Chapter 2
Transfer Matrix Method
and the Graded-Index Waveguide

Abstract The transfer matrix method used in thin-film optics is extremely useful
when applied to analyze the propagation characteristics of electromagnetic waves in
planar multilayer optical waveguides. This chapter aims to extend the transfer
matrix method to treat the bound modes of the graded-index waveguide. Beginning
with a brief introduction of the transfer matrix, we derived the eigenvalue equations
and studied the multilayer optical waveguides. Different from the widely used
WKB approximation, the transfer matrix obtained some important but different
conclusions when applied to the graded-index waveguide, such as the exact phase
shift at the classical turning points.

Keywords Transfer matrix method - Eigenvalue equation - WKB approximation -
Graded-index waveguide

2.1 The Transfer Matrix and Its Characteristics

The 2 x 2 transfer matrix is a fruitful tool widely applied in optics to treat layered
systems, such as superlattices or multilayered waveguide. And it is receiving more
and more attention for its advantages such as easy computing and high accuracy.
For example, it was used by M. Born and E. Wolf to investigate the transmission
and reflection characteristics of light propagation through multilayer structures [1].
When dealing with multi-lens optical device or media, at each interface, the light is
partially transmitted and partially reflected, and the matrix method can also provide
good results [2]. In this section, we use some special solutions of the wave equation
to construct a transfer matrix, which is a real matrix with clear physical insight. And
in the rest of this chapter, the reader may find this method approachable and
intriguing.

In optics, the regions with variable refractive index are usually approximated as
a series of steps at a group of points, and between two adjacent points, the refractive
index is treated as constant. So the polarization transfer matrix of the TE and TM
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18 2 Transfer Matrix Method and the Graded-Index Waveguide

mode can be derived from the one-dimensional scalar wave equation to characterize
the optical properties of these thin segments.

Considering the refractive index profile n(x) of arbitrary shape as plotted in
Fig. 2.1, without loss of generality, and we divide the region between the points of
x = a and x = b into [ subregions, and the width of each subregion is given by

Wi = Xj — Xj—1 021,2,...,1), (21)

which becomes smaller with increasing /. In that case, the refractive index in the
subregion can be viewed as homogeneous, and its strength is given by

Xio1 4+ X; )
nj:n(%) G=1,2,...0. (2.2)

Take the TE mode, for example, and let y;(x) denotes any field component of the
electromagnetic distribution in the jth subregion (x;-;, x;), which satisfies the fol-
lowing scalar wave equation

2 X
diéz( ) +iY() =0 (=1,2,...,0), (2.3)

with sz(x) = kgnf — 52. Here, f is the propagation constant and x; denotes the
wave number. At the interface x = x;_; between the (j — 1)th and jth subregions, the
continuity conditions of the wave function requires that

-]

24
ey 24
Solving Eq. (2.3), the wave function in the jth subregion has the following form

wj/(x) — in(Ajeinx _ Bje—ilcjx) ) ( :
n(x) , —
— n; 7 X
74 N 471
n; n ¥
a x Xj1 Xj Xja1 xb

Fig. 2.1 One-dimensional refractive index profile of arbitrary distribution
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which can be recast into a matrix form

Y] [ e e 14 (26)
l//j/ (X) inem,vx _inefnc,'x Bj . .
So at the point x = x;, there is
Yi(x) ] ei"{"f e’“‘f*f'f A; (27)
Yilg) | |ike™y  —ike ™ | | B; | :
and at x = x;—;, we can write down a similar matrix equation as follows:
¥;(x-1) - ei’”ff"f*‘ e’i"i"{*l A; (2.8)
lpj’ (xj—l ) - ine”"fo" _ inefnq,-X,ffl Bj . .

Combining Egs. (2.7) and (2.8) yields

V;(xj)} _ { e/ e H i1 e i ]_1[‘/’{(?&1)]

lp]/ (xj) ineinxj _ine—iK/xj ineinx,-,l _ine—inxjfl J(xjfl)
(2.9)

Through some basic matrix operations, Eq. (2.9) becomes

V{(xj)} _ A/Ij[l//,/‘(le)]y (2.10)

lpj<xj) l//_,'()Cj—l)
where
_ [ cos(igw)  EsinGowy) ]
M; = |:—Kj sin(kjw;)  cos(kjw;) } =12,....0). 211

and w; = x; - x;—; is the width of the subregion. Equation (2.11) is known as the
transfer matrix in the subregion (x;-;, x;), which connects the wave function and its
first derivative at the two boundaries of the jth subregion. And according to the
boundary condition Eq. (2.4), the wave function and derivative at the boundary of
the jth subregion are further connected with those at the (j — 1)th subregion’s
boundary by

