Chapter 2
Digital Computer Systems

This chapter considers issues of emergence and causation in the case of digital
computers, as a warm-up example before giving a general viewpoint on these topics
in the next chapter. It will be shown that top-down causation is central to their
functioning. It develops its themes as follows:

e Section 2.1 discusses the computational basics underlying the functioning of digital
computers.

e Section 2.2 discusses how modular hierarchical structures enable complex higher
level behaviour to emerge.

e Section2.3 sets out the implementation and logical hierarchical structures and
makes the case that software drives what happens.

e Section 2.4 discusses how both bottom-up and top-down causation happen in these
hierarchies, distinguishing five types of top-down causation that have rather dif-
ferent dynamics.

e Section2.5 discusses the key feature of equivalence classes that underlies the
ontological nature of higher level causal elements. It characterizes in precisely
what way computer programs are abstract entities.

e Section 2.6 considers the issue of clearing memory and deleting records: a selection
process that leads to the irreversibility of computation. This relates to the fact that
infinities cannot occur in physical reality.

e Section 2.7 looks at the nature of causation in the light of all the above, making the
case for causal effectiveness of non-physical entities in digital computer systems.

2.1 Computational Basics

Digital computers are the embodiment of algorithmic operation, and are nowadays
regarded as a fundamental model of causation. Many claim physics can be regarded
as a computational process, and indeed that the universe is a computer [44], com-
putational models are proposed for social life [49], and the computer is often used

© Springer-Verlag Berlin Heidelberg 2016 35
G. Ellis, How Can Physics Underlie the Mind?, The Frontiers Collection,
DOI 10.1007/978-3-662-49809-5_2

36 2 Digital Computer Systems

as a model for how the mind works (some say it is a computer, others regard that
as an analogy [59]). Accordingly, it is useful to consider how issues of emergence
and causation work out in this case, so it serves as a model for effects we may see
in other contexts, and in particular in the brain, as the computational metaphor does
indeed seem to capture some aspects of what is going on in the brain (even though
it is inadequate as a total explanation of the embodied mind).

Turing explains the basic idea as follows [64]:

The idea behind digital computers may be explained by saying that these machines are
intended to carry out any operations which could be done by a human computer. The human
computer is supposed to be following fixed rules; he has no authority to deviate from them in
any detail. We may suppose that these rules are supplied in a book, which is altered whenever
he is put on to a new job. He has also an unlimited supply of paper on which he does his
calculations. He may also do his multiplications and additions on a ‘desk machine’, but this
is not important.

This gives the essential operational idea of algorithmic operation of a computer, also
explained nicely by Hofstadter [34, pp.33—41]. MacCormick states it thus [45, p.3]:

An algorithm is a precise recipe that specifies the exact sequence of steps required to solve
a problem.

Turing explains how arbitrary computations can be realized if a digital computer can
be regarded as consisting of three parts [64]:

1. A Store of Information (Memory). This stores data that includes an instruction
table stating the rules to be obeyed by the computer (nowadays called a program).

2. An Executive Unit (CPU). This carries out the various individual operations
involved in a calculation.

3. Control (Operating System). This sees that the instructions are obeyed correctly
and in the right order.

The key feature leading to flexibility of use of the computer [21, p. 15] is the stored
program, a set of symbolically encoded instructions in the machine’s memory. By
altering the program (software), the same physical apparatus (hardware) can be used
to tackle many different kinds of problems. Turing demonstrated [64] that, by this
means, a single machine of fixed structure is able to carry out every computation
that can be carried out by any computer whatsoever. This is the special property of
digital computers, namely [64]:

They can mimic any discrete-state machine, [and this] is described by saying that they
are universal machines. The existence of machines with this property has the important
consequence that, considerations of speed apart, it is unnecessary to design various new
machines to do various computing processes. They can all be done with one digital computer,
suitably programmed for each case. It will be seen that as a consequence of this all digital
computers are in a sense equivalent.

This characterizes the key property of programmable computers [14]:

Universal Logical Capability. The nature of the logical operations that digital computers
are able to carry out is not constrained by the specific physical implementation chosen; the
underlying physics enables the chosen logic rather than controlling it.

2.1 Computational Basics 37

But of course, as Turing himself showed, they are nevertheless limited in what they
can do [14, 21], and furthermore, these statements do not by themselves show how
to organize a computer to achieve complex behavior.

The first major question is how a combination of such simple operations can
enable arbitrary complexity of behavior to emerge. We shall see below that a core
requirement is:

Modular Hierarchical Structuring of Both Hardware and Software. This enables struc-
tured top-down causation in the hierarchy, in particular allowing software patterns to control
hardware. In this way, abstract entities have causal effects in the physical universe.

This is the first key to the emergence of true complexity, and is embodied in all
current digital computers in both implementation and logical hierarchies (Sect. 2.3).
In his textbook on computing, Robert Keller writes [39]:

An abstraction is an intellectual device to simplify by eliminating factors that are irrelevant
to the key idea [...] The idea of levels of abstraction is central to managing complexity of
computer systems, both software and hardware. Such systems typically consist of thousands
to millions of very small components (words of memory, program statements, logic gates,
etc.). To design all components as a single monolith is virtually impossible intellectually.
Therefore, it is common instead to view a system as being comprised of a few interacting
components, each of which can be understood in terms of its components, and so forth, until
the most basic level is reached.

This is particularly clear in the class/object hierarchy of object oriented languages
[13].

But a further step is needed: how do we get a computer to carry out computations
that are not simply logical implications of what is in the initial data? This is a core
requirement on the road towards intelligence: how can we get them to learn? Turing
makes a very interesting observation in this regard [64]:

An interesting variant on the idea of a digital computer is a ‘digital computer with a ran-
dom element’. These have instructions involving the throwing of a die or some equivalent
electronic process; one such instruction might for instance be, ‘Throw the die and put the
resulting number into store 1000.”

While this breaks the system out of a rigidly determined cycle of deterministic
operations, by itself this won’t do the job of creating intelligent behaviour. But it
does open the way to programming computers to behave in an adaptive way. The
second key feature needed is:

Adaptive Selection. Procedures embodying adaptive selection in the manipulation of data
enable the building up of meaningful information from unstructured incoming data streams
or randomized internal variables. This is the basis of learning.

