
Chapter 2
Transfer Matrix Method
and the Graded-Index Waveguide

Abstract The transfer matrix method used in thin-film optics is extremely useful
when applied to analyze the propagation characteristics of electromagnetic waves in
planar multilayer optical waveguides. This chapter aims to extend the transfer
matrix method to treat the bound modes of the graded-index waveguide. Beginning
with a brief introduction of the transfer matrix, we derived the eigenvalue equations
and studied the multilayer optical waveguides. Different from the widely used
WKB approximation, the transfer matrix obtained some important but different
conclusions when applied to the graded-index waveguide, such as the exact phase
shift at the classical turning points.

Keywords Transfer matrix method � Eigenvalue equation �WKB approximation �
Graded-index waveguide

2.1 The Transfer Matrix and Its Characteristics

The 2 × 2 transfer matrix is a fruitful tool widely applied in optics to treat layered
systems, such as superlattices or multilayered waveguide. And it is receiving more
and more attention for its advantages such as easy computing and high accuracy.
For example, it was used by M. Born and E. Wolf to investigate the transmission
and reflection characteristics of light propagation through multilayer structures [1].
When dealing with multi-lens optical device or media, at each interface, the light is
partially transmitted and partially reflected, and the matrix method can also provide
good results [2]. In this section, we use some special solutions of the wave equation
to construct a transfer matrix, which is a real matrix with clear physical insight. And
in the rest of this chapter, the reader may find this method approachable and
intriguing.

In optics, the regions with variable refractive index are usually approximated as
a series of steps at a group of points, and between two adjacent points, the refractive
index is treated as constant. So the polarization transfer matrix of the TE and TM
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mode can be derived from the one-dimensional scalar wave equation to characterize
the optical properties of these thin segments.

Considering the refractive index profile n(x) of arbitrary shape as plotted in
Fig. 2.1, without loss of generality, and we divide the region between the points of
x = a and x = b into l subregions, and the width of each subregion is given by

wj ¼ xj � xj�1 ðj ¼ 1; 2; . . .; lÞ; ð2:1Þ

which becomes smaller with increasing l. In that case, the refractive index in the
subregion can be viewed as homogeneous, and its strength is given by

nj ¼ n
xj�1 þ xj

2

� �
ðj ¼ 1; 2; . . .; lÞ: ð2:2Þ

Take the TE mode, for example, and let ψj(x) denotes any field component of the
electromagnetic distribution in the jth subregion (xj−1, xj), which satisfies the fol-
lowing scalar wave equation

d2wjðxÞ
dx2

þ j2j ðxÞwjðxÞ ¼ 0 ðj ¼ 1; 2; . . .; lÞ; ð2:3Þ

with j2j ðxÞ ¼ k20n
2
j � b2. Here, β is the propagation constant and κj denotes the

wave number. At the interface x = xj−1 between the ðj� 1Þth and jth subregions, the
continuity conditions of the wave function requires that

wjðxj�1Þ
w0
jðxj�1Þ

� �
¼ wj�1ðxj�1Þ

w0
j�1ðxj�1Þ

� �
: ð2:4Þ

Solving Eq. (2.3), the wave function in the jth subregion has the following form

wjðxÞ ¼ Ajeijjx þBje�ijjx

w0
jðxÞ ¼ ijjðAjeijjx � Bje�ijjxÞ

�
; ð2:5Þ
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Fig. 2.1 One-dimensional refractive index profile of arbitrary distribution
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which can be recast into a matrix form

wjðxÞ
w0
jðxÞ

� �
¼ eijjx e�ijjx

ijjeijjx �ijje�ijjx

� �
Aj

Bj

� �
: ð2:6Þ

So at the point x = xj, there is

wjðxjÞ
w0
jðxjÞ

� �
¼ eijjxj e�ijjxj

ijjeijjxj �ijje�ijjxj

� �
Aj

Bj

� �
; ð2:7Þ

and at x = xj−1, we can write down a similar matrix equation as follows:

wjðxj�1Þ
w0
jðxj�1Þ

� �
¼ eijjxj�1 e�ijjxj�1

ijjeijjxj�1 �ijje�ijjxj�1

� �
Aj

Bj

� �
: ð2:8Þ

Combining Eqs. (2.7) and (2.8) yields

wjðxjÞ
w0
jðxjÞ

� �
¼ eijjxj e�ijjxj

ijjeijjxj �ijje�ijjxj

� �
eijjxj�1 e�ijjxj�1

ijjeijjxj�1 �ijje�ijjxj�1

� ��1 wjðxj�1Þ
w0
jðxj�1Þ

� �
:

ð2:9Þ

Through some basic matrix operations, Eq. (2.9) becomes

wjðxjÞ
w0
jðxjÞ

� �
¼ Mj

wjðxj�1Þ
w0
jðxj�1Þ

� �
; ð2:10Þ

where

Mj ¼ cosðjjwjÞ 1
jj
sinðjjwjÞ

�jj sinðjjwjÞ cosðjjwjÞ
� �

ðj ¼ 1; 2; . . .; lÞ: ð2:11Þ

and wj = xj − xj−1 is the width of the subregion. Equation (2.11) is known as the
transfer matrix in the subregion (xj−1, xj), which connects the wave function and its
first derivative at the two boundaries of the jth subregion. And according to the
boundary condition Eq. (2.4), the wave function and derivative at the boundary of
the jth subregion are further connected with those at the ðj� 1Þth subregion’s
boundary by

wjðxjÞ
w0
jðxjÞ

� �
¼ Mj

wj�1ðxj�1Þ
w0
j�1ðxj�1Þ

� �
: ð2:12Þ
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Take the TM mode into consideration, and the more generalized transfer matrix
has the following form

MðwÞ ¼ cosðjwÞ f
j sinðjwÞ� j

f sinðjwÞ cosðjwÞ

" #
; ð2:13Þ

where

f ¼ 1; ðTEÞ
n2 ðTMÞ

�
: ð2:14Þ

Before embarking on complicated issues, it is necessary to provide some dis-
cussion on the basic characteristics of the transfer matrix. For convenience, the
2 × 2 transfer matrix is rewritten as follows:

M ¼ m11 m12

m21 m22

� �
:

(a) Combining Eqs. (2.13) and (2.14), it is easy to found that in a non-absorptive
medium, the matrix is a unimodular matrix with real coefficient

detðMÞ ¼ m11 m12

m21 m22

����
���� ¼ m11m22 � m12m21 ¼ 1; ð2:15Þ

where “det” represents a determinant. The physical insight of Eq. (2.15) is the
conservation of energy.