[i,:(x»} Y {wp(ﬁl)} (2.12)
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Take the TM mode into consideration, and the more generalized transfer matrix
has the following form

| cos(xw) ’% sin(xw)
M(w) = [—}—‘sin(xw) cos(kw) ]’ (2.13)
where
f= {nlz ((TTE)) (2.14)

Before embarking on complicated issues, it is necessary to provide some dis-
cussion on the basic characteristics of the transfer matrix. For convenience, the
2 x 2 transfer matrix is rewritten as follows:

_|mn mp
nmpp  mp

(a) Combining Egs. (2.13) and (2.14), it is easy to found that in a non-absorptive
medium, the matrix is a unimodular matrix with real coefficient

mpp mp2

= mymy — mpny; =1 (2.15)
npp My ’

det(M) = ‘

where “det” represents a determinant. The physical insight of Eq. (2.15) is the
conservation of energy.

(b) The energy eigenvalues A of the transfer matrix can be determined via the
secular equation

M — 21| =0, (2.16)

where I denotes the units matrix. Solving Eq. (2.16), and note that the modulus
of the matrix equals unit, one can obtain the following equation:

22— (my 4+ mp)i+1=0. (2.17)

Equation (2.17) shows that the two eigenvalues of the matrix A; and 1, are
reciprocal to each other. Generally, the two eigenvalue can be expressed as
follows:

/ll — ei;cw
{ /12 — efi}cw7 (218)
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where the physics behind x and / is determined by the specific structure. And
according to Eq. (2.17), apparently there is

1

cos(xw) = 3 (my +my) = %TrM(w), (2.19)

where “Tr” denotes the trace of the matrix. Equation (2.19) is an important
formula for studying periodic structures, which is intimately connected with
the Bloch theorem.

Consider a stepped double potential well, and let M(w;) and M(w,) be the

transfer matrix of the two adjacent homogeneous wells, respectively.
According to Eq. (2.12), we have

Vo] =m0 220
and
Vo e = [0 220
So there is
XS
where
M(wi +wa) = M(w2)M(w1). (2.23)

Note that M(w,) and M(w;) in Eq. (2.23) cannot be swapped. The above
consequent can be extended immediately to multilayer structure. Assume the
respective width of a N-layer structure is wy, wy, ..., wy, the corresponding
matrixes of these homogeneous layers are M(wy), M (wy),...,M(wy), and the
transfer matrix of the whole structure is

M(Wl +wy+ - +WN) = M(WN)M(WNfl) ------ M(Wg)M(Wl) (224)

Periodic refractive index distribution, i.e., one-dimensional photonic crystal is
common but extremely important. If the lattice length is A, and the transfer
matrix for a single cell is

M(A) = [m” m‘z], (2.25)

npp My
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then we can write down the transfer matrix for the whole lattice as

M(NA) = M(A) - M(A) ---M(A) = [M(A)]". (2.26)

N times

It is easy to prove from the above formula
M(A)]¥= Uy (x)M(A) = Uy 2(2)E, (2.27)
where Un(y) denotes the second-class Chebyshev polynomial

_sin[(N + 1) arccos y]

Un(y 2.28
Equation (2.26) can also be written as follows:
M(NA) = M(A)]"
nipp mpp 1 0
= U 1 - U —2()
w-12) |:m21 mzz} n-2(2) [0 1} (2.29)
B |:m11UN1(X) = Un-2(%) miaUn-1(x) }
ma1 Un—1(x) mpuUy—1(x) — Un—2(0) |
By setting
coskA  LsinkA
M(4) —Jésin kA  coskA |’ (2.30)
we can recast Eq. (2.29) into
| cos(NkA)  Lsin(NkA)
M(NA) = — #sin(NkA) Kcos(N;cA) ‘ (2.31)
The inverse of the transfer matrix is defined by
MM~ =1, (2.32)

and for the transfer matrix, it is easy to find

M’I: nyp —nmj3 (233)
—my my | ’
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Using the inverse matrix, one can obtain the reverse transfer relationship. By
multiplying M~!(h) on both sides of Eq. (2.12) yields

{‘le(le)} _ { cos(ih;) _%Sin("jhj)} {wj(xj):|
/ = . ! 7 . (2.34)
Vi1 (x-1) iisin(ihy) - cos(rhy) | [ ¥09)
Since both the transfer matrix and its inverse can relate the wave function at
two points, they are both referred as transfer matrix in the rest of the book,
while the only difference is the different transfer direction.

