
Quasi-Linear Size Zero Knowledge
from Linear-Algebraic PCPs

Eli Ben-Sasson2(B), Alessandro Chiesa3, Ariel Gabizon2, and Madars Virza1

1 MIT, Cambridge, USA
2 Technion, Haifa, Israel
eli@cs.technion.ac.il

3 UC Berkeley, Berkeley, USA

Abstract. The seminal result that every language having an interactive
proof also has a zero-knowledge interactive proof assumes the existence
of one-way functions. Ostrovsky and Wigderson [33] proved that this
assumption is necessary: if one-way functions do not exist, then only
languages in BPP have zero-knowledge interactive proofs.

Ben-Or et al. [9] proved that, nevertheless, every language hav-
ing a multi-prover interactive proof also has a zero-knowledge multi-
prover interactive proof, unconditionally. Their work led to, among
many other things, a line of work studying zero knowledge without
intractability assumptions. In this line of work, Kilian, Petrank, and
Tardos [28] defined and constructed zero-knowledge probabilistically
checkable proofs (PCPs).

While PCPs with quasilinear-size proof length, but without zero
knowledge, are known, no such result is known for zero knowledge PCPs.
In this work, we show how to construct “2-round” PCPs that are zero
knowledge and of length Õ(K) where K is the number of queries made by
a malicious polynomial time verifier. Previous solutions required PCPs of
length at least K6 to maintain zero knowledge. In this model, which we
call duplex PCP (DPCP), the verifier first receives an oracle string from
the prover, then replies with a message, and then receives another oracle
string from the prover; a malicious verifier can make up to K queries
in total to both oracles.

Deviating from previous works, our constructions do not invoke the
PCP Theorem as a blackbox but instead rely on certain algebraic proper-
ties of a specific family of PCPs. We show that if the PCP has a certain
linear algebraic structure — which many central constructions can be
shown to possess, including [2,4,15] — we can add the zero knowledge
property at virtually no cost (up to additive lower order terms) while
introducing only minor modifications in the algorithms of the prover and
verifier. We believe that our linear-algebraic characterization of PCPs
may be of independent interest, as it gives a simplified way to view pre-
vious well-studied PCP constructions.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 33–64, 2016.
DOI: 10.1007/978-3-662-49099-0 2

34 E. Ben-Sasson et al.

1 Introduction

We continue the study of proof systems that provide soundness and zero knowl-
edge, simultaneously and unconditionally (i.e., no intractability assumptions are
needed to achieve the two), as we now explain.

Interactive Proofs. An interactive proof [6,20] for a language L is a pair
of interactive algorithms (P, V), where P is known as the prover and V as the
verifier, that satisfies the following: (i) (completeness) for every instance x in
L , P (x) can make V (x) accept with probability 1; (ii) (soundness) for every
instance x not in L , every prover P̃ can make V (x) accept with at most a small
probability ε. Shamir [35] showed the expressive power of interactive proofs by
proving that IP = PSPACE, i.e., all and only languages in PSPACE have
interactive proofs.

Zero Knowledge. An interactive proof is zero knowledge [20] if the verifier,
even if malicious, cannot learn any information about an instance x in L , by
interacting with the prover, besides the fact x is in L : for any efficient verifier Ṽ
there exists an efficient simulator S such that S(x) is “indistinguishable” from
the view of Ṽ while interacting with P (x). Depending on the choice of definition
for indistinguishability, one gets different flavors of zero knowledge.

If indistinguishability is required to hold for efficient deciders only, then one
gets computational zero knowledge; CZK denotes the corresponding complex-
ity class. A seminal result in cryptography says that if one-way functions exist
then CZK = IP, i.e., every language having an interactive proof also has a
computational zero-knowledge interactive proof [8,20,23]. If indistinguishability
is required to hold for all deciders, then one gets statistical zero knowledge; if
instead the simulator’s output and the verifier’s view are the same distribution
(and not merely close to each other), then one gets perfect zero knowledge. These
stronger notions determine the corresponding complexity classes SZK and PZK,
both of which are contained in AM ∩ coAM; of course, PZK ⊆ SZK ⊆ CZK.

Unfortunately, zero knowledge cannot be achieved unconditionally for non-
trivial languages: Ostrovsky and Wigderson [33] proved that if one-way functions
do not exist then CZK equals an average-case variant of BPP.

Other Types of Proof Systems. Due to the limitations of interactive proofs
with respect to zero knowledge that holds unconditionally, researchers have
explored other types of proof systems, as an alternative to interactive proofs.

– MIP. Ben-Or et al. [9] first studied statistical zero knowledge, and proved that
it can be achieved in a new model, multi-prover interactive proof (MIPs),
where the verifier interacts with multiple provers that are not allowed to
communicate while interacting with the verifier (though they may share a
random string before such an interaction begins). More precisely, Ben-Or
et al. prove that every language having a multi-prover interactive proof also
has a perfect zero-knowledge multi-prover interactive proof (again, without
relying on intractability assumptions). The result of [9] was subsequently
improved in a number of papers [5,19,29].

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 35

– PCP. Kilian et al. [28] study statistical zero knowledge in the model of prob-
abilistically checkable proofs (PCPs) [2–4], where the verifier has oracle access
to a string. Essentially, the oracle string can be thought of as a stateless
prover: the answer to a query depends only on the query itself, but not any
other queries that were previously made. Building on results implicit in [19],
Kilian et al. showed two main theorems. First, every language in NEXP has a
PCP that is statistical zero knowledge against verifiers that make at most any
polynomial number of queries to the PCP. Second, every language in NP has,
for every constant c > 0, a PCP that is statistically zero knowledge against
verifiers that make at most k(n) := nc queries to the PCP.
Subsequent works [24–26,31] provided simplifications (giving alternative con-
structions or simplifying that of [28]) and limitations (showing that for lan-
guages in NP one cannot efficiently sample the oracle if one seeks statistical
zero knowledge against verifiers that make at most a polynomial number of
queries).

– IPCP. Goyal et al. [21] study statistical zero knowledge in the model of
interactive PCPs (IPCPs) [27], where the verifier interacts with two provers
of which one is restricted to be an oracle. Goyal et al. prove that every language
in NP has a constant-round interactive PCP that is statistical zero knowledge
against verifiers that make at most any polynomial number of queries to the
PCP, and where both provers’ strategies can be implemented efficiently as a
function of the instance and the witness.

A Limitation of Prior Work. PCPs with quasilinear-size proof length, but
without zero knowledge, are known: for every language L in NTIME(T (n)),
there is a PCP with proof length Õ(T (n)) and query complexity O(1)
[14,15,17,32]. On the other hand, no such result for statistical zero knowledge
PCPs is known: even when applied to PCPs of length Õ(T (n)), [28]’s result and
followup improvements yields a proof length that is polynomial in T (n) · k(n),
where k(n), known as the knowledge bound, is a bound on the number of queries by
any verifier (see Sect. 4.1 for further discussion). We thus ask the following ques-
tion: are there statistical zero knowledge PCPs with proof length quasilinear in
T (n) + k(n)?

1.1 Our Contributions

We do not answer the above question in the PCP model, but we give a positive
answer in a closely related model that can be thought of as a “2-round PCP”,
which we call duplex PCP (DPCP). At a high level, a DPCP works as follows:
the prover first sends an oracle string π0 to the verifier, just as in a PCP; then,
the verifier sends a message ρ to the prover; finally, the prover answers with a
second oracle string π1; the verifier may query both oracles, and then accept or
reject. In other words, a DPCP is merely a 2-round interactive proof in which
the prover sends oracle strings rather than messages. We prove the following
theorem:

36 E. Ben-Sasson et al.

Theorem 1 (see Theorem 4 for formal statement). For every language L
in NTIME(T) ∩ NP and polynomially-bounded knowledge bound k there exists
a DPCP system satisfying the following:

– the proof length (in fact, also the prover running time) is quasilinear in n +
T (n) + k(n);

– the query complexity is polynomial in log(T (n) + k(n));
– the verifier running time is polynomial in n + log(T (n) + k(n));
– perfect zero knowledge holds against any verifier that makes at most k(n)

adaptive queries (in total to both oracles);
– the soundness error is 1/2 (and can be reduced by repetition to 2−λ while

preserving perfect zero knowledge, provided that the number of queries does
not exceed k(n)).

Moreover, similarly to the PCPs of [28], the DPCP system that we construct
is in fact not only sound but is also a proof of knowledge [7]; however, in contrast
to [28], the DPCP verifier is non-adaptive, in the sense that the query locations
depend only on the verifier’s random tape.

Perhaps the main difference between our construction and prior work is the
techniques that we use. While previous works use the PCP Theorem as a black
box, compiling a PCP into a zero knowledge PCP by using locking schemes [28],
we use certain algebraic properties of a specific family of PCPs to guarantee zero
knowledge. In comparison to the generic approach, we are more specific, but the
addition of zero knowledge essentially comes “for free” when compared to the
corresponding constructions without zero knowledge. (In contrast, [28] achieves
a proof length of Ω(k(n)6 · l(n)c), for some large enough c, when starting from a
PCP with proof length l(n).)

DPCP vs IPCP. Duplex PCPs are an alternative to interactive PCPs that
combine PCPs and interaction. In a DPCP, the verifier gets an oracle string
from the prover, replies with a message, and then gets another oracle string
from the prover; in an IPCP, the verifier gets an oracle string from the prover,
and then engages in an interactive proof with him.

Both [21] and our work are similar in that both address aspects that we do
not know how to address in the PCP model, and resort to studying alternative
models, i.e., IPCP and DPCP respectively. The two works however give different
flavors of results: [21] obtain IPCPs that are zero knowledge against verifiers
that ask at most any polynomial number of queries k(n) but their oracle is of
polynomial size in k(n) (actually, of exponential size but with a polynomial-size
circuit describing it); on the other hand, our work obtains DPCPs that are zero
knowledge against verifiers that ask at most a fixed polynomial number of queries
k(n) and our oracles are of quasilinear size in k(n).