This is a kind of top-down causation that is crucial in enabling computers to carry out
processes equivalent to learning (Sect. 2.4.4), e.g., through artificial neural networks
[11] and genetic algorithms [23], and so allows local processes to flow against the
stream of decay embodied in the Second Law of Thermodynamics.

38 2 Digital Computer Systems

Associated with this is a further crucial idea, omitted in Turing’s list of operations
above (because he assumed infinite memory was available):

4. Emptying Memory. Clearing out or overwriting short term and long term mem-
ory locations so that they can be used again.

For one thing, this enables the finite memory of the computer to act as an effectively
infinite memory store, thus taming the impractical memory requirements of an infinite
tape. For another, it crucially involves the element of selecting what will be kept and
what discarded. As just mentioned, such selection processes are the key to building
up meaningful information out of a jumble of incoming data: forgetting is the crucial
counterpart of remembering! It is also where irreversibility associated with entropy
production happens in computations [43].

2.2 Modular Hierarchical Structures

Digital computers involve two orthogonal but interacting hierarchies (Sect.2.3). This
is not by chance. A major theme of this book is that, as pointed out by Simon [61]:

Genuine complexity can only emerge from networks of causation involving modular hierar-
chical structures.

Note that this principle applies to both physical and logical complex systems. Both
kinds occur in digital computers (see the next section).

Each word is important: the physical and logical hierarchies (Sect.2.3) are struc-
tured by means of carefully configured physical and logical connections [47, 62],
and each involve interacting modules at many levels [30]. The system is composed
of inter-related subsystems that have in turn their own subsystems, and so on, until
some lowest level of component is reached where the basic work is done. This struc-
ture enables a build-up of genuine complexity if appropriately formed to fulfill some
higher level function: as in biology, structure follows function. Examples are sub-
routines, procedures, objects. Each has a name, which identifies the specific entity,
and a type, which identifies the class of entities it belongs to.

I consider in turn:

e Structures: Combination and abstraction (Sect.2.2.1).

e Decomposition and modularity (Sect.2.2.2).

e Encapsulation and information-hiding (Sect.2.2.3).

e Naming, combination, and recursion (Sect.2.2.4).

e Hierarchy: Class structure and object structure (Sect.2.2.5).
e Evolution (Sect.2.2.6).

2.2 Modular Hierarchical Structures 39

2.2.1 Structures: Combination and Abstraction

In digital computer languages, as explained by Abelson and Sussman [1, p.4], struc-
tures are formed in the following way:

Every powerful language has three mechanisms for combining simple ideas to form more
complex ideas:

o Primitive Expressions. These represent the simplest entities the language is con-
cerned with.

e Means of Combination. These serve to build up compound elements from simpler
ones.

e Means of Abstraction. These serve to name compound elements and are manip-
ulated as units.

A key element here is naming compound entities, indexing them, and having rules
about how they can interact:

e Names. Any named entity is identified as a potentially causally effective agent,
whether it is physical or abstract. Indeed, any entity that is causally effective in a
programme has to be given a name so that it can be referred to (Sect.2.2.4). The
name must have attributes identifying whether they refer to objects or processes
or something else.

e Indexes/Pointers. It then also has to have an index or pointer that shows where
the relevant records are stored in memory.

e Logical Rules. Abstract rules can then be applied to sets of named entities, these
rules embodying the logic of their interactions, and which processes can interact
with each object.

e Action Rules. Action rules can be signified by the named entity (e.g., print
text.pdf).

In the end these are the abstract technologies that enable computation to function.
They are causally effective because they result in the computer being able to operate.
The foundational key is the ability to give names to recognisable entities—generic
(hence necessarily abstract) and specific (whether physical or abstract).

Emergence. Such combinations of parts lead to the higher level functionality of
a complex logical system. The behaviour of the whole is greater than the sum of
its parts, and cannot even be described in terms of the language that applies to the
parts. This is the phenomenon of emergent order: the higher levels exhibit kinds of
behaviour that are more complex than those the lower level parts are capable of.

In the implementation hierarchy, much the same applies. Emergence of layers of
structure and behaviour, one upon the other, lead to hierarchical structuring and this
enables a build-up of higher level entities that can be characterised by abstract prop-
erties. Not only is the structure hierarchic, but the levels of this hierarchy represent
different levels of abstraction, each built upon the other, and each understandable by
itself (and each characterised by a different phenomenology).

40 2 Digital Computer Systems

Phenomenology. All parts at the same level of abstraction interact in a well-defined
way, whence they have a causal reality at their own level, and each is represented
in a different language describing and characterising the causal patterns at work at
that level [62], which may entail their own logical hierarchies. The vocabulary to
describe each of the levels in each hierarchy is different at each level, because the
nature of the relevant entities at each level is quite different from that at the levels
above and below.

2.2.2 Decomposition and Modularity

A hierarchy represents a decomposition of the problem into constituent parts and
processes to handle those constituent parts, each requiring less data and processing,
and more restricted operations than the problem as a whole [12]. The success of hier-
archical structuring depends on (i) implementation of modules which handle these
lower-level processes, such as the CPU and memory circuits and interconnections
between them, (ii) integration of these modules into a higher-level structure, viz.,
the computer as a whole. The idea is to encapsulate functions in modular units with
information-hiding and abstraction, so that named entities can be regarded as func-
tional wholes whose internal functioning is hidden from the outside view. I closely
follow Booch’s excellent exposition of object-oriented analysis [12], together with
Beer’s exposition of the principles of decentralized control [7].

Modularity [12, pp. 12—-13, 54-59]. The technique of mastering complexity in com-
puter systems and in life is to decompose the problem into smaller and smaller parts,
each of which we may then refine independently [12, p. 16]. The basic principle is

Divide and Conquer. Divide a complex overall task into many simpler subtasks, each
requiring lesser data and computational power than the whole; then integrate the results so
as to attain higher level cohesive behaviour, thus creating complex outcomes.

By organising the problem into smaller parts, we break the informational bottleneck
on the amount of information that has to be received, processed, and remembered at
each step; and this also allows specialisation of operation. This implies the creation
of a set of specialised modules to handle the smaller problems that together com-
prise the whole: in computer systems these will be subroutines, which Turing called
‘subsidiary tables’.