(f) If we have kZn®<f® in a thin layer, then the solution of the scalar wave
equation in this region is the superposition of two exponential functions, while
the transverse wave number « corresponding to oscillating field is replaced by
an attenuation coefficient o, and there is

K = id. (2.35)
Note that
sin(ix) = isinh(x)
{cos(ix) = cosh(x)’ (2.36)

Equation (2.13) should also be replaced by the following expression

o [ co.sh(ocjhj) aljsinh(ocjhj)} (2.37)
o sinh(ayhy)  cosh(ayh;)
while its inverse is
—oysinh(ash;)  cosh(ayhy)

2.2 The Eigenvalue Equation

Consider a simple planar waveguide, whose refractive index distribution is plotted
in Fig. 2.2, and this section is aimed to calculate its eigenvalue spectrum. Since the
transfer matrix, which connects the wave function and its first derivative at the two
interfaces of a thin layer, represents the characteristic parameters of the dielectric
slab, the field distribution in the guiding layer is not need to be considered. As a
result, this procedure will be much simplified if the transfer matrix is applied, we
only need to determine the wave function in the regions of x < 0 and x > w.
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Fig. 2.2 Refractive index distribution of a planar waveguide with three dielectric layers

For the refractive index as plotted in Fig. 2.2, the transverse component of the
TE mode transmitted in the guiding layer between the dielectric layer of ny and n, is
as follows:

[ Aexp(pox) —0o<x<0
Ey(x) = {DZXI;)[—Opz(x —w)] w<x<+o0’ (2.39)

and it follows

Ey(o) =A
E(0) = poA
“ (2.40)
EV<h) =D
Ei(h) = —p2D
Substituting the above equation into Eq. (2.12), one obtains
1] _ [ cos(xih) —-LsinGeh) ][ 1
A |:p0:| n |:K1 sin(r i h) ccl)s(;clh) —p> D. (2.41)

Multiply both sides of the above equation by a row vector [—py 1], there is

_ cos(kih)  —LsinGeh) [[ 1 ] _
[—po 1] [Kl sin(xkih)  cos(kih) —p| 0, (2.42)
and by solving the above equation, it yields

tan(se ) = —L0 T2 (2.43)

__ Pbop2 '
a(1-02)

Eq. (2.43) can be called as the mode eigenvalue equation of TE polarization. If
we take the boundary condition of the TM mode into consideration, the mode
eigenvalue equation for TM mode can be written as follows:
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St

g e B[]0

A sin(eih) - cos(iih) ..
and the equivalent phase-type dispersion equation by solving Eq. (2.44) is as
follows:

nii (n3po + ngps)

2,22 4 '
ngh; K1 — nypop2

tan(ric h) = (2.45)

2.3 WKB Approximation [3, 4]

Before we embark on the bound states of the graded-index optical waveguide, we
first review briefly the widely applied WKB approximation, which has also found
wide application in optical waveguide theory. Let us begin with the mathematical
derivation of the WKB wave function, and consider again the solutions of the scalar
wave equation:

&y (x)
A2

+ (Kn*(x) — B2y (x) = 0. (2.46)

If we suppose the potential varies very slowly, then we can write the trial
solution as a combination of two plane waves traveling leftward and rightward,
respectively:

W (x) = A(0) exp(ikS(x)) + B(0) exp(—ikS(x)), (2.47)
which is a good approximation only when the refractive index varies very slowly.

How slow? For simplicity, inserting a rightward traveling plane wave into the wave
equation, one will get a differential equation of S(x):

ds\* 1ds ia
> ——c - 24
(m) T W (2.48)
We now expand S(x) in the power series in 1/k and write as follows:

1 1\
S:S0+kSl+(k> So4 - (2.49)

Feeding this into Eq. (2.48) and requiring that all terms of O(7") vanish inde-
pendently, there is



26 2 Transfer Matrix Method and the Graded-Index Waveguide

dA
— 1. 2.50
‘dx < ( )
where
2
PR S— (2.51)
Kn(x)* - 2

Equation (2.50) requires that the refractive index should vary slowly, and there is

2n<n(x)2_vﬁ2/k2) < (2.52)

If Eq. (2.52) is satisfied, and we ignore all terms of O(1/k")(n>2) in Eq. (3.4),
we can rewrite down Sy, S; as follows:

{ So = ¢ [ (Kn(x)* — )"/ 2dx 2.53)

and the first-order WKB wave function Eq. (2.47) as follows:

+ \%exp[—ifx kdx] k2 =K2n*(x) — B >0
exp[i [* pdx]| + %exp[—ifxpdx] pr = —kni(x) >0’
(2.54)

