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Abstract. In document search, documents are typically seen as a flat
list of keywords. To deal with the syntactic interoperability, i.e., the
use of different keywords to refer to the same real world entity, entity
linkage has been used to replace keywords in the text with a unique
identifier of the entity to which they are referring. Yet, the flat list of
entities fails to capture the actual relationships that exist among the
entities, information that is significant for a more effective document
search. In this work we propose to go one step further from entity linkage
in text, and model the documents as a set of structures that describe
relationships among the entities mentioned in the text. We show that
this kind of representation is significantly improving the effectiveness of
document search. We describe the details of the implementation of the
above idea and we present an extensive set of experimental results that
prove our point.

1 Introduction

Most search engines for documents and news on the web are powered by a
keyword-based indexing system. These indexing systems model the documents
as a vector, i.e., a flat list of keywords. Keyword-based search is then achieved by
looking at the relative frequencies of the various keywords in the documents and
comparing them with the keywords in the user query, which is also modelled as
a vector. Unfortunately, this approach is prone to the ambiguities met in natural
languages, for instance, the use of different terms to describe the same real world
entity. This is not simply due to the use of synonym terms, but extends to even
keywords that are highly different. For instance, the term “Obama” and “US
president” most likely refer to the same person, despite the fact that the two
terms have no semantic similarity as words. Furthermore, it is also common the
case in which the same keyword is used in different situations to describe highly
different things. To cope with this problem, many systems employ entity linkage,
i.e., the identification of the entity to which one or more consecutive keywords
are referring and the replacement of these keywords with a unique reference to
the entity. After this task a document can be seen as a vector of entities or a
mixture of entities and keywords.
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Although the use of entities is significantly improving the accuracy of the
search [21], there is still a major limitation: the loss of the relationships among
the entities. Each entity in the vector representation of the document is seen
independently of the others and its relationship is the same with any other entity
in the vector. We advocate that by not seeing documents as a flat list of entities
(and other keywords) but as a more structured whole, can lead to significantly
better search results, and there is a need for a model that can represent and take
this information into consideration.

In this work we provide a solution with a model that sees the document as a
set of simple structures with no more than two entities each. Of course one can
construct a complex structure like a graph or a tree [17] but then the complexity
of the matching task is getting significantly higher. It is our belief that small
structures specifying the relationships between entities found in a close proximity
in the document alongside the kind of relationship that they have between them,
provide the required additional information to achieve a satisfactory document
search. Thus, the contributions of our work are as follows:

1. We introduce a model that instead of a vector of terms it uses a set of triples
for representing documents and facilitating document search.

2. We illustrate how raw documents and user queries can be converted and
modeled into that model.

3. We present an indexing mechanism that can effectively and efficiently index
the structures we propose and as a consequence the documents themselves.

4. We propose a similarity metric that is used to identify the documents that
are related to a given keyword query, and

5. We present a number of experimental results that demonstrate the efficiency
and effectiveness of our proposed solution.

The remainder of this paper is structured as follows. Section 2 presents a
motivating example that aims at helping the reader understand the importance
of our approach and how it overcomes some of the limitations of the keyword
search in documents. In Sect. 3 we define formally the problem we aim to address,
while in Sect. 4 we explain in full details our solution. This includes our repre-
sentation model, the indexing mechanism, the similarity formula, and the query
answering algorithm. Section 5 describes the technical details of a prototype we
have developed. Section 7 presents the related work and explains how we differ
with what already exists. Finally, Sect. 6 contains the results of our experiments.

2 Motivating Example

Consider a user who is looking for a document talking about the position
of the U.N. chief with respect to the situation in Syria and specifically its
president Assad.

The document illustrated in Fig. 1 is an article that clearly talks about the
topic that the user is looking for since the two main personalities, Ban Ki Moon
who is the U.N. chief and Assad, the Syrian president, appear in the document.
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Fig. 1. An example document

Thus, the document would be expected to be among the results of the user query
asking for the documents related to these two persons.

The challenging question to be answered, is how related the document is
to the topic. Clearly the more a document mentions the topics of interest, in
our case the two personalities, the more related it is. However, as it can be
seen the two personalities are mentioned with different names, or with different
expressions. For instance, Ban Ki Moon is mentioned some times with his name
and some times as “U.N. Chief” or as “U.N. Secretary General”. If the search
is based only on the exact keywords that the user has used in the query, the
relativeness of the document will depend on the frequency in the document of
the keyword that was chosen to refer to a specific entity. To avoid these there is
a need to identify and treat equally all the different expressions that refer to the
same entity.

Furthermore, a different factor that significantly affects the relativeness of
the document to the topic for which the user is looking, is the relationship
between the two items of interest. In the example document, one can see how
Ban Ki Moon and Assad appear often in the same sentence, this is a clear indi-
cation that in this article these two person are in a strong relationship. The
last sentence, instead, references Japan, because the U.N. chief was there at the
moment of his interview. Clearly, the relationship between Assad and Ban Ki
Moon is much stronger than between Assad and Japan, even if they appear in the
same document. Using a vector that treats all the keywords equally, assuming
the same frequency, the strength between the two personalities of interest will be
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considered the same as the strength between the U.N. chief and the Japan. Thus,
instead of only recognising entities in the document, it is important to under-
stand the relationships that exist between them as mentioned in the document,
and realise the strength of these relationships.

3 Problem Statement

Real world documents are sequences of keywords (or words for simplicity). To
model a real world document we assume axiomatically the existence of a count-
able infinite set of keywords W. Punctuation marks are also considered keywords.

Definition 1. A raw document D is a finite sequence of keywords, i.e., D = 〈k1,
k2, . . . , kn〉, where ki ∈ W, for i = 1..n, and n ∈ N

∗.

From the semantic point of view, real world documents contain statements
about real world entities. Statements describe characteristic attributes that enti-
ties have, actions the entities perform on other entities, or states in which they
are. The actions or the states are typically expressed by verbs. To model these
verbs, we consider a countable infinite set V of verb identifiers.

Entities, on the other hand, are referenced by noun phrases.1 Since different
noun phrases may refer to the same real world entity, it is often preferred to use
a unique identifier for referencing the entity. Note that not all the noun phrases
can be replaced by an entity identifier. For instance, for an expression “a red
plane”, or “an article” it is clear they talk about an entity but it is not clear
what is the exact entity to which they are referring. To model this, we assume the
existence of two countable infinite sets of identifiers, one O of entities, and one
N for noun phrases. The set O contains one unique identifier for every real world
entity. As a set N we consider the set of all the possible sequences of alphabet
letters, digits and symbols. In this way, there is an easy way to find the identifier
of a noun phrase. It only needs to create a string from the concatenation of the
words in the noun phrase and use this concatenation as the noun identifier for
the noun phrase.