According to Abelson and Sussman, one breaks up a complex problem into sub-
problems, each accomplished by a separate procedure. The program used can be
viewed as a cluster of procedures that mirror the decomposition of the problem into
subproblems [1, p.26]:

The importance of this decomposition strategy is not simply that one is dividing the program
into parts. After all, one could take any large program and divide it into parts—the first ten
lines, the next ten lines, and so on. Rather it is crucial that each procedure accomplishes an
identifiable task that can be used as a module in defining other procedures.

2.2 Modular Hierarchical Structures 41

They emphasize that when developing a program like this, we are not initially con-
cerned with how the procedure computes its result, only with the fact that it does
so. The details of how this is done can be held back until later on. Thus one actu-
ally deals with a procedural abstraction. At this level, any procedure that computes
the desired output will do. This is the principle of equivalence classes, showing that
top-down causation is taking place (see Sect. 2.5). Intra-component linkages are gen-
erally stronger than inter-component linkages. This fact has the effect of separating
the high frequency dynamics of the components, involving their internal structure,
from the low-frequency dynamics, involving interactions amongst components [61]
(and it is for this reason that we can sensibly identify the components).
A further basic principle is that this allows one to:

Adapt and Re-Use [61]. In building complex systems from simple ones, or improving an
already complex system, one can re-use the same modular components in new combinations,
or substitute new, more efficient components, with the same functionality, for old ones.

Thus we can benefit from a library of tried and trusted components. Complex struc-
tures are made of modular units with abstraction, encapsulation, and inheritance, and
this enables the modification of modules and re-use for other purposes (Sect.2.2.6).

2.2.3 Encapsulation and Information-Hiding

Named objects carry with them expectations of behaviour that identify abstrac-
tions: specific essential characteristics of the object (ignoring other properties as
inessential).

Abstraction and Labeling [12, pp.20,41-48]. Unable to master the entirety of a
complex object, we choose to ignore its inessential details, dealing instead with
a generalised idealised model of the object. An abstraction denotes the essential
characteristics of an object that distinguishes it from all other kinds of objects. An
abstraction focuses on the outside view of the object, and so serves to separate
its essential behaviour from its implementation. It emphasises some of the system’s
details or properties, while suppressing others. A key feature is that compound objects
can be named and treated as units (Sect.2.2.4). This leads to the power of abstract
symbolism and symbolic computation.

Encapsulation and Information-Hiding [12, pp.49-54] and [57, pp. 233-234,476—
483]. In a hierarchy, through encapsulation, objects at one level of abstraction are
shielded from implementation details of lower levels of abstraction. Consumers of
services only specify what is to be done, leaving it to the object to decide how to
do it: “No part of any complex system should depend on the internal details of any
other part.” Encapsulation occurs when the internal workings are hidden from the
outside, so its procedures can be treated as black-box abstractions. To embody this,
each class of object must have two parts: an inferface (its outside view, encompass-
ing an abstraction of the common behaviour of all instances of the class of objects)

42 2 Digital Computer Systems

and an implementation (the internal representations and mechanisms that achieve the
desired behaviour). This is formalised in declarations of public and private variables.
Efficiency and usability introduce the aim of reducing the number of variables and
names that are visible at the interface. This involves information-hiding, correspond-
ing to coarse-graining in physics. The accompanying loss of detailed information is
the essential source of entropy in the case of physics.

2.2.4 Naming, Combination, and Recursion

When names can be allocated to collections of names, this allows recursion, which
is how real complexity gets built up (languages explicitly allow it). Indeed this is the
power of symbolic representation: the name is a symbol for the thing it represents;
and one can give names to patterns of names.

Naming. The key feature in setting up modules is first to identify them as entities by
naming them: both classes, with generic features, and particular objects, with specific
features, and then to refer to them by that name (an identifier) [57, pp. 45-46,78-80].
Associated with the name is a set of attributes that characterise the object:

e A state embodied in internal variables of specific types (the arguments).

e A set of characteristic behaviours that characterise how it can interact with other
objects (the methods). These are the law-like rules of behaviour that outline the
nature of the object and create ordered outcomes.

e Anindexed storage location, allowing programs to access this information (involv-
ing pointers).

The names are referenced in an index, enabling one to locate the physical location
of the items referenced by the name, and pointers enable storage in non-contiguous
memory locations. Each segment of a stored item must have a clear start address and
end address, as well as links to any further parts of the same stored item or memory.
So objects have a state, behaviour, and identity [12, pp. 81-97].

Typing and Links. Each object has a type, that is, a precise characterisation of its
structural or behavioural properties shared by a collection of entities [12, pp. 65-72].
This includes the scope of its name, i.e., whether it has global validity, or is only valid
in some local context. Its possible interactions with other objects are characterised
by links between objects [12, pp.98—102]. Object diagrams show the existence of
objects and their relationships in the logical design of a system [12, pp.208-219].

Coding and Information. From a functional viewpoint, one is involved in coding a
message from a sender to a receiver. Use of a code involves two pattern recognition
mechanisms: one for translating an incoming message into the code, followed by
some kind of transformation of the coded message, and then one further pattern
recognition system for decoding the output message into a usable form that will
have the desired effect. From the viewpoint of the information involved, typing also

2.2 Modular Hierarchical Structures 43

includes the rules an object has to obey, that is, the syntax of its allowed usage. The
further aspects of a symbolic system are semantics (the meaning they embody) and
pragmatics (the effect they have within the context of their usage). These aspects
relate to the logical and physical effects of symbolic usage.

Collective Names. One can give a name to any pattern of symbols, including a
collection of names. This is what enables one to create classification hierarchies and
complex sentence structures, because one can refer to complex entities through a
single name. This is also a way of reducing complexity: one does not have to deal
with the details, but just with aggregate behaviour. The minimal program to solve
some problem is reduced from thousands of lines of code to ‘run prog.exe’. The
algorithmic complexity is thereby dramatically reduced.

Combination. Given names, they can be combined in grammatical structures indi-
cating relationships between named entities via named operations. Collections of
names can be treated as single entities (phrases function as effective words). This is
the key property that enables construction of hierarchical structures, i.e., structures
made up of parts that are themselves made up of parts, and so on. This is a core
feature of natural language [63].

