
Chapter 2
Research on Gearbox Fault
Diagnosis of Urban Rail Vehicle
Based on SIMPACK

Xiukun Wei, Dong Yan and Jun Chen

Abstract Gearbox, an important component of urban rail vehicles working in the
most severe conditions, plays a crucial role in the urban rail vehicle fault diagnosis.
It is necessary to detect the fault of gearbox at an early stage to prevent human
casualties and reduce maintenance costs. Most of the data-driven fault diagnosis
methods are based on an experimental platform, which has many disadvantages
such as costly maintenance, limited application, and limited degree of fault simu-
lation. In this paper, a new method based on SIMPACK is proposed and confirmed
efficient by testing, which can overcome the disadvantages of the experimental
platform. Meanwhile, MATLAB was applied to time–frequency domain analysis
and wavelet packet analysis. These analysis results demonstrated the feasibility and
reliability of this method.

Keywords Gearbox � SIMPACK � Fault diagnosis � Time–frequency domain
analysis � Wavelet packet analysis

2.1 Introduction

Gearbox is a dispensable component of urban rail vehicle, and it is the place where
fault occurs easily. According to statistics, 60 % of the gearbox fault occurred on
gear, 19 % occurred on shaft [1], and all of the faults interact with each other.
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The faults must be detected at an early stage to reduce maintenance costs, improve
productivity, increase machine availability, and prevent human casualties [2].

With the rapid progress of modern testing and signal processing technology,
researchers pay more and more attention to vibration analysis. Successful examples
of fault diagnosis can be found in [3]. The literature [4] has detailed works on the
implementation process of wavelet analysis and application in fault diagnosis.
Time–frequency approach recognition of faults in gear tooth is presented in the
literature [5]. A PCA improved algorithm of BP neural network is introduced in
paper [6]. The data-driven methods that describe the above are based on an
experimental platform, which has many disadvantages. In this paper, a new method
based on SIMPACK is proposed for overcoming the disadvantages and achieving a
fundamental change in the condition-based monitoring and fault diagnosis of
gearbox.

The rest of this paper is organized as follows. In Sect. 2.2, gearbox modeling is
introduced. Section 2.3 describes three kinds of gearbox faults which is analyzed by
time–frequency domain. In Sect. 2.4, taking shaft-misalignment is analyzed by
wavelet. The conclusions are drawn in Sect. 2.5.

2.2 Modeling of Gearbox

Parameters from ZMA080 of metro vehicle were chosen for the model. The
density of gearbox case is 7.3 g/cm2, involute helical gears is adopted by the
driver gear and passive gear [7]. Simulation time is 20 s and sampling frequency
is 24 kHz. Two sensors were installed at holding point of gearbox and the data in
the first 5 s were removed during analysis. Parameters of gear and motor are
shown in Tables 2.1 and 2.2, respectively. The basic parameters of gearbox are
presented in Table 2.3. Detailed parameters setting is shown in Fig. 2.1, which is
a topology graphics of gearbox. The 3-D dynamic model based on SIMPACK is
shown in Fig. 2.2.

Table 2.1 Parameters of gear

Name Normal
modulus

Gear number
(driver)

Gear number
(passive)

Tooth profile
angle

Helix
angle

Value 5 19 120 20° 12.2°

Table 2.2 Basic technical parameters of the motor

Name Rated
power

Rated speed Max speed Starting
torque

Rated
torque

Max traction
torque

Value 190 kW 1800 r min−1 3481 r min−1 1625 N m 1008 N m 1626 N m
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Table 2.3 Basic parameters of gearbox

Case body Input
shaft

Output shaft Driver gear Passive
gear

Size/mm 656 * 1005 * 286 L: 400 L: 400 Addendum
D: 107

Addendum
D: 624

R: 60 R: 60 Root circle
D: 85

Root circle
D: 601

Mass/kg 127.6 31.5 7.3 1 1

Rotational
inertia/kg m2

Ix 5.45 Ix 0.054 0.0029 Ix 1 Ix 1

Iy 11.61 Iy 0.448 0.0993 Iy 1 Iy 1

Iz 15,032 Iz 0.448 0.0993 Iz 1 Iz 1

FE43 6

FE43
FE5

Isys

FE225

6

6

Fig. 2.1 Topology of
gearbox model

Fig. 2.2 3-D dynamic model
of gearbox
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2.3 Fault Diagnosis of Gearbox

2.3.1 Symmetrical Tooth Wear Analysis

The comparison of time domain waveform of acceleration signal between nor-
mal and symmetrical tooth wear can be found in Fig. 2.3, where the amplitude
of acceleration is aggravated when symmetrical tooth wear occurs. The char-
acteristic, which is presented in Fig. 2.4, shows that peaking and kurtosis change
greatly. Amplitude spectrum of axial force has shown that meshing frequency
and double meshing frequency increased when symmetrical tooth wear occurred
in Fig. 2.5.

According to the results, the conclusions of symmetrical tooth wear are [8]:

• Energy of vibration increases when tooth wear occurs (including effective value
and other indexes).

