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Abstract
The cancer stem cell model in solid tumors has evolved significantly from the
early paradigm shifting work highlighting parallels between the stem cell
hierarchy in hematologic malignancies and solid tumors. Putative stem cells can
dedifferentiated, be induced by context, and be the result of accumulated genetic
mutations. The simple hypothesis that stem cell therapies will overcome the
minority of cells that lead to recurrence has evolved with it. Nevertheless, the
body of evidence that this field is clinically relevant in patients and patient care
has grown with the complexity of the hypotheses, and numerous clinical
strategies to target these cells have been identified. Herein we review this
progress and highlight the work still outstanding.
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1 Overview of the Evolution of the Cancer Stem Cell
Model

Work over the last decade has highlighted the potential importance of stem cell
populations in tumors—cancer stem cells (Clarke et al. 2006; O’Brien et al. 2009).
Such cells (CSCs) have been argued to represent the critical population for pre-
dicting progression and treatment outcome presuming that their number and
treatment sensitivity are important for tumor control by radiation and chemother-
apy. The prospective demonstration that only small specific populations of cells,
derived from a bulk solid tumor population based on expression of specific surface
markers, recreated human tumors in outgrowth experiments propelled the subse-
quent 10 years of cancer stem cell research. The initial concept was that tumors are
organized as steep hierarchies from which only a small percentage of cells are
capable of self-renewing and recapitulating the tumor heterogeneity. This concept
built on normal stem cell data attributing characteristics of normal stem cells—
multipotency, unlimited replication potential, and self-renewal—to proposed cancer
stem cells. The cancer stem cell hierarchy was initially viewed as a largely rigid
top-down progression from the most primitive cancer stem cells at the top to the
most differentiated bulk cells at the bottom. It was presumed that individual cancer
stem cells reproduced themselves to maintain self-renewal and as needed produced
differentiated daughter cells to maintain homeostasis with a small population of
cancer stem cells (Fig. 1a). This model presumed the functional and phenotypic
differences of stem cells versus differentiated cells were independent of genetic
mutation, mediated instead by epigenetics and differentiation commitment. This
stood somewhat at odds with the clonal dynamic, driver mutation model of tumor

*

* *

(a) (b)

Fig. 1 Increasing complexity in the cancer stem cell model. Drawing from parallels in
hematopoietic development, prospective isolation of tumor-initiating cells from solid tumors led to
early models of cancer hierarchy similar to the normal state (1A). Primitive, self-renewing cells
were presumed to maintain the tumor bulk and the minority population of cancer stem cells. In the
last decade has been demonstrated that context and microenvironment can promote tumor
initiation, that mutations (*) can confer self-renewing capacity, that some tumors become
predominantly composed of self-renewing cells, that markers of self-renewing cells are context
dependent, and that functional initiating cells can be both genetically similar or dissimilar (Fig. 1b)
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progression and recurrence; the evidence for both was hotly debated. Early on, there
were no studies merging genetic analyses with stemness studies, and very little
consideration was given to the role that context might have in influencing the stem
cell population. Over time, however, many new data emerged, challenged the initial
paradigm, and were incorporated into this initially simplistic model (Fig. 1b).

After the reports of the first solid tumors to apparently be organized in a cancer
stem cell hierarchy (Al-Hajj et al. 2003; Singh et al. 2004), it was demonstrated that
the cancer stem cell compartment size and depth of hierarchy depend on tumor type
and that self-renewal assays of tumor regrowth in transplants predict for the biology
associated with engraftment in animals, which might not faithfully capture the
biology of recurrence in situ (Feuring-Buske et al. 2003; Quintana et al. 2008; Notta
et al. 2010; Rehe et al. 2013). New markers and strategies to prospectively identify
stem cells emerged (Collins et al. 2005; Bao et al. 2006; Dalerba et al. 2007;
Ginestier et al. 2007; Hermann et al. 2007; Li et al. 2007; O’Brien et al. 2007;
Patrawala et al. 2007; Prince et al. 2007; Ricci-Vitiani et al. 2007; Eramo et al.
2008; Curley et al. 2009; Li et al. 2009a; Piccirillo et al. 2009; Stewart et al. 2011;
Wang et al. 2011; Chen et al. 2012; Charafe-Jauffret et al. 2013; Wu et al. 2013;
Zhang et al. 2015), and from these, a series of prognostic signatures were derived
across tumor types [Table 1 (Gentles et al. 2010; Eppert et al. 2011; Merlos-Suarez
et al. 2011; Bartholdy et al. 2014)]. This connection to clinical outcome was
reassuring that the cancer stem cell model was relevant. However, the clinical
complexity and challenges to incorporation into clinical management were clearly
illuminated by findings from patients that the prospectively identified populations
that maintain outgrowth potential in tumors may be different in different tumors and
patients (Eppert et al. 2011). This further highlighted the need to move to the use of
functional demonstrations of stemness rather than the use of markers that are
promiscuous, often not linked to function, are potentially transient and depend on
context. To this end, the inducible lineage-tracing and re-tracing experiments were
developed in genetically engineered mouse models to overcome these issues [re-
viewed in Roy et al. (2014)], and in some cases, these validated the stem cell model,
but they still have some limitations as discussed in more detail below.