(b) The energy eigenvalues λ of the transfer matrix can be determined via the
secular equation

M � kIj j ¼ 0; ð2:16Þ

where I denotes the units matrix. Solving Eq. (2.16), and note that the modulus
of the matrix equals unit, one can obtain the following equation:

k2 � ðm11 þm22Þkþ 1 ¼ 0: ð2:17Þ

Equation (2.17) shows that the two eigenvalues of the matrix λ1 and λ2 are
reciprocal to each other. Generally, the two eigenvalue can be expressed as
follows:

k1 ¼ eijw

k2 ¼ e�ijw

�
; ð2:18Þ
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where the physics behind κ and h is determined by the specific structure. And
according to Eq. (2.17), apparently there is

cosðjwÞ ¼ 1
2
ðm11 þm22Þ ¼ 1

2
TrMðwÞ; ð2:19Þ

where “Tr” denotes the trace of the matrix. Equation (2.19) is an important
formula for studying periodic structures, which is intimately connected with
the Bloch theorem.

(c) Consider a stepped double potential well, and let M(w1) and M(w2) be the
transfer matrix of the two adjacent homogeneous wells, respectively.
According to Eq. (2.12), we have

wðw1Þ
w0ðw1Þ
� �

¼ Mðw1Þ wð0Þ
w0ð0Þ
� �

ð2:20Þ

and

wðw1 þw2Þ
w0ðw1 þw2Þ
� �

¼ Mðw2Þ wðw1Þ
w0ðw1Þ
� �

: ð2:21Þ

So there is

wðw1 þw2Þ
w0ðw1 þw2Þ
� �

¼ Mðw1 þw2Þ wð0Þ
w0ð0Þ
� �

; ð2:22Þ

where

Mðw1 þw2Þ ¼ Mðw2ÞMðw1Þ: ð2:23Þ

Note that M(w2) and M(w1) in Eq. (2.23) cannot be swapped. The above
consequent can be extended immediately to multilayer structure. Assume the
respective width of a N-layer structure is w1;w2; . . .;wN , the corresponding
matrixes of these homogeneous layers are Mðw1Þ;Mðw2Þ; . . .;MðwNÞ, and the
transfer matrix of the whole structure is

Mðw1 þw2 þ � � � þwNÞ ¼ MðwNÞMðwN�1Þ � � � � � �Mðw2ÞMðw1Þ: ð2:24Þ

(d) Periodic refractive index distribution, i.e., one-dimensional photonic crystal is
common but extremely important. If the lattice length is K, and the transfer
matrix for a single cell is

MðKÞ ¼ m11 m12

m21 m22

� �
; ð2:25Þ
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then we can write down the transfer matrix for the whole lattice as

MðNKÞ ¼ MðKÞ �MðKÞ � � �MðKÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N times

¼ ½MðKÞ�N : ð2:26Þ

It is easy to prove from the above formula

MðKÞ½ �N¼ UN�1ðvÞMðKÞ � UN�2ðvÞE; ð2:27Þ

where UN(χ) denotes the second-class Chebyshev polynomial

UNðvÞ ¼ sin½ðN þ 1Þ arccos v�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p : ð2:28Þ

Equation (2.26) can also be written as follows:

MðNKÞ ¼ MðKÞ½ �N

¼ UN�1ðvÞ
m11 m12

m21 m22

� �
� UN�2ðvÞ

1 0

0 1

� �

¼ m11UN�1ðvÞ � UN�2ðvÞ m12UN�1ðvÞ
m21UN�1ðvÞ m22UN�1ðvÞ � UN�2ðvÞ

� �
:

ð2:29Þ

By setting

MðKÞ ¼ cos jK f
j sin jK� j

f sin jK cosjK

" #
; ð2:30Þ

we can recast Eq. (2.29) into

MðNKÞ ¼ cosðNjKÞ f
j sinðNjKÞ� j

f sinðNjKÞ cos(NjKÞ

" #
: ð2:31Þ

(e) The inverse of the transfer matrix is defined by

MM�1 ¼ I; ð2:32Þ

and for the transfer matrix, it is easy to find

M�1 ¼ m22 �m12

�m21 m11

� �
: ð2:33Þ
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Using the inverse matrix, one can obtain the reverse transfer relationship. By
multiplying M�1ðhÞ on both sides of Eq. (2.12) yields

wj�1ðxj�1Þ
w0
j�1ðxj�1Þ

� �
¼ cosðjjhjÞ � 1

jj
sinðjjhjÞ

jj sinðjjhjÞ cosðjjhjÞ
� �

wjðxjÞ
w0
jðxjÞ

� �
: ð2:34Þ

Since both the transfer matrix and its inverse can relate the wave function at
two points, they are both referred as transfer matrix in the rest of the book,
while the only difference is the different transfer direction.

