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Abstract. This paper presents an information flow analysis of Hiber-
nate Query Language (HQL). We define a concrete semantics of HQL and
we lift the semantics on an abstract domain of propositional formulae.
This way, we capture variables dependences at each program point. This
allows us to identify illegitimate information flow by checking the satisfi-
ability of propositional formulae with respect to a truth value assignment
based on their security levels.

Keywords: Hibernate query language · Information flow analysis ·
Abstract interpretation

1 Introduction

Modern database applications are mostly implemented using Object Oriented
Programming (OOP) languages supported by relational databases at the back
end. Due to paradigm mismatch, the way to access data in object oriented
languages is fundamentally different than that in case of relational database
languages. Hibernate, an Object Relational Mapping (ORM) framework, miti-
gates this impedance mismatch problem by replacing direct persistence-related
database accesses with high-level object handling functions. Hibernate provides
Hibernate Query Language (HQL) which allows SQL-like queries to be written
against Hibernate’s data objects. Various methods in “Session” interface are
used to propagate object’s states from memory to the database (or vice versa).
Hibernate will detect any change made to an object in persistent state and syn-
chronizes the state with the database when the unit of work completes. A HQL
query is translated by Hibernate into a set of conventional SQL queries during
run time which in turn performs actions on the database. This way, HQL provides
a unified platform for the programmers to develop object-oriented applications
to interact with databases, without knowing much details about the underlying
databases [5,6,15].

Secure information flow is comprised of two related aspects: information con-
fidentiality and information integrity. Confidentiality refers to limiting the access
and disclosure of sensitive information to authorized users only. For instance,
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when we purchase something online, our private data, e.g. credit card number,
must be sent only to the merchant without disclosing to any third person during
the transmission. Dually, the notion of integrity indicates that data or messages
cannot be modified undetectably by any unauthorized person [34].

While access control and encryption prevent confidential information from
being read or modified by unauthorized users at source level, they do not regulate
the information propagation after it has been released for execution. Confiden-
tiality may be compromised during the flow of information along the control
structure of any software systems [29]. Assuming variables ‘h’ and ‘l’ are pri-
vate and public respectively, the following code fragments depict two different
scenarios (explicit/direct flow and implicit/indirect flow) of information leakage:

l := h Explicit/Direct flow
if(h=0) l:=5; else l:=10; Implicit/Indirect flow

Observe that confidential value in ‘h’ can be deduced by attackers observing ‘l’
on the output channel.

A wide range of language-based techniques are proposed in the past decades
to analyze this illegitimate flow in software products [4,9,16,21,24,28,29,32].
Works in this direction have been starting with the pioneering work of Dennings
in the 1970s [13]. As a starting point, the analysis classifies the program variables
into various security classes. The simplest one is to consider two: Public/Low
(denoted L) and Private/High (denoted H). Considering a mathematical lattice-
model of security classes with order L ≤ H, the secure information flow policy
is defined on the lattice: an upward-flow in the lattice is only permissible to
preserve confidentiality. Dually, in case of integrity, the lattice-model labels the
variables as Tainted (denoted T ) and Untainted (denoted U), and follows a dual
flow-policy.

The correctness is guaranteed by respecting the non-interference principle
that says “a variation of confidential data does not cause any variation to public
data”: Given a program P and set of states Σ. The non-interference policy states
that ∀σ1, σ2 ∈ Σ. σ1 ≡L σ2 =⇒ [[P ]]σ1 ≡L [[P ]]σ2, where [[.]] is semantic function
and ≡L represents low-equivalence relation between states.

Most of the notable works which refer to imperative, object-oriented, func-
tional, database query languages, etc. [8,18,21,24,27–29] can not be applied
directly to the case of HQL due to the presence and interaction of high-level
HQL variables and database attributes through Session methods. Moreover, as
we are interested on persistent data, analyzing object-oriented features of HQL
does not meet our objectives neither. Let us illustrate a motivating example
depicted in Fig. 1. Two POJO classes c1 and c2 correspond to two underly-
ing database-tables by mapping class-fields into table-attributes. In the main
method of Service Class ExClass, values of the table corresponding to c1 are
used to make a list, and for each element of the list an update is performed on
the table corresponding to the class c2. Observe that there is an information-flow
from confidential (denoted by h) to public variables (denoted by l). In fact, the
confidential database information h1 which is extracted at statement 15, affects
the public view of the database information l2 at statement 20. This fact is
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depicted in Fig. 1(d). The new challenge in this scenario w.r.t. state-of-the-art
of information leakage detection is that we need to consider both application
variables and SQL variables (corresponding to the database attributes).

In this paper1, we extend the abstract interpretation-based framework in [34]
to the case of HQL, focussing on Session methods which act as persistent man-
ager. This allows us to perform leakage analysis of sensitive database information
when is accessed through high-level HQL code.