Clonal dynamic studies using lineage-tracing approaches in normal tissues
demonstrated some common themes across tissues in some cases. In gut and skin,
maintaining the frequency of stem cells during homeostasis appeared not as a
function of asymmetric division of the primitive stem cell, to create one stem cell
and one daughter cell, but rather through maintenance at the population level
[reviewed in Blanpain and Simons (2013)]. In other studies, the stem cells identified
in lineage-tracing experiments did not align with the prior findings from trans-
plantation experiments, suggesting that transplantation assays may provide cir-
cumstances that permit or promote tumor initiation that would not occur in situ. For
example, the first lineage-tracing experiments to define cell fate in the developing
mammary gland demonstrated that the bipotent differentiation potential of single
cells described after transplantation is not identified in situ (Van Keymeulen et al.
2011; van Amerongen 2014). Instead two unipotent basal and luminal stem cells
were identified. The same was described in prostate development (Liu et al. 2011;
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Table 1 Tumor-initiating cell-related gene signature studies reporting prognostic signatures in
independent patient data derived from bulk cells (Glinsky et al. 2005; Phillips et al. 2006; Liu et al.
2007; Shipitsin et al. 2007; Stevenson et al. 2009; Gentles et al. 2010; Eppert et al. 2011;
Merlos-Suarez et al. 2011; Becker et al. 2012; Liu et al. 2012; Atkinson et al. 2013; Metzeler et al.
2013; Schwede et al. 2013; Van den Broeck et al. 2013; Peng et al. 2014; Yin et al. 2014; Pfefferle
et al. 2015; Yang et al. 2015)

Cancer Type Signature Source

Genes identifies in minority stem-like population
prognostic in independent tumor samples

Breast, brain, lung prostate Liu et al. (2007). The prognostic role of a gene
signature from tumorigenic breast cancer cells.

Breast Shipitsin et al. (2007). Molecular definition of
breast tumor heterogeneity.

Breast (H2N+) Liu et al. (2012). Seventeen-gene signature from
enriched Her2/Neu mammary tumor-initiating cells
predicts clinical outcome for human HER2+:
ERalpha- breast cancer.

Breast Yin et al. (2014). A 41-gene signature derived from
breast cancer stem cells as a predictor of survival.

Colon Merlos-Suarez et al. (2011). The intestinal stem cell
signature identifies colorectal cancer stem cells and
predicts disease relapse.

Pancreas Van den Broeck et al. (2013). Human pancreatic
cancer contains a side population expressing cancer
stem cell-associated and prognostic genes.

Leukemia Gentles et al. (2010). Association of a leukemic
stem cell gene expression signature with clinical
outcomes in acute myeloid leukemia.

Leukemia Eppert et al. (2011). Stem cell gene expression
programs influence clinical outcome in human
leukemia.

Leukemia Metzeler et al. (2013). A stem cell-like gene
expression signature associates with inferior
outcomes and a distinct microRNA expression
profile in adults with primary cytogenetically
normal AML.

Leukemia Yang et al. (2015). Systematic computation with
functional gene-sets among leukemic and
hematopoietic stem cells reveals a favorable
prognostic signature for acute myeloid leukemia.