Finally, we note that our construction can be also cast as an IPCP, because
the knowledge bound k(n) holds only for the first oracle, i.e., perfect zero knowl-
edge is preserved even if the verifier reads the second oracle in full. This provides
a result on a 2-round IPCP incomparable to [21]’s 4-round IPCP.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 37

On the Minimal Computational Gap Between Prover and Verifier
Needed for Zero Knowledge. IP and MIP systems assume a computational
gap between prover and verifier. The prover is allowed (and often assumed)
to be computationally unbounded and the verifier is polynomially bounded. An
intriguing corollary of our theorem is that the computational gap between prover
and verifier can be drastically reduced, to a mere polylogarithmic one. Namely,
suppose that we wish to create zero-knowledge systems in which the verifier
runs in time tv(n); in the model above, as long as tp(n) > tv(n) · (log tv(n))c

for an absolute constant c, then perfect zero knowledge with a small soundness
error can be obtained under no intractability assumptions. (See Corollary 1 for
a formal statement.)

2 Preliminaries

Functions and Distributions. We use f : D → R to denote a function with
domain D and range R; given a subset D̃ of D, we use f |D̃ to denote the
restriction of f to D̃. Given a distribution D, we write x ← D to denote that x
is sampled according to D.

Distances. A distance measure is a function Δ : Σn × Σn → [0, 1] such that
for all x, y, z ∈ Σn: (i) Δ(x, x) = 0, (ii) Δ(x, y) = Δ(y, x), and (iii) Δ(x, y) ≤
Δ(x, z)+Δ(z, y). For example, the relative Hamming distance over alphabet Σ is
a distance measure: ΔHam

Σ (x, y) := |{i |xi �= yi}|/n. We extend Δ to distances of
strings to sets: given x ∈ Σn and S ⊆ Σn, we define Δ(x, S) := miny∈S Δ(x, y)
(or 1 if S is empty). We say that a string x is ε-close to another string y if
Δ(x, y) ≤ ε, and ε-far from y if Δ(x, y) > ε; similar terminology applies for a
string x and a set S.

Fields and Polynomials. We denote by F a finite field, by Fq the field of size
q, and by F the set of all finite fields. We denote by F[X1, . . . , Xm] the ring
of polynomials in m variables over F; given a polynomial P in F[X1, . . . , Xm],
degXi

(P) is the degree of P in the variable Xi; the total degree of P is the sum
of all of these individual degrees.

Linear Spaces. Given n ∈ N, a subset S of Fn is an F-linear space if αx+βy ∈ S
for all α, β ∈ F and x, y ∈ S.

Languages and Relations. We denote by R a relation consisting of pairs
(x,w), where x is the instance and w is the witness. We denote by Lan(R) the
language corresponding to R, and by R|x the set of witnesses in R for x.

Complexity Classes. We write complexity classes in bold capital letters: NP,
PSPACE, NEXP, and so on. We take a “relation-centric” point of view: we
view NTIME as a class of relations rather than as the class of the correspond-
ing languages; we thus may write things like “let R be in NP”. If R is in
NTIME(T), we fix an arbitrary machine MR that decides R in time T (n),
i.e., MR(x,w) always halts after T (|x|) steps and MR(x,w) = 1 if and only

38 E. Ben-Sasson et al.

if (x,w) ∈ R; we then say that MR decides R (or Lan(R)). Throughout, we
assume that T (n) ≥ n.

Codes. An error correcting code C is a set of functions w : H → Σ, where H,Σ
are finite sets. The message length of C is n := log|Σ| |C|, its block length is

 := |H|, its rate is ρ := n/
, its (minimum) distance is d := min{Δ(w, z) |w, z ∈
C, w �= z} when Δ is the (absolute) Hamming distance, and its (minimum)
relative distance is δ := d/
. Given a code family C , we denote by Rel(C) the
relation that naturally corresponds to C , i.e., {(C,w) | C ∈ C , w ∈ C}. A code
C is linear if Σ is a finite field and C is a Σ-linear space in Σ�; we denote by
dim(C) the dimension of C when viewed as a linear space. A code C is t-wise
independent if, for every subset I of [
] with cardinality t, the distribution of w|I
(viewed as a string) for a random w ∈ C equals the uniform distribution on Σt.

Random Shifts. We later use the following folklore claim about distance preser-
vation for random shifts in linear spaces; for completeness, we include its short
proof.

Claim. Let n be in N, F a finite field, S an F-linear space in F
n, and x, y ∈ F

n.
If x is ε-far from S, then αx + y is ε/2-far from S, with probability 1 − |F|−1

over a random α ∈ F. (Distances are relative Hamming distances.)

Proof. Suppose, by way of contradiction, that there exist α1, α2 ∈ F and y1, y2 ∈
S with α1 �= α2 such that, for every i ∈ {1, 2}, αix+y is ε/2 close to yi. Then, by
the triangle inequality, z := y1−y2 is ε-close to (α1x+y)−(α2x+y) = (α1−α2)x.
We conclude that x is ε-close to 1

α1−α2
z ∈ S, a contradiction.

2.1 Probabilistically Checkable Proofs

A PCP system [2–4] for a relation R is a tuple PCP = (P, V) that works as
follows.

– The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof π : D(n) → Σ(n), where
both D(n) and Σ(n) are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a proof π : D(n) → Σ(n),
queries π at a few locations and then outputs a bit.

The system PCP has (perfect) completeness and soundness error e(n) if the
following two conditions hold. (Below, we explicitly denote the prover’s and
verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V P (x,w;rP)(x; rV) = 1

]
= 1 .

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 39

Soundness: For every instance x not in the language Lan(R) and proof
π : D(n) → Σ(n),

Pr
rV

[V π(x; rV) = 1] ≤ e(n) .

A relation R belongs to the complexity class PCP[a, l, q, e, tp, tv] if there is a
PCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the proof in at most q(n) locations,
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write PCP[. . . ,na])
if the queries to the proof are non-adaptive (i.e., the queried locations only
depend on the verifier’s inputs).

2.2 Probabilistically Checkable Proofs of Proximity

A PCPP system [12,18] for a relation R is a tuple PCPP = (P, V) that works
as follows.

– The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof π : D(n) → Σ(n), where
both D(n) and Σ(n) are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a witness w and proof
π : D(n) → Σ(n), queries w and π at a few locations and then outputs a bit.

The system PCPP has (perfect) completeness, soundness error e, distance mea-
sure Δ, and proximity parameter d if the following two conditions hold. (Below,
we explicitly denote the prover’s and verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V (w,P (x,w;rP))(x; rV) = 1

]
= 1 .

Soundness: For every instance-witness pair (x,w), perhaps not in the language,
such that Δ(w,R|x) ≥ d(n) and proof π : D(n) → Σ(n),

Pr
rV

[
V (w,π)(x; rV) = 1

]
≤ e(n) .

A relation R belongs to the complexity class PCPP[a, l, q,Δ, d, e, tp, tv] if there
is a PCPP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),

40 E. Ben-Sasson et al.

– the verifier queries the two oracles (codeword and proof) in at most q(n)
locations (in total),

– the distance measure is Δ,
– the proximity parameter is d(n),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write
PCPP[. . . ,na]) if the queries to the oracles are non-adaptive (i.e., the queried
locations only depend on the verifier’s inputs).

2.3 Zero Knowledge PCPs

The notion of zero knowledge for PCPs was first considered in [19,28]. A PCP
system PCP = (P, V) for a relation R has perfect zero knowledge with knowledge
bound k if there exists an expected-polynomial-time probabilistic algorithm S
such that, for every k-query polynomial-time probabilistic oracle algorithm Ṽ ,
the following two distribution families are identical:

{S(Ṽ , x)}(x,w)∈R and {PCPView(Ṽ , P, x,w)}(x,w)∈R ,

where PCPView(Ṽ , π, x,w) is the view of Ṽ in its execution when given input x
and oracle access to π := P (x,w). The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the
two distribution families are required to be statistically and computationally
close (as |x| grows), respectively.

A relation R belongs to the complexity class PCPpzk[a, l, q, e, tp, tv, k] if there
exists a PCP system for R that (i) puts R in PCP[a, l, q, e, tp, tv], and (ii) has
perfect zero knowledge with knowledge bound k; as for PCP, we add the symbol
na in the square brackets of PCPpzk if the queries to the proof are non-adaptive.
The complexity classes PCPszk and PCPczk are similarly defined for statistical
and computational zero knowledge.

The KPT Result. Kilian, Petrank, and Tardos proved the following theorem:

Theorem 2 [28].For every polynomial time function T : N → N, polynomial secu-
rity function λ : N → N, and polynomial knowledge bound function k : N → N,

NTIME(T) ⊆ PCPszk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = F2poly(λ)

l = poly(T, k)
q = poly(λ)
e = 2−λ

tp = poly(λ, T)
tv = poly(λ, T, k)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 1. We make two remarks: (i) the symbol na does not appear above
because [28]’s construction relies on adaptively querying the proof; (ii) inspection
of [28]’s construction reveals that l(n) ≥ poly(T (n)) · k(n)6.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 41

2.4 Reed–Muller and Reed–Solomon Codes

We define Reed–Muller and Reed–Solomon codes, as well as their “vanishing”
variants [15]; all of these are linear codes. We then state a theorem about PCPPs
for certain families of RS codes.

RM Codes. Let F be a finite field, H,V subsets of F, m a positive integer, and

a constant in (0, 1];
 is called the fractional degree. The Reed–Muller code with
parameters F,H,m,
 is RM[F,H,m,
] := {w : Hm → F | maxi∈[m] degXi

(w) <

|H|}; its message length is n = (
|H|)m, block length is
 = |H|m, rate is
ρ =
m, and relative distance is δ = 1 −
. The vanishing Reed–Muller code
with parameters F,H,m,
, V is VRM[F,H,m,
, V] := {w ∈ RM[F,H,m,
] |
w(V m) = {0}}; it is a subcode of RM[F,H,m,
].

RS Codes. Let F be a finite field, H,V subsets of F, and
 a constant
in (0, 1]. The Reed–Solomon code with parameters F,H,
 is RS[F,H,
] :=
RM[F,H, 1,
]. The vanishing Reed–Solomon code with parameters F,H,
, V
is VRS[F,H,
, V] := {w ∈ RS[F,H,
] | w(V) = {0}}.

Two RS Code Families and Their PCPPs. Given
 ∈ (0, 1], we denote by:
(i) RS∗

� the set of Reed–Solomon codes RS[F,H,
] for which F has characteristic
2 and H is an F2-affine space; and (ii) VRS∗

� the set of vanishing Reed–Solomon
codes VRS[F,H,
, V] for which F has characteristic 2 and H is an F2-affine space.
The following theorem is from [10,15] (the prover running time is shown in [10]
and the other parameters in [15]).