Equation (2.54) shows that we should anticipate an oscillatory behavior in a
region where k’n®(x) > B* and an evanescent behavior in the opposite region. In
the region of turning point given by kn(x) = f§, the WKB wave function breaks
down since Eq. (2.52) is no longer fulfilled. In order to construct a globally WKB
wave function, connection formulas at turning points are required to match to the
WKB solutions on both sides of the turning point regions, where the local wave-
length 4 is singular. Here, we present the connection formulas directly, and the
mathematics progresses are referred to the related references. Suppose the position
of the turning point is given by x,, and let us identify the region k*n’(x) > > with
x < x; and vice versa. The corresponding connecting formula is as follows:

ﬁeXp <_éjp(x)dx> — %\,cos (é?P(X)dx _Z) (2.55)

(k*n?(x) <ﬁ2) (k*n?(x) > ﬂz)
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However, in some issues that the wave function in the optically dense media is not
the superposition of two waves propagate in the opposite directions, such as the
transmitted waves left the optically sparse media and traveled to infinite, the con-
nection formula should be replaced by

X

(k*n?(x) <ﬂ2) (K*n?(x) > [32)

Lexpl [ o —Lexolif in
\/ﬁexp<xfp(x)dx> JReXp (zficdx—k 4> (2.56)

Instead of the two conventional expressions above, Prof. Friedrich [5] proposed
that the application of the WKB approximation can be significantly extended if the
connection formulas in the most general case can be used. These expressions can be
written as follows:

2 r ) N /
%cos /p(x)dx 5| 7ﬁexp - /pdx , (2.57)
\/chos /de —% o %exp /p(x)dx . (2.58)

There are four parameters N, N, ¢, and ¢ to be determined by considering the
specific problems. And the conventional formulas can be retrieved by setting N = 1
and ¢ = n/2. If we consider a superposition of the above two expressions =
A x (3.39) + B x (3.40) with arbitrary complex coefficients A and B, the conser-
vation condition of the current density on the two sides of the turning point requires
that

NN = sin <¢ ; ‘}), (2.59)

which can be used to determine the undetermined parameters. Imagine a refractive
index profile that varies slowly, where the two turning points x, and x,, are defined
via n(xy) = n(x,) = f/x, so there will be oscillatory behavior in the region
Xy < x < x, and evanescent behavior elsewhere. The WKB waves in the region
Xy < X < X, can be defined as follows:

Wi (x) o ! cos /K(x')dx’—% ) (2.60)
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from the left turning point, or equivalently

Xir

kg (X) o< \/%cos X/ k(X )dx — % , (2.61)

from the right turning point. ¢; and ¢, are the reflection phases at the left and right
turning points, respectively, and x is an arbitrary point in the well away from the
turning points. According to connection expression (2.55), we have ¢, = ¢, = n/2
here. So the two expressions above must agree with each other, and this require-
ment can only be satisfied when the sum of the two arguments equals an integral
multiple of 7, which yields the following:

/ K()dx = (n+ D), (2.62)

where n =0, 1, 2, ... The above expression is the famous WKB resonance condition
and may be used to find the eigenvalue equation for a graded-index waveguide with
n as the mode number. The above formula is valid, provided that the two turning
points are positioned sufficiently far apart.

In conclusion, in this section, we review briefly the semiclassical WKB
approximation, including its wave function and the eigenvalue equation (quanti-
zation condition). And it should be note that the basic WKB wave function ignores
all terms of O(1/k") (n>2), and the phase shift ¢;, ¢, at the turning points in the
original WKB approximation is equal to z/2.

2.4 Multilayer Optical Waveguides
2.4.1 Asymmetric Four-Layer Slab Waveguide [6]

In the beginning of this section, we use a simple asymmetric slab waveguide to
demonstrate the existence of the scattered subwaves, which can be simply defined
as follows: All the waves being reflected at non-classical turning points for at least
once are referred as the scattered subwaves. In contrast, the waves that only
reflected at classical turning points are called as the main waves. This is the first
time we proposed the concept of the scattered subwaves in this book. Like many
other basic concepts, the seemingly simple concept of scattered subwaves is not as
straightforward as one might assume.

We are now in a position to deal with the four-layer dielectric slab waveguide
via the transfer matrix method. As plotted in Fig. 2.3, two uniform isotropic
dielectric of refractive indexes n; and n, and thicknesses /; and h,, are sandwiched
between two semi-infinite layers of lower index ny and n3. For definiteness,
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Fig. 2.3 The refractive index n(x)
distribution of a four-layer
dielectric slab waveguide n
n,
| e
, ! |
' l
| I
0 h, h +h, X

considering the situation n; > n, > n3 > ny, which yields an asymmetric guiding
structure, and we are interested in those guide modes, whose power is confined
largely to the central layer of the guide. So in this chapter, we only consider two
cases for the propagation constant 3, including (A) kny > f§ > kns, that both regions
1 and 2 are the regions of electromagnetic confinement; (B) kn; > f > knj, that only
region 1 is the primary region of energy confinement. The discussion on the case of
leaky waves is left to the fourth chapter.