Recursion. This kind of structure enables one to repeatedly call up the same named
entity, nesting structures inside each other. In functional terms, the essential require-
ment is an operation for combining data objects such that the results of the operation
can themselves be combined using the same operation. This closure property, for
example, underlies the importance of the list structure as a representational tool in
LISP [1, p.98]. When the data object is itself an operation, this enables recursion,
that is, an operation or evaluative rule that includes as one of its steps the need to
invoke the rule itself [1, pp.9,31-42].

2.2.5 Hierarchy: Class Structure and Object Structure

The power of a class hierarchy comes from the fact that it shows the relationships
between similar kinds of objects, i.e., which are generalizations of others, and which
are specializations. It allows one to relate them by inheritance, a feature which often
characterises the nature of the hierarchical structure (see [12, pp.59-65] and [57,
pp-453-476,484-494]). Thus we don’t have to memorize separately all the properties
of each kind of object or action: we can relate them to similar kinds of objects, remem-
bering the class structure as a whole, and then the similarities and differences of spe-
cific members of the class (animal, mammal, dog, Dachshund, Fred). One then uses
this to relate the properties of specific instances to the generic properties of a class.

To accommodate this in an object-oriented approach, objects occur in hierarchical
functional classes, with inheritance of properties modified by specialization and
variation. This class structure is related to the object structure because each object
in the object structure is a specific instance of some class [12, pp. 14—15]. Together

44 2 Digital Computer Systems

these form the logical model. In a list-based language, one has a hierarchy of types
[1, pp. 197-199]. In both cases, crosslinks may be allowed (reflecting the fact that
various hierarchies are in operation, as emphasized above).

A class is a set of objects that share a common structure and a common behaviour
[12, pp. 103—106]. The structures chosen to define a class depend on the classification
scheme used: they embody a view of the world [12, pp. 145-168]. A single object is
an instance of a class. Classes are objects that can themselves be manipulated as an
entity. A metaclass is a class whose instances are themselves classes [12, pp. 133—
134], so we can have a hierarchy of classes, and class families [12, pp.337-340].
Class diagrams show the existence of classes and their relationships in a logical
view of a system [12, pp. 176-196], and these relationships are formalised in class
specifications [12, pp. 196—-199], stating their name, responsibilities, attributes, oper-
ations, and constraints. State transition diagrams show the state space of a class, the
events that cause a state change, and the actions that result from such a change [12,
pp- 199-208]. Module diagrams show the allocations of classes and objects to mod-
ules in the physical design of the system [12, pp.219-223]. Process diagrams show
the allocation of processes to processors in the physical design of the system [12,
pp.223-226].

The dual hierarchical relations are aggregation, denoting which whole is made
of which parts [12, pp. 128-130], and membership, denoting which parts belong to
which whole. Aggregation may or may not imply physical containment: it may just
imply a conceptual whole/part relationship [12, pp. 102-103].

Inheritance [12, pp. 59-62,107-128] and [57, pp. 453-476]. This is the most impor-
tant feature of a classification hierarchy. It allows an object class, such as a set of
modules, to inherit all the properties of its superclass, and to add further properties to
them (it is a ‘is a’ hierarchy). This allows similarities to be described in one central
place and then applied to all the objects in the class and in subclasses. It makes explicit
the nature of the hierarchy of objects and classes in a system, and implements gen-
eralisation/specialisation of features (the superclass represents generalised abstrac-
tions, and subclasses represent specializations in which variables and behaviours are
added, modified, or even hidden). Inheritance with exceptions enables us to under-
stand something as a modification of something already familiar, saves unnecessary
repetition of descriptions or properties, and allows nonmonotonic reasoning [48].

Patterns. Particular types of structural patterns recur and are worth identifying
and codifying in structural classes. They include lists [68, pp.56-75], stacks [68,
pp- 75-88], queues [68, pp.88-98] and priority queues (heaps) [68, pp. 183-224],
trees [68, pp. 99-153], graphs [68, pp. 291-352], and relational databases. Similarly,
particular kinds of operations often occur and are worth identifying and naming.
These include date/time operations and filters, i.e., input, process, and output trans-
formations [12, pp.331-332], pattern matching, i.e., operations for searching for
structured sequences within sequences [12, pp.370-372], searching, i.e., opera-
tions for searching for items within structures, sorting, i.e., operations for ordering
structures, utilities, i.e., common composite operations building on more primitive
operations, e.g., iteration [12, pp.355-360] and statistical analysis.

2.2 Modular Hierarchical Structures 45

The point here is that each of these structures and operations are metaclasses
that can be identified and given their own name. They then exist, in virtue of this
recognition, as entities in their own right that can from now on be accorded an
ontological status as effective entities. They are abstract patterns that are causally
effective. They are multiply realisable at a detailed level, and hence show some form
of top-down causation or influence.

At ahigher level, structural patterns that often occur in modular hierarchical struc-
tures can be encoded in design patterns that name, explain, and evaluate important
recurring designs in object-oriented systems [31, pp.2-3]. They are:

e Creational Patterns. Abstract Factory, Builder, Factory Method, Prototype, and
Singleton.

e Structural Patterns. Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
and Proxy.

e Behavioural Patterns. Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template Method, and Visitor.

These are discussed in depth in [31]. They are based on foundation classes List,
Iterator, Listlterator, Point, and Rectangle, with operations for construction, destruc-
tion, initialisation, and assignment of lists, and for accessing, adding, and removing
elements of a list.

2.2.6 Evolution

Modularity underlies the possibility of successful development of truly complex
systems [61]. One can adapt working modules for different purposes, without hav-
ing to start from scratch. Selection of the most successful small variations of such
classes enables incremental increase of complexity without the whole system crash-
ing. Booch quotes Gall as follows [12, p. 13]:

A complex system that works is inevitably found to have evolved from a simple system that
worked [...] A complex system designed from scratch never works, and cannot be patched
up to make it work. You have to start over, beginning with a simple system.

This is an example of adaptive selection, a crucial form of top-down causation, which
is the topic of the next section.