The main contributions in this paper are:

– Defining the concrete and an abstract transition semantics of HQL, by using
symbolic domain of positive propositional formulae.

– Analyzing possible information leakage based on the abstract semantics,
focussing on variable dependences of database attributes on high-level HQL
variables.

The structure of the paper is as follows: Sect. 2 briefly discusses the related
works in the literature. In Sect. 3, we define the abstract syntax of HQL in
BNF. In Sects. 4 and 5, we formalize the concrete and an abstract transition
semantics of HQL, by using the symbolic domain of positive propositional for-
mulae. In Sect. 6, we perform information leakage analysis of programs based
on the abstract semantics which captures possible leakage of confidential data.
Section 7 concludes the paper.

2 Related Works

A comprehensive survey on language-based information-flow analysis is reported
in [29]. Most popular static analysis techniques are based on type systems [29,32,
33], dependence graphs [7,19–21,23,24,26], formal approaches [1,2,14,22,34,35],
etc. Besides the conservative nature of static analysis, the run-time monitoring
systems detect unauthorized information flow dynamically; however, precision
of the analysis completely depends on the execution overload, and of course, it
is very prone to false negative [3,31].

The security type system considers various security types (e.g., low and
high) and a collection of typing rules which determine the type of expres-
sions/commands to guarantee a secure information flow [29,32,33]. Some of the
typing rules from [29] are mentioned below:

– Expression Type: �exp: high
h�∈Var(exp)
�exp: low

– Explicit-flow Rules: [pc]�h:=exp
�exp: low

[low]�l:=exp

– Implicit-flow Rules: �exp: pc [pc]� c1 [pc]� c2
[pc]�if exp then c1 else c2

�exp: pc [pc]� c
[pc]�while exp do c

– Subsumption Rule: [high]�c
[low]�c

1 This work is a revised and extended version of [10].
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Fig. 1. A motivating HQL program P and its execution view
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The notation [pc] denotes the security context which can be either [low] or
[high]. According to the subsumption rule, if a program is typable in a high
context then it is also typable in a low context. This allows to reset the program
security context to low after a high conditional or a loop.

Although type-based approach is provably sound, but a major drawback is
the lack of expressiveness. Moreover, it is not flow-sensitive which may produce
false alarm. For instance, consider the following code:

Although the program is secure with respect to the classical noninterference
principle as the output is always zero, but the type-based approach produces
false alarm according to the implicit-flow rule.

As information flow is closely related to the dependence information of pro-
grams, the notion of Program Dependence Graph (PDG) is used widely to cap-
ture illegitimate flow in programs [7,19–21,24]. As PDGs are flow-sensitive, the
analysis improves w.r.t. the type-based approach. For instance, in PDG-based
approaches, the above code is secure as there is no path in the corre-
sponding PDG. Various extensions of PDG exist, for example System Depen-
dence Graph (SDG) in case of inter-procedural call to capture context-sensitivity,
Class Dependence Graph (ClDG) in case of Object-Oriented Languages to cap-
ture object-sensitivity on dynamic dispatch, etc [20]. Once the dependence graph
of a program is constructed, static analysis is performed on the graph to iden-
tify the presence of possible insecure flow. An worth mentioning approach is
backward slicing which collects all possible paths (or source-nodes) influencing
(directly/indirectly) the observable nodes: to be secure, the levels of variables
in a path must not exceed the levels of observable variables in the output-node
of that path. In other words, slicing helps to partition any insecure program
(as a whole) in to secure and insecure part [7]. Semantics-based improvement
(e.g. path-conditions) is also proposed to disregard semantically unreachable
paths [20].

Approaches based on formal techniques, e.g. Abstract Interpretation theory,
Hoare Logic, Model Checking, etc. are proposed in [1,14,22,34,35] to analyze
secure information flow in software products. Leino and Joshi [22] first intro-
duced a semantics-based approach to analyzing secure information flow based
on the semantic equivalence of programs. [34,35] defined the concrete seman-
tics of programs and lift it to an abstract domain suitable for flow analysis. In
particular, they consider the domain of propositional formula representing vari-
ables’ dependences. The abstract semantics is further refined by combining with
numerical abstract domain which improves the precision of the analysis. A vari-
ety of logical forms are proposed to characterize information flow security. Amtoft
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and Banerjee [1] defined prelude semantics by treating program commands as
prelude transformer. They introduced a logic based on the Abstract Interpreta-
tion of prelude semantics that makes independence between program variables
explicit. They used Hoare logic and applied this logic to forward program slic-
ing: forward l-slice is independent of h variables and is secure from information
leakage. Authors in [2] defines a set of proof rules for secure information flow
based on axiomatic approach. Recently, [14] proposed a model checking-based
approach for reactive systems.