(f) If we have k20n
2\b2 in a thin layer, then the solution of the scalar wave

equation in this region is the superposition of two exponential functions, while
the transverse wave number κ corresponding to oscillating field is replaced by
an attenuation coefficient α, and there is

j ¼ ia: ð2:35Þ

Note that

sinðixÞ ¼ i sinhðxÞ
cosðixÞ ¼ coshðxÞ

�
; ð2:36Þ

Equation (2.13) should also be replaced by the following expression

Mj ¼ coshðajhjÞ 1
aj
sinhðajhjÞ

aj sinhðajhjÞ coshðajhjÞ
� �

; ð2:37Þ

while its inverse is

M�1
j ¼ coshðajhjÞ � 1

aj
sinh(ajhjÞ

�aj sinhðajhjÞ cosh(ajhjÞ
� �

: ð2:38Þ

2.2 The Eigenvalue Equation

Consider a simple planar waveguide, whose refractive index distribution is plotted
in Fig. 2.2, and this section is aimed to calculate its eigenvalue spectrum. Since the
transfer matrix, which connects the wave function and its first derivative at the two
interfaces of a thin layer, represents the characteristic parameters of the dielectric
slab, the field distribution in the guiding layer is not need to be considered. As a
result, this procedure will be much simplified if the transfer matrix is applied, we
only need to determine the wave function in the regions of x < 0 and x > w.
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For the refractive index as plotted in Fig. 2.2, the transverse component of the
TE mode transmitted in the guiding layer between the dielectric layer of n0 and n2 is
as follows:

EyðxÞ ¼ A expðp0xÞ �1\x\0
D exp½�p2ðx� wÞ� w\x\þ1

�
; ð2:39Þ

and it follows

Eyð0Þ ¼ A

E0
yð0Þ ¼ p0A

(

EyðhÞ ¼ D

E0
yðhÞ ¼ �p2D

( : ð2:40Þ

Substituting the above equation into Eq. (2.12), one obtains

A
1
p0

� �
¼ cosðj1hÞ � 1

j1
sin(j1h)

j1 sinðj1hÞ cos(j1h)

� �
1

�p2

� �
D: ð2:41Þ

Multiply both sides of the above equation by a row vector �p0 1½ �, there is

�p0 1½ � cosðj1hÞ � 1
j1
sin(j1hÞ

j1 sinðj1hÞ cos(j1hÞ
� �

1
�p2

� �
¼ 0; ð2:42Þ

and by solving the above equation, it yields

tanðj1hÞ ¼ p0 þ p2

j1 1� p0p2
j21

� � : ð2:43Þ

Eq. (2.43) can be called as the mode eigenvalue equation of TE polarization. If
we take the boundary condition of the TM mode into consideration, the mode
eigenvalue equation for TM mode can be written as follows:

x

n(x)

o

n1

n0

n2

w

Fig. 2.2 Refractive index distribution of a planar waveguide with three dielectric layers
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� p0
n20

1
h i cosðj1hÞ � n2

1
j1
sin(j1hÞ

j1
n21
sinðj1hÞ cos(j1hÞ

" #
1

� p2
n22

� �
¼ 0; ð2:44Þ

and the equivalent phase-type dispersion equation by solving Eq. (2.44) is as
follows:

tanðj1hÞ ¼ n21j1ðn22p0 þ n20p2Þ
n20n

2
2j

2
1 � n41p0p2

: ð2:45Þ

2.3 WKB Approximation [3, 4]

Before we embark on the bound states of the graded-index optical waveguide, we
first review briefly the widely applied WKB approximation, which has also found
wide application in optical waveguide theory. Let us begin with the mathematical
derivation of the WKB wave function, and consider again the solutions of the scalar
wave equation:

d2wðxÞ
dx2

þ k2n2ðxÞ � b2

 �

wðxÞ ¼ 0: ð2:46Þ

If we suppose the potential varies very slowly, then we can write the trial
solution as a combination of two plane waves traveling leftward and rightward,
respectively:

wðxÞ ¼ Að0Þ exp ikSðxÞð ÞþBð0Þ exp �ikSðxÞð Þ; ð2:47Þ

which is a good approximation only when the refractive index varies very slowly.
How slow? For simplicity, inserting a rightward traveling plane wave into the wave
equation, one will get a differential equation of S(x):

dS
dx

� 
2

þ 1
ik
d2S
dx2

¼ n2ðxÞ � b2

k2
: ð2:48Þ

We now expand S(x) in the power series in 1/k and write as follows:

S ¼ S0 þ 1
k
S1 þ 1

k

� 
2

S2 þ � � � : ð2:49Þ

Feeding this into Eq. (2.48) and requiring that all terms of Oð�hnÞ vanish inde-
pendently, there is
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dk
dx

����
����� 1: ð2:50Þ

where

k ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2nðxÞ2 � b2

q : ð2:51Þ

Equation (2.50) requires that the refractive index should vary slowly, and there is

nðxÞk
2p nðxÞ2 � b2=k2
� � dnðxÞ

dx

������
������� 1: ð2:52Þ

If Eq. (2.52) is satisfied, and we ignore all terms of Oð1=knÞðn� 2Þ in Eq. (3.4),
we can rewrite down S0, S1 as follows:

S0 ¼ 1
k

R ðk2nðxÞ2 � b2Þ1=2dx
S1 ¼ i

2 ln
dS0
dx

��� ���
(

; ð2:53Þ

and the first-order WKB wave function Eq. (2.47) as follows:

wðxÞ ¼ Affiffi
j

p exp i
R x jdx� �þ Bffiffi

j
p exp �i

R x jdx� �
j2 ¼ k2n2ðxÞ � b2 [ 0

wðxÞ ¼ Affiffi
p

p exp i
R x pdx� �þ Bffiffi

p
p exp �i

R x pdx� �
p2 ¼ b2 � k2n2ðxÞ[ 0

(
;

ð2:54Þ

Equation (2.54) shows that we should anticipate an oscillatory behavior in a
region where k2n2ðxÞ[ b2 and an evanescent behavior in the opposite region. In
the region of turning point given by knðxÞ ¼ b, the WKB wave function breaks
down since Eq. (2.52) is no longer fulfilled. In order to construct a globally WKB
wave function, connection formulas at turning points are required to match to the
WKB solutions on both sides of the turning point regions, where the local wave-
length λ is singular. Here, we present the connection formulas directly, and the
mathematics progresses are referred to the related references. Suppose the position
of the turning point is given by xt, and let us identify the region k2n2(x) > β2 with
x < xt and vice versa. The corresponding connecting formula is as follows:

1
2
ffiffi
p

p exp � 1
�h

Rx
xt

pðxÞdx
 !