Theorem 3. For every security function λ : N → N,
 ∈ (0, 1), and s > 0,

Rel(RS∗
�) , Rel(VRS∗

�) ∈ PCPP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = F2s+log �

l = Õ(
)
q = λ · polylog(
)
Δ = ΔHam

a

d =
/2
e = 2−λ

tp = poly(s) · Õ(
)
tv = λ · poly(s + log
)
na

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will also require the following folklore claim, whose correctness can be
proved by induction on m:

Claim. Let F be a finite field, H,V subsets of F with H∩V = ∅, m a positive inte-
ger, and t a positive integer not exceeding |H|−|V |. Then VRM[F,H,m, |V |+t

|H| , V]
is t-wise independent.

3 Duplex PCPs

We define duplex PCPs, and then define notions of zero knowledge for this
model. Our main theorem is the construction of a duplex PCP with certain

42 E. Ben-Sasson et al.

parameters; see Sect. 4. The difference between a PCP and a duplex PCP is that
all provers (both honest and malicious) produce two proof oracles rather than
one: the prover produces a proof π0; then the verifier sends a message ρ to the
prover; then the prover produces another proof π1; finally the verifier queries
both π0 and π1 and either accepts or rejects. (Thus, a PCP is a special case of
a duplex PCP, but not vice versa.) More precisely, a duplex PCP system for a
relation R is a tuple DPCP = (P, V) that works as follows.

– The prover P is a pair (P0, P1) of probabilistic algorithms, with shared
randomness, where: (a) given as input an instance-witness pair (x,w) with
n := |x|, P0 outputs a proof π0 : D0(n) → Σ(n); (b) given as input (x,w) and
the verifier’s message ρ (see below), P1 outputs a proof π1 : D1(n) → Σ(n).
Here D0(n),D1(n), Σ(n) are finite sets.

– The verifier V is a pair (V0, V1) of probabilistic algorithms, with shared ran-
domness, where: (a) given as input an instance x with n := |x|, V0 out-
puts a message ρ; (b) given as input x and with oracle access to proofs
π0 : D0(n) → Σ(n) and π1 : D1(n) → Σ(n), V1 queries π0 and π1 at a few
locations and then outputs a bit.

The system DPCP has (perfect) completeness and soundness error e(n) if the
following two conditions hold. (Below, we explicitly denote the prover’s and
verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

⎡
⎣V π0,π1

1 (x; rV) = 1

∣∣∣∣∣∣
π0 ← P0(x,w; rP)

ρ ← V0(x; rV)
π1 ← P1(x,w, ρ; rP)

⎤
⎦ = 1 .

Soundness: For every instance x not in the language Lan(R) and pair of algo-
rithms P̃ = (P̃0, P̃1),

Pr
rV

⎡
⎣V π0,π1

1 (x; rV) = 1

∣∣∣∣∣∣
π0 ← P̃0

ρ ← V0(x; rV)
π1 ← P̃1(ρ)

⎤
⎦ ≤ e(n) .

A relation R belongs to the complexity class DPCP[a, l, q, e, tp, tv] if there is a
DPCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., (|D0(n)| + |D1(n)|)) is at most l(n),
– the verifier queries the two proofs in at most q(n) locations (in total),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write
DPCP[. . . ,na]) if the queries to the proof are non-adaptive (i.e., the queried
locations only depend on the verifier’s inputs).

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 43

Zero Knowledge. A DPCP system DPCP = (P, V) for a relation R has perfect
zero knowledge with knowledge bound k if there exists an expected-polynomial-
time probabilistic algorithm S such that for every pair of polynomial-time prob-
abilistic oracle algorithms Ṽ := (Ṽ0, Ṽ1) the following two distribution families
are identical:

{S(Ṽ , x)}(x,w)∈R and {DPCPView(k, Ṽ , P, x,w)}(x,w)∈R ,

where DPCPView(k, Ṽ , P, x,w) is the view of Ṽ1 in its execution when given
input x and when allowed to make a total of k(n) adaptive queries to π0, π1, where
π0 := P0(x,w) and π1 := P1(x,w, Ṽ π0

0 (x)). (As above, P0, P1 share the same
randomness rP ; ditto for Ṽ0, Ṽ1.) The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the
two distribution families are required to be statistically and computationally
close (as |x| grows), respectively.

4 Main Theorem

The main result of this paper is the following.

Theorem 4. For every polynomial time function T : N → N, polynomial knowl-
edge bound function k : N → N,

NTIME(T) ⊆ DPCPpzk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = F2O(log(T+k))

l = Õ(T + k)
q = polylog(T + k)
e = 1

2

tp = poly(n) · Õ(T + k)
tv = poly(n + log(T + k))
k
na

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A Corollary. The theorem above implies that, fixing T , the prover running time
is merely quasilinear in the knowledge bound k, while the verifier running time
increases only polylogarithmically in k. This leads to an intriguing corollary: a
poly-logarithmic computational overhead of the prover over the verifier is all
that is needed to maintain perfect zero knowledge in the duplex PCP model. We
state this formally next.

Corollary 1. For every polynomial time function T : N → N and relation R ∈
NTIME(T), there is a constant c such that, for every function tv : N → N with
tv(n) ≥ n · (log T (n))c, there is a DPCP system with:

– completeness 1 and soundness 2−tv(n)/polylog(T (n));
– perfect zero knowledge;
– the verifier running time is tv(n) and prover running time is tp(n) :=

max{T (n) · (log T (n))c, tv(n) · (log tv(n))c}.
The verifier has no limitations other than a bound on its running time (its query
complexity can be as large as tv(n)).

44 E. Ben-Sasson et al.

4.1 Proof Sketch

Let R be a relation in NP, and let (x,w) be an instance-witness pair in R.
The prover and verifier both know x, while the prover also knows w. The prover
wishes to convince the verifier that he knows a witness w for x, in such a way
that the verifier does not learn anything about w (beyond what can be inferred
from the prover’s claim).

The KPT Approach. We introduce our ideas by contrasting them with those
of [28]. Suppose that the prover wishes to convince the verifier by sending him a
PCP proof π = π(w) such that any k values in π do not reveal anything about w.
Loosely speaking, [28] (building on [19]) provide a probabilistic transformation
that maps the PCP proof π to a new proof π′, in which each bit of π is “hidden”
amongst many bits of π′. The main tool employed in the transformation is a
locking scheme, and its use imposes certain limitations: (i) the new proof π′

is poly(k) larger than the original one (k6 by inspection of [19,28]); (ii) zero
knowledge holds only statistically, but not perfectly, because a malicious verifier
can be “lucky” and obtain information on the bit of π being locked with fewer
queries to π′ than expected.

Our Approach (Ideally). We take a different approach: apply a “local” PCP
to a “random” witness, as we now explain. Suppose that π = π(w) is (t, k)-local,
i.e., any k positions of the PCP proof π jointly depend on at most t positions of
the witness w. Note that, even if π is (t, k)-local, a single bit of π can still leak
information about w. So suppose further that the relation R is t-randomizable:
given (x,w) ∈ R, one can efficiently sample a witness w′ from a t-wise indepen-
dent subset of the set of witnesses for x. In such a case, the prover can produce
a zero-knowledge PCP as follows: (1) sample a witness w′ from the t-wise inde-
pendent subset; then (2) send to the verifier the PCP proof π = π(w′). Indeed,
the locality of π ensures that seeing any k indices of π reveals nothing about
w, because these k indices are a function of t random bits. In sum, if we had a
(t, k)-local PCP for a t-randomizable relation R, then we could obtain a PCP
for R that is zero knowledge against verifiers that ask at most k queries.

Our Approach (in Reality). Unfortunately, we do not know how to obtain
local PCPs for randomizable relations. However, we are able to obtain “par-
tially local” duplex PCPs for certain randomizable relations, and also show that
NTIME can be efficiently reduced to these randomizable relations, as we now
explain.

Our starting point are algebraic PCPs: certain PCPs that prove satisfiability
of algebraic problems (APs) [34]. Numerous known PCP constructions can be
viewed as algebraic PCPs. Informally, in this work we make two basic obser-
vations: (i) algebraic PCPs exist for certain randomizable relations; and (ii) an
algebraic PCP proof can be split in two parts, one part is local, while the other
part is not local but enjoys convenient linear algebraic properties that, neverthe-
less, enable us to hide information about the witness, in the duplex PCP model.
(Recall that, in the duplex PCP model, the prover produces a proof π0; then the

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 45

verifier sends a message ρ to the prover; then the prover produces another proof
π1; finally the verifier queries both π0 and π1 and either accepts or rejects.)

In more detail, from a technical viewpoint, we proceed as follows. First,
we introduce a family of constraint satisfaction problems (CSPs) called linear
algebraic CSPs, and show that NTIME is efficiently reducible to randomizable
linear algebraic CSPs. The reduction consists of two parts: we go through an
intermediary that we call group preserving algebraic problems (GAPs), a spe-
cial case of APs that we believe to be of independent interest for the study of
algebraic PCPs. Second, we construct a duplex PCP system for randomizable
linear algebraic CSPs that is zero knowledge against verifiers that ask at most
a certain number of queries.

A Technical Piece: Zero-Knowledge Duplex PCPP for Low-
Degreeness. Later sections address all of the above steps (see Sect. 4.2 for
a roadmap of these), and for now we only sketch one of these steps. Above we
mention that an algebraic PCP proof has two parts: a local part, and a non-local
part. This latter part of the proof arises from a central component of many PCP
proofs: a PCP of proximity (PCPP) [13,18] that facilitates low-degree testing.
Informally, given a function f : H → F and an integer d, a PCPP for degree d is
a proof π(f) that f is ε-close to an evaluation of a polynomial degree at most
degree d. We explain how to transform a PCPP for low-degreeness into a duplex
PCPP for low-degreeness that is zero knowledge against verifiers that make at
most t queries.