3 Syntax of HQL

Syntax of HQL is similar to object oriented constructs along with SQL variants
through Session objects. The syntactic sets and the abstract syntax of HQL is
depicted in Table 1. Like OOP, HQL programs are composed of a set of classes
including main class. That is, a HQL program P is defined as P = 〈cmain, L〉
where cmain ∈ Class is the main class and L ⊂ Class are the other classes.
Similarly, a class c ∈ Class contains a set of fields and methods, and therefore,
is defined as a triplet c = 〈init, F, M〉, where init is the constructor, F is the set
of fields, and M is the set of member methods.

An additional and attractive feature of HQL is the presence of Hibernate
Session which provides a central interface between the application and Hiber-
nate and acts as persistence manager. In HQL, an object is transient if it has just
been instantiated using the new operator. Transient instances will be destroyed
by the garbage collector if the application does not hold a reference anymore. A
persistent instance, on the other hand, has a representation in the database and
an identifier value assigned to it. Given an object, the Hibernate Session is
used to make the object persistent. Various methods in Hibernate Session are
used to propagate object’s states from memory to the database (or vice versa).

In abstract syntax, we denote a Session method by a triplet 〈C, φ, OP〉 where
OP is the operation to be performed on the database tuples corresponding to a
set of objects of classes c ∈ C satisfying the condition φ. For instance, consider
the following update statement which is invoked through a session object ‘ses’:

Query Q = ses.createQuery(‘‘UPDATE std SET rank= rank+1 WHERE mark>500’’)

The abstract syntax of Q is denoted by

〈C, φ, OP〉 = 〈{std}, mark>500, rank=rank+1〉

The descriptions of OP in various Session methods are as follows:

–
〈
C, φ, SAVE(obj)

〉
=

〈
{c}, false, SAVE(obj)

〉
: Stores the state of the object obj

in the database table t, where t corresponds to the POJO class c and obj is
the instance of c. The pre-condition φ is false as the method does not identify
any existing tuples in the database.
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Table 1. Abstract syntax of HQL session methods
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–
〈
C, φ, UPD(�x, �exp)

〉
=

〈
{c}, φ, UPD(�v, �exp)

〉
: Updates the attributes correspond-

ing to the class fields �x by �exp in the database table t for the tuples satisfying
φ, where t corresponds to the POJO class c.

–
〈
C, φ, DEL()

〉
=

〈
{c}, φ, DEL()

〉
: Deletes the tuples satisfying φ in t, where t is

the database table corresponding to the POJO class c.

–
〈
C, φ, SEL

(
f( �exp′), r(�h(�x)), φ′, g( �exp)

)〉
: Selects information from the data-

base tables corresponding to the set of POJO classes C, and returns the equiv-
alent representations in the form of objects.

It is immediate that in case of SAVE() the condition φ is false and C is singleton
set {c}. As UPD() and DEL() always target single class, the set C is also singleton
{c} in those cases. However, C may not be singleton in case of SEL().

4 Concrete Semantics of HQL

In this section, we define the semantics of HQL by (i) extending the OOP seman-
tics [25] and (ii) defining the semantics of Session methods in terms of the
semantics of database query languages [17].

4.1 Concrete Semantics of OOP [25]

Let Var, Val and Loc be the set of variables, the domain of values and the set
of memory locations respectively. The set of environments, stores and states are
defined below:

– The set of environments is defined as Env : Var −→ Loc
– The set of stores is defined as Store : Loc −→ Val
– The set of states is defined as Σ : Env × Store. So, a state ρ ∈ Σ is denoted

by a tuple 〈e, s〉 where e ∈ Env and s ∈ Store.

Some special variables (pc, Vin, Vout) are used in the subsequent part which
represent the following: (i) ρ(pc) is the program counter; (ii) ρ(Vin) is the input
value of the current method; (iii) ρ(Vout) is the value returned by the current
method.

Constructor and Method Semantics. During object creation, the class con-
structor is invoked and object fields are instantiated by input values. Given a
store s, the constructor maps its fields to fresh locations and then assigns values
into those locations. Constructor never returns any output.

Definition 1 (Constructor Semantics). Given a store s. Let {ain, apc} ⊆
Loc be the free locations, Valin ⊆ Val be the semantic domain for input values.
Let vin ∈ Valin and pcexit be the input value and the exit point of the constructor.
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Table 2. An example class

The semantic of the class constructor init, S[[init]] ∈ (Store×Val → ℘(Env×
Store)), is defined by

S[[init]](s, vin) =
{
(e0, s0) | (e0 � Vin → ain, pc → apc)∧(s0 � s[ain → vin, apc → pcexit])

}

Definition 2 (Method Semantics). Let Valin ⊆ Val and Valout ⊆ Val be
the semantic domains for the input values and the output values respectively.
Let vin ∈ Valin be the input values, ain and apc be the fresh memory locations,
and pcexit be the exit point of the method m. The semantic of a method m,
S[[m]] ∈ (Env × Store × Valin → ℘(Store × Env × Valout), is defined as