We also consider the existence of a special identifier “null” that is the only
identifier that at the same time is both an entity, a verb and a noun identifier,
i.e., null ∈ O, null ∈ V, null ∈ N and O ∩ V ∩ N = {null}. The null identifier
functions differently than the way nulls function in databases. In particular any
equality comparison of a null with another identifier or another null is always
true. In other words, the null identifier functions like a wildcard.

Definition 2. A statement is a triple 〈s, p, o〉, where s, o ∈ O ∪ N and p ∈ V.
We will use the symbol S to refer to the set of all possible statements.

Recent studies [8] on Wikipedia documents have indicated that consider-
ing only the entities mentioned in a document and the relationships between
them preserves enough information to communicate with adequate accuracy the
1 The meaning of a “noun phrase” is the one used in linguistics.
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general semantic message of a document. Based on this, we also believe that
entities (expressed through entity identifiers or noun phrase identifiers) and the
relationships between them or their states (expressed through verb identifiers),
provide adequate information to communicate the semantics of the content of
a real world document to be successfully identified as related to the queries
that ask for its information. For this reason, we define documents to be sets of
statements.2

Definition 3. A document is a finite set of statements, i.e., D ⊂ S and is
finite.

We will use the symbol D to refer to the set of all possible documents.
Similar to real world documents, a user query is a finite list of keywords, only

that its length, i.e., the number of keywords of which it consists, is significantly
smaller than those of the documents. Thus, we can also consider the user queries
as raw documents, and define the concept of a query as a document.

For simplicity, in what follows, and when there is no risk of confusion, we
will drop the term “identifier” when talking about a verb, an entity, or a noun,
respectively.

The problem we would like to solve is as follows. Given a collection of doc-
uments CD and a user query q, provide an ordered list of documents in the
collection, in a way that the first document is the one that is believed to be the
most related to the query q, the second is the second most related, etc.

4 Solution

4.1 Processing the Documents

To convert the raw documents, i.e., the flat list of keywords of which the real
world documents consist, into documents, i.e., set of statements, the very first
step is to identify the keywords that refer to entities and replace them with the
respective entity identifiers. This is achieved through a Named Entity Recogni-
tion process. Name Entity recognition is an extensively studied task and orthog-
onal to the scope of this work. Having identified the entities, the next step is to
also identify the verbs. This is also orthogonal to our scope but can be achieved
through syntactic and grammatic analysis, or a more complez Natural Language
Processing in general, of the raw document text. After the verbs have been iden-
tified, they are replaced by the respective verb identifier for that verb. As verb
identifier of a verb we consider its infinitive form. A syntactic and grammatic
analysis is providing not only the verbs but also the noun phrases which are also
replaced by their respective identifier. As a noun identifier for a noun phrase,
it is considered the concatenation of the words that form the noun phrase, as
already mentioned in the previous section. In this way the identification gener-
ation guarantees that two different noun phrases consisting of the same words
2 Note that a “raw document” is what we defined as the document that the user

provided, while a “document” is a set of statements containing identifiers and verbs.



26 E. Sartori et al.

Algorithm 1. Document Generation from Raw Text
Input: Raw Document Dr: 〈k1, k2, .., kn〉
Output: Documemt D: Set of 〈s, v, o〉
DocImport(Dr)
(1) (Set of Statements) D ← ∅
(2) // Recognize entities and replace the keywords with the entity identifier
(3) (Keyword Sequence) De ← NamedEntityRecognition(Dr)
(4) // Syntactic/Grammatical Analysis of the text and annotation of the various

components.
(5) (Keyword Sequence) Dl ← NaturalLanguageAnalysis(De)
(6) (Set of Keyword Sequences) F ← SegmentIntoSentences(Dl)
(7) foreach Ds∈F
(8) for k=1 to |Ds|
(9) v ← Ds[k]
(10) if (v �∈ V) continue
(11) // Find the first verb on the left and the right of the verb v
(12) lb ← 0
(13) for i=1 to k-1
(14) if (v ∈ V) lb←i
(15) la ← |Ds| + 1
(16) for i=|Ds| to k+1
(17) if (v ∈ V) la←i
(18) // Combine every id the left with every id from the right to form a

statement
(19) for i=lb+1 to k-1
(20) for j=k+1 to la-1
(21) D ← D ∪ { 〈Ds[i], v,Ds[j]〉 }
(22) // Special Cases
(23) if |Ds|=1
(24) D ← D ∪ { 〈null, v, null〉 }
(25) continue
(26) if (k=1 ∧ la−k>1)
(27) for j=k+1 to la-1
(28) D ← D ∪ { 〈null, v,Ds[j]〉 }
(29) if (k=|Ds| ∧ k−lb>1)
(30) for j=lb+1 to k-1
(31) D ← D ∪ { 〈Ds[j], v, null〉 }
(32) return (D)

but in different order, will be assigned a different noun identifiers. Any other
keyword in the raw text that has not been identified as a verb, a noun or an
entity, and is not a punctuation mark is eliminated.

The raw document has now been converted into a sequence of entity, verb,
noun identifiers and punctuation marks. To convert the sequence into a set of
statements, it is first segmented into sentences using the punctuation marks,
which are then also eliminated. Every segment generated from the segmentation
is a sequence of entity, verb and noun identifiers.
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Since the verbs are the components that typically specify an action or a
state, the verb identifiers are those that drive the statement generation process.
In particular, for every verb identifier p in a segment we look at the entity or
noun identifiers that appear on its left, i.e., before the verb identifier p in the
sequence, and those on its right, i.e., those appearing in the sequence after the
verb identifier. For each identifier s among those before, and every identifier o
among those after, the statement 〈s, v, o〉 is created.

Since every segment corresponds to a sentence in the raw text, only one
verb identifier will be typically present in every segment. However, since there
are sentences in natural language with more than one verb, there are also seg-
ments with more than one verb identifiers. To cope with this case, when con-
sidering the noun and entity identifiers before the verb identifier p, we consider
only those for which there is no other verb identifier between them and the p.
Respectively, when considering the noun and entity identifiers after the verb
identifier p, we consider only those for which there is no other verb identifier
between them and the verb identifier p. As an example, consider the segment
〈n1, n2, e2, v4, e5, n6, v7, e8, v9, n10, n11, v12〉, where the v, e and n are meant to be
verb, entity and noun identifiers, respectivelly. The statements that will be cre-
ated containing the verb identifier v7 with be the 〈e5, v7, e8〉 and the 〈n6, v7, e8〉,
but not the 〈e2, v7, e8〉 because between the e2 and the v7 there is the v6.

