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Abstract Generally speaking, it is not fully understood why and how metaheuristic
algorithms work very well under what conditions. It is the intention of this paper to
clarify the performance characteristics of some of popular algorithms depending on
the fitness landscape of specific problems. This study shows the performance of
each considered algorithm on the fitness landscapes with different problem characte-
ristics. The conclusions made in this study can be served as guidance on selecting
algorithms to the problem of interest.
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1 Introduction

Numerous optimization algorithms have been proposed to tackle a number of
problems that cannot be solved analytically. Generally, a newly developed algo-
rithm is compared with a set of existing algorithms with respect to their perfor-
mances on a set of well-known benchmark functions. The development is
considered as a success if the new algorithm outperforms the existing algorithms
considered. However, conventional benchmark test problems have a limited range
of fitness landscape structure (e.g., the number and height of big valley), which
makes it difficult to investigate the performance of newly developed algorithm on
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the landscape with specific geometric property [1-2]. Therefore, previous studies
provided little guidance for practitioners on selecting the best-suitable algorithm to
the problem of interest [3-4].

Recently, a fitness landscape generator proposed by Gallagher and Yuan [5]
has drawn attention in the study of various nature-inspired algorithms. The pro-
posed landscape generator is used to generate optimization solution surfaces for
continuous, boundary-constrained optimization problems and parameterized
by a small number of parameters each of which controls a particular geometric
feature of the generating landscapes. Therefore, by using the generator, a number
of fitness landscapes of various geometric features can be generated and used
for the full investigation of relative strengths and weaknesses of algorithms. Gen-
eral guidance on the algorithm selection can be extracted from the results of the
investigations.

This paper compared the performances of eight optimization algorithms using
fitness landscapes generated by a modified Gaussian fitness landscape generator
originally proposed in Gallagher and Yuan [5]. Eight algorithms are compared
with respect to their expected performance and the performance variation (perfor-
mance reliability). Radar plots of several algorithms were drawn and compared to
indicate the level of the two performance measures.

2 Methodology

The following sections describe the selected eight algorithms, methodologies for
test problem generation, and performance measures and its visualizations.

2.1 Algorithm Selection

In this study, total of eight optimization algorithms are compared with respect to
their performances on generated fitness landscapes. Eight algorithms are listed as
follows: random search (RS) as a comparison target, simulated annealing (SA) [6],
particle swarm optimization (PSO) [7], water cycle algorithm (WCA) [8], genetic
algorithms (GAs) [9], differential evolution (DE) [10], harmony search (HS) [11,
12], and cuckoo search (CS) [13]. Most algorithms were inspired by nature phe-
nomena or animal behavior and their fundamental optimization mechanisms are
based on generating new solutions while adopting different strategies for the task.
RS keeps randomly generating new solutions within the allowable range until
stopping criteria are met. SA, inspired by annealing process in metallurgy, moves
the current state (solution) of a material to some neighboring state with a probabil-
ity that depends on two energy states and a temperature parameter. PSO simulates
social behavior of organisms in a bird flock or fish school in which particles in a
swarm (solutions in a population) are guided by their own best position as well as
the entire swarm's best known position. WCA mimics the river network genera-
tion process where streams are considered as candidate solutions. GAs has gained
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inspiration from natural adaptive behaviors, i.e., "the survival of the fittest". In
DE, a new solution is generated by combining three existing randomly selected
solutions from the population. HS was inspired by the musical ensemble and con-
tains a solution storage function called harmony memory. CS was inspired by the
obligate brood parasitism of some cuckoo species and their various strategies for
choosing the nest to lay their eggs.

For more details on the algorithm, please refer to the references supplied above.

2.2 Test Problem Generation

To test and compare a newly developed metaheuristic algorithm, several well-
known benchmark problems (e.g., Ackley and Rosenbrock functions) have been
used [14-17]. In this study, however, a set of fitness landscapes was generated
using a Gaussian fitness landscape generator proposed in Gallagher and Yuan [5]
and used for testing the reported algorithms. In the generator, a set of n-
dimensional Gaussian functions are combined to generate a n-dimensional fitness
landscape where "the value of a point is given by the maximum value of any of
the Gaussian components at that point" [5].

There are several advantages of using such fitness landscape generators com-
pared to using classical benchmark problems [3]. First, the structure of test prob-
lems can be easily tunable by a user by altering a small number of parameters.
Therefore, general conclusions on the performance of an algorithm can be made
by relating its performance to the fitness landscapes in the specific structures.
Finally, a large number of fitness landscapes in similar structure can be generated
and used to increase the reliability of comparison results. The generated landscape
provides a platform for consistent comparison of the eight algorithms listed in
Section 2.1.

We considered two new parameters in the Gallagher and Yuan's Gaussian land-
scape generator to additionally manipulate the structure of big valley and the range
of optimums. The modified generator has six input parameters: n, m, ul, r, w, and
d. n indicates the dimensionality of the generated landscape, while m sets the
number of local optimum. u/ defines the rectangular boundary of the solution
space. r indicates the ratio between the fitness values of the best possible local
optimum and the global optimum. w is an identical component in the covariance
matrix of the Gaussian functions and controls the orientation and shape of each
valley in the landscape. Finally, d defines the boundary of the centers of Gaussian
components.