S[[m]](e, s, vin) =
{
(e′, s′, vout) | (e′ � e[Vin → ain, pc → apc])∧

(s′ � s[ain → vin, apc → pcexit]) ∧ vout ∈ Valout

}

Example 1. Consider the example of Table 2. The class constructor Demo() cre-
ates a new environment consists of field k. The semantics of constructor Demo()
and the semantics of the methods even() and mul() are defined below:

S[[Demo()]](s, i) =
{
(e0, s0) | (e0 � k → ain, pc → apc) ∧ (s0 � s[ain → i, apc → 5])

}

S[[even()]](e, s, ∅) =
{
(e, s′, vout) | (s′ � s[e(pc) → 10])∧(vout = if(s(e(k))%2) ?1 : 0)

}

S[[mul()]](e, s, j) =
{
(e, s′, vout) | (s′ � s[e(k) → s(e(k))∗j, e(pc) → 14])∧vout = e(k)

}

Observe that even() takes no input and returns an integer value as output,
whereas mul() takes an integer value as input and returns an address as output.
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Object and Class Semantics. Object semantics is defined in terms of inter-
action history between the program-context and the object. A direct interaction
takes place when the program-context calls any member-method of the object,
whereas an indirect interaction occurs when the program-context updates any
address escaped from the object’s scope. However, both direct or indirect inter-
action can cause a change in an interaction state (see Definition 3).

Definition 3 (Interaction States). The set of interaction states is defined by

Σ = Env × Store × Valout × ℘(Loc)

where Env, Store, Valout, and Loc are the set of application environments, the
set of stores, the set of output values, and the set of addresses respectively.

Definition 4 (Initial Interaction States). Let vin ∈ Valin be an input to the
class constructor init when creating an object. Let s ∈ Store be a store. Then
the set of initial interaction states is defined by

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 
 〈e0, s0〉

}

Observe that φ denotes no output produced by the constructor and ∅ represents
the empty context with no escaped address.

Example 2 (Initial Interaction States). Consider the example of Table 2. The
input to the constructor is i. Given a store s, the initial interaction states are

I0 =
{
〈e0, s0, φ, ∅〉 | S[[Sample()]](i, s) 
 (e0, s0)

}

=
{
〈e0, s0, φ, ∅〉 |(e0 � a → ain, pc → apc) ∧ (s0 � s[ain → i, apc → 5])

}

Observe that the third element in an initial state is φ because constructor does
not return any value as output. Similarly the fourth element is ∅ because no
address is escaped from the object’s scope after execution of sample().

Transition Relation. Let Lab = (M × Valin) ∪ {upd} be a set of labels, where
M is the set of class-methods, Valin is the set of input values and upd denotes
an indirect update operation by the context. The transition relation T : Σ →
℘(Σ × Lab) specifies which successor interaction states σ′ = 〈e′, s′, v′, Esc′〉 ∈ Σ
can follow

1. when an object’s methods m ∈ M with input vin ∈ Valin is directly invoked
on an interaction state σ = 〈e, s, v, Esc〉 (direct interaction), or

2. the context indirectly updates an address escaped from an object’s scope
(indirect interaction).

Definition 5 (Direct Interaction Tdir). Transition on Direct Interaction is
defined below:

Tdir(〈e, s, v, Esc〉) =
{(

〈e′, s′, v′, Esc′〉, (m, vin)
)

| S[[m]](〈e, s, vin〉) 
 〈e′, s′, v′〉
∧ Esc′ = Esc ∪ reach(v′, s′)

}
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where

reach(v, s) =

⎧
⎪⎪⎨

⎪⎪⎩

if v ∈ Loc

{v} ∪ {reach(e′(f), s) | ∃B. B = {init, F, M}, f ∈ F,
s(v) is an instance of B, s(s(v)) = e′

else ∅
Example 3 (Direct interaction Tdir). Consider the example of Table 2. The con-
text can invoke any one of the two methods of Sample class. Therefore given an
interaction state σ = 〈e, s, v, Esc〉, the set of successor interaction states are

Tdir(〈e, s, v, Esc〉) ={(〈e, s′, v′, Esc〉, (parity(), φ)) | S[[parity()]](〈e, s, φ〉) � 〈e, s′, v′〉}
⋃{(〈e, s′, v′, Esc′〉, (incr(), j)) | S[[incr()]](〈e, s, j〉) � 〈e, s′, v′〉
∧ Esc’ = Esc ∪ {v′}}

Definition 6 (Indirect Interaction Tind). Transition on Indirect Interaction
is defined below:

Tind(〈e, s, v, Esc〉) =
{(

〈e, s′, v, Esc〉, upd
)

| ∃a ∈ Esc. Update(a, s) 
 s′}

where Update(a, s) = {s′ | ∃v ∈ Val. s′ = s[a ← v]}

Definition 7 (Transition RelationT ). Let σ ∈ Σ be an interaction state.
The transition relation T : Σ → ℘(Σ × Lab) is defined as T = Tdir ∪ Tind,
where Tdir and Tind represent direct and indirect transitions respectively.