Of course there are special cases in which a statement as described above
may not be created because the verb identifier is at the end or the beginning of
the sequence or because there are two consequtive verbs. An example of such a
situation is the v12 in the sequence above. For these cases, we use the special
null identifier in the place of those missing. In the particular example of v12, the
statements that will be created are the 〈n10, v12, null〉 and the 〈n11, v12, null〉.

At the end of this step, the raw documents have become documents, i.e.,
the sequences of keywords have become sets of statements. The above steps of
processing a raw document are illustrated in Algorithm1.

4.2 Processing the User Query

Similar to the raw documents, the user queries have also to be brought into the
document form. Recall that the user queries are flat lists of keywords, i.e., they
are like raw documents. This means that a procedure similar to the one followed
for the raw documents can also be followed here.

The first step that is performed is the identification of the verbs. Keyword
queries typically have no verbs, but even if they have they are in some simple
form. Thus, a simple lookup to a list of verbs is enough to identify if one or
more keywords correspond to verbs, and replace them by the respective verb
identifier.

The next step is the identification in the query of those keywords (or consec-
utive keywords) that refer to some real world entity and replace them with the
respective entity identifier, if possible. This can be performed through a Named
Entity Recognition task.
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Algorithm 2. User Query to Set of Statements
Input: User Query Qu: 〈k1, k2, .., kn〉
Output: Query Q: Set of 〈s, v, o〉
QueryPrep(Qu)
(1) (Query) Q ← ∅
(2) (Sequence of keywords and identifiers) De ← NamedEntityRecognition(Qu)
(3) for i=1 to |De|
(4) if (De[i]∈O) continue
(5) if (lookupIfV erb(De[i]) �= ∅)
(6) De[i] ← generateVerbIdentifier(De[i])
(7) continue;
(8) if (lookupIfNoun(De[i]) �= ∅)
(9) De[i] ← generateNounIdentifier(De[i])
(10) // Replace each consequtive noun identifier set, with its powerset sequence
(11) (Sequence of Identifiers) T ← ∅
(12) (Sequence of Identifiers) I ← ∅
(13) for i=1 to |De|
(14) if (De[i]∈O∪V)
(15) if (T �= ∅)
(16) (Set of Identifier Sequences) P ← Powerset(T )
(17) T ← ∅
(18) I ← I + P
(19) I ← I + De[i]
(20) else
(21) T ← T + De[i]
(22) for k=1 to |I|
(23) v ← I[k]
(24) if (v �∈ V) continue
(25) lb ← 0
(26) for i=1 to k-1
(27) if (v ∈ V) lb←i
(28) la ← |I| + 1
(29) for i=|I| to k+1
(30) if (v ∈ V) la←i
(31) for i=lb+1 to k-1
(32) for j=k+1 to la-1
(33) Q ← Q ∪ { 〈Ds[i], Ds[v], Ds[j]〉 }
(34) if |I|=1
(35) for j=lb+1 to k-1
(36) Q ← Q ∪ { 〈null, v, null〉 }
(37) continue
(38) if (k=1 ∧ la−k>1)
(39) for j=k+1 to la-1
(40) Q ← Q ∪ { 〈null, v,Ds[j]〉 }
(41) if k=|I| ∧ k−lb>1
(42) for j=lb+1 to k-1
(43) Q ← Q ∪ { 〈Ds[j], v, null〉 }
(44) return (Q)
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Next, we identify the noun phrases. Natural language analysis will not per-
form well in general here because of the brevity of the keyword queries and the
lack of a complete syntax and grammar conformity. However, the only thing
needed is to identify the noun words, which can be done without the full power
of natural language processing. We can, for instance, simply do a lookup in a
dictionary to identify if a word is a noun or not, or run the grammatical part
only of a natural language processing. Apart from the verbs and the entity iden-
tifier that we already have, every non-noun word identified is ignored. Each noun
words is then considered a noun phrase, and is replaced with its respective noun
identifier.

Having converted the keyword query into a sequence of identifiers (verb,
entity or noun), it is now possible to create a representation of it as a set of
statements. The algorithm used for this purpose is the one used in documents
as presented in the previous section. However, there is a small issue to be taken
care, which introduces a small variation to the algorithm. Since it was not pos-
sible to run a full natural language analysis on the keyword query but we only
characterized the keywords independently as nouns or not, there is the risk that
two or more concequtive keywords that have been characterized as nouns, should
have been considered not separately, but should form together a noun phrase.
For instance, if the keyword query had the words “company restaurant”, the
partial natural language analysis that we can run would have only identify them
as nouns. Then, according to the algorithm, each one should form a noun phrase,
and be replaced by the respective noun identifier. However, it may be better the
two nouns to be considered together as a single noun phrase. Unfortunately,
we do not have enough information to decide which of the alternatives is the
right one, so we consider them all during the statement generation phase. In
the particular example, we would have considered three noun identifiers instead
of two: the one for the “company”, the one for “restaurant” and an additional
one for the “company restaurant”. Basically, if there are n concequtive keywords
characterized as nouns, we consider all the n∗(n+1)

2 ordered subsequences, and
for each one we generate a noun identifier. Recall that the noun identifier for a
sequence of work is the one generated by the concatenation of the words in the
sequence. Each of the different noun identifiers we generate in this step is then
used in the statement generation algorithm as if the respective noun phrase was
present.

As an example, consider the user query:

q = 〈w1, w2, w3, w4, w5, w6〉 (1)

which after the assignment of the identifiers becomes the sequence:

〈n1, n2, v3, n4, v5, n6〉 (2)

During the generation of the statements that involve the verb identifier v3, the
statements that will be generated will be the 〈n1, v3, n4〉, the 〈n2, v3, n4〉, and
the 〈n1−2, v3, v4〉, where the noun identifier n1−2 is the one corresponding to the
noun phrase consisting of both keywords w1 and w2.
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Algorithm 3. Query Answering
Input: User Query Qu: 〈k1, k2, .., kn〉, Document Collection CD

Output: Ordered List of Documents Ans
Evaluate(Qu)
(1) (Sequence of 〈Document, score〉) Ans ← ∅
(2) (Set of Documents) L ← ∅
(3) (Query) Q = QueryPrep(Qu)
(4) foreach D∈CD

(5) int score = ComputeScore(D,Q)
(6) Ans = Ans + 〈D, score〉
(7) Ans ← OrderByScore(Ans)
(8) return (Ans)

A special case that is important to mention here is the case in which the
user query contains no verb, i.e., the phase that turns it into a sequence of
identifiers produces a sequence of only entity and noun identifiers. In such a
case we generate statements that have the special verb identifier “null”. Since,
in the absence of the verb, we are not sure what is the relationship between the
entity and noun identifiers in the sequence, we generate one statement for every
possible position among the keywords in the user query that a verb could have
been present. For instance, if the user query was the

q = 〈w1, w2, w3〉 (3)

that after the identification assignment had become the sequence

q = 〈e1, n2, e3〉 (4)

the statements that would have been created are: 〈null, null, e1〉, the
〈null, null, n2〉, the 〈null, null, e3〉, the 〈e1, null, n2〉, the 〈e1, null, e3〉, the
〈n2, null, e3〉, the 〈e1, null, null〉, the 〈n2, null, null〉, and the 〈e3, null, null〉.