Genes extracted based on embyonic or
developmental correlation prognostic in
independent tumor samples

Breast Pfefferle et al. (2015). Luminal progenitor and fetal
mammary stem cell expression features predict
breast tumor response to neoadjuvant
chemotherapy.

(continued)
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Wang et al. 2014). Later, Rios et al. highlighting the potential caveats of these
approaches identified a single bipotent stem cell in the mammary gland (Rios et al.
2014). Speculation regarding contributors to the dramatic differences in the results
of these studies includes differences in promoter specificity and/or transcriptional
activity due to approaches used, labeling efficiency in different lineages, and con-
focal imaging variation across the studies [reviewed in Oakes et al. (2014)].
Alternatively or in addition, it may simply reflect the heterogeneous results of a
legitimately complex system revealed through differing studies.

Fate mapping was carried out in tumors including benign papilloma and squa-
mous cell carcinoma, glioma, and intestinal adenomas (Chen et al. 2010; Driessens
et al. 2012; Schepers et al. 2012). Progression in skin cancer appeared to track with a
decrease in the steepness of the hierarchy (Driessens et al. 2012). Through the fate
mapping/lineage-tracing experiments as well as with the use of animal models, it
was additionally demonstrated that the stem cell frequency could be altered by
genetic mutations in the stem cells or background (Vaillant et al. 2008; Curtis et al.
2010; Vermeulen et al. 2013) and that for some normal tissues and many tumors, the
pool of stem cells could be replenished, if significantly depleted, via dedifferentia-
tion of a previously non-self-renewing cell (Debeb et al. 2012; van Es et al. 2012;

Table 1 (continued)

Cancer Type Signature Source

Prostate, breast, lung, ovarian, bladder,
lymphoma, mesothelioma, brain, and
leukemia

Glinsky et al. (2005). Microarray analysis identifies
a death-from-cancer signature predicting therapy
failure in patients with multiple types of cancer.

Lung Stevenson et al. (2009). Characterizing the clinical
relevance of an embryonic stem cell phenotype in
lung adenocarcinoma.

Liver Becker et al. (2012). Genetic signatures shared in
embryonic liver development and liver cancer
define prognostically relevant subgroups in HCC.

Brain Phillips et al. (2006). Molecular subclasses of
high-grade glioma predict prognosis, delineate a
pattern of disease progression, and resemble stages
in neurogenesis.

Ovary Schwede et al. (2013). Stem cell-like gene
expression in ovarian cancer predicts type II
subtype and prognosis.

Prostate Peng et al. (2014). An expression signature at
diagnosis to estimate prostate cancer patients’
overall survival.

Genes identified in minority stem-like
population prognostic in independent normal
breast samples from patients with tumor

Breast Atkinson et al. (2013). Cancer stem cell markers
are enriched in normal tissue adjacent to triple
negative breast cancer and inversely correlated with
DNA repair deficiency.
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Buczacki et al. 2013; Schwitalla et al. 2013). The latter challenged the idea that
targeting cancer stem cells within bulk tumors would be curative since the remaining
more differentiated cells could potentially replace the targeted pool and might be
driven to do so by a shift in stem-differentiated cell equilibrium caused by therapy
targeting one side of the equation. This demonstration of plasticity led to the concept
that stem cells in fact represent a heterogeneous compartment into which cells
readily transit and exit becoming temporarily primed for specific stem cell activity
[reviewed in Blanpain and Simons (2013)]. It was clear that pressure on the tumor
cells such as therapy could shift this equilibrium and that specific signaling pathways
could be identified that mediated these transitions.

The most plastic of tumor cells were also presumed to transition between
epithelial and mesenchymal states to escape from the primary soil into the circu-
lation and beyond to reseed distant soil (Liu et al. 2014). It further became clear that
the microenvironment, including a niche of cells that supported the stem cell state,
contributed to maintaining this proposed transient stemness compartment [reviewed
in Inman et al. (2015)]. As numerous normal cells were identified as niche con-
spirators, including macrophages and mesenchymal stem cells, distinct niches for
active versus quiescent or dormant stem cells were proposed (Ehninger and Trumpp
2011), and subsequently, the possibility of end organ-specific niches, bone marrow
versus lung versus brain, was added to the emerging complex picture.