Let us denote a transition between interaction states σ1 and σ2 by σ1
�−→ σ2

where � ∈ Lab.

Objects Fix-point Semantics. Given a store s ∈ Store, the set of initial interac-
tion states is defined as

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 
 〈e0, s0〉, vin ∈ Valin

}

The fix-point trace semantics of obj, according to [12], is defined as

T [[obj]](I0) = lfp⊆
∅ F(I0) =

⋃

i≤ω

F i(I0)

where F(I) = λT . I ∪
{
σ0

�0−→ . . .
�n−1−−−→ σn

�n−→ σn+1 | σ0
�0−→ . . .

�n−1−−−→ σn ∈ T ∧
(σn+1, �n) ∈ T (σn)

}

Class Semantics. A class is nothing but a description of the set of objects. The
semantics of a class c is defined as

S[[c]] = ∪
{
T [[obj]](I0) | “obj” is an instance of a class c and I0 is the

set of initial interaction states
}

Observe that the semantic definitions of objects and classes aim at verifying
invariance properties of classes.
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Object-Oriented Program Semantics. Let P = 〈cmain, L〉 be an object-
oriented program. Let →⊆ (Env × Store)×(Env × Store) be a transition
relation and S0 ∈ ℘(Env×Store) be a set of initial states such that ∀ρ0 ∈
S0. ρ0(currentMethod) = cmain and ρ0(pc) = pcmain where pcmain is the entry
point of main method in cmain. The semantic of P is defined as

S[[P ]](S0) =lfp⊆
∅ λ X. S0 ∪

{
ρ0 → ρ1 → · · · → ρn → ρn+1 | ρn+1 ∈ (Env × Store)∧

ρ0 → ρ1 → · · · → ρn ∈ X ∧ ρn → ρn+1

}

4.2 Concrete Semantics of HQL

In order to define the semantics of HQL, let us recall the notion of database
environment ρd and table environment ρt from [17].

Database Environment. We consider a database as a set of indexed tables {ti | i ∈
Ix} for a given set of indexes Ix. We define database environment by a function
ρd whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.

Table Environment. Given a database environment ρd and a table t ∈ d. We
define attr(t) = {a1, a2, ..., ak}. So, t ⊆ D1 × D2 × .... × Dk where, ai is the
attribute corresponding to the typed domain Di. A table environment ρt for a
table t is defined as a function such that for any attribute ai ∈ attr(t),

ρt(ai) = 〈πi(lj) | lj ∈ t〉

where π is the projection operator, i.e. πi(lj) is the ith element of the lj-th row.
In other words, ρt maps ai to the ordered set of values over the rows of the
table t.

Interaction State. We extend the notion of interaction states of OOP to the case
of HQL, considering the interaction of context with Session objects. To this
aim, we include database environment in the definition of HQL states. The set
of interaction states of HQL is, thus, defined by

Σ = Env × Store × Ed × Valout × ℘(Loc)

where Env, Store, Ed , Valout, and Loc are the set of application environments,
the set of stores, the set of database environments, the set of output values, and
the set of addresses respectively.

The set of initial interaction states of HQL is defined by

I0 =
{
〈e0, s0, ρd0 , φ, ∅〉 | S[[init]](vin, s) 
 〈e0, s0〉

}

where vin ∈ Valin is an input to the class constructor init when creating an
object and s ∈ Store is a store. ρd0 is the initial database environment.

The semantics of conventional constructors, methods, objects, classes in HQL
are defined in the same way as in the case of OOP. The Session methods require
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an ‘ad-hoc’ treatment. We define its concrete semantics by specifying how the
methods are executed on (e, s, ρd) where e ∈ Env is an environment, s ∈ Store
is a store, and ρd ∈ Ed is a database environment, resulting into new state
(e′, s′, ρd′). The semantic definitions are expressed in terms of the semantics of
database statements SELECT, INSERT, UPDATE, DELETE [17].

We use the following functions in the subsequent part: map(v) maps v to
the underlying database object; var(exp) returns the variables appearing in exp;
attr(t) returns the attributes associated with table t; dom(f) returns the domain
of f .

The semantic function is defined as:

S[[(C, φ, op)]](e, s, ρd)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S[[(C, φ, op)]](e, s, ρt′) if ∃t1, . . . , tn ∈ dom(ρd) : C = {c1, . . . , cn}
∧(∀i ∈ [1 . . . n]. ti = map(ci)) ∧ t′ = t1 × t2 × · · · × tn.

⊥ otherwise.