2.3 Orthogonal Modular Hierarchical Structures

Digital computers are hierarchically structured modular systems on both the hardware
and software sides. Actually, there are two orthogonal kinds of hierarchies. I discuss:

e The two kinds of hierarchies (Sect.2.3.1).
e The implementation (vertical) hierarchies (Sect.2.3.2).

46 2 Digital Computer Systems

e The logical (horizontal) hierarchies (Sect.2.3.3).
e The relation between the two hierarchies (Sect.2.3.4).
e Causality in the hierarchies (Sect.2.3.5).

2.3.1 The Two Kinds of Hierarchies

Firstly there are implementation hierarchies [62], which one might call vertical hier-
archies, whereby the logical operations of the computer are implemented. For exam-
ple, digital computers are constructed of integrated circuits containing a Central
Processing Unit (CPU) which in turn contains an Arithmetic Logic Unit (ALU) made
of many interconnected transistors, diodes, resistors, and capacitors, each comprised
of an atomic lattice infused with electrons. The higher level physical structures are
emergent entities, made up of the interconnected lower level components, but each
describable and functioning effectively at its own emergent level. Related to these
physical components is a software hierarchy: a tower of virtual machines that imple-
ment higher level programming languages at each virtual machine level, on the basis
of the underlying machine code. An example is the Java Virtual Machine (JVM).
Each of these virtual machines is emergent from the one on the next lower level.

Then there are the logical hierarchies [12], which one might call horizontal hier-
archies, and which exist at each higher level of the virtual machine hierarchy. High
level programs contain subroutines comprised of procedures set out in program lines
which relate the relevant individual operations and variables. They thus represent a
hierarchical structure of operations. These programs thereby also implement hierar-
chical data structures, e.g., a word-processer may edit a book consisting of chapters,
paragraphs, sentences, phrases, words, and letters represented as such in a word-
processing program. Both the logical and the data structures cascade down the imple-
mentation hierarchy through interpreters and compilers, which translate them into
combinations of lower level operations and data elements [3, 6].

At the lowest abstract implementation level, both the data and programs will
be represented as strings of Os and 1s, realised as structured electronic states in
the underlying physical level. A key feature is that many different implementation
hierarchies can be used to realise the same logical hierarchy. The computational
process itself is indifferent as to how it is realised at the physical level. This is a core
aspect of top-down causation (Sect. 2.5).

2.3.2 The Implementation (Vertical) Hierarchies

As regards the implementation hierarchy [62], it has hardware and software aspects.
First there is the hardware hierarchy shown in Table2.1. It is modular because a
network of many similar identifiable lower level elements such as logic circuits and
transistors underlies each of the higher level structures.

2.3 Orthogonal Modular Hierarchical Structures 47

Tgble 21 ‘The, h~ardware Level 7 Global network
hierarchy for digital T: 1 X
computers. The computer Leve Local networ
scientist takes level 1 as the Level 5 Computer
base level. However, it is Level 4 Motherboard, memory banks
basesi on Fhe underlylr}g Level 3 CPU, memory circuits
physics hierarchy, which -
enables its functioning. Level 2 ALU, primary memory, bus
Layers below level O can be Level 1 Logic circuits, registers
taken for granted by a Level 0 Transistors, resistors, capacitors
computer engineer: it is the Level —1 Atomic phvsics
base level he needs to 1€ prysic:
consider Level —2 Nuclear physics

Level —3 Particle physics

Level —4 Fundamental theory

The lowest level, i.e., the level where the real physical work is done, is the physical
base level (level —4), which is some form of fundamental physics, possibly related
to quantum gravity. But we do not know what the relevant physics is, so we cannot
reduce the higher level actions to lowest level actions inter alia, because the lowest
level is unknown. Of necessity, for practical purposes, we have to take one of the
emergent effective levels of physical operation as the base level, assuming it to exist
and be real [25]. For computer scientists, this is level 1 (the gate level); for computer
engineers, it is level O (the transistor and solid-state physics level) which can be
regarded as the level where the physical work is done (see Sect.2.7.6).!

However, hardware by itself will do nothing: it needs software in order to run. The
software hierarchy is shown in Table2.2. There is a tight logical structure at each
level, governed by a set of syntactic rules for the language used at that level, and
with an associated set of variables defined for that language, with typing and scoping
rules. Each higher level language is emergent from the next lower level language
through the way the higher level variables and operations are defined in terms of the
lower level variables and operations. The magic that makes this happen is compilers
and interpreters [3, 6], the foundation of truly complex functioning in computers.

The relation between level 0 and level 1 is where an appropriate physical repre-
sentation of variables (in digital computers, electronic states) gives rise to a set of
simple logical operations on those variables [47].

IFor a hardcore reductionist, it is illegitimate to regard these levels as real: they are epiphenom-
ena arising from the underlying physics. This viewpoint provides no useful understanding of the
causation in action.

48

Table 2.2 The software
hierarchy for digital
computers, based on the
physics of the transistors at
the device level. From
Tanenbaum [62]

2 Digital Computer Systems

Level 7 Applications Data and operations
programs

Level 6 Problem-oriented Classes, objects
language level

Level 5 Assembly language | Symbolic names
level

Level 4 Operating system Virtual memory,
machine level paging

Level 3 Instruction set Machine language
architecture level

Level 2 Microarchitecture Microprograms
level

Level 1 Digital logic level Gates, registers

Level 0 Device level Transistors,

connectors

Principle C1. Information is not causally effective unless it has a physical representation,
and some handles whereby this representation can (i) be inserted, altered, or deleted, and (ii)
be read. The relation between levels 0 and 1 is where this happens.

Virtual Machines. A key point then is that Table2.2 represents virtual machines
at every level, except the lowest (level 0). Each of them runs on top of the next
lower level virtual machine [62] (see Table 2.3). The lowest level is shown as level
0, which is of a completely different character to the others: it is physically based.
The relation between level 0 and level 1 is where the transition between physical
and abstract causation takes place: virtual machines (level 1 up) are based on real
physical entities at the bottom (level 0).

Principle C2. All the higher levels in the software hierarchy are virtual machines. They are

not physical systems.