$ 1ffiffi
j

p cos 1
�h

Rxt
x
pðxÞdx� p

4

� 

k2n2ðxÞ\b2

 �

k2n2ðxÞ[ b2

 �

:

ð2:55Þ
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However, in some issues that the wave function in the optically dense media is not
the superposition of two waves propagate in the opposite directions, such as the
transmitted waves left the optically sparse media and traveled to infinite, the con-
nection formula should be replaced by

1ffiffi
p

p exp
Rxt
x
pðxÞdx

� 

$ � 1ffiffi

j
p exp i

Rx
xt

jdxþ ip
4

 !
k2n2ðxÞ\b2

 �

k2n2ðxÞ[ b2

 �

:

ð2:56Þ

Instead of the two conventional expressions above, Prof. Friedrich [5] proposed
that the application of the WKB approximation can be significantly extended if the
connection formulas in the most general case can be used. These expressions can be
written as follows:

2ffiffiffiffiffiffiffiffiffi
pðxÞp cos

Zx
xt

pðxÞdx� /
2

0
@

1
A$ Nffiffiffi

p
p exp �

Zxt
x

pdx

0
@

1
A; ð2:57Þ

1ffiffiffi
j

p cos
Zxt
x

jdx�
�/
2

0
@

1
A$

�Nffiffiffi
p

p exp
Zx
xt

pðxÞdx
0
@

1
A: ð2:58Þ

There are four parameters N;N;/, and �/ to be determined by considering the
specific problems. And the conventional formulas can be retrieved by setting N = 1
and / ¼ p=2. If we consider a superposition of the above two expressions w ¼
A� ð3:39ÞþB� ð3:40Þ with arbitrary complex coefficients A and B, the conser-
vation condition of the current density on the two sides of the turning point requires
that

N �N ¼ sin
/� �/

2

� 

; ð2:59Þ

which can be used to determine the undetermined parameters. Imagine a refractive
index profile that varies slowly, where the two turning points xtl and xtr are defined
via nðxtlÞ ¼ nðxtrÞ ¼ b=j, so there will be oscillatory behavior in the region
xtl < x < xtr and evanescent behavior elsewhere. The WKB waves in the region
xtl < x < xtr can be defined as follows:

wWKBðxÞ /
1ffiffiffiffiffiffiffiffiffi
jðxÞp cos

Zx
xtl

jðx0Þdx0 � /l

2

0
@

1
A; ð2:60Þ
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from the left turning point, or equivalently

wWKBðxÞ /
1ffiffiffiffiffiffiffiffiffi
jðxÞp cos

Zxtr
x

jðx0Þdx0 � /r

2

0
@

1
A; ð2:61Þ

from the right turning point. ϕl and ϕr are the reflection phases at the left and right
turning points, respectively, and x is an arbitrary point in the well away from the
turning points. According to connection expression (2.55), we have /l ¼ /r ¼ p=2
here. So the two expressions above must agree with each other, and this require-
ment can only be satisfied when the sum of the two arguments equals an integral
multiple of π, which yields the following:

Zxtr
xtl

jðxÞdx ¼ ðnþ 1
2
Þp; ð2:62Þ

where n = 0, 1, 2,… The above expression is the famous WKB resonance condition
and may be used to find the eigenvalue equation for a graded-index waveguide with
n as the mode number. The above formula is valid, provided that the two turning
points are positioned sufficiently far apart.

In conclusion, in this section, we review briefly the semiclassical WKB
approximation, including its wave function and the eigenvalue equation (quanti-
zation condition). And it should be note that the basic WKB wave function ignores
all terms of Oð1=knÞ ðn� 2Þ , and the phase shift ϕl, ϕr at the turning points in the
original WKB approximation is equal to π/2.

2.4 Multilayer Optical Waveguides

2.4.1 Asymmetric Four-Layer Slab Waveguide [6]

In the beginning of this section, we use a simple asymmetric slab waveguide to
demonstrate the existence of the scattered subwaves, which can be simply defined
as follows: All the waves being reflected at non-classical turning points for at least
once are referred as the scattered subwaves. In contrast, the waves that only
reflected at classical turning points are called as the main waves. This is the first
time we proposed the concept of the scattered subwaves in this book. Like many
other basic concepts, the seemingly simple concept of scattered subwaves is not as
straightforward as one might assume.

We are now in a position to deal with the four-layer dielectric slab waveguide
via the transfer matrix method. As plotted in Fig. 2.3, two uniform isotropic
dielectric of refractive indexes n1 and n2 and thicknesses h1 and h2, are sandwiched
between two semi-infinite layers of lower index n0 and n3. For definiteness,
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considering the situation n1 > n2 > n3 > n0, which yields an asymmetric guiding
structure, and we are interested in those guide modes, whose power is confined
largely to the central layer of the guide. So in this chapter, we only consider two
cases for the propagation constant β, including (A) kn2 � b� kn3, that both regions
1 and 2 are the regions of electromagnetic confinement; (B) kn1 � b� kn2, that only
region 1 is the primary region of energy confinement. The discussion on the case of
leaky waves is left to the fourth chapter.