For case A of kny > f > kns, the eigenvalue equation of the matrix form can be
immediately written as follows:

[=po 1M {—LJ =0, (2.63)
where
_ | cos(kih) Lsin(x1h)
Mi= {m sin(llqllzl) éos(xlhll) }’ (2.64)
_ | cos(iahy)  —sin(iahy)
My = |:K2 Sin(lzczilz) éos(K2h22)2 } (2.65)
= (kgni — )1/2
(kzn )12
= (p - ’ )1/2 (2.66)
= (B — KBn2)

Substituting the matrixes into Eq. (2.63), the eigenvalue equation of the asym-
metric four-layer slab waveguide is as follows:

kihy = mn+ tan™! (%) + tan~! (%), (m=0,1,2,...), (2.67)
1 1
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where

P> = Ko tan [tan_1 <I;—z> — thz:l . (2.68)

In order to see the physical insight of the above expression, we define a new
quantity @,, which is given by the following:

®, = tan"! (172)7 (2.69)
K2
and which can be rewritten in the following form according to Eq. (2.68):
Kohy + ®, = m'n + tan™! (12>, (m' =0,1,2,...). (2.70)
9}

Combine Egs. (2.69) and (2.70) with the equation below:

tan~"! (’2) — tan"! [Z—?tan(cbz)] . (2.71)

K1

We finally obtain an eigenvalue equation that has a similar form of the
three-layer slab waveguide

K1 K (2.72)

(m=0,1,2,...)

K1hy + Kyhy + ®(s) = mn+ tan~! <p0> + tan™! (173)

where

D(s) = O — tan™" (ﬂtan CI)Z) . (2.73)
K1

To clarify the physics behind the unknown ®(s), let us consider the special case
2_ 2

of i 5 i < 1, which follows that =2 < 1. Using differential formula, there is
nj !
tan~! (Etan @2) = tan~! [(1 _az Kz) tan @2}
1 A 1 (2.74)
~ Dy — L "Zgin2d,,

K1
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and according to Eq. (2.73), one can obtain

D(s) = ’“2_ "2 in 20, (2.75)

K1

The amplitude of the right-hand side of Eq. (2.75) under first-order approxi-
mation is as follows:

Kl =Ky K| —Kp
2K K1+’

(2.76)

which denotes the reflection coefficient of light incident from region 1 to region 2.
Consequently, ®(s) can be viewed as the reflection phase contribution of the
first-order scattered subwaves. Of course, the term ®(s) denotes the phase contri-
bution of all the scattered subwaves if we did not carry out any approximation. On the
contrary, if n; = n, holds, there is @(s) = 0. As a summary, ®(s) is the phase
contribution induced by the reflection occurs at the interface between regions 1 and 2,
and is determined by the difference of the refractive index between the two regions.
So when dealing with multilayer waveguide, both phase contribution of the main
waves and the scattered subwaves should be taken into consideration.

For case B kony > f > kon,, whose guiding layer locates in the region of (0, /).
In this case, the matrix form of the eigenvalue equation can still be written as
Eq. (2.63), but the x, in Eq. (2.65) should be modified as follows:

1/2

o =i(f —kgn3) "= i (2.77)

Consequently, the sine and cos in the matrix should be replaced as sinh and cosh,
that is,

sin(kahy) = isinh(ahy), cos(kahy) = cosh(onhy). (2.78)

And the transfer matrix M, becomes

(2.79)

M,y — [ cosh(aphy) —isinh(azhz)}

—op sinh(ophy) cosh(aphy)

So the eigenvalue equation for this case is mathematically the same with
Eq. (2.67), except that p, is defined by

p2 = o tanh {tamh_1 <{§> + oczhz] . (2.80)
2

To see the scattered subwaves in the four-layer slab waveguide in another way,
let us reconsider the case A for TE mode, whose transverse electric field may be
expressed as follows:
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Ao exp(pox) —c0<x<0
E(x) Ay exp(icix) + By exp(—ikix) 0<x<h
(x) =
i’ Aj explira(x — hy)] 4+ Baexp[—ika(x — hy)] hy<x<h +hy
Az exp[—p3(x — hy — hy)] hi+h<x<+o00
(2.81)
where
( )1/2
= (kg 0”2 )1/2
(/32 )”0)1/2
= (F —1gn3)'"?