Semantics of Session Method UPD(). Consider the Session method
〈{c}, φ, UPD(�v, �exp)〉. The semantics is defined below2:
S[[〈{c}, φ, UPD(�v, �exp)〉]]

=λ(e, s, ρt). let c = 〈init, F, M〉 such that map(F) = attr(t) and map(�v) = �a ⊆ attr(t)

where �v ⊆ F, and let φd = PE[[φ]](e, s, F) and �expd = PE[[ �exp]](e, s, F) in
{
〈e, s, ρt′〉 | ρt′ ∈ S[[

〈
UPDATE(�a, �expd), φd

〉
]](ρt)

}
.

The auxiliary function PE[[X]] (which stands for partial evaluation) is used in
the definition above to convert variables in X into the corresponding database
objects. This is defined by

PE[[X]](e, s, F) = X ′

where X ′ = X[xi/vi] for all vi ∈ var(X) and xi =

⎧
⎪⎨

⎪⎩

map(vi) if vi ∈ F

E[[vi]](e, s) otherwise

Example 4. Let us consider a POJO class std which corresponds to the database
table t1 depicted in Table 3(a). Consider the following HQL code:

Query Q = ses.createQuery(“UPDATE std SET rank = rank + 1, mark

= mark − 50 × 2 WHERE mark > 500′′);
int R = Q.executeUpdate();

2 Observe that, for the sake of simplicity, we do not consider here the method
REFRESH() which synchronize the in-memory objects state with that of the underlying
database.
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Table 3. After execution of the UPDATE operation

The abstract syntax of the Session method above is
〈
{c}, φ, UPD(�v, �exp)

〉
, where

– {c}= {std},
– φ= “mark > 500”,
– UPD(�v, �exp)=UPD

(
〈rank,mark〉, 〈rank + 1,mark − 50 × 2〉

)

Given the table environment ρt1 in Table 3(a), the semantics is defined as:

S[[
〈
{std}, (mark > 500), UPD

(
〈rank,mark〉, 〈rank + 1,mark − 50 × 2〉

)〉
]]

=λ(e, s, ρt1). let std = 〈std(), F, M〉 such that F = 〈sid, mark, rank, dno〉 and

map(F) = attr(t) = 〈tsid, tmark, trank, tdno〉 and

map(�v) = map(〈rank, mark〉) = 〈trank, tmark〉 ⊆ attr(t), and let

(tmark > 500) = PE[[(std.mark > 500)]](e, s, F) and

〈trank + 1, tmark − 50 × 2〉 = PE[[〈rank + 1, mark − 50 × 2〉]](e, s, F) in
{
〈e, s, ρt2〉 | ρt2 ∈ S[[

〈
UPDATE(〈trank, tmark〉, 〈trank + 1, tmark − 50 × 2〉),

(tmark > 500)
〉
]](ρt1)

}
.

The resulting table environment ρt2 in shown in Table 3(b). The semantics of
other Session methods are in Table 4.

Fix-Point Semantics of HQL. Let us define transition relation, considering
nondeterministic executions, as T : Mses × Σ → ℘(Σ). This specifies which
successor interaction states σ′ = 〈e′, s′, ρd′ , 〉 ∈ Σ can follow when a Session
method mses = 〈C, φ, op〉 ∈ Mses is invoked on an interaction state σ = 〈e, s, ρd〉.
That is,

Tses[[mses]](〈e, s, ρd〉) =
{(

〈e′, s′, ρd′〉
)

| S[[mses]](〈e, s, ρd〉) 
 〈e′, s′, ρd′〉 ∧ mses ∈ Mses

}

We now define the transition relation, by considering (i) the direct interaction,
when a conventional method is directly invoked, (ii) the session interaction, when
a Session method is invoked, and (iii) the indirect transition, when context
updates any address escaped from the object’s scope.

Definition 8 (Transition Relation T ). Let σ ∈ Σ be an interaction state.
The transition relation T : Lab×Σ → ℘(Σ) is defined as T = Tdir∪Tind∪Tses,
where Tdir, Tind and Tses represent direct, indirect, and session transitions
respectively. Lab represents the set of labels which include Session methods
Mses, conventional class methods M, and an indirect update operation Upd by the
context.



Data Leakage Analysis of the Hibernate Query Language 37

Table 4. Semantics of Session methods

We denote a transition by σ
a−→ σ′ when application of a label a ∈ Lab on

interaction state σ results into a new state σ′.
Let I0 be the set of initial interaction states. The fix-point trace semantics

of HQL program P is defined as

T [[P ]](I0) = lfp⊆
∅ F(I0) =

⋃

i≤ω

F i(I0)

where F(I) = λT . I ∪
{
σ0

a0−→ . . .
an−1−−−→ σn

an−−→ σn+1 | σ0
a0−→ . . .

an−1−−−→ σn ∈ T
∧σn

an−−→ σn+1 ∈ T
}

5 Abstract Semantics of HQL

Abstract interpretation [11,12] provides a general theoretical foundation to spec-
ify static analyses, to guarantee their correctness, to tune their precision accord-
ing to efficiency issues, and to compare and to combine them in a modular
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way. It allows to deal separately with concerns that typically interleave, includ-
ing fix-point algorithms, abstract domains, and termination criteria handled by
widening operators. Its theoretical and practical impact has been demonstrated
in various application fields, in particular for safety and security analysis.