Table 2.3 A multilevel
machine. From Tanenbaum
[62, p.4]

Level n

Level 3

Level 2

Level 1

Level 0

Virtual machine
Mn

Virtual machine

M3

Virtual machine

M2

Virtual machine

Ml

Actual computer
Mo

Machine language
Ln

Machine language
L3
Machine language
L2
Machine language
L1
Machine language
Lo

2.3 Orthogonal Modular Hierarchical Structures 49

Table 2.4 The logical hierarchy that determines which operations happen when

Level 7 | Design patterns Data structures Methods of argumentation
Level 6 | Programs Classes, methods Overall purpose

Level 5 | Subroutines Objects Steps to overall purpose
Level 4 | Algorithms Data records Implementation methods
Level 3 | Program lines Data items Implementation units
Level 2 | Operations Variables Entities interacting

Level 1 | Representation atoms Entity components Logical base level

2.3.3 The Logical (Horizontal) Hierarchies

The logic hierarchy (Table 2.4) structures what happens at each level of the software
hierarchy, in any specific class of applications [12]. Associated with it is a data
hierarchy as shown here, which gives the specific data related to a specific class of
applications.

The key thing here is the algorithms that act on the data, specifying precisely what
operation is to be performed. As explained by Turing (see the quotes in Sect.2.1),
it is these algorithms that shape the computation. What also matters then is the
order in which they are implemented, and on what specific data, something which is
determined by the operational context of the program as a whole, which implements
the computational logic used to tackle the problem of interest.

This generic logical structure enables the logic of any specific application
domain to be represented by specific variables and associated operations. Thus one
might be engaged in word-processing, numerical calculations, digital image manip-
ulation, digital sound operations, computer-aided design, and so on. A specific high
level language will enable modeling of each such domain, representing the hierarchi-
cal relations of its specific structure and appropriate operations on them. For example,
in the case of word-processing, one might have the data structure in Table2.5.

The word-processor program enables insertion, edition, deletion, copying, and
pasting at any level of the data hierarchy, thus enabling manipulation of the parts
(words), their components (letters), and their integration into higher order entities

Table 2.5 The hierarchical Book Specific purpose
structure of specific -
applications Chapters Major themes
Paragraphs Subthemes
Sentences Logical units
Phrases Logical subunits
Words Representational variables
Phonemes Variable components
Letters Logical atoms
Binary code Digital representation

50 2 Digital Computer Systems

such as paragraphs and chapters. It also allows detailed formatting of the resulting
text. Because of the power of language, this will enable representation of anything
humans can think about, and the associated logic of that domain (science, art, phi-
losophy, whatever).

Application Domain Logic. Word processors, music programs, image manipula-
tion programs and so on handle general classes of data in an appropriate way: all
that is required is data entry, storage, recall, editing, and deletion, with appropriate
application programs and hardware to output the result. But there are many applica-
tion domains with their own specific logic: mathematics, engineering, environmental
issues, ecological modelling, computer-aided design, statistical data analysis, and so
on. Examples chosen at random can be found in [15, 55].

These are logical hierarchies which apply generically to a class of applications.
Finally, there is the systems hierarchy (Table2.6) showing how these hierarchies
relate to each other whenever an application program is utilised in a specific oper-
ational context. This is where systems analysis [9, 12] comes in: structuring the
hardware, programmes, and data to suitably model some specific real world problem
that needs to be solved. Design patterns [31] characterize the high level possibility
structures. Thus the program structures and data model the logic of many application
areas. A key issue is where these multifold logical structures come from. I consider
this in Sect. 2.7.5.

2.3.4 The Relation Between the Two Hierarchies

How do the implementation and logical hierarchies relate to each other? When we
load and then run a high level program, these input operations take place at the
uppermost level of the implementation hierarchy (Table?2.2), representing the prob-
lem logic at that level. Compilers or interpreters [3, 6, 67] then cause all the lower
implementation levels to spring into action in accord with the logic and data that
has been loaded at the top level. When this occurs, the same hierarchical logical
structure is represented at each of the levels of the implementation hierarchy, written
in a different language at each level, using quite different kinds of commands and
data representation. The operating system orchestrates the way this happens [60].

Table 2.6 The systems

: User level Specific purpose Goal
hierarchy: the flow of .
. . Logical level Problem structure U
causation when tackling a
specific problem. It is driven Programme level ~ Particular programmes U
by the nature of the user’s Data level Specific data U
problem, which gets Physics level Hardware Electrons

translated into a computer
application analysing specific
data according to the internal
logic of the problem

2.3 Orthogonal Modular Hierarchical Structures 51

Thus the logical hierarchy of Table?2.4, as related to the specific problem at hand,
recurs at each of the implementation levels of Table2.2 in different forms. At the
lower levels they are based on a set of simple logical operations, and it is very difficult
to see the higher level logic which is shaping what is happening. For example:

e A word processor has high-level commands for insert, delete, copy, paste, italic,
bold, change font, and so on. These are the user interface commands.

e An underlying Java Virtual Machine has instructions for the following groups of
tasks: load and store, arithmetic, type conversion, object creation and manipula-
tion, operand stack management (push/pop), control transfer (branching), method
invocation and return, throwing exceptions, and monitor-based concurrency. The
word-processing requirements are implemented in terms of these operations.

e These are implemented in the assembly language by commands such as MOV AL,
61h [Load AL with 97 decimal (61 hex)].

e These are implemented at the machine code level by commands such as 000000
00001 00010 00110 00000 100000 [add the contents of registers 1 and 2 and place
the result in register 6].

When the machine code is run, it implements the commands at the binary level, and
that induces more complex higher level commands at each higher level, thus causing
the desired emergent behaviour. Why does it happen that the desired behaviour
emerges? Because the system has been set up to ensure that this will be so!

Each higher level behaviour emerges from the lower level ones. But what ulti-
mately determines what happens? The higher levels drive the lower levels. First,
compilers or interpreters [3, 6] translate the higher level languages to the lower
level languages. Then the lower levels implement the compiled program in a purely
mechanistic bottom-up way and the desired higher level behaviour emerges from
the combination of lower level operations. But those lower level states would not be
there if they had not previously been determined top-down by the process of compil-
ing a set of algorithms written in a higher level programming language. Their logic
determines what happens.