The set C of functions f : H → F that are evaluations of a polynomial of
degree at most d is a subspace of F|H|. The basic idea is that, in order for the
prover to convince the verifier that a function f is close to C, it suffices for
the prover to convince the verifier that a random offset of f is close to C: one
can verify that, for any u : H → F, if f is ε-far from C, then αf + u is ε/2-far
from C, with probability 1 − |F|−1 over a random α ∈ F. Hence, we can let the
duplex PCP work as follows: (i) the prover samples a witness w′ from the t-wise
independent subset, chooses a random u ∈ C, and sends π0 := (w′, u) to the
verifier; (ii) the verifier sends to the prover a random α ∈ F; (iii) the prover
sends π1 = (v, π(v)) to the verifier, where v := αw′ + u and π(v) is a PCPP for
low-degreeness of v; (iv) the verifier runs the PCPP verifier on (v, π) to check
that v is close to C, and then checks that vi = αw′

i +ui for a few random indices
i in {1, . . . , |H|}.

Let us discuss the various properties of the duplex PCPP.

– Completeness: If w ∈ C, then αw′ + u ∈ C; therefore, the prover convinces
the verifier.

– Zero-knowledge: If the verifier asks at most t queries, then he learns noth-
ing about w because: π0 = (w′, u) contains w′ sampled from a t-wise inde-
pendent subset and u random in C; π1 = (v, π(v)) is running the PCPP on a
vector v that is random in C.

– Soundness: If v does equal α · w + u, then the verifier rejects with high
probability because v is far from C (and the PCPP verifier rejects π with
high probability). If instead v does not equal α ·w+ u, then the fact that v is

46 E. Ben-Sasson et al.

close to C does not prove anything about whether w is also close. So, in this
case, we need to reason about the success probability of the verifier’s linearity
tests: if these pass with enough probability, then with high probability v is
close to αw+u, which again suffices for our purpose. Overall, soundness holds.

Next, we discuss how the technical sections are organized, and how they come
together to yield our main theorem.

4.2 Roadmap of the Rest of the Paper

The rest of the paper is dedicated to turn the above intuition into a more formal
proof. To do so, we introduce various intermediate steps, as follows.

– In Sect. 5, we introduce linear algebraic CSPs (a family of constraint satis-
faction problems), and then describe how to obtain a canonical PCP for any
linear algebraic CSP.

– In Sect. 6, we introduce randomizable linear algebraic CSPs, a subfamily of
linear algebraic CSPs; then we show that, for every randomizable linear alge-
braic CSP, we can convert the CSP’s canonical PCP into a corresponding
zero-knowledge duplex PCP, incurring only little overheads.

– In Sect. 7, we show an efficient reduction from NTIME to randomizable linear
algebraic CSPs; along the way, we introduce a family of algebraic problems,
having special symmetry properties, that we believe to be of independent
interest (e.g., for studying other questions about PCPs).

Combining (i) the efficient reduction from NTIME to randomizable linear alge-
braic CSPs together with (ii) the zero-knowledge duplex PCP for such problems
yields Theorem 4. In Sect. 8 we provide details about how these components are
combined.

5 Linear Algebraic CSPs and Their Canonical PCPs

We introduce linear algebraic CSPs, a family of constraint satisfaction problems;
then we describe how to obtain a canonical PCP for any linear algebraic CSP.

5.1 Linear Algebraic Constraint Satisfaction Problems

A constraint satisfaction problem asks whether, for a given “local” function g,
there exists an input α such that g(α) is an “accepting” output. For example, in
the case of 3-SAT with n variables and m clauses, the function g maps {0, 1}n

to {0, 1}m, and g(α) indicates which clauses are satisfied by α ∈ {0, 1}n; hence
α yields an accepting output if (and only if) g(α) = 1m. Below we introduce a
family of constraint satisfaction problems whose domain and range are linear-
algebraic objects, namely, linear error correcting codes.

We begin by providing the notion of locality that we use for g; we also provide
two other notions, one for the efficiency of computing a single coordinate of g’s
output, and another for measuring g’s “pseudorandomness”.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 47

Definition 1. Let g : Σn → Σm be a function. We say that g is:

– q-local if for every j ∈ [m] there exists Ij ⊆ [n] with |Ij | ≤ q such that g(α)[j]
(the j-th coordinate of g(α)) depends only on α|Ij

(the restriction of α to Ij);
– c-efficient if there is a time c algorithm that, given j and α|Ij

, computes the
set Ij and value g(α)[j];

– (γ, ε)-sampling if Pr[Ij ∩I �= ∅ | j ← [m]] ≤ γ for every I ⊆ [n] with |I|/n ≤ ε.

Next we introduce RLA, the relation of linear algebraic CSPs:

Definition 2 (RLA). Given functions f : N → F ,
, q, c : N → N, and
ρ, δ, γ, ε : N → (0, 1], the relation

RLA[f,
, ρ, δ, q, c, γ, ε]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n, C◦, C•, g) where:
• C◦, C• are linear error correcting codes with block lengths
◦(n),
•(n) at

most
(n), each with rate at most ρ(n) and relative distance at least δ(n)
over the same field f(n);

• g : f(n)�◦(n) → f(n)�•(n) is a q(n)-local, c(n)-efficient, (γ(n), ε(n))-
sampling function;

• C• ∪ g(C◦) has relative distance at least δ(n) (though may not be a linear
space).

– The witness w is a tuple (α◦, α•) where α◦ ∈ f(n)�◦(n) and α• ∈ f(n)�•(n).
– The instance x and witness w jointly satisfy the following: α◦ ∈ C◦, α• ∈ C•,

and g(α◦) = α•.

We prove a simple claim about instances not in the language Lan(RLA), which
we use several times later on.

Claim. For every instance x = (1n, C◦, C•, g) not in the language Lan(RLA) and
(candidate) witness w̃ = (α̃◦, α̃•) ∈ f(n)�◦(n) × f(n)�•(n) at least one of the
following holds:

– at least one of α̃◦ and α̃• is ε-far in relative Hamming distance from C◦ or
C•, respectively; or

– there exist α◦ ∈ C◦ and α• ∈ C• such that α̃◦ and α̃• are ε-close to α◦ and
α•, respectively, but g(α◦) �= α•.

Proof. If neither of the two cases hold, then there exist α◦ ∈ C◦ and α• ∈ C• such
that g(α◦) = α•. But then (α◦, α•) is a satisfying assignment for x, contradicting
our assumption that x is not in the language Lan(RLA).

Finally we need notation for referring to codes appearing in instances of RLA:

Definition 3. Given R ⊆ RLA, we denote by

– CR,◦ the set of codes C for which there is an instance x = (1n, C◦, C•, g) in
the relation R with C = C◦;

– CR,• the set of codes C for which there is an instance x = (1n, C◦, C•, g) in
the relation R with C = C•.

48 E. Ben-Sasson et al.

5.2 A Canonical PCP for Linear Algebraic CSPs

We show how to construct a “canonical” PCP system for instances in RLA (the
relation of linear algebraic CSPs). At a high level, a canonical PCP proof for
a RLA-instance x consists of a witness w = (α◦, α•) concatenated with two
PCPP proofs π◦, π•, showing that α◦, α• are close to C◦, C• respectively. The
canonical PCP verifier first checks the two PCPP proofs and then checks that
g(α◦)[j] = α•[j] for a uniformly random j ∈ [
•].

Definition 4. Given (i) a relation R ⊆ RLA, (ii) a PCPP system PCPP◦ =
(P◦, V◦) for Rel(CR,◦), and (iii) a PCPP system PCPP• = (P•, V•) for
Rel(CR,•), the canonical PCP system for the triple (R,PCPP◦,PCPP•) is the
PCP system PCP = (P, V) constructed as follows.

– Prover. Given (x,w) ∈ RLA, the PCP prover P outputs π := (w, π◦, π•)
where π◦ := P◦(C◦, α◦) and π• := P•(C•, α•). In other words, the PCP prover
outputs a PCP proof that is the concatenation of the witness w = (α◦, α•) and
a pair of PCPP proofs, the first proving that α◦ ∈ C◦ and the second proving
that α• ∈ C•.

– Verifier. Given x and oracle access to a PCP proof π = (w, π◦, π•), the PCP
verifier V works as follows:

• (proximity) check that V
(α◦,π◦)◦ (C◦) and V

(α•,π•)• (C•) both accept;
• (consistency) check that g(α◦)[j] = α•[j] for a uniformly random j ∈ [
•].

The next lemma says that the above construction is a PCP system when
RLA’s parameters are sufficiently “good”.

Lemma 1 (RLA → PCP). Suppose that R is a relation that satisfies the fol-
lowing conditions:

(i) R ⊆ RLA[f1,
1, ρ1, δ1, q1, c1, γ1, ε1] with ε1 < min{ δ1
2 , δ1 − γ1};

(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,ΔHam
a2 , d2, e2, tp2, tv2,na?] with a2 =

f1 and d2 ≤ ε1.

Then there is a canonical PCP system for a triple (R,PCPP◦,PCPP•) that yields

R ∈ PCP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = f1 (= a2)
l = 2l2(
1) + 2
1
q = 2q2(
1) + q1 + 1
e = max{1 − δ1 + γ1 + ε1, e2}
tp = 2tp2(
1)
tv = 2tv2(
1) + c1 + log
1
na?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is the
canonical PCP system.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 49

Proof (Proof of Lemma 1). First, we show that the canonical PCP system satis-
fies completeness and soundness; afterwards, we discuss the efficiency parameters
achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R.
Parse the instance x as (1n, C◦, C•, g) and the witness w as (α◦, α•). Since
(x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Therefore,
the PCP proof (w, π◦, π•) generated by the PCP prover is accepted by the PCP
verifier with probability 1: the PCPP verifiers V

(α◦,π◦)◦ (C◦) and V
(α•,π•)• (C•)

always accept and g(α◦)[j] = α•[j] for every j ∈ [
•].

Soundness. Consider an instance x not in the language Lan(R) and a PCP
proof π̃ = (w̃, π̃◦, π̃•). Parse the instance x as (1n, C◦, C•, g) and the wintess w̃,
inside π̃, as (α̃◦, α̃•). We use Claim in Sect. 5.1 to prove that V accepts π̃ with
probability at most max{1 − δ1 + γ + ε1, e2}, by considering the following three
cases.