The steps described above are also explained in pseudocode in Algorithm2.

4.3 Document and Query Matching

The main step of our work is to match the query to the documents and measure
how related each document is to the query. Having both the documents and
the query modeled as a set of statements, any kind of similarity across sets can
be used. This would work well if every statement is treated as a monolithic
and undivided object. However, this is not the case, or at least not the desired
behavior for our approach. Imagine a user query that asks about Obama’s visit
to Middle East. Clearly a raw document that talks about such a visit is highly
related. Although, a raw document that talks about Obama’s visit to Russia,
may not be what the user is looking for, it is not completely unrelated, since
it is about Obama and also about a visit of him somewhere. Similarly, a raw
document talking about some action Obama took in his government, is clearly
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less related, yet not completely irrelevant. The above mean that in addition to
the set similarity metric that we need to employ, we have to also consider the
partial matching statements. For this, given a document d and a statement t of
the query q, we consider three sets of statements: The first set A consists of all
those statements in the document that fully match some statement in the query
q, i.e., the exact same statement appears in the query. The set B consists of all
the statements in the document for which there is a statement in the query that
matches two of their three components, i.e., either the subject and object, of the
verb and one of the subject or object. The third set C consists of the document
statements for which there is a statement in the query with which they match
only one component, the subject, the verb, or the object.

Given these three sets, we compute the following three values:

s1 =
|A|
|S| ; s2 =

|B|
|S| − |A| ; s3 =

|C|
|S| − (|A| + |B|) (5)

where the set S is the set of all the statements in the document and the lines
around the set name indicate the cardinality of it, i.e., the number of state-
ments it contains. The first number indicates the percentage of the document
statements that fully match. The second number indicates the percentage of the
partially matching statements with two components among those that are not
matching fully. The third and last number indicate the percentage of the match-
ing document statements of the document on one component with respect to
the statements that are neither fully matched, nor partially matched with two
elements.

With these three numbers we can compute a score of the matching of the
statement t to the document d. The idea is that the percentage of the matching
statements should count the most, those that are matching with only two com-
ponents, less and those matching with only one component the least. Based on
that principle, and a factor s which is between 0,5 and 1, we define the score of
the document d to the statement t as:

s(t, d) = s1 + (1 − s1) × [s2 + (1 − s2) × s3] (6)

Many other formulas can be used for the computation of the s(t, d), however,
the above is the traditional weighted sum of two factors (with weights to give a
sum to 1), but extended to capture three factors accordingly.

The final relatedness score of the document d to the quert q is the average of
the matching scores of the query individual statements for that document, i.e.,

score(d, q) =
Σt∈qs(t, d)

|q| (7)

where |q| denotes the number of statements in the query q.
The query evaluation steps all algorithmically explained in pseudocode in

Algorithm 3.
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Fig. 2. The architecture of the query evalaluation system

5 Implementation

We have materialized the previously described framework into a system, the
architecture of which is illustrated in Fig. 2. The figure illustrates clearly the dif-
ferent components and the group they belong depending on their role. In short,
there is the part called Loader that is responsible for storing the documents
into the document repository after turning each one of them from a sequence
of keywords that is initially, into a set of statements. The figure illustrates the
various components that are involved, which also reveals the flow of the process.
The Loader is used offline, when new documents are to be added into the sys-
tem, and in short, implements the task described in Algorithm 1. Another part
of the system is the repository, illustrated as a disk, which is designed to store
the documents in the form of sets of statements. A thirt part of the system is
the Query Engine, which is the component working at run-time. Upon receiving
a user query, it converts it into a set of statements by actually implementing
Algorithm 2. Once the query has been converted to a set of statements, the
Query Engine invokes the Matcher subcomponent that will compare this set
to the set of statements of the documents in the repository and compute the
matching scores for the stored documents, rank them, and return the ranked list
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of the matched documents to the user as an answer. These are the steps that
Algorithm 3 describes. As with the case of the Loader, the flow illustrated in the
architecture diagram for the Execution Engine reveals also the process flow.

In what follows we will provide a description of how each of these components
of the system has been implemented and we will explain our design choices.

5.1 Named Entity Recognition

For the named entity recognition task we have opted for an external service
instead of building a native solution. In particular, we are using the Open-
Calais [27] which is freely available on the Internet. It is a mature, reliable and
successful solution that can support our needs, without requiring an advanced
pre-training that most of the other existing solutions require. Furthermore, the
system is continuously updated and is guaranteed to perform in always new
environments and communities.

A disadvantage of this solution is the latencies introduced by querying an
external service over the network. To limit this disadvantage we adopted a
“hybrid” implementation, i.e. to store in our database the phrases used to
describe the entities encountered in the dataset. Intuitively, we have made our
system to work as a cache of the expressions that have been so far met in the
documents and mapped to entities by the OpenCalais. This has significantly
reduced the latencies of this component. Furthermore this caching has a signif-
icant by-product advantage. Once it runs for the document collection, all the
entities appearing in the document will be stored in the cache. When a new
query arrives and the named entity identification runs on it, if for a sequence
of keywords it is found that it is not present in the cache, it means that there
is no document in the collection mentioning that entity, thus the query can be
answered without any further delay.

OpenCalais is accessed through a REST interface using the method:

Enlighten(key, content, configuration)

which, given the HTML representation of a document, it cleans the text from the
tags, and performs the Named Entity Recognition task, returning to the caller
an XML representation of the result. The response from the service contains, for
each entity, a unique Id, which is used by our system as well for the identification
of the entity. Moreover, OpenCalais gives information about the position of the
entity inside the analyzed text, and the sequence of keywords that describe
it. This sequence of keywords is used in the cache entry that was previously
mentioned.