In [34,35], authors used the Abstract Interpretation framework to define an
abstract semantics of imperative languages using symbolic domain of positive
propositional formulae in the form

∧

0≤i≤n, 0≤j≤m

{yi → zj}

which means that the values of variable zj possibly depend on the values of vari-
able yi. Later, [18] extends this to the case of structured query languages. The
computation of abstract semantics of a program in the propositional formulae
domain provides a sound approximation of variable dependences, which allows
to capture possible information flow in the program. The information leakage
analysis is then performed by checking the satisfiability of formulae after assign-
ing truth values to variables based on their sensitivity levels.

Let Pos and L be the domain of propositional formulae and the set of program
points respectively. An abstract state σ� ∈ Σ� ≡ L×Pos is a pair 〈�, ψ〉 where ψ ∈
Pos represents the variable dependences, in the form of propositional formulae,
among program variables up to the program label � ∈ L.

Methods in HQL include a set of imperative statements3. We assume, for the
sake of the simplicity, that attackers are able to observe public variables inside of
the main method only. Therefore, our analysis only aims at identifying variable
dependences at input-output labels of methods.

The abstract transition semantics of constructors and conventional methods
are defined below.

Definition 9 (Abstract Transition Semantics of Constructor). Consider
a class c = 〈init, F, M〉 where init is a default constructor. Let � be the label of
init. The abstract transition semantics of init is defined as

T �[[�init]] = {(�, ψ) → (Succ(�init), ψ)}

where Succ(�init) denotes the successor label of init. Observe that the default
constructor is used to initialize the objects-fields only, and it does not add any
new dependence.

The abstract transition semantics of parameterized constructors are defined in
the same way as of class methods m ∈ M.

Definition 10 (Abstract Transition Semantics of Methods). Let U ∈
℘(Var) be the set of variables which are passed as actual parameters when invoked
a method m ∈ M on an abstract state (�, ψ) at program label �. Let V ∈ ℘(Var) be
3 For a detailed abstract transition semantics of imperative statements, see [34].
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the formal arguments in the definition of m. We assume that U ∩ V = ∅. Let a
and b be the variable returned by m and the variable to which the value returned
by m is assigned. The abstract transition semantics is defined as

T �[[�m]] = {(�, ψ) → (Succ(�m), ψ′)}

where ψ′ = {xi → yi | xi ∈ U, yi ∈ V } ∪ {a → b} ∪ ψ and Succ(�m) is the label
of the successor of m.

Let us classify the high-level HQL variables into two distinct sets: Vard and Vara.
The variables which have a correspondence with database attributes belong to
the set Vard. Otherwise, the variables are treated as usual variables and belong
to Vara. We denote variables in Vard by the notation v, in order to differentiate
them from the variables in Vara. This leads to four types of dependences which
may arise in HQL programs: x → y, x → y, x → y and x → y, where x, y ∈ Vara

and x, y ∈ Vard.

Definition of Abstract Transition FunctionT � for Sessionmethods. The
abstract labeled transition semantics of various Session methods are defined
below, where by Var(exp) and Field(c) we denote the set of variables in exp
and the set of class-fields in the class c respectively. The function Map(v) is
defined as:

Map(v) =

{
v if v has correspondence with a database attribute,
v otherwise.

Notice that in the definition of T � the notation ṽ stands for either v or v. Let
SF(ψ) denotes the set of subformulas in ψ, and the operator � is defined by
ψ1 � ψ2 =

∧ (
SF(ψ1)\SF(ψ2)

)
.

The transition semantics for Session method msave

T �[[�msave]]
def
= T �[[�(C, φ, SAVE(obj))]]

def
= T �[[�({c}, FALSE, SAVE(obj))]]

def
= {〈�, ψ〉 SAVE−−−→ 〈Succ(�msave), ψ〉}

The transition semantics for Session method mupd

T �[[�mupd]]
def
= T �[[�(C, φ, UPD(�v, �exp))]]

def
= T �[[�({c}, φ, UPD(�v, �exp))]]

def
= {〈�, ψ〉 UPD−−→ 〈Succ(�mupd), ψ′〉}
where ψ′ =

∧ {
ỹ → zi | y ∈ Var[[φ]], ỹ = Map(y), zi ∈ �v

} ⋃
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∧ {
ỹi → zi | yi ∈ Var[[expi]], expi ∈ �exp, ỹi = Map(yi), zi ∈ �v

