanism and the
optimization technique adopted to reduce the presence of null schedule slots. The
worker nodes i.e. the Map workers and Reduce workers operate based on the slots
assigned. Efficient utilization of slots leads to reduced execution times. The local
memory management mechanism adopted enables efficient parallel execution and
memory overhead reduction. As in Hadoop our approach also considers the data in
chunks. The Map Workers in MapReduce framework perform computations on the
chunks of data. In our work, these chunks of data are further split to enable parallel
execution in the Map Worker nodes.

10 A.A. Al-Absi et al.



2 Hadoop Scenario and Proposed Solution

2.1 Motivation

In MapReduce programming model, Hadoop runs MapReduce files in the form of
(Key, Value). Converting these input text files into form of (Key, value) requires
passing the values from the input split to mapper by one more pre-defined interface
called Record Reader [7]. The key of the split file is associated with each line by its
byte offset in which the Record Reader is invoke repeatedly on the input until the
entire InputSplit file completed whereas each invocation of the RecordReader leads
to another call to the map() method of the Mapper and store the intermediate result
into the combiner [7].

The main issue is that the contention of resources between the map and reduce
stages causes significant delays in execution time, especially due to the memory IO
overheads. As the Hadoop map stage is initially completed, the reduce task is
performed. This kind of a serial execution mode can hinder execution performance.
MapReduce Map processes are initiated sequentially as splits the dataset into small
chunks. The map and reduce workers perform their tasks in their pre assigned slots.
The presence of ideal or unutilized slots affects system performance. The task
execution in the Hadoop MapReduce induces an overhead in considering redundant
data in case of data-intensive applications which increases the execution time. This
is undesired for a number of reasons because it requires more storage and consumes
more computation time. Therefore, the next section addresses this issue by a
solution to optimize map computation time and improves the storage efficiently.

2.2 Proposed Solution

In Hadoop MapReduce, the contention of resources between the map and reduce
stages cause significant delays in execution time, especially due to the memory IO
overheads. This is undesired because it requires more storage and computation
time. Thus, to enhance performance of MapReduce and resource utilization, we
present our approach to optimize MapReduce performance by data reduction
technique. In our approach, the map and the reduce slots assignments are optimized
to minimize the occurrence of null slots or unoccupied slots. The Map Workers
receive the chunk data from the cloud storage and store the data in the local cache
memory. The received data in MapReduce is further split into parallel data blocks in
our approach. Figure 1 illustrates our parallel data model in Hadoop MapReduce.

As is noted, each data block is executed in a parallel fashion. In addition to the
parallel execution, redundant and previously computed data is eliminated from the
local memory to achieve reduction in execution time and storage overheads. It is
observed that the local memory available with the Map Workers reduces in size as
the execution time increases. The reduction in the local memory is dependent on the

Enhancing Dataset Processing in Hadoop … 11



actual computation function. The Map Workers store the intermediate results in the
cloud storage. The Reduce workers utilize the intermediate data to perform the
reduce tasks. For example, in wordcount, suppose we have a file contains A to Z, if
worker-1 has done the computation for “A”, the file in which the next worker will
get is the file with “A” already removed. Workers will do their individual work and
as soon as one worker finishes its job it goes to the next level in parallel processing.
The words are eliminated and stored in central store. Therefore, the loading and
computation process will also be expedited in our approach. Figure 2 presents our
data reduction in Hadoop MapReduce.

3 Performance Evaluation

3.1 Experiment Setup

In order to implement our system to optimize Hadoop MapReduce performance by
data reduction, we considered Microsoft Azure cloud platform for our developed
and optimized Hadoop implementation. Here we implement Microsoft Azure
HDinsight technology for creation of virtual machines.

Fig. 1 The proposed data reduction in Hadoop MapReduce

12 A.A. Al-Absi et al.



Wikipedia dataset [8] were downloaded as text files for our work. These text files
converted into 10 small chunk files, where each file was just over 25 MB. Each
Map task processes one of these chunk files. This resulted in a total dataset size of
approximately 250, which was copied to the local storage as well as to Azure blob
storage service. We used three datasets for Wordcount application benchmark
(Small S 100 MB, Medium M 200 MB, Large L 250 MB). The datasets used to test
MapReduce loaded input files execution times issue on the wordcount example jobs
that come with the Hadoop distribution. We used wordcount application as a
benchmark for our experiment and we installed our work on the ongoing devel-
opment of Apache Hadoop YARN (Yet Another Resource Negotiator) version
2.4.0.2.1.3.0.