For case A of kn2 � b� kn3, the eigenvalue equation of the matrix form can be
immediately written as follows:

�p0 1½ �M1M2
1

�p3

� �
¼ 0; ð2:63Þ

where

M1 ¼ cosðj1h1Þ � 1
k1
sinðj1h1Þ

j1 sinðj1h1Þ cosðj1h1Þ
� �

; ð2:64Þ

M2 ¼ cosðj2h2Þ � 1
k2
sinðj2h2Þ

j2 sinðj2h2Þ cosðj2h2Þ
� �

; ð2:65Þ

j1 ¼ ðk20n21 � b2Þ1=2

j2 ¼ ðk20n22 � b2Þ1=2

p0 ¼ ðb2 � k20n
2
0Þ1=2

p3 ¼ ðb2 � k20n
2
3Þ1=2

9>>>>>=
>>>>>;
: ð2:66Þ

Substituting the matrixes into Eq. (2.63), the eigenvalue equation of the asym-
metric four-layer slab waveguide is as follows:

j1h1 ¼ mpþ tan�1 p0
j1

� 

þ tan�1 p2

j1

� 

; ðm ¼ 0; 1; 2; . . .Þ; ð2:67Þ

( )n x

1n

x0
1h 1 2h h+

2n

3n

0n

Fig. 2.3 The refractive index
distribution of a four-layer
dielectric slab waveguide
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where

p2 ¼ j2 tan tan�1 p3
j2

� 

� j2h2

� �
: ð2:68Þ

In order to see the physical insight of the above expression, we define a new
quantity U2, which is given by the following:

U2 ¼ tan�1 p2
j2

� 

; ð2:69Þ

and which can be rewritten in the following form according to Eq. (2.68):

j2h2 þU2 ¼ m0pþ tan�1 p3
j2

� 

; m0 ¼ 0; 1; 2; . . .ð Þ: ð2:70Þ

Combine Eqs. (2.69) and (2.70) with the equation below:

tan�1 p2
j1

� 

¼ tan�1 j2

j1
tan U2ð Þ

� �
: ð2:71Þ

We finally obtain an eigenvalue equation that has a similar form of the
three-layer slab waveguide

j1h1 þ j2h2 þUðsÞ ¼ mpþ tan�1 p0
j1

� 

þ tan�1 p3

j2

� 

ðm ¼ 0; 1; 2; . . .Þ

; ð2:72Þ

where

UðsÞ ¼ U2 � tan�1 j2
j1

tanU2

� 

: ð2:73Þ

To clarify the physics behind the unknown U sð Þ, let us consider the special case
of

n21 � n22
n21

� 1, which follows that j1�j2
j1

� 1. Using differential formula, there is

tan�1 j2
j1

tanU2

� 

¼ tan�1 1� j1 � j2

j1

� 

tanU2

� �
� U2 � j1 � j2

2j1
sin 2U2;

ð2:74Þ
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and according to Eq. (2.73), one can obtain

UðsÞ ¼ j1 � j2
2j1

sin 2U2: ð2:75Þ

The amplitude of the right-hand side of Eq. (2.75) under first-order approxi-
mation is as follows:

j1 � j2
2j1

� j1 � j2
j1 þ j2

; ð2:76Þ

which denotes the reflection coefficient of light incident from region 1 to region 2.
Consequently, U sð Þ can be viewed as the reflection phase contribution of the
first-order scattered subwaves. Of course, the term U sð Þ denotes the phase contri-
bution of all the scattered subwaves if we did not carry out any approximation. On the
contrary, if n1 = n2 holds, there is U sð Þ ¼ 0. As a summary, U sð Þ is the phase
contribution induced by the reflection occurs at the interface between regions 1 and 2,
and is determined by the difference of the refractive index between the two regions.
So when dealing with multilayer waveguide, both phase contribution of the main
waves and the scattered subwaves should be taken into consideration.

For case B k0n1 [ b[ k0n2, whose guiding layer locates in the region of (0, h1).
In this case, the matrix form of the eigenvalue equation can still be written as
Eq. (2.63), but the κ2 in Eq. (2.65) should be modified as follows:

j2 ¼ i b2 � k20n
2
2


 �1=2¼ ia2: ð2:77Þ

Consequently, the sine and cos in the matrix should be replaced as sinh and cosh,
that is,

sinðj2h2Þ ¼ i sinhða2h2Þ; cosðj2h2Þ ¼ coshða2h2Þ: ð2:78Þ

And the transfer matrix M2 becomes

M2 ¼ coshða2h2Þ � 1
a2
sinhða2h2Þ

�a2 sinhða2h2Þ coshða2h2Þ

� �
: ð2:79Þ

So the eigenvalue equation for this case is mathematically the same with
Eq. (2.67), except that p2 is defined by

p2 ¼ a2 tanh tanh�1 p3
a2

� 

þ a2h2

� �
: ð2:80Þ

To see the scattered subwaves in the four-layer slab waveguide in another way,
let us reconsider the case A for TE mode, whose transverse electric field may be
expressed as follows:
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EyðxÞ ¼

A0 expðp0xÞ �1\x\0

A1 expðij1xÞþB1 expð�ij1xÞ 0\x\h1
A2 exp½ij2ðx� h1Þ� þB2 exp½�ij2ðx� h1Þ� h1\x\h1 þ h2
A3 exp½�p3ðx� h1 � h2Þ� h1 þ h2\x\þ1

8>>><
>>>:

ð2:81Þ

where

j1 ¼ ðk20n21 � b2Þ1=2

j2 ¼ ðk20n22 � b2Þ1=2

p0 ¼ ðb2 � k20n
2
0Þ1=2

p3 ¼ ðb2 � k20n
2
3Þ1=2

9>>>>>=
>>>>>;
:

Using the continuity condition of Ey and ∂Ey/∂x at boundaries x = 0, x = h1, and
x = h1 + h2, one may write down the dispersion equation as follows:

exp i2ðj1h1 þ j2h2 � U10 � U23Þ½ � þ j1 � j2
j1 þ j2

exp i2ðj1h1 � U10Þ½ �

þ j2 � j1
j2 þ j1

exp i2ðj2h2 � U23Þ½ � ¼ 1;
ð2:82Þ

where

U10 ¼ tan�1 p0
j1

� 

ð2:83Þ

U23 ¼ tan�1 p3
j2

� 

ð2:84Þ

What does Eq. (2.82) means? See Fig. 2.4 for the zigzag path of rays in the slab
waveguide. Clearly, the first term on the left-hand side of Eq. (2.82) denotes the
main waves which are plotted with solid lines in Fig. 2.4. Starting from the interface
between regions 0 and 1, the main waves travels through the interface between
regions 1 and 2 and then is total-reflected at the boundary of region 3. In summary,
the main waves only is total-reflected at the boundaries of regions 0 and 3. On the
contrary, the dotted lines shown in Fig. 2.4 represent the second and third terms in
Eq. (2.82), which are reflected at the interface between regions 1 and 2. So these
two terms denote the scattered subwaves. The guided modes in the slab waveguide
are in fact the coherent superposition result of the main waves and the scattered
subwaves, which are ignored in the semiclassical theories. It can be proved
mathematically that Eq. (2.82) can be recast as follows:
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exp i2 j1h1 þ j2h2 þUðsÞ � U10 � U23½ �f g ¼ 1: ð2:85Þ

In view of expði2mpÞ ¼ 1; ðm ¼ 0; 1; 2; . . .Þ, the above equation is equivalent with
Eq. (2.72).

2.4.2 Multilayer Slab Waveguide

In this section, we expand the conclusions of the four-layer slab waveguide to the
multilayer slab waveguide. Suppose there are l layers of index n1, n2, … nl, and
thickness of h1, h2,… hl, embedded in two cladding layers of index n0 and nl+1. For
the structure consider here, there is n1 > n2 > … > nl > nl+1>n0 (Fig. 2.5).

Let us extend Eq. (2.63) to this waveguide structure, consider the guided modes
with knl [ b[ knlþ 1, and the eigenvalue equation for the TE mode in the matrix
form can be written as follows:

�p0 1½ �
Yl
i¼1

Mi
1

�plþ 1

� �
¼ 0; ð2:86Þ

3n

2n

1n

0n

1h

2h

(a)

(c)

(b)

Fig. 2.4 Zigzag path of the main waves (a) and the scattered subwaves (b, c) in the four-layer
dielectric waveguide

Fig. 2.5 Asymmetric l + 2
layer slab waveguide
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where the matrix corresponding to the ith layer Mi has the following form:

Mi ¼ cosðjihiÞ � 1
ji
sinðjihiÞ

ji sinðjihiÞ cosðjihiÞ

� �
ð2:87Þ

where

ji ¼ ðk20n2i � b2Þ1=2
p0 ¼ ðb2 � k20n

2
0Þ1=2

plþ 1 ¼ ðb2 � k20n
2
lþ 1Þ1=2

8><
>: :

Equation (2.86) can be simplified via direct algebraic manipulations as

j1h1 ¼ mpþ tan�1 p0
j1

� 

þ tan�1 p2

j1

� 

ðm ¼ 0; 1; 2; . . .Þ

; ð2:88Þ

where

pi ¼ ji tan tan�1 piþ 1
ji

� �
� jihi

h i
i ¼ ð2; 3; . . .; lÞ

ð2:89Þ

The two formula above completly specify the dispersion characteristics of the
asymmetric multilayer slab waveguide. However, Eq. (2.89) is a recurrence for-
mula, which requires all the information of pjðj[ iÞ to calculate pi. To see the
different roles of the main waves and the scattered subwaves, we define

/i ¼ tan�1 pi
ji

� 

; ð2:90Þ

According to Eq. (2.89), one obtains

/i ¼ mipþ tan�1 piþ 1

ji

� 

� jihi

¼ mipþ tan�1 jiþ 1

ji
tan/iþ 1

� 

� jihi

mi ¼ 0; 1; 2. . .; i ¼ 1; 2; . . .; l� 1ð Þ;

ð2:91Þ

which can be modified as

jihi þ /iþ 1 � tan�1 jiþ 1

ji
tan/iþ 1

� 
� �
¼ mipþ /iþ 1 � /i


 �
mi ¼ 0; 1; 2; . . .; i ¼ 1; 2; . . .; l� 1ð Þ

: ð2:92Þ
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When i = l, there is

jlhl ¼ mlpþ tan�1 plþ 1

jl

� 

� ul; ð2:93Þ

Based on the three equations above and sum up over i, one can write down

Xl
i¼1

jihi þ
Xl�1

i¼1

/iþ 1 � tan�1 jiþ 1

ji
tan/iþ 1

� 
� �

¼ mpþ tan�1 plþ 1

jl

� 

� /l:

ð2:94Þ

On the other hand, it is easy to prove

/1 ¼ m1pþ tan�1 p2
j1

� 

� j1h1; ð2:95Þ

which can be rewritten by inserting Eq. (2.88)