Total of twenty-four landscapes were generated using the default parameters
(bold numbers in Table 1) of four dimensions (n = 4), three local optimums (m = 3),

X
the Euclidean distance between the upper and lower limits of 20 (—IOS[X:]SIO for
the 2-D problem), average ratio of local optimum to global optimum of 0.3, w =
0.03, and d = 0.6, with only changing a single parameter's value for each landscape.
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Table 1 Parameters in the modified Gaussian fitness landscape generator

Parameter Values used

n (dimensionality) [2,4,6,8]

m (number of local optima) [0, 3, 6, 9]

ul (interval span of side constraints) [10, 20, 30, 40]

r (ratio of local optima) [0.1, 0.3, 0.6, 0.9]

w (valley structure coefficient) [0.01, 0.03, 0.06, 0.09]
d (peak density ratio) [0.4, 0.6, 0.8, 1.0]

Fig. 1 shows the 2-D fitness landscape generated using the maximum parame-
ters m =9, ul =40, r = 0.9, w = 0.09, and d = 1.0). Therefore, there exist ten
peaks that include nine local optimums and one global optimum. As entered in-
puts, the heights of nine local optimums were lower than 0.9, while global maxi-
mum is 1.0. The range of two decision variables varies from -20 to 20, while the
height of peaks is bounded within £20 (i.e., £1.0 x 20).
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Fig. 1 A 2-D landscape generated by the Gaussians landscape generator: (a) surface plot,
and (b) contour plot

2.3 Performance Measures and Their Visualizations

We ran each algorithm for 20 times on each landscape in the twenty-four landscapes
each of which represents each particular characteristic structure. Stochastic natures of
the algorithms result in the different optimal solution from each optimization. In this
study, therefore, we compared the expected performance and reliability of each algo-
rithm to changing landscape structures, in the form of a radar plot as shown in Fig. 2.
The former is measured by the averaged fitness distance (error) of final solutions
from the known global optimum. On the other hand, the reliability of each algorithm
is quantified by the standard deviation (SD) of the average error. Therefore, more
robust algorithm results in smaller standard deviations of the error.

A radar plot is in the form of hexagon where six axes connect the center
and corners of hexagon. The values of performance measures decrease from the
center to the corners of hexagon. Algorithm's performance on a particular charac-
teristic structure is represented by positioning each corner of the colored hexagon.
Therefore, an algorithm with larger surface area has better performance.
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3 Optimization Results

For each of the twenty optimization trials, independent initial population is ran-
domly generated. The maximum number of function evaluations (NFEs) was set
as 2,500 and consistently used as a stopping criterion for each reported algorithm.
Fig. 2 shows radar plots indicating average error (blue areas in Fig. 2) and the
standard deviation (SD) of the average error (red areas in Fig. 2) for each of eight
algorithms with respect to different landscape features. Values close to the corners
of the hexagon indicate a smaller value of the average error and the SD in the blue
and red areas, respectively. Therefore, a robust algorithm has a large surface area.
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Fig. 2 Radar plots indicating average error (blue surfaces) and the SD of the average error
(red surfaces) for each of eight algorithms with respect to different landscape features
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The largest surface area was observed from DE. The average errors in DE are
very close to zero for all fitness landscapes, also showing robust performances for
SD (standard deviations are close to zero). PSO, GAs, and HS have shown overall
good performances and outperformed the rest of the algorithms. HS was especially
good in the fitness landscape with wide-spreading local optimums. The perfor-
mance of PSO and WCA were variable in the wide fitness landscapes compared to
its performances in other landscapes. CS performed poorly at the high dimensional
landscapes (its performance variation was also large). The worst algorithm with
the smallest surface area in the blue and red radar plots was RS. Its average errors
are around 0.6 regardless of the landscape features. SA with having the largest
values of average error and standard deviation has been placed in one before the
last ranking after RS.

In this paper, all reported algorithms do not use the derivative information for
finding the global solution. Therefore, by altering the ratio of local optima, we
should witness no meaningful change in their performances. As can be seen from
Fig. 2, for all ratio parameters, RS demonstrates similar performances as it selects
new solutions randomly from the entire search space. Algorithms with possessing
features of strong global search such as DE and GAs show better performances to
avoid being stuck in local optima.

4 Conclusions

This paper has compared the performances of eight optimization algorithms using
fitness landscapes generated by a modified Gaussian fitness landscape generator.
The modified generator can produce a fitness landscape with particular geometric
features. The eight algorithms, namely as RS, SA, PSO, WCA, GAs, DE, HS, and
CS, are compared with respect to their expected performances and performance
variations (performance reliability). A radar plot was drawn to indicate the level of
the two performance measures.

This study has several limitations that future research should be addressed.
First, this study has compared the original version of the algorithms, while a num-
ber of improved versions have been released in the last two decades. Therefore,
the most effective improved versions should be selected for each algorithm and
compared to investigate the impact of the improvement on the original algorithm
performance. Second, in order to provide full guidance for selecting an algorithm,
more algorithms including recently developed algorithms need to be included for
having comprehensive comparison. Finally, the optimization results presented in
this study were obtained under fixed value for number of function evaluations
(NFEs). Because the allowed NFEs limits the performance of some algorithms,
therefore, the sensitivity analyses on different NFEs (i.e., higher NFEs) will be
performed to examine the radar plots and efficiency of the algorithms.
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