Using the continuity condition of E, and 9E,/dx at boundaries x = 0, x = &, and
x = hy + hy, one may write down the dispersion equation as follows:

— K .
2 expli2(k1hy — @yo)]

i2(1c1h hy —®jp— D
exp[i2(kihy + K2hy 10 23)] + P

_ (2.82)
Ky — Ki .
2(kohy — O =1
+ P exp[i2(rahy — Da3)]
where

Do = tan~! (@> (2.83)

K1
@5 = tan”! (’ﬁ> (2.84)

K2

What does Eq. (2.82) means? See Fig. 2.4 for the zigzag path of rays in the slab
waveguide. Clearly, the first term on the left-hand side of Eq. (2.82) denotes the
main waves which are plotted with solid lines in Fig. 2.4. Starting from the interface
between regions O and 1, the main waves travels through the interface between
regions 1 and 2 and then is total-reflected at the boundary of region 3. In summary,
the main waves only is total-reflected at the boundaries of regions 0 and 3. On the
contrary, the dotted lines shown in Fig. 2.4 represent the second and third terms in
Eq. (2.82), which are reflected at the interface between regions 1 and 2. So these
two terms denote the scattered subwaves. The guided modes in the slab waveguide
are in fact the coherent superposition result of the main waves and the scattered
subwaves, which are ignored in the semiclassical theories. It can be proved
mathematically that Eq. (2.82) can be recast as follows:
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Fig. 2.4 Zigzag path of the main waves (a) and the scattered subwaves (b, c) in the four-layer
dielectric waveguide

exp{i2[;<1h1 + rohy + (I)(S) — Oy — (1323]} =1. (285)

In view of exp(i2mn) = 1, (m =0, 1,2, ...), the above equation is equivalent with
Eq. 2.72).

2.4.2 Multilayer Slab Waveguide

In this section, we expand the conclusions of the four-layer slab waveguide to the
multilayer slab waveguide. Suppose there are / layers of index ny, ny, ... n;, and
thickness of hy, h,, ... h;, embedded in two cladding layers of index ng and ny, . For
the structure consider here, there is n; > np, > ... > n; > ny 1 >ng (Fig. 2.5).

Let us extend Eq. (2.63) to this waveguide structure, consider the guided modes
with kn; > f > kn;, 1, and the eigenvalue equation for the TE mode in the matrix
form can be written as follows:

! 1
- 1 M; =0, 2.86
o 1] ] (2.56)

15
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where the matrix corresponding to the ith layer M; has the following form:

cos(kih;)  —-Lsin(k;h;)

M; = (2.87)

K; SiIl(Kihi) COS(Kihi)
where

K; = (kgnj — B
po = (B —Kn})"?
pre1 = (B — kgt )"

Equation (2.86) can be simplified via direct algebraic manipulations as

— ~1(Po —1(P2
K1h; = mm + tan (K1> + tan <K1> 7 (2.88)

(m=0,1,2,...)
where

pi = K;tan [tan’1 (”k—*") — K,'h,}

i=(2,3,...0) (2.89)

The two formula above completly specify the dispersion characteristics of the
asymmetric multilayer slab waveguide. However, Eq. (2.89) is a recurrence for-
mula, which requires all the information of p;(j > i) to calculate p;. To see the
different roles of the main waves and the scattered subwaves, we define

¢; = tan~! (’ﬁ), (2.90)

i

According to Eq. (2.89), one obtains

¢i = min—i— tan_l (]ﬂ) — Kih,'

Ki

= mym+ tan”! (KHI tan ¢i+1> — K;h; (2.91)
(m=0,1,2..;i=1,2,..,1— 1),
which can be modified as
1 Ki+1
Kihi + | i, —tan™! tan ¢; =min+ (p; 1 — ¢,
e (Stng )| e (g0

(m=0,1,2,..;i=12,...,1—1)
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When i = [, there is

Kihy = mym+ tan”! (%) — @, (2.93)
I

Based on the three equations above and sum up over i, one can write down

l -1

E Kihi + E {4’”1 —tanl<Mtan¢>i+l)]
" - K;

i=1 i=1

! (2.94)
= mn+ tan”! (pl—+1> — ¢
K
On the other hand, it is easy to prove
¢, = mym+ tan”! (12> — Kihy, (2.95)
K1
which can be rewritten by inserting Eq. (2.88)
¢, =mm—tan"! <@> (2.96)
K1
Finally, we transformed Eq. (2.94) into
!
e = —1(po —1(prt1
i:zl Kih; + ®(s) = mn + tan (vc.) + tan ( - ) ’ (2.97)

(m=0,1,2,...)

with the phase contribution of the scattered subwaves

-1
Ofs) =S {dml —an! ("'K“ tan mﬂ . (2.98)
i=1 i

We can obtain the eigenvalue equation of the three-layer or four-layer slab
structure from Eq. (2.97) by setting [ = 1, or [ = 2, respectively. It is obvious that
this formula can be applied to any multilayer structures without any approximation.
Furthermore, it has a clear physical explanation that both the main waves and
scattered subwaves contribute to the total phase contribution. Although the dis-
cussion above consider only the case of S < kon,, it is not difficult to obtain the
corresponding result related to the case of § > kon;, by just replacing the x; with ia;
in the matrix M; for all the j > i. Interesting readers can also derive the eigenvalue
equation for TM modes by using the appropriate matrix.