– Case 1: α̃◦ is ε1-far in relative Hamming distance from C◦. The canonical
PCP verifier’s proximity test fails, because ΔHam

a (α̃◦, C◦) ≥ ε1 ≥ d2, and so
the PCPP verifier V

(α◦,π̃◦)◦ (C◦) accepts with probability at most e2.
– Case 2: α̃• is ε1-far in relative Hamming distance from C•. This case is anal-

ogous to the previous one.
– Case 3: there exist α◦ ∈ C◦ and α• ∈ C• with ΔHam

a (α◦, α̃◦) ≤ ε1 and
ΔHam

a (α•, α̃•) ≤ ε1.
First, since ε1 is less than δ1/2 (the unique decoding radius of C◦ and C•),
the codewords α◦ and α• are unique.
Next, we claim that α′

• := g(α◦) and g(α̃◦) are γ1-close. Indeed, since g is
(γ1, ε1)-sampling, α◦ and α̃◦ differ in at most ε1 ·
◦(n) positions, and so at
most γ1 ·
•(n) positions of g(α̃◦) depend on an index where α◦ and α̃◦ differ.
Next, we claim that ΔHam

a (α•, α′
•) ≥ δ1. Indeed, we have that α• �= α′

• because
otherwise (α◦, α•) would be a satisfying assignment for x (contradicting the
assumption that x �∈ Lan(R)); moreover, we also have that C• ∪ g(C◦) has
relative distance at least δ1.
We now use the triangle inequality, along with the above observations, to
obtain that

δ1Δ
Ham
a (α•, α′

•) ≤ ΔHam
a (α•, α̃•) + ΔHam

a (α̃•, g(α̃◦)) + ΔHam
a (g(α̃◦), α′

•)

≤ ε1 + ΔHam
a (α̃•, g(α̃◦)) + γ1 .

Thus, ΔHam
a (α̃•, g(α̃◦)) ≥ δ1 − (γ1 + ε1), and so the canonical PCP verifier’s

consistency check passes with probability at most 1 − δ1 + γ1 + ε1.

We conclude that V accepts π̃ with probability at most max{1−δ1+γ1+ε1, e2}.

Other Parameters. The remaining parameters are straightforward to estab-
lish. The canonical PCP does not change the alphabet, so a = f1 (which also
equals a2). The proof length, and the running times of the prover and verifier
are the sum of the same measures of the canonical PCP’s components: the PCP

50 E. Ben-Sasson et al.

proof has l = 2l2(
1) + 2
1 symbols, is produced in time tp = 2tp2(
1), and is
verified in time tv = 2tv2(
1)+c1+O(1). The canonical PCP verifier makes q1+1
queries on top of those made by the PCPP verifiers, so its query complexity is
q = 2q2(
1) + q1 + 1. The q1 + 1 additional queries are non-adaptive; so if the
PCPP verifiers are non-adaptive, so is the canonical PCP verifier.

6 Zero-Knowledge Duplex PCPs from Randomizable
Linear Algebraic CSPs

We introduce randomizable linear algebraic CSPs, a subfamily of linear algebraic
CSPs. Then we show that, for every randomizable linear algebraic CSP, we can
convert the CSP’s canonical PCP into a corresponding zero-knowledge duplex
PCP, incurring only little overheads.

6.1 Randomizable Linear Algebraic CSPs

The definition below specifies the notion of randomizability for linear algebraic
CSPs.

Definition 5 (RRLA). The relation RRLA[f,
, ρ, δ, q, c, γ, ε, t, r] is the sub-
relation of RLA[f,
, ρ, δ, q, c, γ, ε] obtained by restricting it to instances that are
t-randomizable in time r. An instance x = (1n, C◦, C•, g) is t(n)-randomizable in
time r(n) if: (i) there exists a t(n)-wise independent subcode C ′ ⊆ C◦ such that
if (w◦, g(w◦)) satisfies x, then, for every w′

◦ in C ′ + w◦ := {w′ + w◦ | w′ ∈ C ′},
the witness (w′

◦, g(w′
◦)) satisfies x; and (ii) one can sample, in time r(n), three

uniformly random elements in C ′, C◦ and C• respectively.

6.2 Construction of Zero-Knowledge Duplex PCPs

We construct a zero-knowledge duplex PCP system for randomizable linear alge-
braic CSPs. The duplex PCP system does little more than invoking, as a subrou-
tine, the canonical PCP system for the linear algebraic CSP; hence, the efficiency
of the duplex PCP and of the canonical PCP system are closely related. The
construction demonstrates that “adding zero knowledge to an algebraic PCP”
is cheap, provided that one moves from the PCP model to the (more general)
duplex PCP model. More precisely, we prove the following theorem.

Theorem 5 (RRLA → DPCPpzk). Suppose that R is a relation that satisfies
the following conditions:

(i) R ⊆ RRLA[f1,
1, ρ1, δ1, q1, c1, γ1, ε1, t1, r1] with ε1 < min{ δ1
2 , δ1 − γ1} and r1

polynomially bounded;
(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,ΔHam

a2 , d2, e2, tp2, tv2,na?] with
a2 = f1 and d2 ≤ ε1/4.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 51

Then there is a duplex PCP system for R that yields

R ∈ DPCPpzk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = f1 (= a2)
l = 2l2(�1) + 6�1
q = 2q2(�1) + q1 + 7
e = max{1 − δ1 + γ1 + ε1 , (1 − |f1|−1) · max{e2, ε1/4} + |f1|−1}
tp = 2tp2(�1) + (c1 + 5)�1 + r1
tv = 2tv2(�1) + c1 + log �1
k = t1/q1
na?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is
the duplex PCP system.

Proof. We prove the claim by constructing a suitable duplex PCP system
DPCP = (P, V) for the relation R. Recall that: the prover P is a pair of algo-
rithms (P0, P1), and the verifier V is also a pair of algorithms (V0, V1); moreover,
an instance x of R is of the form (1n, C◦, C•, g), while a witness w of R is of
the form (α◦, α•); finally, randomizability implies that there is a t(n)-wise inde-
pendent subcode C ′ ⊆ C◦ such that if (w◦, g(w◦)) satisfies x then so does the
witness (w′

◦, g(w′
◦)), for every w′

◦ in C ′ + w◦.
We now describe the construction of the duplex PCP system DPCP = (P, V):

– P0(x,w) → π0

Sample uniformly random v◦ ∈ C◦, v• ∈ C•, u′ ∈ C ′; compute w◦ := u′ + α◦,
w• := g(w◦) and output π0 := (w◦‖v◦‖w•‖v•).

– V0(x) → ρ
Sample uniformly random ρ◦, ρ• ∈ f1, and output ρ := (ρ◦, ρ•).

– P1(x,w, ρ) → π1

Compute z◦ := ρ◦w◦ + v◦ and z• := ρ•w• + v•; compute π◦ := P◦(C◦, z◦)
and π• = P•(C•, z•); and output π1 := (z◦‖z•‖π◦‖π•). (Essentially, this step
corresponds to running the canonical PCP prover with respect to a uniformly
random pair (z◦, z•) in (C◦, C•).)

– V π0,π1
1 (x) → b

Conduct the following tests (and reject if any of them fails):
• (proximity) check that V

(z◦,π◦)◦ (C◦) and V
(z•,π•)• (C•) both accept;

• (consistency) check that g(w◦)[j] = w•[j] for a random j ∈ [
•];
• (linearity) check that z◦[i] = ρ◦w◦[i] + v◦[i] and z•[k] = ρ•w•[k] + v•[k]

for random i ∈ [
◦(n)] and k ∈ [
•(n)].
(Essentially the first two steps correspond to running the canonical PCP ver-
ifier on modified inputs, while the third step consists of two linearity tests.)

Having described the duplex PCP system, we now show that it satisfies com-
pleteness, soundness and zero-knowledge; afterwards, we discuss the efficiency
parameters achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R.
Since (x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Since w◦ ∈
C ′ +α◦ and R is randomizable, we have that (w◦, w•) := (w◦, g(w◦)) satisfies x;

52 E. Ben-Sasson et al.

thus V1’s consistency check passes with probability 1. Since the codes C◦ and C•
are linear and w◦, v◦ ∈ C◦, w•, v• ∈ C•, we have that z◦ := ρ◦w◦ + v◦ ∈ C◦ and
z• := ρ•w• + v• ∈ C•; thus the PCPP verifiers V

(z◦,π◦)◦ (C◦) and V
(z•,π•)• (C•)

accept with probability 1. Finally, by construction of z◦ and z•, V1’s linearity
tests also accept with probability 1. We conclude that the duplex PCP system
described above has perfect completeness.

Soundness. Consider an instance x not in the language Lan(R). Fix an
arbitrary proof string π̃0 = (w̃◦‖ṽ◦‖w̃•‖ṽ•), and let the proof string π̃1 =
(z̃◦‖z̃•‖π̃◦‖π̃•) depend arbitrarily on the verifier message ρ = (ρ◦, ρ•). We use
Claim in Sect. 5.1 with respect to the instance x and witness (w̃◦, w̃•) and dis-
tinguish between three cases below.

– Case 1: w̃◦ is ε1-far in relative Hamming distance from C◦.
Claim in Sect. 2 implies that z′

◦ := ρ◦w̃◦ + ṽ◦ is ε1/2-far from C◦, with prob-
ability 1 − |f1|−1 over a random choice of ρ◦. Let θ := ΔHam

a (z′
◦, z̃◦) and

η := ΔHam
a (z̃◦, C◦). By the triangle inequality, θ + η ≥ ΔHam

a (z′
◦, C◦) ≥ ε1/2;

hence, at least one of the inequalities θ ≥ ε1/4 and η ≥ ε1/4 holds. In the
former case, V1’s first linearity test accepts with probability at most 1− ε1/4;
in the latter case, the PCPP verifier V

(z̃◦,π̃◦)◦ (C◦) for V1’s first proximity test
accepts with probability at most e2, as ΔHam

a (z̃◦, C◦) ≥ ε1/4 ≥ d2.
– Case 2: w̃• is ε1-far in relative Hamming distance from C•.

This case is analogous to the previous one.
– Case 3: there exist w◦ ∈ C◦ and w• ∈ C• with ΔHam

a (w◦, w̃◦) ≤ ε1 and
ΔHam

a (w•, w̃•) ≤ ε1.
In this case we follow the very end of the soundness analysis in Lemma1’s
proof, replacing α̃◦, α̃• there with w̃◦, w̃•, and conclude that the verifier
accepts with probability at most 1 − δ1 + γ1 + ε1.

Summing up, in the first case the verifier’s acceptance probability is at most
(1 − |f1|−1) · max{e2, ε1/4} + |f1|−1; similarly for the second case. In the third
case the rejection probability is 1 − δ1 + γ1 + ε1, that of the canonical PCP
consistency verifier. This completes the soundness analysis.