} ⋃
ψ′′

and ψ′′ =
{

ψ �
(
ã → zi | zi ∈ �v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method mdel

T �[[�mdel]]
def
= T �[[�(C, φ, DEL())]]

def
= T �[[�({c}, φ, DEL())]]

def
= {〈�, ψ〉 DEL−−→ 〈Succ(�mdel), ψ′〉}
where ψ′ =

∧ {
ỹ → z | y ∈ Var[[φ]], ỹ = Map(y), z ∈ Field(c)

} ⋃
ψ′′

and ψ′′ =
{

ψ �
(
ã → zi | zi ∈ �v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method msel

T �[[�msel]]
def
= T �[[�(C, φ, SEL(f( �exp′), r(�h(�x)), φ, g( �exp))]]

def
= {〈�, ψ〉 SEL−−−→ 〈Succ(�msel), ψ′〉}
where ψ′ =

∧ {
ỹ → z̃ | y ∈ (Var[[φ]] ∪ Var[[�e]] ∪ Var[[φ′]] ∪ Var[[�e′]]), z ∈ Var[[�x]],

ỹ = Map(y), z̃ = Map(z)
} ⋃

ψ

6 Information Leakage Analysis

We are now in position to use the abstract semantics defined in the previous
section to identify possible sensitive database information leakage through high-
level HQL variables. After obtaining over-approximation of variable dependences
at each program point, we assign truth values to each variable based on their
sensitivity level, and we check the satisfiability of propositional formulae repre-
senting variable dependences [34].

Since our main objective is to identify the leakage of sensitive database
information possibly due to the interaction of high-level variables, we assume,
according to the policy, that different security classes are assigned to database
attributes. Accordingly, we assign security levels to the variables in Vard based
on the correspondences. Similarly, we assign the security levels of the variables
in Vara based on their use in the program. For instance, the variables which are
used on output channels, are considered as public variables. Observe that for the
variables with unknown security class, it may be computed based on the depen-
dence of it on the other application variables or database attributes of known
security classes.

Let Γ : Var → {L,H,N} be a function that assigns to each of the variables
a security class, either public (L) or private (H) or unknown (N).
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After computing abstract semantics of HQL program P , the security class of
variables with unknown level (N) in P are upgraded to either H or L, according
to the following function:

Upgrade(v) = Z if ∃ (u → v) ∈ T �[[P ]]. Γ (u) = Z ∧ Γ (u) �= N ∧ Γ (v) = N

We say that program P respects the confidentiality property of database
information, if and only if there is no information flow from private to public
attributes. To verify this property, a corresponding truth assignment function Γ
is used:

Γ (x) =
{

T if Γ (x) = H
F if Γ (x) = L

If Γ does not satisfy any propositional formula in ψ of an abstract state, the
analysis will report a possible information leakage.

Let us illustrate this on the running example program P in Fig. 1. According
to the policy, let the database attribute corresponding to variable h1 is private,
whereas the attributes corresponding to id1, id2 and l2 are public. Therefore,

Γ (h1) = H and Γ (id1) = Γ (id2) = Γ (l2) = L

For other variables in the program, the security levels are unknown. That is,

Γ (R1.[0]) = Γ (R1.[1]) = Γ (obj[0]) = Γ (obj[1]) = Γ (pk) = Γ (h2) = N

Considering the domain of positive propositional formulae, the abstract
semantics yields the following formulae at program point 20 in P :

id1 → R1.[0]; h1 → R1.[1]; R1.[0] → obj[0]; R1.[1] → obj[1];
obj[0] → pk; obj[1] → h2; pk → l2; id2 → l2; h2 → l2;

According to the Upgrade() function, the security levels of the variables with
unknown security level N are upgraded as below:

Γ (R1.[0]) = L, Γ (R1.[1]) = H, Γ (obj[0]) = L, Γ (obj[1]) = H
Γ (pk) = L, Γ (h2) = H

Finally, we apply the truth assignment function Γ which does not satisfy the
formula h2 → l2, as Γ (h2) = T and Γ (l2) = F and T → F is false.

Therefore, the analysis reports that the example program P is vulnerable to
leakage of confidential database data.

7 Conclusions

We proposed a static analysis framework to perform information flow analysis
of HQL based on the Abstract Interpretation framework. Our approach cap-
tures information leakage on “permanent” data stored in a database when a
HQL program manipulates them. This may also lead to a refinement of the
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non-interference definition that focusses on confidentiality of the data instead of
variables. We are now investigating a possible enhancement of the analysis inte-
grating with other abstract domains. As various aggregate operations are often
performed on persistent data in HQL, to consider declassification policies [30] is
also our future aim. We are currently working on designing and implementing a
prototype based on our proposed approach.
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