36 2 Transfer Matrix Method and the Graded-Index Waveguide

2.5 The Transfer Matrix Treatment of the Graded-Index
Waveguide

2.5.1 The Eigenvalue Equation

In this section, the transfer matrix method is extended to treat the graded-index
waveguide, and it is demonstrated strictly that the phase shifts at the turning points
are exact equal to 7. Since this section deals with the general graded-index structure
with arbitrary refractive index profile, the strategy is as follows: We first approx-
imate the graded-index waveguide with a multilayer waveguide with n layers and
then take the limit as the n approaches infinite. At the beginning, let us consider a
simple case in which only one turning point exists (Fig. 2.6).

Assume that the turning point locates at the position x = x,, and the index profile
extends to infinite. In order to apply the transfer matrix method, we should truncate
infinite at x; = x; + x,. for sufficient large x., and set n(x) = n, for x > x,. Then, the
regions (0, x;) and (x;, x,) are divided into [ and m segments, with each layer has the
same thickness £, so that x; = [h and x. = mh. For TE mode, the transfer matrix for
these segments is as follows:

ih)  —Lsin(x;h
= [ CO.S(K ) sinl )] (i=1,2,...), (2.99)
Kk;sin(k;h)  cos(k;h)
and
cosh (ocjh) —Lsinh (ocjh)
M; = % i =14+1,1+2,...14m), 2.100
! [ —a;sinh(ah)  cosh(ash) U m, )
where
K = k2n? X;) — 21172
[02 () ﬁ]l/z (2.101)
% = [ = kon* ()]
Fig. 2.6 Graded-index
structure with only one
turning point
n,
XXX ;
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According to the transfer matrix method, the corresponding matrix equation is as
follows:

EO] [, T ] B0
[E;(O) = [HMl LI;LM]} B ) | (2.102)

while the evanescent behavior in both the outer claddings in the approximated
multilayer structure are given by

[ Agexp(pox) (x<0)
B0 = Y ot x) (ren 2109
where
po= (1K) (2,104

ps = (B —Kn2)"%,

Substituting Eq. (2.103) into Eq. (2.102), we have

(—po (HM) CHIM> ( ) =0. (2.105)

By a simple algebraic process, the above formula can be recast into

(=po (ﬁ M,> (_pm) =0, (2.106)

sinh (o5h) + % cosh (ash)
% cosh(otjh) + p’“ smh( h)

where

pj=

(2.107)
(j:l+l,l+2,...7l+m)

Pi+m+1 = Ps

So it is clear that in Eq. (2.106), the field distribution outside the turning point is
treated as a exponentially decaying field, that is,

Ey(x) =Arexp[—pii1(x —x)] (x> x). (2.108)

Similar with the process we used in the last section, the exact eigenvalue
equation can be derived from Eq. (2.106)
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1
) _ -1 @ —1(P1+1
i:Zl kih+ ®(s) = Nu+ tan <K1> -+ tan (Kl > ’ (2.109)
(N=0,1,2,..))
where
1-1 .
= Z {(I),-H —tan—1< it tan@,-H)], (2.110)
i—1 Ki
®; = tan”! <—> (2.111)
Ki
pi = K;tan [tanl (1%) - Kih] (i=1,2,...1), (2.112)

and tan~! (” L “) denotes the phase shift at the turning point.

Next considering the graded-index structure, i.e., [ — 0o, m — 00, the first term
in the left-hand side of Eq. (2.109) becomes integral

i ¥
> b = [ x(x)dx, (2.113)
> oh= [

and the second term becomes

: g dx
, = [ 4 _Eax 2.114
+1>:| /q2+K2dx ( )
0

where ¢(x) = —E'(x)/E(x). Finally, the exact eigenvalue equation of the
graded-index slab waveguide can be written as follows:

¥ ¥ q dk _i1({Po _i(Pr+1

Kdx + D(s) = K+ dx = Nm+ tan — | 4 tan —_—

({ (5 of< 4+2dx) (Kl) <K1>-
(N=0,1,2,...)