• Amplitude of meshing frequency and doubling frequency aggravates.
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2.3.2 Shaft Misalignment Analysis

In Fig. 2.6, time domain waveform comparison of axial force shows that the range
of axial force changes greatly and impulsive periodic signal occurs, which is the
most significant difference. The gears cannot mesh with others when the shaft
misalignment occurs as shown in Fig. 2.7; it also explains the phenomenon of
impacted periodicity signal. The change in peak value is much higher than the other
characteristics in Fig. 2.8.

Amplitude spectrum is shown in Fig. 2.9, the axial force of normal model
concentrates on meshing frequency and double meshing frequency entirely, and
axial force of shaft-misalignment model concentrates on rotation frequency and also
its double frequency. The amplitude of failure model is higher than normal in
Fig. 2.10. In addition, the carry wave frequency of the sideband, which is generated
by failure model, is meshing frequency and its harmonics, and the model created
fault shaft rotation frequency and double rotation frequency for interval of sideband
clearly.
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According to the results, the conclusions of shaft misalignment are [8]:

• Generating sideband, which is centered by meshing frequency and double
meshing frequency and its intervals are rotation frequency and double rotation
frequency.

• Amplitude of frequency and double meshing frequency is higher than the
normal.

• Energy of vibration increases when shaft misalignment occurs (including
effective value and other characteristic values).
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2.3.3 Mild Bending of Shaft Analysis

What meshing stiffness comparison Fig. 2.11 shows is a periodic change when mild
bending of shaft occurs. Characteristic values are shown in Fig. 2.12, the peak value
and kurtosis increase greatly in all the characteristic values.

For further analysis, increasing amplitude that corresponds to rotation frequency
of fault shaft is shown in Fig. 2.13, and the carry wave frequency of the sidebands,
which is generated by failure model, is meshing frequency and its harmonics.
Rotation frequency of input shaft is 30 Hz, transmission ratio is 6.32, rotation
frequency of output shaft is 4.7 Hz, and double frequency is 9 Hz when input shaft
is failure. Amplitude spectrum comparison chart of axial force is presented in
Fig. 2.14, where meshing frequency and double meshing frequency are clear.
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According to the results, the conclusions of mild bending of shaft are [8]:

• Amplitude of meshing frequency and double frequency increases significantly.
• Gearbox system generates sidebands around the meshing frequency, and the

meshing frequency and its harmonics are frequencies of carry wave when mild
bending occurs.
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• Energy of vibration increases when mild bending of shaft occurs (including
effective value and other characteristic values).

2.4 Wavelet Analysis

A partially magnified point S30 is shown in Fig. 2.15 (1), and the wavelet packet
decomposition of vibrating signal is shown in Fig. 2.16 (2). Vibration intensity of
each fault model layer is higher than normal layer, especially point S30. The
phenomenon is caused by low frequency of 30 Hz of fault shaft rotation frequency.
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Fig. 2.15 Wavelet packet decomposition of vibrating sign (1)

0 2000 4000 6000 8000
-0.2

0
0.2

S
30

0 2000 4000 6000 8000
-0.5

0
0.5

S
31

0 2000 4000 6000 8000
-0.2

0
0.2

S
32

0 2000 4000 6000 8000
-0.5

0

0.5

S
33

0 2000 4000 6000 8000
-0.5

0
0.5

S
34

0 2000 4000 6000 8000
-0.5

0
0.5

S
35

0 2000 4000 6000 8000
-0.5

0
0.5

S
36

0 2000 4000 6000 8000
-0.5

0
0.5

S
37

Normal, horizontal z

0 2000 4000 6000 8000
-50

0
50

S
30

0 2000 4000 6000 8000
-50

0
50

S
31

0 2000 4000 6000 8000
-50

0
50

S
32

0 2000 4000 6000 8000
-50

0
50

S
33

0 2000 4000 6000 8000
-50

0
50

S
34

0 2000 4000 6000 8000
-50

0
50

S
35

0 2000 4000 6000 8000
-50

0
50

S
36

0 2000 4000 6000 8000
-50

0
50

S
37

 Shaft-Misalignment z

Fig. 2.16 Wavelet packet decomposition of vibrating sign (2)
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From power calculation and analysis of signal of each layer, it is shown that the
power of shaft-misalignment signal is far higher than the power of normal signal.
The phenomenon is caused by increased vibration of the gear system when failure
happens, and the results are shown in Fig. 2.17.

The energy distribution histograms of signal of each layer are shown in
Figs. 2.18 and 2.19. It can be seen that the energy of normal model mainly con-
centrates on meshing frequency and double meshing frequency; in other words,
higher frequency energy accounts for a larger proportion in the total energy. Energy
of rotation frequency of shaft misalignment increases greatly, its rotation frequency
is 30 Hz, which belongs to low frequency band 0–300 Hz, and the low frequency
band energy accounts for nearly 60 % of the total energy.
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Fig. 2.17 Power spectrum of each layer signal of vibrating signal
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2.5 Conclusions

In this paper, simulation based on SIMPACK is introduced, and the applicability of
the method is verified by calculations and analyses. The conclusions in this paper
are similar to gearbox analysis book [8]. Further extension of this work is under
way to concentrate on more kinds of gearbox faults, such as pitting, broken, and
invalidation. Additional suggested lines of work can be done on gearbox fault
feature extraction techniques and methods. In this way, the method of fault diag-
nosis provided by SIMPACK will be more accurate and flexible.
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