Principle C3. The software drives the hardware. What specific physical interactions take

place at the hardware level is controlled by specific data entered, in accord with the logic of
the relevant algorithms.

It is this logical structure that is the key causal element in the sense of determining
what happens next at each instant. Physical interactions in the computer are con-
trolled by the logic of the algorithms. For example one might have an accounting
system, in which case the logic of accounting systems determines what happens, or
one might be modeling a chemical engineering system, in which case the logic of
chemical interactions drives the system. At the lower levels, the logic of operations
such as copying, deleting, and sorting determines what happens. Algorithms such as
Quicksort replace physics equations as the driving logic.

The specific physical realisation is what enables this to work, but a different
realisation could have been used. The essential nature of the program driving the
computer is the equivalence class of all such functionally equivalent realisations (see
Sect.2.5).

52 2 Digital Computer Systems

2.3.5 Causality in the Hierarchies

Software determines what specific currents flow where and when in the hardware
circuits, implementing the specific abstract logic that applies to the issue at hand.
This logic is coded in a hierarchical fashion through the program and its subroutines
or procedures, which embody its modular structure (Sect.2.2).

The underlying abstract high level logic, for example, that of data compression
or numerical analysis or pattern recognition, shapes the algorithms used. This deter-
mines what happens at the lower levels. This is clearly top-down causation from
the higher to the lower levels. It will be explored further in Sect.2.4. The specific
outcome depends on the data supplied, which has to be hierarchically structured as
required by the applications software.

Software S is not a physical thing, neither is data. They are realised, or instantiated,
as energetic states in computer memory. The essence of software does not reside in
their physical nature: it is the patterns of states, instantiated by electrons being in
particular places at a particular time, that matters. These are not the same as those
electrons themselves (just as a story is not the same as the paper on which it is
written). Given the set of connections in the CPU, the pattern of electrons represents
the logical structure of the program.

Programs and data together determine what specific electrical operations take
place in the transistors and other physical components (level 0) in the chosen hard-
ware, which is the context within which the software is causally effective. Thus the
conclusion is:

Causal Effectiveness of Non-Physical Entities. In digital computers, non-physical entities
control the behaviour of physical systems.

This will be explored further in Sects.2.5 and 2.7.

2.4 Bottom-Up and Top-Down Causation

True complexity emerges through the interplay of bottom-up and top-down effects
in the hierarchies of structure and causation [26, 27].

Bottom-Up Action. A fundamental feature of the structural hierarchy in the physical
world is bottom-up action: what happens at each higher level is based on causal
functioning at the level below, so what happens at the highest level is based on
what happens at the bottommost level. This is the profound basis for reductionist
world views. The successive levels of order entail chemistry being based on physics,
material science on both physics and chemistry, geology on material science, and so
on. In the case of computers, such bottom-up action is the basis of the emergence
of high level languages and applications from the underlying physical and logical
components. However, this only takes place once the scene has been set by processes
that design the structure and so channel the lower level interactions.

2.4 Bottom-Up and Top-Down Causation 53

Top-Down Action. The feature complementary to bottom-up action is top-down
action. This occurs when the higher levels of the hierarchy direct what happens at the
lower levels in a coordinated way [28]. For example, pressing a computer key leads
to numerous electrons systematically flowing in specific gates and so illuminating
specific photodiodes in a screen.

Generically, specifying the upper state (for example, by pressing a computer
key) results in some lower level state that realises this higher level state, and then
consequent lower level dynamics ensues to produce a new lower level state in a way
that depends on the boundary conditions and structure of the system. The lower level
action would be different if the higher level state were different. It is both convenient
and causally illuminating to call this top-down action, and to represent it explicitly
as an aspect of physical causation. This emphasizes how the lower level changes are
constrained and guided by structures that are only meaningful in terms of a higher
level description.

There are five different types of top-down causation (TD1-TD5) in the logical
hierarchies, with differing characteristics. The following subsections consider them
in turn. I look successively at:

The combination of bottom-up and top-down action (Sect.2.4.1).
TD1: Deterministic top-down processes (Sect.2.4.2).

TD2: Non-adaptive feedback control systems (Sect.2.4.3).

TD3: Adaptive selection (Sect.2.4.4).

TD4: Feedback control with adaptive goals (Sect.2.4.5).

TDS5: Adaptive selection of adaptive goals (Sect.2.4.6).

Goals and learning in relation to these kinds of causation (Sect.2.4.7).

2.4.1 The Combination of Bottom-Up and Top-Down Action

In the implementation hierarchy, algorithmic processes in the bottom layers enable
what happens, through suitably structured electronic interactions at the machine
level combining to create the emergent stack of virtual machines (Table2.3). But
top-down control determines what happens according to the logic of the high level
programs that happen to be running (music programs, image manipulation, numerical
analysis, pattern recognition, or whatever). The mechanisms enabling this to happen
are compilers and interpreters, as explained in Sect. 2.3.4: they transfer the application
logic down from the higher to the lower implementation levels, which are all virtual
machines except for the bottommost level (Table2.2). At that level, this logic is
represented as patterns of electronic excitations.

This combination of bottom-up and top-down actions enables complex higher
level behaviour to emerge from simpler lower level processes, which are orchestrated
from above by entering suitable data at the keyboard. That action directly alters
specific memory registers, which either contain data for the program, or instructions
as to what should happen next, as in Turing’s description (see Sect.2.1). Which it is

54 2 Digital Computer Systems

Table 2.7 The hierarchy in Level 7 | Application | Message, HTTP/ SMTP /FTP
data communications

Level 6 | Presentation | Data compression/encryption

Level 5 Session Data delimitation, synchronisation

Level 4 | Transport Segments, TCP

Level 3 | Network Datagrams, IP

Level 2 | Link Frames, Ethernet/WiFi/PPP

Level 1 | Physical Individual bits, protocols
Table 2.8 Bottom-up and Source Destination

top-down action in the

hierarchy of data Level 7 Application =5 = =2 = Application

communications Level 6 |} Presentation 1 Presentation
Level 5 |} Session 1+ Session
Level 4 | Transport 1t Transport
Level 3 |} Network Routers 1 Network
Level 2 |} Link Link layer switch 1 Link

Level 1 Physical = = = Cable/wireless = Physical

depends on the context of the physical system and the pattern of excitations in all
the other gates that embodies the system logic.