Zero Knowledge. We construct a simulator S that yields perfect zero knowl-
edge with knowledge bound k. Consider an instance-witness pair (x,w) in the
relation R, and a malicious verifier Ṽ = (Ṽ0, Ṽ1) making at most k adaptive
queries. S(Ṽ , x), the output of the simulator S, when given as input Ṽ and x,
has to be identically distributed to DPCPView(k, Ṽ , P, x,w), which is the view of
Ṽ1 in its execution when given input x and when allowed to make a total of k(n)
adaptive queries to π0, π1, where π0 := P0(x,w) and π1 := P1(x,w, Ṽ π0

0 (x)). In
fact, we will prove a stronger statement: the output of the simulator continues to
exactly match the view of the verifier, interacting with the honest prover, even
if the verifier is allowed unbounded access to π1, provided that Ṽ makes at most
k queries to π0.

We now discuss how S works. At a high level, S treats Ṽ as a black box,
running it once without rewinding; along the way, S samples suitable answers

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 53

for each query (as discussed below); when Ṽ halts, S outputs all the answers and
Ṽ ’s randomness (which together form the view of the verifier). The simulator S
runs in strict polynomial time, without ever aborting. We now describe how S
answers each query.

The simulator S maintains a proof string πS that is initially unspecified at
all locations; we write πS [i] = ∗ if the i-th location of this proof string is unspec-
ified. During the simulation, S adaptively specifies locations in πS as a result of
answering Ṽ ’s queries; this specification process is definitive, in the sense that
queries to locations that have been previously specified are answered consistently
with the previously-specified value. We now discuss how S adaptively specifies
locations in πS . We distinguish between two parts of the simulation: before the
point when Ṽ sends his message ρ, and only queries to π0 are possible; and
afterwards, when queries to both π0 and π1 are possible.

– Simulating answers to π0 = (w◦‖v◦‖w•‖v•), before Ṽ outputs ρ̃ = (ρ̃◦, ρ̃•).
1. For a query j ∈ [�◦] to w◦[j]: if unspecified, answer with a random field element.

That is, if wS
◦ [j] = ∗, then sample a random β ∈ f1 and set wS

◦ := β.
2. For a query j ∈ [�◦] to v◦[j]: if unspecified, answer with a random field element.

That is, if vS
◦ [j] = ∗, then sample a random γ ∈ f1 and set vS

◦ [j] = γ. Then
check if there are any unspecified locations of vS

◦ that are determined by the
linear constraint “vS

◦ ∈ C◦” and the currently specified locations of vS
◦ ; if there

are, set these accordingly.
3. For a query j ∈ [�•] to w•[j]: if unspecified, (i) compute the set Ij ⊆ [�◦] of

locations on which g(wS
◦)[j] depends (see Definition 2); (ii) deduce wS

◦ |Ij by

querying each i ∈ Ij according to Step 1; and (iii) set wS
• [j] := g(wS

◦ |Ij).
4. For a query j ∈ [�•] to v•[j]: answer in an analogous way to the case of a query

j ∈ [�◦] to v◦.
– Simulating answers to π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•), after Ṽ out-

puts ρ̃ = (ρ̃◦, ρ̃•).
5. After receiving ρ̃ = (ρ̃◦, ρ̃•), immediately do the following:

(a) sample a random zS
◦ ∈ C◦ under the constraint “zS

◦ [i] = ρ̃◦wS
◦ [i] + vS

◦ [i] for
all i s.t. wS

◦ [i] �= ∗ ∧ vS
◦ [i] �= ∗”;

(b) sample a random zS
• ∈ C• under the analogous constraint;

(c) compute πS
◦ := P◦(C◦, zS

◦);
(d) compute πS

• := P•(C•, zS
•).

6. All queries to z◦, z•, π◦, π• are answered according to the values specified in
Step 5.

7. For a query j ∈ [�◦] to w◦[j] or v◦[j]: if both are unspecified, answer with
a random field element; otherwise, the one that is unspecified is determined
according to the constraint zS

◦ [i] = ρ̃◦wS
◦ [i] + vS

◦ [i] (except that, if ρ̃◦ = 0, then
answer according to the constraint zS

◦ [i] = vS
◦ [i] by setting wS [i] to be a random

field element).
8. For a query j ∈ [�•] to w•[j]: answer analogously to Step 3, except that sub-

queries to w◦[j] follow Step 7.
9. For a query j ∈ [�•] to v•[j]: compute wS

• [j] as in Step 8 and set vS
• [j] :=

ρ̃•wS
• [j] − zS

• [j].

We claim that the above simulation achieves perfect zero-knowledge, that
is, S(Ṽ , x) is identically distributed to DPCPView(k, Ṽ , P, x,w). We show that

54 E. Ben-Sasson et al.

the distribution of answers provided by the simulation to Ṽ is the same as the
distribution of answers obtained by Ṽ from the oracles provided by the honest
prover. First, we discuss the answers to queries asked before Ṽ sends ρ̃ = (ρ̃◦, ρ̃•),
which can only be to the oracle π0 = (w◦‖v◦‖w•‖v•):

(i) In an honest proof, v◦ and v• are random in C◦ and C•, respectively. The
simulator answers a query to either of these by selecting a random field ele-
ment and then propagating to other locations the linear constraints imposed
by belonging to the linear code.

(ii) In an honest proof, w◦ is computed as w◦ := u′ +α◦, where u′ is random in
C ′. Any t values from a random codeword in C ′ are distributed identically to
t random field elements, because C ′ is t-wise independent. The queries of Ṽ
determine at most k·q = t locations of w◦. Hence, in an honest proof, Ṽ gets
uniformly random answers for its queries to w◦; this matches the simulated
view where S answers Ṽ ’s queries to w◦ with random fields elements.

(iii) In an honest proof, w• is a deterministic function of w◦: w• := g(w◦). As
described above, the ≤ t positions of w◦ determined by the verifier’s ques-
tions are uniformly random in the honest proof, as well as in the simulated
proof. Therefore the honest and the simulated views of w• are identically dis-
tributed, as deterministic functions of identically distributed random vari-
ables.

Next, we discuss the answers to queries asked after Ṽ sends ρ̃ = (ρ̃◦, ρ̃•); now Ṽ
can query both π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•).

In an honest proof, answers to verifiers queries after sending ρ̃ are from an uni-
form distribution of v◦ ∈ C◦, v• ∈ C•, u′ ∈ C ′ (and deterministic functions of
those and α◦), that is further conditioned on the answers given before sending ρ̃.

We conclude the discussion of the simulator by examining the time complex-
ity of the simulation. Most steps of the simulation require (a) sampling a random
field element and, possibly, (b) solving a linear system with a polynomial num-
ber of equations. The only expensive part of the simulation is Step 5, because it
requires sampling random codewords in C◦ and C•, as well as computing PCPP
proofs for these two codewords. Provided that r1 is polynomially bounded, the
entire simulation also runs in polynomial time in the instance size n. (The def-
inition of zero knowledge in Sect. 3 prescribes, as typically done, a simulator
that runs in expected probabilistic polynomial time; our simulator runs in strict
probabilistic polynomial time.)

7 From NTIME to Randomizable Linear Algebraic CSPs

– RAP &RGAP. In Sect. 7.1, we define algebraic problems, implicit in several influ-
ential works on PCPs and IP [2,4,5,30] and explicitly defined in [22,34,37].
Afterward, we define group-preserving algebraic problems, a new “symmetric”
variant of algebraic problems that not only are powerful enough to efficiently
capture NTIME but are also naturally “randomizable”, as discussed below.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 55

– RAP → RLA. In Sect. 7.2 (see Lemma 2), we show that algebraic problems
are a sublanguage of linear algebraic CSPs. This observation shows that the
techniques of this paper could potentially be applied to many PCP systems
(e.g., those in [2,4,5,11,13–16,22,30,37] to name a few) and also provides a
“warm up” for the next item.

– RGAP → RRLA. In Sect. 7.3 (see Lemma 3), we show an efficient reduction from
group-preserving algebraic problems to randomizable linear algebraic CSPs.
In other words, the property of group preservation allows the corresponding
linear algebraic CSPs to be randomizable.

– NTIME → RGAP. In Sect. 7.4 (see Lemma 4), we show an efficient reduction
from NTIME to group-preserving algebraic problems.

– NTIME → RRLA. In Sect. 7.5 (see Theorem 6), we explain how to combine
the above to obtain the efficient reduction from NTIME to randomizable
linear algebraic CSPs.

7.1 Algebraic Problems and Group Preservation

The definition below of algebraic problems is essentially due to [34] (though
the term “algebraic problem” is from [22]); variants of it appear in later works
such as [10,14–16,22,36,37].

Definition 6 (RAP). Given functions F : N → F , and h,m, η, d, σ : N → N,
the relation

RAP[F, h,m, η, d, σ]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n,H,Q,N) where:
• H is a subset of F (n) with cardinality h(n);
• Q is a polynomial in F (n)[X1, . . . , Xm(n), Y1, . . . , Yη(n)] such that (i) it

has degree less than h(n) in each variable Xi, (ii) it has total degree
at most d(n) when viewed as a polynomial in the variables Y1, . . . , Yη(n)

with coefficients in F (n)[X1, . . . , Xm(n)], (iii) it can be evaluated by an
arithmetic circuit of size σ(n);

• N = (N1, . . . , Nη(n)) and each Ni : F (n)m(n) → F (n)m(n) is an invertible
affine function.

– The witness w is a polynomial A in F (n)[X1, . . . , Xm(n)].
– The instance x and witness w jointly satisfy the following:

for every α ∈ Hm(n), (Q ◦ A ◦ N)(α) = 0 (1)

where
(Q◦A◦N)(X) := Q(X1, . . . , Xm(n), A(N1(X1, . . . , Xm(n))), . . . , A(Nη(n)(X1, . . . , Xm(n)))). (2)

Next, we define group-preserving algebraic problems, a family of alge-
braic problems in which the set H is a subgroup of F (n) and the neighbor
functions act on the product group Hm(n). The additional symmetry enables a
reduction to randomizable linear algebraic CSPs, which give rise to zero knowl-
edge duplex PCPs. We believe that group-preserving algebraic problems may
find applications in the study of PCPs beyond their use in this paper.