Alongside the progress made through lineage-tracing experiments, progress in
genetic analysis began to converge on the cancer stem cell field. Studies merging these
fields led to a direct demonstration that the pressure of therapy to select surviving clones
indeed did not in all cases select genetically hardy clones, but rather phenotypically
hardy clones, supporting the cancer stem cell hypothesis (Kreso et al. 2013). It was
further shown in this work transplanting 150 single cells from 10 colorectal cancer
patients that there can be genetic variability within a clone derived from a single stem
cell (Kreso et al. 2013). Kreso and Dick proposed a unified model drawing on the
genetic and cancer stem cell data and hypothesized that the accumulation of
cancer-promoting mutations in the most primitive normal stem cells at the top of the
hierarchy led to the most undifferentiated and aggressive cancers, while mutations in
more differentiated cells might confer self-renewal and therefore lead to less aggressive
cancers (Kreso and Dick 2014). Consistent with this proposal, Tomasetti and Vogel-
stein report a strong correlation extending over five orders of magnitude between
lifetime incidence of multiple cancers and the estimated number of normal stem cell
divisions in the corresponding tissues over a lifetime. This suggests that random errors
occurring during DNA replication in normal stem cells are a major contributing factor
in cancer development (Tomasetti and Vogelstein 2015). Without question, the cancer
stem cell model has matured making room for greater complexity.

2 Markers and Models

As above, the solid tumor cancer stem cell field was propelled forward by landmark
papers in which tumorigenic breast and brain cancer cells were prospectively
identified and distinguished from non-tumorigenic cells in the same cancer using
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membrane markers (Al-Hajj et al. 2003; Singh et al. 2004). The readout in these
studies was tumor outgrowth in an orthotopic xenograft. This work led to a rapid
increase in papers across many tumor types identifying marker sets that prospec-
tively identified the tumorigenic population in human tumors and cell lines using
outgrowth in a xenograft as the proof of stemness (Collins et al. 2005; Bao et al.
2006; Dalerba et al. 2007; Ginestier et al. 2007; Hermann et al. 2007; Li et al. 2007;
O’Brien et al. 2007; Patrawala et al. 2007; Prince et al. 2007; Ricci-Vitiani et al.
2007; Eramoi et al. 2008; Curley et al. 2009; Li et al. 2009a; Piccirillo et al. 2009;
Stewart et al. 2011; Wang et al. 2011; Chen et al. 2012; Charafe-Jauffret et al. 2013;
Wu et al. 2013; Zhang et al. 2015) (Table 2). In sum, these studies demonstrated
minority tumorigenic populations in multiple tumor types including breast, colon,
pancreas, head and neck, sarcoma, lung, ovary, AML, and CML. These studies
relied on immunocompromised mice to grow human tumors, and it was quickly
recognized that mice with greater immune suppression yielded higher frequencies
of tumorigenic cells in AML, ALL, melanoma, and lung cancer (Quintana et al.
2008; Taussig et al. 2008; Chiu et al. 2010; Ishizawa et al. 2010; Notta et al. 2011)
raising the question of whether the apparent tumor hierarchy was an artifact of the
assay or a clinical reality, although studies supporting the reality were also com-
pelling(O’Brien et al. 2009; Ishizawa et al. 2010). It was further noted that not all
murine growth factors cross-react with human receptors and that numerous tissue
processing issues may impact the outgrowth in a transplantation assay (Bossen et al.
2006; Rongvaux et al. 2013). One approach to address the variability related to
altered immunity was to examine tumors in syngeneic mice with intact immune
systems. Consistent with the data from the human tumors, several tumor types
examined in these studies supported the cancer stem cell model (Neering et al.
2007; Vaillant et al. 2008; Zhang et al. 2008; Read et al. 2009; Ward et al. 2009).
These studies did not necessarily yield markers that are relevant in human cancers
however, a difference may relate to the fact that many surface markers do not relate
directly to stem cell function.