Once the list of entities has been collected, the system marks the text of the
document with the ids of the objects appearing into it. In practice it replaces
the phrase describing the entity with the id, storing the information about the
entity inside the database, to build the previously mentioned cache.
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5.2 Natural Language Analysis

To identify the verbs and the nouns in the document sentences we need to per-
form some natural language text analysis. For this, we employed the NLTK [25],
a well known and extensively used toolkit providing support for many common
task in natural language processing.

As a first step, the document is tokenized by being divided into sentences and
then into words. To perform the sentences isolation we relied on the algorithms
provided by the NLTK toolkit, which allowed us to divide correctly any complex
text. The tokenization algorithm takes a sentence and isolates the words appear-
ing into it, preserving the position of the tokens inside the original sentence.

After this preprocessing step every sentence in the document is represented
like a flat list of tokens, sorted according to their appearance in the sentence.
Over this list is then applied a Part Of Speech tagging algorithm, which can
recognize and annotate the different grammatical meaning of every token in
the sentence. In our test implementation we relied again on the POS tagging
algorithm provided by the NLTK. The main focus in this phase of the document
processing is to tell apart nouns and verbs, in fact we need to recognize verbs,
and link them with the keywords or the entities appearing in the noun part of
the phrase. The output of this algorithm is a list of pairs (token, POS tag), once
again maintaining the original order of the tokens in the analyzed sentence.

The POS tagging result is needed to construct a tree representing the struc-
ture of a sentence. In fact the list of POS tags is parsed and the system builds a
tree of every sentence, matching the grammatical structure of the sentence. This
tree is needed to resolve the link between verbs and nouns, trying to interpret
the structure of the sentence, and connect the correct section of the phrase. For
our purposes the aim is to obtain a tree which can be used to separate section
of the phrase composed by nouns from the verbs and to follow the links between
verbs and the nouns referring to it. To achieve this NLTK offers a parser, which
by using as input a POS tags list can construct a tree of the sentence, querying a
grammar given by the user. So we developed a grammar reflecting the structure
of the information we need to extract from a natural language sentence. After
this step, the sentence is in the form of a tree, representing the grammatical role
of each token (noun, verb) and the relationship between them.

After the nouns and the verbs have been characterized in the text, the
algorithms presented in the previous section for statement generation can be
executed.

5.3 Repository Document Indexing

Since documents are sets of statements and a statement is a triple, we need a way
to efficiently access the triples related to certain queries. To do so there is a need
for an effective index structure. The index should help in the computation of
the cardinality of the sets A, B and C defined before by returning the number of
triples that satisfy some search parameter. In particular, in order to compute the
cardinality of set A, the index should be able to compute the following function
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iA(s, v, o, d) = cnts,v,d,o (8)

where cnts,v,o,d is the number of triples belonging to document d, that have the
value s as subject, o as object and v as verb. For the cardinality of the set B it
needs to be able to compute the function

iB(s, o, d) = cnts,o,d (9)

where cnts,o,d is the same as cnts,v,o,d, but with the v being of any value. Finally,
the number of triples belonging to set C, containing all the triples of the document
that have a particular subject or object, requires the computation of the function:

iC(s, o, d) = cnts,d + cnto,d (10)

where cnts,d and cnto,d count respectively the triples sharing only the subject
with the query and only the object.

The index should be effective in terms of space in order to reside in main mem-
ory and achieve efficient look-ups. It should also support incremental updates
when new documents are encountered by the system, without the need for a
complete refresh of the whole structure through a from-scratch re-computation.

Basically our approach is derived from the Hexastore [28], we extended its
algorithm and adapted it to fit our data and usage context. Hexastore is a system
for the storage and querying of RDF triples. The idea behind it is to provide
an indexing structure for every possible order of the three terms in a triple. It
permits a fast filtering of the triples in a database, due to the ability to group
the data with respect to any field in the triple.

The data structure we defined in order to implement a similar index is basi-
cally composed of a set of nested associative arrays, which can be navigated
recursively using the fields of the triples as keys of the arrays. Figure 3 depicts
how these nested arrays work. In this case, the structure permits to implement
the function in formula 8. In fact, it is possible to follow the links from an array
to the other and reach the counter associated with the last array. This field
counts the number of triples in the document selected which have the subject,
object and verb equal to the one searched. More specifically the first vector is an
associative array whose keys are the set of different subjects encountered among
all the triples. Each entry in this array is connected to a pair which is composed
by a counter and another associative array. This structure is repeated recur-
sively for the object field of the triple, and then for the verb. The cells of the
last associative array are linked only to the respective counter.

Since our structure is fundamentally based on the Hexastore idea, the com-
plexity of the retrieval of the respective tuples is the same to the one of Hexastore.
A detailed study of its performance can be found elsewhere [28].
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Fig. 3. Schematic representation of the index structure

To find the number of triples that match a triple over all their three fields in
a document, we maintain and query a structure of the form:

[s1 . . . sn] → (cs, [o1 . . . om]) →
→ (cs,o, [v1 . . . vl]) →
→ (cs,o,v, [d1 . . . dh]) →
→ cs,o,v,d (11)

The notation above means that we have an array of the different subject values
([s1 . . . sn]). For each entry in that array, i.e., for every subject s, we have a
pointer to an array [o1 . . . om], with each element of which corresponding to an
object value from all those object values met in the triples that have s as a
subject (cs). An element of that array corresponding to an object value o is
a pointer to an array [v1 . . . vl]. Each element of that array corresponds to a
verb v among all those verb values met in the triples that have subject s and
object o. An element of the array [v1 . . . vl] corresponding to the verb v is a
pointer to an array [d1 . . . dh], each element of which corresponds to a document
in the collection, and indicates the number of triples of the form 〈s, v, o〉 that the
respective document contains, i.e., the value of the function cs,o,v,d. The latter is
needed as described in formula (8) which in term is needed for the computation
of the quantity A used in the formula (5).

In a similar fashion, to be able to quickly identify the number of triples in
a document that match a specific subject and object, we maintain and use a
structure of the form:

[s1 . . . sn] → (cs, [o1 . . . om]) →
→ (cs,o, [d1 . . . dh]) →
→ cs,o,d (12)
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which materializes the function cs,o,d, used to compute the function mentioned
in formula (9) which is required for the computation of the quantity B used in
the formula (5).

Finally, for computing the function of the formula (10), we build and imple-
ment two structures, aimed at providing the numbers of triples in each docu-
ment that match either the subject only or the object only. These structures are
described in the formulas (13) and (14). They are used to retrieve the counts of
triples matching at least one between subject and object fields of the given triple.