-1
Z{ t<

i=1

(2.115)

It should be note that the term ®(s) denotes the phase contribution of the

scattered subwaves, and 7 z;& % represents its wave number. The above equation

can be generalized to the case with two turning points without difficult. Consider
the graded-index waveguide with two turning points at x,; and x,,, and extend to
infinity on both sides (Fig. 2.7).
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Fig. 2.7 A graded-index n(x)
waveguide with two turning
points

Take the similar process used above, first we truncate the index profile n(x) at x¢
and xp, respectively, and divide the regions (xc, x;1), (X;1, X»2), and (X2, Xp) into I, m,
and n segments of the same thickness 4. Then, the dispersion equation via the
transfer matrix can be written as follows:

X2
J kdx+®(s) = Nn+ tan~! <L> + tan~! (M)

1 Ki+1 Kl +m (2.116)
(N=0,1,2,...)
where
1+m—1 i
(D(S) - Z |:(Dj+1 - tan_l ( ] tan (I)j+1):|
U & (2.117)

®; = tan~! <p_])
Kj

p; and py,,.41 are the effective attenuation coefficients for the regions (x < x;;) and
(x > xp), respectively, which are specified by

sinh(oxh) + P cosh(oyh)
o
Pk = %
cosh(oyh) + Diy1

sinh(oyh) (2.118)

Ol
(k=l4+m+1L1l4+m+2,....l1+m+n),

1/2
where py = pe and pe = [f* — Kin?(x.)] 7,

sinh(o;h) + Pl cosh(o;h)

o
l cosh(a;h) + pizt sinh(a;h)
&;
(i=1,2,...0)

pi=a (2.119)

1/2
where p;y a1 = pp and pp = [ﬁ2 - k(2)"2(xD)] / .
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2.5.2 The Phase Shift at Turning Point [7]

From the last section, it is clear that we can replace the field distribution outside the
turning point with an exponentially decaying field without introducing any calcu-
lation error. So it is possible to treat the index profile outside the turning point as
with a constant n,,, which is smaller than n(x,) (see Fig. 2.8).

According to the analysis above, the effective attenuation coefficient can be
written as follows:

1/2
pi = (ﬁ2 - kéniq) : (2.120)

If we restrict ourselves with the bound electromagnetic modes, p, must be a finite
and positive quantity. Let us prove this statement briefly below.

(1) For j = l+m, consider Eqgs. (2.101), (2.104), and (2.107), and there is

Pe =Pltm+1 > Ugm; (2121)
since both o; and h are positive real number, it follows
cosh(oy 4 ;) > sinh(oy 4 ,h); (2.122)

and then, in view of (2.107), one can prove that p;,,, > a,,,- Repeat the above
process, and finally, there is

Pie1 > 0y (2123)

(2) Let us rewrite Eq. (2.107) into the following formation

cosh(oyh) + ij sinh(oyh)
i =Dj1 ek . (2.124)

cosh(ah) + Pixt sinh(ajh)

)

Fig. 2.8 Replace the index

distribution outside the n(x) 1
turning point with an effective
refractive index ngq
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Obviously, p; <p;+ holds, which leads to

Pt =DPi+1<Pi+m+1 = De- (2125)
(3) According to Egs. (2.123) and (2.125), one obtains
%1 <P <Pe, (2.126)

which shows that p, is a finite and real number. However, according to
Eq. (2.101), as I — oco(h — 0), there holds

K = [Rn2 () — 7] = [Rn2(x) — £]*=0. (2.127)

Finally, the phase shift at the turning point can be calculated as follows:

2 2.2

—kin

an ! () = [ 2 o) .128)
k kn2(x) — p° 2

which is exact twice the result in the basic WKB approximation. In the modified
WKB approximation, the non-integral Maslov index is used, which allows the
reflection phase at the turning points approaches #/2 in the semiclassical limit, and
approaches 7 in the anticlassical limit. Compared with the WKB approximation, the
result we derived has the following features:

(1) The phase shift at the turning point is constant 7z, which is independent of the
propagation constant and the refractive index distribution; it is a general result.

(2) The phase shift does not related to the position of the turning points, and it
does not vary if the turning point is near truncated points, discontinuous
points, or other turning points.

(3) The phase shift is the same for different wavelengths.

Using Eq. (2.128), we can further simplify the eigenvalue equation Eq. (2.115)
of an arbitrary graded-index waveguide with only one turning point as plotted in
Fig. 2.6 as

Xt

/de+(l)(s)=mn+tan<?)+g (m=0,1,2,...), (2.129)
1
0

and the eigenvalue equation of graded-index waveguide with two turning points in
Fig. 2.7 as

/kdx—l-d)(s):(m—i—l)n (m=0,1,2,...). (2.130)

Xi1
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In conclusion of this section, we started with the transfer matrix and applied to
multilayer and graded-index waveguide to obtain an exact and general eigenvalue
equation with clear physics. The notion of scattered subwaves, which is completely
neglected in semiclassical theories, was proposed and appeared in all the obtained
eigenvalue equations.
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