Following the identification of markers in various solid tumor types, there were
numerous studies using these markers in vitro and in translational work to identify
genetic signatures from these populations, to identify targets to eradicate them, and

Table 2 Markers reported to prospectively identify tumor initiation from human tumors
Prostate CD44+
Head and Neck CD44+ SP
Breast CD44+ ESA+ CD24- ALDH GD2
Colon CD44+ ESA+ CD133+ CD166
Pancreas CD44+ ESA+ CD24+ CD133+ CXCR4+
Glioma CD133+*
Lung CD133+
Ovary CD133+ CA125

aControversial. Abbreviations: SP, side population; ALDH, aldehyde dehydrogenase activity;
ESA, epithelial-specific antigen

Blue and Green colors denote their relevance across tumor types. Bold represent single markers
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to demonstrate their relationship to prognosis. While these were supportive of the
model in many cases, it was quickly demonstrated that the markers can depend on
context [reviewed in Meacham and Morrison (2013)], that they are promiscuous,
and that they are not necessarily related to function. In larger studies of patient
samples, it was apparent that in some tumors, the tumorigenic potential may reside
in varying minority populations, suggesting that functionally determining which
cells were CSCs would need to be a component of individual patient sample
analysis (Chiu et al. 2010; Eppert et al. 2011; Sarry et al. 2011). Certainly, it is clear
stem cell markers identified and validated in one xenograft model cannot be
assumed to identify CSCs in new systems or models where this has not been
explicitly demonstrated. Further, it remains to be seen how widely results from
cancer stem cell models will apply to the clinic, although various clinical studies
have reported that the proportion of cells expressing CSC markers, such as ALDH1
or low proteasome activity, correlates with treatment outcome (Lagadec et al. 2014;
Atkinson et al. 2013; Ginestier et al. 2007).

While marker studies furthered the field by identifying cells with tumorigenic
potential under permissive circumstances, lineage-tracing studies including prolif-
eration kinetics and clonal dynamics [reviewed in Blanpain and Simons (2013)]
have allowed more direct examination of the clonal dynamics of the stem cells under
more relevant contextual circumstances. Three techniques have been used to study
proliferation kinetics in population-based assays. These are pulse-chase, continuous
labeling, and label dilution experiments. These can be applied in vivo by targeting
inducible reporter constructs with lineage-restricted promoters to a small number of
cells and examining the distribution of labeled cells after elapsed time for the organ
of interest to develop. Quantitative analysis is performed to assess the clonal
dynamics based on the fixed tissue analysis. These approaches cannot definitively
distinguish between population balance that is perfectly maintained through either
asymmetric division of a single stem cell that results in a stem cell and a differen-
tiated cell versus division of a stem cell into two stem cells. Importantly, although
they have been used to demonstrate differences in multipotency among stem cells in
their native context, further work to resolve the fate of individual cells is needed to
determine whether lineage is specified early (bestowed on only a few cells early on)
or instead involves a competition between equipotent precursors.

In the gut, lineage tracing identified two stem cell pools, one LGR5-expressing
pool and a second BMI-1-expressing pool. It was further shown that on ablation of
the LGR5 pool, the BMI-1 expressing stem cells can repopulate the crypt (Barker
et al. 2007; Sangiorgi and Capecchi 2008; Barker et al. 2012). What is not clear,
however, is whether these populations are mutually exclusive. Indeed recent studies
have raised the possibility that this work may have targeted the same pool using
different promoters (Itzkovitz et al. 2012; Munoz et al. 2012; Buczacki et al. 2013),
and Blanpain et al. speculate that the stem cell pool may express all of the identified
markers at different times specified by different contexts (Blanpain and Simons
2013). Quantitative studies using these models demonstrated that the number of
label-retaining cells was maintained over time by increase in the size of remaining
clones as the total number of surviving clones diminished and largely ruled out the
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likelihood that ingrained hierarchy accounts for self-renewal, demonstrating instead
that neutral competition for limited access to the niche dominates this process
(Lopez-Garcia et al. 2010; Snippert et al. 2010b). Similar to the findings in the gut,
lineage tracing in the skin also revealed that clones are lost over time and that the
constant label-retaining pool is accounted for at the population level by proliferation
of the remaining pool (Clayton et al. 2007; Doupe et al. 2010). Quantitative studies
here suggested that the tissue was maintained by a single progenitor population,
which divided asymmetrically most of the time, but may also divide symmetrically
or terminally differentiate to maintain balance. Studies of response after injury
mentioned below in aggregate support the model in which the pool is maintained by
progenitors and a slower cycling stem cell pool sit ready in response to injury (Ito
et al. 2005; Levy et al. 2007; Jaks et al. 2008; Snippert et al. 2010a). The possibility
that these progenitors revert into the slow-cycling stem cell pool as described in
esophagus (Doupe et al. 2012) cannot easily be ascertained or ruled out. It was
reported that location within the niche predetermines the likelihood of a given cell
to remain uncommitted or to differentiate, but that committed cells can replenish the
stem cell pool after depletion (Rompolas et al. 2013). Using genetic lineage-tracing
strategies, similar dedifferentiation behavior as that described in the skin has been
reported for the Delta-like 1-expressing cells in the mouse intestine where lineage
tracing demonstrates these normally committed, differentiated cells can be recruited
into the stem cell compartment if needed upon injury (van Es et al. 2012). Similarly
committed Paneth cells can apparently repopulate the stem cell compartment when
needed(Buczacki et al. 2013). This important role of position and context has also
been demonstrated to regulate the proliferation or quiescence of cancer stem cells
(Bissell and Inman 2008).