56 E. Ben-Sasson et al.

Definition 7 (RGAP). The relation RGAP[F, h,m, η, d, σ] is the sub-relation of
RAP[F, h,m, η, d, σ] obtained via restriction to instances that are group preserv-
ing. An instance x = (1n,H,Q,N) is group preserving if: (i) H is an additive
or a multiplicative subgroup of F (n); (ii) each Ni : F (n)m(n) → F (n)m(n) in N
can be identified with an element χi in Hm(n) such that Ni(x) = χi � x, where
� denotes the group operation of the product group Hm(n).

We also write RGAP[F, h,m, η, d, σ,+] to denote the further restriction to
instances that are additively group preserving (i.e., H is an additive subgroup);
similarly, we write RGAP[F, h,m, η, d, σ,×] to denote the restriction to instances
that are multiplicatively group preserving.

– The degree of x, denoted |x|deg, is degY1,...,Yη(n)
(Q), i.e., the total degree of Q

viewed as a polynomial in the variables Y1, . . . , Yη(n) with coefficients in the
ring F[X1, . . . , Xm(n)].

– The circuit size of x, denoted |x|circ, is the circuit size of Q.

7.2 Algebraic Problems Naturally Reduce to Linear Algebraic
CSPs

Lemma 2 (RAP → RLA). For every F : N → F , h,m, η, d, σ : N → N, ε : N →
(0, 1), and R ⊆ RAP[F, h,m, η, d, σ] there exist a relation R′ and algorithms
inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| ·η ·σ), and
wit2 in time poly(|x|) · Õ(|w′|).

– Linear algebraic CSP. The relation R′ is a subset of

RLA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f = F

 = |F |m
ρ = (hd

|F |)
m

δ = 1 − hd
|F |

q = η
c = σ + η
γ = ηε
ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

– RM codes. If x = (1n,H,Q,N) then inst(x) = (1n, C◦, C•, g) with
• C◦ = RM

[
F (n), F (n),m(n), h(n)

|F (n)|
]
;

• C• = VRM
[
F (n), F (n),m(n), h(n)d(n)

|F (n)| ,H
]
;

• g is the function that maps F (n)[X1, . . . , Xm(n)] to F (n)F (n)m(n)
as fol-

lows: given A in F (n)[X1, . . . , Xm(n)] and ω ∈ F (n)m(n), the ω-th coordi-
nate of g(A) equals to (Q ◦ A ◦ N)(ω).

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 57

Proof (Proof of Lemma 2). Let x = (1n,H,Q,N) be an instance of
RAP[F, h,m, η, d, σ], and construct x′ := inst(x) = (1n, C◦, C•, g) as above. We
first argue that x′ is an instance of RLA[f,
, ρ, δ, q, c, γ, ε].

First, C◦ and C• are linear error correcting codes with block length at most

 := |F |m, rate at most ρ := max{(h

|F |)
m, (hd

|F |)
m}, and relative distance at least

δ := min{1 − h
|F | , 1 − hd

|F |} over the same field F . (See Sect. 2.4.)
By construction, the function g is q-local with q := η and c-efficient with

c := σ + η; moreover, g is (γ, ε)-sampling with γ := ηε, as we now explain. (See
Definition 1 for definitions of these properties.) For every ω ∈ Fm, Iω denotes
the set of indices in Fm that g(·)[ω] depends on; for the g above, Iω equals
{N1(ω), . . . , Nη(ω)}. For every ω′ ∈ Fm and ω ∈ Fm, if ω′ ∈ Iω then ω ∈
{N−1

1 (ω′), . . . , N−1
η (ω′)}. Hence, the number of ω’s with ω′ ∈ Iω is at most η,

because each Ni is invertible. We deduce that Pr[Iω ∩ I �= ∅ |ω ← Fm] ≤
(η · |I|) /|F |m ≤ ηε.

Finally, C• ∪ g(C◦) has relative distance at least δ because it is a subset of
RM[F, F,m, hd

|F |]. This claim is immediate for C•; for g(C◦), it follows from the
fact that Q◦A◦N has, in each variable, a degree that is at most a multiplicative
factor of d larger than the degree of A.

We conclude the proof by explaining how one obtains the two witness maps
wit1,wit2. For wit1, suppose that w = A ∈ F [X1, . . . , Xm] is a witness for x;
then one can verify that w′ := (α◦, α•), where α◦ := A and α• := Q ◦ A ◦ N , is
a witness for x′; α• can be efficiently obtained by first computing the evaluation
of A on Fm (via an FFT), then computing the evaluation of Q ◦ A ◦ N on Fm

(via point-to-point computation), and finally interpolating (via an inverse FFT).
Conversely, for wit2, suppose that w′ = (α◦, α•) is a witness for x′; then one can
verify that w := α◦ is a witness for x.

7.3 From Group-Preserving Algebraic Problems to Randomizable
Linear Algebraic CSPs

Lemma 3 (RGAP → RRLA). For every F : N → F , h,m, η, d, σ, t : N → N,
δ, ε : N → (0, 1) with |F | ≥ ĥ, where ĥ denotes the smallest integral multiple of h

that is greater than (h+t)d
1−δ , and for any R ⊆ RGAP[F, h,m, η, d, σ] there exist a

relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| ·η ·σ), and
wit2 in time poly(|x|) · Õ(|w′|).

58 E. Ben-Sasson et al.

– Randomizable linear algebraic CSP. The relation R′ is a subset of

RRLA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f = F

 = ĥm

ρ = ((h+t)d

ĥ
)m

δ = 1 − ((h+t)d

ĥ
)

q = η
c = σ + η
γ = ηε
ε
t

r = Õ(ĥm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof (Proof of Lemma 3). Let x = (1n,H,Q,N) be an instance of
RGAP[F, h,m, η, d, σ]. We construct an instance x′ := inst(x) = (1n, C◦, C•, g)
of RRLA[f,
, ρ, δ, q, c, γ, ε, t, r] as follows.

Let Ĥ be a subset of F that is a union of cosets of H with |Ĥ| = ĥ and
Ĥ ∩H = ∅. (This can be done as follows: let S be a subset of the quotient group
F�/H with cardinality |S| = ĥ/h that does not include 1�, where F� denotes
the additive or multiplicative group of F , depending on whether H is additive or
multiplicative, and 1� is the identity in H; then set Ĥ := {x�y |x ∈ S, y ∈ H}.)
Analogously to the proof of Lemma2, we define:

– C◦ := RM
[
F (n), Ĥ,m(n), h(n)+t(n)

ĥ(n)

]
;

– C• := VRM
[
F (n), Ĥ,m(n), (h(n)+t(n))d(n)

ĥ(n)
,H

]
;

– g to be the function that maps F (n)[X1, . . . , Xm(n)] to F (n)Ĥm(n)
as follows:

given A in F (n)[X1, . . . , Xm(n)] and ω ∈ Ĥm(n), the ω-th coordinate of g(A)
equals to (Q ◦ A ◦ N)(ω). Note that g is well-defined, i.e., g(A) is a function
from Ĥm(n) to F (n); this follows from the group preservation property of x
(see Definition 7): for every ω ∈ Ĥm and i ∈ [η], it holds that Ni(ω) ⊆ Ĥm

because Ĥ is a union of cosets of H and Ni multiplies every coordinate of ω
by an element of H.

We first argue that x′ constructed above is an instance of RRLA[f,
, ρ, δ, q, c, γ,
ε, t, r].

First, analogously to the proof of Lemma2, we note that C◦ and C• are
linear error correcting codes with block length at most
 := ĥm, rate at most
ρ := max{(h+t

ĥ
)m, ((h+t)d

ĥ
)m}, and relative distance at least δ := min{1− h+t

ĥ
, 1−

(h+t)d

ĥ
} over the same field F ; also, we deduce that g is q-local with q := η, c-

efficient with c := σ + η, and (γ, ε)-sampling with γ := ηε.
Next, recalling Definition 5, x′ is t-randomizable in time r := Õ(ĥm) because:

(i) C ′ := VRM[F (n), Ĥ,m, h+t
ĥ

,H] is a subcode of C◦ and it is t-wise independent

due to Claim in Sect. 2.4 (C ′ satisfies the hypotheses because H ∩ Ĥ = ∅ and
ĥ − h ≥ (h+t)d

1−δ − h ≥ t); and (ii) one can sample random elements from C ′, C◦

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 59

and C• in time Õ(ĥm) by using the quasilinear FFT algorithms for multipoint
evaluation and interpolation (sampling the random polynomial in necessary basis
is easy for C◦; for vanishing Reed–Muller codes we rely on Alon’s Combinatorial
Nullstelensatz [1] as per Lemma 4.11 of [15]).

We conclude the proof by observing that necessary witness maps wit1,wit2
exist. Just as in Lemma 2, if w = A ∈ F (n)[X1, . . . , Xm(n)] is a witness for x
then wit1(x,w) outputs w′ := (A,Q◦A◦N), which is a witness for x′; conversely,
if w′ = (α◦, α•) is a witness for x′ then wit2(x,w′) outputs w := α◦, which is a
witness for x.

7.4 An Efficient Reduction from NTIME to Group-Preserving
Algebraic Problems

The following lemma gives an efficient reduction from NTIME to group-
preserving algebraic problems in which instances are over fields of characteristic
2 and preserve additive groups.

Lemma 4 (NTIME → RGAP). For every h,m, T : N → N with h(n)m(n) =
Ω(T (n) log T (n)) and R ∈ NTIME(T) there exist a relation R′ and algorithms
inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(n + log h(n) + m(n)) and wit1,wit2 run in
time Õ(T (n)).

– Group preserving algebraic problem. The relation R′ is a subset of

RGAP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F = F2log T+O(log log T)

h
m
η = polylog(T)
d = O(1)
σ = poly(n + log T)
+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The proof appears in the full version.

7.5 Combining the Two Reductions

By combining Lemmas 3 and 4, we obtain the following theorem, which gives
the reduction claimed at the beginning of this section.

Theorem 6 (NTIME → RRLA). For every T, t : N → N, δ, ε : N → (0, 1),
and R ∈ NTIME(T) there exist a relation R′ and algorithms inst,wit1,wit2
satisfying the following conditions:

60 E. Ben-Sasson et al.

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(n+log(T (n)+t(n)
1−δ(n))) and wit1,wit2 run in time

poly(n) · Õ(T (n)+t(n)
1−δ(n)).