[s1 . . . sn] → (cs, [d1 . . . dm]) →
→ (cs,d) (13)

[o1 . . . on] → (co, [d1 . . . dm]) →
→ (co,d) (14)

Note that the functions cs,d and co,d, include naturally the results of cs,o,d
which in turn includes the results of cs,o,v,d. The query answering algorithm,
which we will present in the next subsection, will have to encounter for that fact.

The four structures that were just presented form our index structure.
The index is built when the system starts, and is kept in memory through-
out the operation of the system. Incremental updates are easily implemented
due to the nesting of the structures and the use of associative arrays for the
materialization of the respective array structures.

With the use of NLTK, the different keywords in the user query are tagged
with the respective grammatical role, and the information about the position
inside the raw document is maintained. The order of the words inside a query is
important because we assume that, generally, when a user types a query, he or
she tends to put verbs near to the nouns to which they refer.

5.4 Matcher

The matcher is invoked to identify the matching documents. In order to mea-
sure the relatedness of a document with respect to a specific statement in the
user query, we need to identify the statement sets A, B and C introduced
in Sect. 4.3. The set A is built by a lookup in the structure represented in
formula 11. Accessing the different associative arrays with the values of the
triples fields, is possible to retrieve the list of documents containing a triple
exactly like the one given. The second set is instead populated by the result of a
visit in the structure in formula 12. In fact this structure returns the documents
which have subject and object equal to the given triple. The counter associ-
ated with the document retrieved at this step will consider even the statements
belonging to the set A, therefore we need to subtract the previously computed
result to obtain the right cardinality of the set B. We are interested in knowing
the cardinality of these sets, not in retrieving the specific statements, so we do
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not need to effectively isolate the statements of the set B, but just keep track
of the number of statements encountered. The computation of the cardinality of
the set C is more complex and need two lookup in different structures. In fact
here we need to count the statements that match only the subject or the object
of the given statement. For the first subset the answer is provided by the struc-
ture in Eq. 13, while for the latter is used the formula in 14. The combination of
these two subsets produce the set of statement that match the statement with
at least one field among subject and object. In order to restrict the result only
to the statements which match the statement with only one field it is necessary
to subtract the cardinality of the previously computed sets. Now that the car-
dinality of each different class of similarity has been computed, it is possible to
measure of relatedness of a document with respect to the statement given, using
the equation in formula 6. The formula is computed for all the statements in the
query, and then the results are averaged in order to compute the final measure of
similarity between the query and the document. Once the results are computed,
the list of documents is ranked with respect to the similarity score and returned
to the user.

As previously mentioned, in our implementation, the index structures used
to compute the cardinality of the three classes of similarity, return the values
for all the documents containing the statement. In this way there is no need to
compute the similarity for each document one by one, but for each statement
is possible to retrieve the list of the documents related to that information.
This approach has two important advantages: the first is that in this way we
consider, and compute metrics, only for the documents related to the query,
rather than analyzing one by one all the documents, considering even the ones
totally unrelated to the query. The second is that by analyzing every single
document independently, many statements will be compared multiple times,
because they are shared among different documents.

6 Experiments

This section will describe the experimental methodologies and results obtained
by testing our approach in terms of execution times, memory consumption and
result quality. In Sect. 6.1 are presented the results obtained in terms of time
performance in analyzing the data, and storing the information in the database.
The next experiments, illustrated in Sect. 6.2, target the analysis of the time
and memory requirements for the index structure, with respect to the dataset
dimensions. Section 6.3, presents the performance of the query answering algo-
rithm in terms of execution time. This experiment is divided into two parts, the
first measures the response time with respect to the dimension of the query pro-
vided, while the second analyzes the answering time over the dimension of the
dataset. Finally in Subsect. 6.4 we present the outcome of a comparison between
a Lucene [18] search engine implementation (keyword-based) and our solution.

The dataset used to test the system is composed by 4000 documents, retrieved
from newspaper websites. The documents have been collected regularly on a time
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window of some months, using the RSS feed of the newspaper to track the new
documents published. The total size of the dataset is 321 Mb, which means that
the average size of a document is 82.17 Kb, while, once the document is sent to
OpenCalais, analyzed and stored into the database, its size shrinks to 23.56 Kbk
and the whole dataset becomes something around 126 MB. We developed a web
crawler able to read the RSS feeds and retrieve the documents published, keeping
memory of the documents already retrieved (through a signature) in order to
avoid duplicate data in the dataset. The documents were not selected from a
particular domain an in general the OpenCalais was recognizing around 2–3
entities every 4–5 sentences. The nouns of the sentences that were not recognized
as entities, as explained in the previous sections remained as is. The sentences
had an average of 18 words in length. Notice that there is no correct translation
of the documents (or the queries) into triples. As long as the matching task is
sucessfully identifying the related documents.

The system tested in this section is an implementation of the approach writ-
ten in Python 2. The advantages of this choice for the language are represented
by the cross-platform feature of the language and the fast prototype developing
time permitted by the richness of built-in structures featured by the language.
The disadvantages are mainly the high resources consumption in terms of time
and space that a Python implementation brings. The system was run on a com-
puter running Ubuntu 14.04.2, with 8 GB of RAM and a 64bit, 2.40 GHz 1-core
CPU.

6.1 Document Analysis

In this experiment is evaluated the time needed to analyze all the document
in the dataset, and store the resulting data in the database. This corresponds
to the first phase of the system lifecycle, and takes into consideration the time
spent querying the OpenCalais service, and the analysis algorithm execution.

The plot in Fig. 4 shows the time taken by the system to perform the fetching
and analysis of all the documents in the dataset over the dimension of the dataset
itself. The higher of the two lines measure the time needed to fetch and analyze
the documents, while the second is referred only to the analysis time, which
depends entirely on our algorithm. The time needed to receive a response from
OpenCalais, instead, depends on a variety of factors out of our control, mainly
network latencies, document length and load condition on the remote service.

The execution time of our algorithm is itself divided in some subprocesses,
which concur to this phase of the main process. In fact the system needs first
to read the data from the machine filesystem, than it performs a preprocess-
ing step. During this preprocessing step the text of the document is altered in
order to mark the entities occurrences appearing in the article, and the rela-
tive information is prepared to be stored in the database. After this the effective
grammatical analysis of the text is performed, which is the most time consuming
operation in this phase. Once the algorithm terminates, the results are stored in
the database.
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TASK TIME

Query OpenCalais: 3.375 s
Read file: 0.001 s
Query service: 3.359 s
Storage time: 0.014 s

Analysis time: 1.917 s
Read file: 0.015 s
Entities marking: 0.004 s
Sentences analysis: 1.797 s
DB storage: 0.775 s

Fig. 5. Average Time of the individual tasks of processing a Document.