Fate mapping in tumors was similarly informative. Expression of a conditional
reporter in a small population of benign papilloma cells confirmed a hierarchical
organization, which became more shallow on progression to squamous cell carci-
noma (Driessens et al. 2012). In intestinal adenomas, the previously identified stem
cell marker Lgr5+ was tracked through the development of benign lesions using a
multicolor lineage reporter. The marked normal stem cells gave rise to the ade-
nomas, and these cells in the adenoma contributed extensively to the tumor growth.
The preponderance of Lgr− progeny led to the speculation that the Lgr+ cells gave
rise to largely non-proliferative Lgr− cells. Reflecting what is likely a clinical
reality, similar studies of intestinal adenomas in different context yield a dissimilar
story. Upon Wnt pathway activation, Vermeulen et al. found the Lgr− cells could
contribute to the adenoma formation and Lgr− cells gave rise to Lgr+ cells (Ver-
meulen et al. 2013). It has not yet been established what fraction of adenomas have
a hierarchical organization, and how it relates to progression to invasive cancer has
not been studied. In glioma studies, the presumptive Nestin+ stem cell population
was selectively depleted extending the animals’ lives (Chen et al. 2012). Regrowth
after therapy with temozolomide was attributed to the Nestin+ population corre-
lating this population to cancer stem cell status although it was not conclusively
demonstrated that Nestin− cells did not contribute (Chen et al. 2012).
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3 Role of the Tumor Microenvironment

The stromal components and cell–cell interactions in a tumor play an important role
in its growth and response to treatment. Stroma within a tumor includes the vas-
culature, various populations of cells derived from the bone marrow (BMDC) such
as monocytes/macrophages and a variety of immune cell populations, cancer-
associated fibroblasts, and non-cellular tissue components such as collagens,
fibronectin, and laminin. Further, the poorly organized structure of the vasculature
in most tumors (Vaupel et al. 1989) creates an environment in which there is
substantial heterogeneity in the supply of nutrients such as oxygen or glucose and in
the removal of catabolic products. This leads to regions of low oxygen tension
(hypoxia), high levels of acidity due to lactic acid production, increased interstitial
fluid pressure due to increased leakiness of the blood vessels, and poor removal of
tissue fluid partly caused by lack of functional lymphatics. Specific microenvi-
ronmental factors, but also cell–cell interactions and genetically regulated cellular
signals, are important determinants for stem cell maintenance and survival. As
discussed above, different kinds of ‘niches’ have been described in which certain
stromal cell populations may provide a supportive environment for CSCs and/or
help to maintain the stem-like phenotype of tumor cells (Pajonk and Vlashi 2013).
For example, in two mouse models of metastatic breast cancer, distinct endothelial
sub-niches were shown to regulate disseminated tumor cell dormancy with vascular
homeostasis maintaining quiescence but stimulation of vasculature causing out-
growth of the tumor cells (Bissell). It has also been reported that glioblastoma cells
may sit in a perivascular niche involving endothelial cell contact (Heddleston et al.
2010) but it has also been reported that both glioblastoma and breast cancer CSCs
may sit at a distance from functional vasculature and can be at low oxygen levels
(i.e., in an hypoxic niche) (Heddleston et al. 2010; Liu et al. 2014; Peitzsch et al.
2014). Interestingly, hypoxia can suppress miRNA levels by repression of both the
DICER and DROSHA enzymes, which are required for miRNA processing (van
den Beucken et al. 2014). This leads to a significant decrease in overall levels of
certain miRNA in hypoxic cells, which in turn can lead to the acquisition of stem
and metastatic phenotypes. In a genetically engineered mouse model of soft tissue
sarcoma, deletion of one allele of DICER can decrease miRNA expression and
increase the rate of metastasis to the lung (Mito et al. 2013). In breast cancer,
reduction in DICER results in a selective loss of the miR200 family of proteins,
which stimulates an epithelial to mesenchymal transition (EMT) (van den Beucken
et al. 2014). This transition has been associated with a CSC phenotype in breast
cancer cells (Mani et al. 2008; Liu et al. 2014). Exposure to hypoxia has also been
reported to result in changes in the methylation levels of certain genes, due to a
requirement for oxygen by some of the enzymes that cause demethylation. This
results in a more primitive phenotype similar to that of stem cells. Thus, exposure to
hypoxia may cause various epigenetic changes that promote a stem cell phenotype.
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4 Response to Therapy