– Randomizable linear algebraic CSP. The relation R′ is a subset of

RRLA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f = F2log(T+t)+O(log log(T+t))

 = Õ(T+t
1−δ)

ρ = 1 − δ
δ
q = polylog(T)
c = poly(n + log T)
γ = polylog(T) · ε
ε
t

r = Õ(T+t
1−δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

– Affine RS codes over characteristic 2. Both CR′,◦ and CR′,• are sub-
sets of RS∗

ρ ∪ VRS∗
ρ (see Sect. 2.4).

Proof (Proof of Theorem 6). First, we invoke Lemma 4 with h,m, T such that
m(n) = 1 and h(n) = O(T (n) log T (n)); this yields a relation R(1) and algorithms
inst(1),wit

(1)
1 ,wit

(1)
2 such that: (i) inst(1),wit

(1)
1 ,wit

(1)
2 provide a reduction from

R ∈ NTIME(T) toR(1), with inst(1)(x) running in time poly(n+log h(n)+m(n))
and wit

(1)
1 (x,w),wit(1)2 (x,w(1)) in time Õ(T (n)); and (ii) R(1) is a subset of

RGAP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F = F2log T+O(log log T)

h = O(T (n) log T (n))
m = 1
η = polylog(T)
d = O(1)
σ = poly(n + log T)
+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, we invoke Lemma 3 on R(1), using δ, ε, t from the theorem statement.
Note that the conditions of the theorem are satisfied as |F | ≥ (h+t)d

1−δ + h ≥ ĥ.

Therefore this yields a relation R(2) and algorithms inst(2),wit(2)1 ,wit
(2)
2 such that:

(i) inst(2),wit
(2)
1 ,wit

(2)
2 provide a reduction from R(1) to R(2), with inst(2)(x(1))

running in time poly(|x(1)|), wit(2)1 (x(1),w(1)) in time poly(|x(1)|) · Õ(|w(1)| · η · σ)
and wit

(2)
2 (x(1),w(2)) in time poly(|x(1)|) · Õ(|w(2)|); and (ii) R(2) is a subset of

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 61

RRLA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f = F

 = O(h+t

1−δ)
ρ = 1 − δ
δ
q = η
c = σ + η
γ = ηε
ε
t

r = Õ(h+t
1−δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can check that R(2) achieves the parameters specified in the theorem state-
ment.

The desired reduction from R to R(2) is given by the algorithms inst(x) :=
inst(2)(inst(1)(x)), wit1(x,w) := wit

(2)
1 (inst(1)(x),wit(1)1 (x,w)), and wit2(x,w′) :=

wit
(1)
2 (x,wit

(2)
2 (inst(1)(x),w′)). One can verify that inst runs in time poly(n +

log(T (n)+t(n)
1−δ(n))) and wit1,wit2 run in time poly(n) · Õ(T (n)+t(n)

1−δ(n)).

8 Proof of Theorem4

Proof (Proof of Theorem 4). We explain how to combine Theorem 6 and Lemma 5
(and Theorem 3) so to obtain Theorem 4.

Let R be a relation in NTIME(T); we need to construct a duplex PCP sys-
tem for R with the claimed parameters. For now we focus on achieving soundness
of 1

2 , and discuss the general case at the end of the proof.
We first reduce NTIME to randomizable linear algebraic CSPs: invoke The-

orem 6 on R to obtain a relation R′ and algorithms inst,wit1,wit2 such that:
(i) inst,wit1,wit2 provide a reduction from R to R′, with inst running in time
poly(n + log(T (n) + t1(n))) and wit1,wit2 in time Õ(T (n) + t1(n)); and (ii) R′

is a subset of

RRLA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 = F2log(T+t1)+O(log log(T+t1))

1 = Õ(T + t1)
ρ1 = 1 − δ1
δ1
q1 = polylog(T)
c1 = poly(n + log T)
γ1 = polylog(T) · ε1
ε1
t1
r1 = Õ(T+t1

1−δ1
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Above, as parameters of Theorem 6, we chose ε1, δ1 and t1 as follows: ε1 such
that γ1 = polylog(T)·ε1 ≤ 2

9 , then δ1 := 1−ε1/4, and t1 := k·q1 = k·polylog(T).
Next we obtain PCPP systems for the relations corresponding to codes

appearing in instances of R′. Theorem 6 guarantees that both CR′,◦ and CR′,•

62 E. Ben-Sasson et al.

are subsets of RS∗
ρ ∪ VRS∗

ρ. We now invoke Theorem 3, choosing λ = 2 and
s such that fields f1 for R′ and a2 for the PCPPs match. That is, we chose
s = Õ(log log(T + t1)) and obtain:

Rel(CR′,◦) , Rel(CR′,•) ∈ PCPP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2 = F2s+log �1

l2 = Õ(
1)
q2 = polylog(
1)
Δ2 = ΔHam

a

d2 = ρ1/2
e2 = 1/4
tp2 = poly(s) · Õ(
1)
tv2 = poly(s + log
1)
na

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally we invoke Theorem 5 for R′ to obtain a duplex PCP system for R′,
supplying the PCPPs we just obtained from Theorem3. Note that our choices
satisfy the hypothesis of Theorem 5 is satisfied, as the two fields match, r1 is
polynomially bounded, and as we chose γ1, ε1 ≤ 2

9 , δ1 ≥ 17
18 , we also have ε1 <

min{ δ1
2 , δ1 − γ1} and d2 ≤ ε1/4. This establishes our claim that:

R ∈ DPCPpzk

⎡
⎢⎢⎢⎢⎢⎣

a = F
2log(T+t1)+O(log log(T+t1))

l = 2l2(�1) + 6�1 = Õ(T + t1)

q = 2q2(�1) + q1 + 7 = polylog(T)

e = 1
2

tp = inst + wit1 + (2tp2(�1) + (c1 + 5)�1 + r1) = poly(n) · Õ(T + k)

tv = inst + (2tv2(�1) + c1 + log �1) = poly(n + log(T + k))

k

na

⎤
⎥⎥⎥⎥⎥⎦

.

The precise expression for soundness error is e := max{1−δ1+γ1+ε1 , (1−|f1|−1)·
max{e2, ε1/4}+|f1|−1}, but it is upper bounded by 1

2 , as for us 1−δ1+γ1+ε1 ≤ 1
2 ,

max{e2, ε1/4} = 1
4 and |f1| ≥ 4.

Acknowledgments. We thank Yuval Ishai and Mor Weiss for helpful discussions.
The research leading to these results has received funding from: the European Commu-
nity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement num-
ber 240258; the Israeli Science Foundation (grant 1501/14); and the Center for Science
of Information (CSoI), an NSF Science and Technology Center, under grant agreement
CCF-0939370.

References

1. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8, 7–29 (1999)
2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. JACM 45, 501–555 (1998)
3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

JACM 45, 70–122 (1998)
4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: STOC 1991 (1991)

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 63

5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

6. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity class. J. Comput. Syst. Sci. 36, 254–276 (1988)

7. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

8. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

9. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC 1988 (1988)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems. In: ITCS 2013 (2013)

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC 2013 (2013)

12. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs
of proximity, shorter PCPs and applications to coding. In: STOC 2004 (2004)

13. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: CCC 2005 (2005)

14. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36,
889–974 (2006)

15. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38, 551–607 (2008)

16. Ben-Sasson, E., Viola, E.: Short PCPs with projection queries. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 163–173. Springer, Heidelberg (2014)

17. Dinur, I.: The PCP theorem by gap amplification. JACM 54, 12:1–12:44 (2007)
18. Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial proof of the

PCP theorem. In: FOCS 2004 (2004)
19. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-prover

zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol.
740, pp. 215–227. Springer, Heidelberg (1993)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985 (1985)

21. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 173–190. Springer, Heidelberg (2010)

22. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput. Complex.
9, 157–201 (2000)

23. Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer,
Heidelberg (1988)

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39, 1121–1152 (2009)

25. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012)

26. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
mohammad/files/papers/ZKPCPs-Full.pdf

http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf

64 E. Ben-Sasson et al.

27. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008)

28. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC 1997 (1997)

29. Lapidot, D., Shamir, A.: A one-round, two-prover, zero-knowledge protocol for NP.
Combinatorica 15, 204–214 (1995)

30. Lund, C., Fortnow, L., Karloff, H., Noam, N.: Algebraic methods for interactive
proof systems. JACM 39, 859–868 (1992)

31. Mahmoody, M., Xiao, D.: Languages with efficient zero-knowledge PCPs are in
SZK. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 297–314. Springer,
Heidelberg (2013)

32. Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol. 2, 343–
363 (2008)

33. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: ISTCS 1993 (1993)

34. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: STOC
1994 (1994)

35. Shamir, A.: IP = PSPACE. JACM 39, 869–877 (1992)
36. Spielman, D.: Computationally efficient error-correcting codes and holographic

proofs. Ph.D. thesis, Massachusetts Institute of Technology (1995)
37. Szegedy, M.: Many-valued logics and holographic proofs. In: Wiedermann, J., Van

Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 676–686.
Springer, Heidelberg (1999)

http://www.springer.com/978-3-662-49098-3

	Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Probabilistically Checkable Proofs
	2.2 Probabilistically Checkable Proofs of Proximity
	2.3 Zero Knowledge PCPs
	2.4 Reed--Muller and Reed--Solomon Codes

	3 Duplex PCPs
	4 Main Theorem
	4.1 Proof Sketch
	4.2 Roadmap of the Rest of the Paper

	5 Linear Algebraic CSPs and Their Canonical PCPs
	5.1 Linear Algebraic Constraint Satisfaction Problems
	5.2 A Canonical PCP for Linear Algebraic CSPs

	6 Zero-Knowledge Duplex PCPs from Randomizable Linear Algebraic CSPs
	6.1 Randomizable Linear Algebraic CSPs
	6.2 Construction of Zero-Knowledge Duplex PCPs

	7 From NTIME to Randomizable Linear Algebraic CSPs
	7.1 Algebraic Problems and Group Preservation
	7.2 Algebraic Problems Naturally Reduce to Linear Algebraic CSPs
	7.3 From Group-Preserving Algebraic Problems to Randomizable Linear Algebraic CSPs
	7.4 An Efficient Reduction from NTIME to Group-Preserving Algebraic Problems
	7.5 Combining the Two Reductions

	8 Proof of Theorem4
	References