This plot shows how the execution time of the process is linearly dependent
from the number of documents in the dataset, and in fact, from the experimental
results evaluation, has been noticed that the time needed to analyze a single
document is constant independently from the number of documents. The details
of the time used to analyze a document are presented in table in Fig. 5, which
shows how apart from the time spent waiting for the OpenCalais response, most
of the time is spent in the analysis of the document’s sentences.

6.2 Index Building

This experiment aims to show how the index, described in Sect. 5.3, performs
in terms of time needed to fully populate the structures, and the memory con-
sumption of the complete index. These features are evaluated with respect to
the dimension of the dataset used, in order to underline the behavior of the sys-
tem with growing amount of data. The plot in Fig. 6 shows how much time the
system takes do build the index in relation with the dimension of the dataset.

The correlation between these two features is proportional to the number of
documents multiplied by a small factor, because the time taken by the system
to index a single document increments as the number of documents grows. This
increment is given probably by the implementation of the Python dictionaries
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(associative arrays), used to implement the structure, which takes more time to
complete the insertion operation as the dimension of the structure grows. The
time needed to index a single document is reported in Fig. 7 in relation with the
dataset dimension.

The other parameter which deserves to be considered in the evaluation of
the index performances, is the footprint in main memory which maintaining this
structure brings. As underlined in Sect. 5.3 the structure will contain all the data
retrieved from the triples appearing across all the document in the dataset. For
this reason the memory needed to store a similar structure is expected to grow
linearly with the number of documents analyzed. In fact the plot in Fig. 8 shows
this linear dependency between number of documents and memory used.

6.3 Query Answering

The aim of this experiment is to evaluate the performance of the query answering
algorithm. In order to populate a set of queries which have at least a correspond-
ing document in the dataset, we built a system which constructs automatically
queries using information contained in the dataset. In particular we tested our



42 E. Sartori et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000  3500  4000

M
em

or
y 

(M
b)

Number of Documents

Indexing documents memory

indexing memory

Fig. 8. Memory consumption of the index over number of documents

algorithm over three different kinds of queries, that we built following the app-
roach described here:

– Group 1: The system selects a random document and retrieves the list of
entities belonging to it. Form this list it extracts randomly a number (specified
as a parameter) of entities. The query is than composed by concatenating a
randomly chosen expression describing each entity. For our experiments we
built queries with a number of entities ranging from 1 to 5.

– Group 2: To construct this set of queries a document is taken randomly, then
a configurable number of triples is selected among the ones appearing in the
document (for the experiment we used parameters ranging from 1 to 3). The
content of the triples fields are than concatenated to form the query, and if one
of the fields is an entity, it is replaced with an expression that corresponded to
that entity (based on the information we have in the cache information from
the OpenCalais).

– Group 3: It follows the same procedure as the previous group, with the
difference that the entities are replaced not with any random expression that
corresponds to them but to the one that actually appears in the selected
document. For the last experiment as well we used a parameter for triples
ranging from 1 to 3.

For each group of queries we run a series of experiments measuring the time
needed to build the query and the total response time used by the system to
provide the results. Moreover we kept track of how many triples are produced
from a keyword query. These results are presented by two graphs in Figs. 9 and
10, one showing the mean response and query building time, and the other
showing the distribution of the queries in terms of number of triples generated.
The time graph shows the mean response time over the number of triple, grouped
in buckets of width 50, while in the other the width of the buckets is 25.

From the graph in Fig. 9 is easy to evince that the response time grows
proportionally with the number of triples produced by the query, as it is expected
to behave. Moreover, the system can answer queries with up to 900 triples in less
than 0.5 s. The plot in Fig. 10, instead, shows how queries of different dimension
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(in terms of triples produced) are distributed. Is important to notice that most
of the queries produce a number of triples less than 600 and after this value
we encounter few queries. This helps to explain the behavior of graph Fig. 9. In
fact, as the number of triples grows, the queries are fewer, and this brings to less
predictable results in terms of mean response time.

6.4 Query Answering Quality

This section presents the outcome of the experiments run in order to measure
the quality of the query answering algorithm. We implemented a test keyword-
based search engine, and measured its performance against our approach, run-
ning the same queries on the two systems. The queries used are presented in
Fig. 11(b), and have been selected by hand in an effort to simulate a human user
behavior. The Fig. 11(a) presents the results of the quality comparison, showing
in the first column the number of documents retrieved only by the keyword-
based (Lucene) implementation, in the second column there is the number of
documents retrieved by both systems and the third column gives the number of
documents found only by our approach.
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LUCENE BOTH ENTITY-BASED QUERY ID

5 (0.6 %) 675 (92 %) 47 (6 %) 1
8 (0.8 %) 926 (96 %) 30 (3 %) 2
9 (2 %) 312 (90 %) 29 (8 %) 3

4 (0.9 %) 396 (94 %) 20 (4 %) 4
34 (10 %) 267 (79 %) 38 (11 %) 5

(a)

QUERY ID KEYWORD QUERY

1 Saudi pressure Yemen
2 Sarkozy Ghaddafi Libya
3 English Premier League
4 Fukushima reactor meltdown
5 Bhopal gas leak

(b)

Fig. 11. Query answering quality evaluation results

From the queries results is possible to see that often an entity-based approach
can retrieve more documents than a keyword-based one. The main reason for
this is that once a group of keyword is resolved into an entity, this permits to
collect the document that refers to the same entity using different keywords.
An example of this situation can be the keyword “Sarkozy”, in the query no. 2,
once resolved into an entity it can collect document which refers to “president
of France”. These documents, instead are not retrieved by the keyword-based
approach, because they do not contain the exact word “Sarkozy”.

A different situation happens in the fifth query, which aims to retrieve doc-
uments talking about the Bhopal disaster. The word “gas”, appearing in the
query is very common and permits to the keyword-based approach to find many
other documents, even if they are less correlated to the query. The entity based
one, instead, tries to resolve the set of keywords into the entity corresponding to
the event, missing some documents which appear less correlated to the query.

The results show that few documents are retrieved only by the keyword-based
engine even when our approach performs better. This behavior is explained by
the different way in which our approach treats verbs and entities. While in the
traditional approach verbs are just keywords, and the documents containing
them are retrieved, in our approach verbs are considered only in relation to the
entities they refer. Documents are retrieved if they contain the entities recognized
in the query, while the presence of the exact verbs is used to enhance the result of
a document. The only appearance of the verb in the document, without reference
to the entities is not sufficient to consider the document relevant.