There are many datasets which support a higher treatment resistance of CSC to both
radiation and chemotherapeutic drugs compared to non-CSC (Krause et al. 2011;
Alison et al. 2012; Sebens and Schafer 2012; Alisi et al. 2013; Holohan et al. 2013;
Crowder et al. 2014; Rycaj and Tang 2014; Cui et al. 2015). The increased resis-
tance to chemotherapy has been variably associated with the proliferative quies-
cence of CSCs and their resistance to DNA damage and reduced susceptibility to
induction of apoptosis. A high expression of ABC transporters that can pump drugs
out of cells has also been observed in CSCs. Early studies demonstrated an increase
in the ex vivo fraction of CD133 positive cells, confirmed as CSC by transplan-
tation assays, following in vivo irradiation of glioma xenografts. Interestingly,
DNA damage checkpoints were preferentially activated in marker-positive versus
marker-negative cells (Bao et al. 2006). Higher levels of antioxidant molecules have
also been observed in CSCs suggesting increased ability to inactivate reactive
oxygen species (ROS), a mediator of radiation damage in cells (Diehn et al. 2009).
Compared to progenitor cells, breast CSCs have been shown in vitro to contain a
lower level of ROS with higher expression of genes involved in ROS scavenging.
Moreover, the initially higher post-irradiation clonogenic cell survival of breast
CSC can be altered by pharmacological modulation of the ROS levels. Recent
studies by Pajonk and colleagues have also reported that low proteasome activity is
associated with a stem cell phenotype and that cells from tumors with low pro-
teasome activity are more resistant to chemotherapy and radiation treatment
(Lagadec et al. 2012, 2014; Vlashi and Pajonk 2015). However, a higher intrinsic
resistance of CSC cannot be regarded as a general phenomenon, since heterogeneity
seems to exist between individual tumors of the same histology (Zielske et al.
2011). Further, the early work of West et al. (West et al. 1993) reported a wide
range of radiosensitivities for cells derived from different tumors of the cervix and
head and neck that were capable of growing in in vitro clonogenic assays in
agarose. This was a spheroid-like environment, although not the same as currently
accepted stem cell assays.

A link between hypoxia and putative stem cells has also been shown by an
increase in the fraction of CD133-positive cells in brain tumor cells exposed to
hypoxia in vitro (Blazek et al. 2007; Platet et al. 2007) and the preferential
expression of HIF2a- and HIF-regulated genes in glioma stem cells (Li et al.
2009b). This might be expected to affect their relative radiosensitivity, although it
should be noted that the level of hypoxia in ‘hypoxic’ niches is not well defined and
may represent a level of hypoxia more consistent with increased levels of HIF-1a
and HIF-2a (<*10–20 mm Hg) rather than the levels required for full
hypoxia-induced radioresistance (<1–5 mm Hg) (Wilson and Hay 2011). Important
in this context is that EMT (which as noted above can be induced by hypoxic
exposure) has also been previously associated with increased radiation resistance
(Theys et al. 2011; Bhat et al. 2013; Al-Assar et al. 2014; Zhang et al. 2014), as
well as increased metastatic potential. The hypoxic niche has also been reported to
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protect colon cancer CSCs from chemotherapy (Mao et al. 2013). However, a
recent study has reported that hypoxia does not affect the radiation survival of
breast cancer stem cells cultured as mammospheres putatively because of their high
levels of antioxidant molecules capable of scavenging reactive oxygen species
(Lagadec et al. 2012). Thus, the potential role of hypoxia in modifying the treat-
ment sensitivity of CSCs in vivo remains uncertain and may vary from tumor to
tumor.