/1 ¼ m1p� tan�1 p0
j1

� 

: ð2:96Þ

Finally, we transformed Eq. (2.94) into

Pl
i¼1

jihi þUðsÞ ¼ mpþ tan�1 p0
j1

� �
þ tan�1 plþ 1

jl

� �
ðm ¼ 0; 1; 2; . . .Þ

; ð2:97Þ

with the phase contribution of the scattered subwaves

UðsÞ ¼
Xl�1

i¼1

/iþ 1 � tan�1 jiþ 1

ji
tan/iþ 1

� 
� �
: ð2:98Þ

We can obtain the eigenvalue equation of the three-layer or four-layer slab
structure from Eq. (2.97) by setting l = 1, or l = 2, respectively. It is obvious that
this formula can be applied to any multilayer structures without any approximation.
Furthermore, it has a clear physical explanation that both the main waves and
scattered subwaves contribute to the total phase contribution. Although the dis-
cussion above consider only the case of β < k0nl, it is not difficult to obtain the
corresponding result related to the case of β > k0ni, by just replacing the κj with iαj
in the matrix Mj for all the j > i. Interesting readers can also derive the eigenvalue
equation for TM modes by using the appropriate matrix.
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2.5 The Transfer Matrix Treatment of the Graded-Index
Waveguide

2.5.1 The Eigenvalue Equation

In this section, the transfer matrix method is extended to treat the graded-index
waveguide, and it is demonstrated strictly that the phase shifts at the turning points
are exact equal to π. Since this section deals with the general graded-index structure
with arbitrary refractive index profile, the strategy is as follows: We first approx-
imate the graded-index waveguide with a multilayer waveguide with n layers and
then take the limit as the n approaches infinite. At the beginning, let us consider a
simple case in which only one turning point exists (Fig. 2.6).

Assume that the turning point locates at the position x = xt, and the index profile
extends to infinite. In order to apply the transfer matrix method, we should truncate
infinite at xs = xt + xc for sufficient large xc, and set n(x) = ns for x > xs. Then, the
regions (0, xt) and (xt, xs) are divided into l and m segments, with each layer has the
same thickness h, so that xt = lh and xc = mh. For TE mode, the transfer matrix for
these segments is as follows:

Mi ¼ cos jihð Þ � 1
ji
sin jihð Þ

ji sin jihð Þ cos jihð Þ

� �
i ¼ 1; 2; . . .lð Þ; ð2:99Þ

and

Mj ¼
cosh ajh


 � � 1
aj
sinh ajh


 �
�aj sinh ajh


 �
cosh ajh


 �" #
j ¼ lþ 1; lþ 2; . . .lþmð Þ; ð2:100Þ

where

ji ¼ k20n
2 xið Þ � b2

� �1=2
aj ¼ b2 � k20n

2 xj

 �� �1=2

:
ð2:101Þ

Fig. 2.6 Graded-index
structure with only one
turning point
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According to the transfer matrix method, the corresponding matrix equation is as
follows:

Ey 0ð Þ
E0
y 0ð Þ

" #
¼

Yl
i¼1

Mi

" # Ylþm

j¼lþ 1

Mj

" #
Ey xsð Þ
E0
y xsð Þ

" #
; ð2:102Þ

while the evanescent behavior in both the outer claddings in the approximated
multilayer structure are given by

Ey xð Þ ¼ A0 exp p0xð Þ x\0ð Þ
As exp �ps x� xsð Þ½ � x[ xsð Þ

�
; ð2:103Þ

where

p0 ¼ b2 � k20n
2
0


 �1=2
ps ¼ b2 � k20n

2
s


 �1=2
:

ð2:104Þ

Substituting Eq. (2.103) into Eq. (2.102), we have

�p0 1ð Þ
Yl
i¼1

Mi

 ! Ylþm

j¼lþ 1

Mj

 !
1

�ps

� 

¼ 0: ð2:105Þ

By a simple algebraic process, the above formula can be recast into

�p0 1ð Þ
Yl
i¼1

Mi

 !
1

�plþ 1

� 

¼ 0; ð2:106Þ

where

pj ¼ aj
sinh ajh


 �þ pjþ 1

aj
cosh ajh


 �
cosh ajh


 �þ pjþ 1

aj
sinh ajh


 �
j ¼ lþ 1; lþ 2; . . .; lþmð Þ

plþmþ 1 ¼ ps

8>>>><
>>>>:

ð2:107Þ

So it is clear that in Eq. (2.106), the field distribution outside the turning point is
treated as a exponentially decaying field, that is,

Ey xð Þ ¼ At exp �plþ 1 x� xtð Þ½ � x[ xtð Þ: ð2:108Þ

Similar with the process we used in the last section, the exact eigenvalue
equation can be derived from Eq. (2.106)
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Pl
i¼1

jihþU sð Þ ¼ Npþ tan�1 p0
j1

� 

þ tan�1 plþ 1

jl

� 

N ¼ 0; 1; 2; . . .ð Þ

; ð2:109Þ

where

U sð Þ ¼
Xl�1

i¼1

Uiþ 1 � tan�1 jiþ 1

ji
tanUiþ 1

� 
� �
; ð2:110Þ

Ui ¼ tan�1 pi
ji

� 

; ð2:111Þ

pi ¼ ji tan tan�1 piþ 1

ji

� 

� jih

� �
i ¼ 1; 2; . . .; lð Þ; ð2:112Þ

and tan�1 plþ 1
jl

� �
denotes the phase shift at the turning point.

Next considering the graded-index structure, i.e., l ! 1;m ! 1, the first term
in the left-hand side of Eq. (2.109) becomes integral

Xl
i¼1

jihi ¼
Zxt
0

jðxÞdx; ð2:113Þ

and the second term becomes

Xl�1

i¼1

Uiþ 1 � arctan
jiþ 1

ji
tanUiþ 1

� 
� �
¼
Zxy
0

q
q2 þ j2

dj
dx

dx: ð2:114Þ

where qðxÞ ¼ �E0ðxÞ=EðxÞ. Finally, the exact eigenvalue equation of the
graded-index slab waveguide can be written as follows:

Rxt
0
jdxþU sð Þ ¼ Rxt

0
jþ q

q2 þ j2
dj
dx

� 

dx ¼ Npþ tan�1 p0

j1

� 

þ tan�1 plþ 1

jl

� 

N ¼ 0; 1; 2; . . .ð Þ

:

ð2:115Þ

It should be note that the term U sð Þ denotes the phase contribution of the

scattered subwaves, and q
q2 þ j2

dj
dx represents its wave number. The above equation

can be generalized to the case with two turning points without difficult. Consider
the graded-index waveguide with two turning points at xt1 and xt2, and extend to
infinity on both sides (Fig. 2.7).
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Take the similar process used above, first we truncate the index profile n(x) at xC
and xD, respectively, and divide the regions (xC, xt1), (xt1, xt2), and (xt2, xD) into l, m,
and n segments of the same thickness h. Then, the dispersion equation via the
transfer matrix can be written as follows:

Rxt2
xt1

jdxþU sð Þ ¼ Npþ tan�1 pl
jlþ 1

� 

þ tan�1 plþmþ 1

jlþm

� 

N ¼ 0; 1; 2; . . .ð Þ

; ð2:116Þ

where

U sð Þ ¼
Xlþm�1

j¼lþ 1

Ujþ 1 � tan�1 jjþ 1

jj
tanUjþ 1

� 
� �

Uj ¼ tan�1 pj
jj

� 

:

ð2:117Þ

pl and pl+m+1 are the effective attenuation coefficients for the regions (x < xt1) and
(x > xt2), respectively, which are specified by

pk ¼ ak

sinh akhð Þþ pkþ 1

ak
cosh akhð Þ

cosh akhð Þþ pkþ 1

ak
sinh akhð Þ

k ¼ lþmþ 1; lþmþ 2; . . .; lþmþ nð Þ;

ð2:118Þ

where p0 ¼ pC and pC ¼ b2 � k20n
2 xcð Þ� �1=2

,

pi ¼ ai
sinh aihð Þþ pi�1

ai
cosh aihð Þ

cosh aihð Þþ pi�1

ai
sinh aihð Þ

i ¼ 1; 2; . . .; lð Þ
; ð2:119Þ

where plþmþ nþ 1 ¼ pD and pD ¼ b2 � k20n
2 xDð Þ� �1=2

.

Fig. 2.7 A graded-index
waveguide with two turning
points
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2.5.2 The Phase Shift at Turning Point [7]

From the last section, it is clear that we can replace the field distribution outside the
turning point with an exponentially decaying field without introducing any calcu-
lation error. So it is possible to treat the index profile outside the turning point as
with a constant neq, which is smaller than n(xt) (see Fig. 2.8).

According to the analysis above, the effective attenuation coefficient can be
written as follows:

pt ¼ b2 � k20n
2
eq

� �1=2
; ð2:120Þ

If we restrict ourselves with the bound electromagnetic modes, pt must be a finite
and positive quantity. Let us prove this statement briefly below.

(1) For j = l+m, consider Eqs. (2.101), (2.104), and (2.107), and there is

pc ¼ plþmþ 1 [ alþm; ð2:121Þ

since both αj and h are positive real number, it follows

coshðalþmhÞ[ sinhðalþmhÞ; ð2:122Þ

and then, in view of (2.107), one can prove that pl+m > αl+m. Repeat the above
process, and finally, there is

plþ 1 [ alþ 1: ð2:123Þ

(2) Let us rewrite Eq. (2.107) into the following formation

pj ¼ pjþ 1

coshðajhÞþ aj
pjþ 1

sinhðajhÞ

coshðajhÞþ pjþ 1

aj
sinhðajhÞ

: ð2:124Þ

Fig. 2.8 Replace the index
distribution outside the
turning point with an effective
refractive index neq
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Obviously, pj\pjþ 1 holds, which leads to

pt ¼ plþ 1\plþmþ 1 ¼ pc: ð2:125Þ

(3) According to Eqs. (2.123) and (2.125), one obtains

alþ 1\pt\pc; ð2:126Þ

which shows that pt is a finite and real number. However, according to
Eq. (2.101), as l ! 1ðh ! 0Þ, there holds

jl ¼ k20n
2 xlð Þ � b2

� �1=2! k20n
2 xtð Þ � b2

� �1=2¼ 0: ð2:127Þ

Finally, the phase shift at the turning point can be calculated as follows:

tan�1 pt
kl

� 

¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k20n

2
eq

k20n
2ðxlÞ � b2

s
! p

2
ðl ! 1Þ; ð2:128Þ

which is exact twice the result in the basic WKB approximation. In the modified
WKB approximation, the non-integral Maslov index is used, which allows the
reflection phase at the turning points approaches π/2 in the semiclassical limit, and
approaches π in the anticlassical limit. Compared with the WKB approximation, the
result we derived has the following features:

(1) The phase shift at the turning point is constant π, which is independent of the
propagation constant and the refractive index distribution; it is a general result.

(2) The phase shift does not related to the position of the turning points, and it
does not vary if the turning point is near truncated points, discontinuous
points, or other turning points.

(3) The phase shift is the same for different wavelengths.

Using Eq. (2.128), we can further simplify the eigenvalue equation Eq. (2.115)
of an arbitrary graded-index waveguide with only one turning point as plotted in
Fig. 2.6 as

Zxt
0

jdxþU sð Þ ¼ mpþ tan
p0
j1

� 

þ p

2
m ¼ 0; 1; 2; . . .ð Þ; ð2:129Þ

and the eigenvalue equation of graded-index waveguide with two turning points in
Fig. 2.7 as

Zxt2
xt1

kdxþU sð Þ ¼ mþ 1ð Þp m ¼ 0; 1; 2; . . .ð Þ: ð2:130Þ
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In conclusion of this section, we started with the transfer matrix and applied to
multilayer and graded-index waveguide to obtain an exact and general eigenvalue
equation with clear physics. The notion of scattered subwaves, which is completely
neglected in semiclassical theories, was proposed and appeared in all the obtained
eigenvalue equations.
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