7 Related Work

What we present in this work constitutes information retrieval, since its
main objective is to provide an approach to document retrieval and ranking
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approaches. The first approaches appearing in this field aimed to predict the
probability distribution of terms inside documents, and hence determine the
probability of relevance of a document with respect to a query. A very success-
ful IR modeling approach is to convert the document into a vector space based
representation, and therefore apply common techniques from linear algebra for
computing similarities and operations on the documents. Generally this vector
space is built using each word appearing across the dataset as a dimension of
the space. A document in this space is represented as a vector, having as value
for each dimension the frequency with which the corresponding word appears
in the document. Once the documents are represented as vectors is possible to
compute a measure of similarity between two of them using the cosine similarity.
A broadly adopted document representation model, relying on the vector space,
is the TF-IDF approach, which weights each word appearing across the dataset
in a inversely proportional way with respect to the frequency of appearance of
the word. This gives more importance to rare words appearing in a document,
which will bring more relevance to the document if they match the user query.
Roelleke and Wang [24] give a review of many aspects related to this approach
to term relevance computation. An interesting addition to this approach is LSI
(Latent semantic indexing), which permits to select the most informative words
inside a document, making computation easier and removing noise. Moreover,
this approach can isolate words that characterize a set of documents, enabling a
semantic analysis of the content of these documents. An analysis of the perfor-
mances of LSI, and some improvements at the existing approach are presented by
Ando and Lee [3]. Since our concept is to identify the important words (entities,
verbs and nouns) and not take into consideration other parts of the document
apart from those three, in some way we are similar to LSI, that prioritise the
words. Recently the ways of communication on the web has seen a broad evolu-
tion, with the average user becoming an active producer of information. To adapt
to new situations and exploit additional data made available by websites, novel
approaches to information retrieval have been presented. The model of publish-
ing content used for blog, in which a single page can contain several documents,
opens new possibility for finding different ways to deal with the problem to find
the most suitable model to represent the documents. Moreover this kind of sit-
uation can shift the problem of document searching to blog searching based on
the content of its posts. Another environment which offers different possibilities
to model the information collected from webpages is Wikipedia, that enriches its
content with metadata and links to other resources, this topics are investigated
in [4].

Another important topic interested by this work regard the techniques used
for named entity and entity management. One of the problems related to infor-
mation retrieval, is that often the same entity has a number of different ways
in which it can be referenced, this motivates the need of techniques that can
identify uniquely objects on the web. An important contribution to this topic is
the OKKAM project, which aims to integrate existing information about entities
on the web and provide unique identifiers for them. Bouquet et al. [7] propose
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the use of an Entity Name System (ENS) with the aim to enable information
collections to use unique identifiers for objects on the web. The use of entities
can bring advantages in addressing different problems, as in data integration,
where linking entities coming from different datasources is a major challenge.
Ioannou et al. [15] present a query answering algorithm that permit to resolve
entities and link together the information referring to them coming from different
datasources.

As underlined in the rest of the paper we adapted a preexisting indexing
algorithm to suit our needs for a fast way to access the data. The original work
by Weiss et al. [28] addresses in particular the problem of indexing RDF data.
In fact they consider this format as the main approach to represent semantic
data retrieved from the Web. Their work aims to overcome the difficulties in
terms of efficiency and scalability of managing large RDF databases, through
the implementation of an indexing structure which allows fast query processing.
The index is a set of nested associative arrays, which permit to group together,
and therefore search, RDF triples with respect to their values. More conven-
tional approaches to triple storage [11] and querying attempts to store the data
in relational-like structures, but complex queries involve gathering information
from multiple tables, worsening the performances of the system.

Sentence summarization techniques, used in this work to identify relation-
ships between entities inside natural language, can be performed following dif-
ferent approaches. The goal of this task is to provide a context graph of the sen-
tence, a formalism used to identify the semantic role played by the words into a
natural language sentence. In this field, the development of ontologies of words
available over the Internet enabled the application of approaches which relies
on these platforms to perform their task. Hensman [13] present an algorithm
that uses the WordNet database to construct context graphs from sentences.
The approach followed is to retrieve from the ontology a set of possible phrase
structure that the verb encountered can support and matching them with the
sentence analyzed. Lei Zhang and Yong Yu [29], proposed a machine learning
approach to address this problem, their work is focused on the context graph
construction for sentence coming from a specific domain, in order to overcome
the difficulties of dealing with general natural language sentences.

Understanding the semantics of the keyword query is a field that has received
considerable attention [1,2,19,26]. Many works have studied the way to map the
query keywords based on the database structures [14], or following some semantic
approach without access to the database instance [5,6]. Many of these techniques
can be used to enhance our approach, however, it is important to keep in mind
that they do not actually employ any named entity identification techniques on
the user query but they try to express the semantics of the keywords in terms
of database structures. In that sense, they cannot be directly applied without
some significant adaptation.

On the other hand, entity recognition in query has been sucessfully used
before [12] and this task has been the driving force for the semantic search
engines [10]. Named entities have not been used only for document retrieval but
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also other related data management tasks like indexing [20] and clustering [9] or
matching in general [16]. For this reason, we believe that our querying technique
is a significant complement to these works.

Finally, our idea of seeing the documents in a more structured form than a
simple list of keywords has been studied in the past [17], however, the specific
approach uses graphs as the document representation. We believe that graphs,
despite very expressive, bring a unnecessary complexity than the sets of triples
that we employ. In general, seeing the documents in a more structured way helps
in better semantic search and in better matching what the user had in mind when
formulating the query. As such, our approach can form an important foundation
for further advancement of other query answering techniques like querying by
example [22] or interactive query relaxation [23].

8 Conclusion

In this work we presented a different approach to document representation and
query answering. The main features of the techniques we developed are the repre-
sentation of a document in term of relationships individuated inside the text, and
the resolution of groups of keywords in uniquely identified entity. This permits on
one side to deduplicate the data, through the entity resolution, and the relation-
ships based representation can increase the expressive power of the document,
maintaining information about the actions performed by the entities appearing
in the article. The experiments conducted on our testing implementation of this
approach show how it scales in terms of time and memory consumption, and
they prove the possibility to adopt a similar system to manage large datasets
of documents. One of the possible environments of application of this work, as
pointed out across the rest of the paper, is in fact the possible use inside a search
engine for web documents, where the requirement of keeping a low response time
with large datasets has a relevant importance.
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