The number of CSCs in tumor is highly heterogeneous but will also play an
important role in overall response to treatment. In animal models, it was demon-
strated that the number of (putative) stem cells assessed by transplantation assays
correlated with the single radiation dose required for tumor control (Hill and Milas
1989; Baumann et al. 2008). Similar results have been reported for experimental
studies in animal models using fractionated radiation treatment (Yaromina et al.
2007) and the expression of the stem cell-related marker CD44 has been reported to
correlate with local control in early laryngeal cancers treated with radiation (Bau-
mann and Krause 2010). Two important considerations in the context of the
analysis of the treatment sensitivity of CSC are the increasing evidence for the
plasticity of the cancer stem cell phenotype and the method of assessment. The
concept that early progenitor cells may regain stem cell properties induced by
treatment would result in an effective increase in the number of CSCs in the tumor
and hence the level of cell killing required to achieve tumor control (Pajonk and
Vlashi 2013; Vlashi and Pajonk 2015). The results of Bao et al. (2006) mentioned
above, in which radiation-treated gliomas demonstrated increased CSC content,
may be explained by the concept that the radiation treatment induced progenitor cell
populations in the tumor to reacquire stem cell properties, consistent with findings
in normal tissues described above concerning rebalancing of stem and progenitor
cell populations after traumatic injury. Assessing the sensitivity of CSCs in vivo
using an experimental tumor response assay to determine treatment outcome rather
than tumor control assay is also a concern. The essence of the CSC model is that it
is the killing of these cells that is ultimately responsible for tumor control, whereas
tumor response can reflect the sensitivity of both stem cells and progenitor cells
(Baumann et al. 2008). This concern makes it particularly difficult to use experi-
mental studies to assess the response of CSC to drug treatment in vivo, since such
treatments are rarely capable of achieving tumor control on their own, and thus,
they reflect the response of both stem and progenitor cells. Combination treatments
with radiation can potentially address this concern, and such studies have indicated
the failure of certain drugs to target stem cell populations (Baumann/Krause).
A further complication is that these two considerations are independent of one
another but may, of course, both occur during tumor treatments in vivo; thus in
some cases, the interpretation of studies assessing the treatment sensitivity of CSC
may be impacted by factors that do not directly relate to the sensitivity of the
individual tumor cells. In vitro studies of the drug or radiation sensitivity of cells
expressing putative stem cell markers can partially overcome this concern but the
different environments found within tumors require that such observations are
confirmed by in vivo studies.
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5 Conclusion

Without question, the cancer stem cell model has been refined numerous times in
the last decade and is far more complex than initially proposed. Heterogeneity
within tumors and even in clonal populations within tumors, between tumors in the
same patient, and between patients as well as across tumor types are the common
themes that emerge across fields. The prognostic value of signatures from small
populations of cells may imply that there are ways to clinically identify patients
whose tumors are driven by a stem cell phenotype that may be amenable to directed
therapy and get around the challenges of variation in prospective markers between
patients as well as the limited feasibility in profiling each tumor for stemness
markers in order to make treatment decisions. Nevertheless, real-time tumor pro-
filing will likely be needed to select patients for therapy, and to date, there are still
no trials selecting patients for treatment using such approaches and strategies to
merge stem cell targeting with genetics-based targets are in their infancy. Certainly,
advances in clinical imaging-based identification of stem cell-driven tumors would
greatly enhance the translatability of these models as would liquid biopsy advances
still very much unexplored in this area. Still, in spite of the work yet to do, the
progress in the last decade has been rapid and continues on.
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