3.2 Evaluation Result

This section presents the evaluation results for our work in enhancing MapReduce
using the data reduction. The experiment has been executed for the purpose of
evaluating the Map phase aiming to observe the Hadoop map phase execution time
before and after applying data reduction approach. We sequentially have executed
several requests for the word count application and on each request, we have
checked the execution time of map’s total time spent by all maps in occupied slots
in milliseconds (ms). Figure 3 represents the execution time of our work in
Microsoft Azure for wordcount with 4 workers when we vary the input dataset size.

From Fig. 3, it is clear that the execution time increases as the size of input data
scales. Furthermore, Hadoop acquires poor performance compared to our work with
data reduction. It is because MapReduce’s performance is affected due to the
contention of resources between the map and reduce stages which cause significant

Fig. 2 The proposed data reduction process

Enhancing Dataset Processing in Hadoop … 13



delays in execution time, especially due to the memory IO overheads which affect
I/O performance and require more storage. Note that our approach has effectively
reduced the MapReduce computation time by considering the input data compu-
tation in a parallel fashion. The local memory management aids in memory over-
head reductions. The optimization strategy to reduce the occurrences of unutilized
slots improves the execution efficiency.

Figure 4 reports the wordcount execution with data reduction compared to tra-
ditional Hadoop as we scale the number of workers in small dataset. In this graph,
the less the execution time the higher the performance.

We can find it clear from Fig. 3 that the reduction of the execution times had a
big impact on datasets inputsplit execution performance. The reduction approach
was able to successfully complete execution of the Map before the Hadoop with the
scalability of workers in different input file size small, medium and large datasets.

From the experiment results, we conclude that the data input loading in
MapReduce is an important factor in terms of I/O performance on cloud environ-
ment. The contention of resources between the map and reduce stages cause sig-
nificant delays in execution time, especially due to the memory IO overheads. In

Fig. 3 Workers over all
execution time performance
comparison of “wordcount”
benchmark between Hadoop
and data reduction approach
in different datasets

Fig. 4 Scale Wordcount Execution Time for small dataset input file

14 A.A. Al-Absi et al.



our approach, The Map Workers receive the chunk data from the cloud storage and
store the data in the local cache memory. The received data is further split into
parallel data blocks and therefore our work approach outperforms Hadoop by a
factor of 7.44 in wordcount application. Our approach has provided faster com-
putation time with less storage, which minimizes the budget for application exe-
cution in the cloud.

4 Conclusion and Future Work

In Hadoop based cloud computing systems, the contention of resources between the
map and reduce stages cause significant delays in execution time, especially due to
the memory IO overheads. This is undesired because the task execution in the
Hadoop MapReduce induces an overhead in considering redundant data in case of
imprecise applications which increases the execution time. Thus, this paper pre-
sented our approach to optimize local worker memory management mechanism to
reduce the presence of null schedule slots. The approach effectively reduced the
MapReduce computation time which minimizes the budget for application execu-
tion in cloud.

For future work, we are planning to analyze and compare the performance of our
work in other high performance computing application like gene sequencing,
sequence matching, and page ranking.

Acknowledgment This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. NRF-2013R1A1A2013401).

References

1. Gupta, P.K.: Introduction to Analytics and Big Data/Hadoop. Implementing Information
Infrastructure Summit (IIIS). Marina Mandarin, Singapore, 30 May 2013. http://issuu.com/
fairfaxbm/docs/cws_jul-aug2013/17

2. http://hadoop.apache.org/
3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2008)
4. Kolb, L., Thor, A., Rahm, E.: Load balancing for mapreduce-based entity resolution. In: 2012

IEEE 28th International Conference on Data Engineering (ICDE), pp. 618–629 (2012)
5. Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., Li, W.: A hierarchical framework for cross-domain

MapReduce execution. In: Proceedings of ECMLS, pp. 15–22 (2011)
6. Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., Stoica, I.: Improving mapreduce

performance in heterogeneous environments. In: OSDI. USENIX, pp. 29–42 (2008)
7. https://developer.yahoo.com/hadoop/tutorial/module4.html
8. Thottethodi, M., Ahmad, F., Lee, S., Vijaykumar, T.N.: Puma: Purdue mapreduce benchmarks

suite. Technical Report, Purdue University (2012)

Enhancing Dataset Processing in Hadoop … 15

http://issuu.com/fairfaxbm/docs/cws_jul-aug2013/17
http://issuu.com/fairfaxbm/docs/cws_jul-aug2013/17
http://hadoop.apache.org/
https://developer.yahoo.com/hadoop/tutorial/module4.html


http://www.springer.com/978-3-662-47894-3


	2 Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications
	Abstract
	1 Introduction
	2 Hadoop Scenario and Proposed Solution
	2.1 Motivation
	2.2 Proposed Solution

	3 Performance Evaluation
	3.1 Experiment Setup
	3.2 Evaluation Result

	4 Conclusion and Future Work
	Acknowledgment
	References