Emergence of Same-Level Action. The emergence of same-level action through
this combination of bottom-up and top-down effects is particularly clear in the case
of computer networking [40]. The internet protocol stack/OSI model is shown in
Table?2.7 (levels 5 and 6 are in the OSI model). Sending a message from the source
to the receiver, the process is top-down at the source: the message gets sent down
from level 7 to level 1, the representation being transformed on the way down from
alphabetic at level 7 to binary at level 1, and also split into packets with headers and
tailers. It is sent in this form to the receiver.

A reverse bottom-up process takes place at the destination: the binary digital level
1 form gets transformed to a properly formatted output form at level 7. Encapsulation
takes place: extra information is added at each level on the way down, and stripped
on the way up [40]. Thus the result (Table?2.8) is effective same-level action: the
message sent by the source is received in the same form at the destination. This is
a good model of how same-level action emerges in general from a combination of
top-down and bottom-up action.

2.4.2 TDI: Deterministic Top-Down Processes

In deterministic processes in a computer, the outcome is uniquely determined by
initial and structural conditions. Data must be chosen to respect the logical conditions
specifying legal data and item length limits, but it can vary arbitrarily within those

2.4 Bottom-Up and Top-Down Causation 55

Table 2.9 The basic features

o N Context Date typing Structural conditions
of deterministic causation in a Constraint.
digital computer. Given the onstraints » ¢ 4)
context (structural conditions Data Initial data Computation
and data constraints), the Closed system Y U
initial data leads to a unique Outcome Final state (deterministic)
final state if the calculation
halts

constraints. In fact, it varies between different runs, but is fixed for each run, and it
cannot change once the run has started. That is why the dynamics is deterministic:
the outcome is fixed by the input, with no uncertainty, providing the calculation halts.
This is top-down causation, because the outcome depends on the context: alternative
higher level states (structuring or input data) lead to different outcomes (Table 2.9).

Such computations simulate many different aspects of reality, e.g., predictions of
stock control in a shop or factory, nucleosynthesis in stars, aircraft paths, weather pat-
terns, future activity in the stock exchange. Initial data plus the algorithm determines
the outcome at each time step 7,41 = #; + At : for a system of variables y; (¢),

yiltiz1) = fi(n @), ... yn (@), Af) (2.1)

there is no uncertainty in the model. But there are rounding errors affecting the
outcome if it involves continuous variables, depending on the size of the step At.
The stability of the outcome depends on whether the system modelled is stable or
chaotic: attractors stabilize outcomes, strange attractors destabilize. In simulating
real world systems such as stock in a shop, an aircraft in flight, or the weather, one
can make the model more accurate by updating the data on an ongoing basis. Then
the outcome is no longer a unique outcome of the initial data. This is the route to
feedback control (TD?2), discussed below (Table 2.10).

Random Initial Data. An interesting twist is to add in a random number generator
to vary initial data. One uses a random seed to initialize the generator. This is a new
number, unrelated to the problem domain, e.g., the time of the start of the program,
or data from the weather or the atmosphere. It is chosen separately for each run and
is then fixed for that run. This enables Monte Carlo simulations by choosing a whole
series of runs where the seed is varied randomly but the rest of the data is fixed.
This can simulate a set of objects with varying unknown properties. Each run is
deterministic, but the overall run is not. However, it shows statistical trends, which
are then themselves deterministic at a higher level. These are emergent properties of

Table 2.10 Randomness and

-) o Statistical description Statistical laws Deterministic
determinacy in statistical C .
investigation T oarse grain ft
Ensemble Many cases Random
T Repeat with variation)

Individual case Dynamics Deterministic

56 2 Digital Computer Systems

an ensemble of individual lower level systems. But in the bigger scheme of things,
this is still deterministic: the random number generator is not random if we take into
account causal processes in the environment that determine the seed.

Indeterministic Processes. There is, however, the possibility of introducing genuine
randomness into algorithmic computational systems. Here one uses quantum uncer-
tainty to generate the seed: detection of radiation resulting from radioactive decay
of atoms is used to generate a random number.> Then it is truly random: there is no
cause for its value, provided that standard quantum theory is correct (see Sect.6.1).
The specific result of each run is not predictable from the initial data, although it
must lie in the possibility space set by the algorithms. Thus it is algorithmic, but not
deterministic: it is not mechanistic in the classical sense.

2.4.3 TD2: Non-adaptive Feedback Control Systems

By contrast, goals are the essence of feedback control systems. Non-adaptive control
systems compare the actual present state of the system with a desired goal and feed
information back to a controller to correct the system state (see Table 2.11). This is the
essence of cybernetics: feedback control corrects any error in the system state (i.e.,
any deviation from the desired goal) by observation and measurement, continually
using new data to keep it on track.

In contrast to the case just discussed (TD1), the initial data is irrelevant here. It is
the full set of goals g, that determine the outcome, through the differences Ay, (t;)
between the goals and the actual values. Instead of (2.1), we have

yiltiv1) = fi(Ayi(@), ..., Ayn (), At) . Ay(t) = yu () —gn . (22)

Examples are thermostats, an elevator taking one to the desired floor in a building,
speed controllers in engines, fully automated electric trains, and so on. In many engi-
neering applications, there will be computer control systems that will implement this
logic of deciding what to do next on the basis of the current system state, embodied
at the microscale in WHILE and IF THEN loops [14, p.29].

Table 2.11 The basic

feat f a feedback control Controller < Correction signal
eatures of a feedback contro . .
system. The goals lead to a Noise = Action | Feedback 1y

specific final state via State & Comparator < Goal
feedback of an error signal to

an actuator. The initial state

of the system is irrelevant to

its final outcome, provided

the system parameters are not

exceeded

2The Hotbits random number generator uses this technique: see http://www.fourmilab.ch/hotbits/.

http://dx.doi.org/10.1007/978-3-662-49809-5_6
http://www.fourmilab.ch/hotbits/

2.4 Bottom-Up and Top-Down Causation 57

In advanced systems (automatic pilots, control systems in chemical plants), the
controller will act not on the basis of the present physical state of the system but on
the basis of predicted future states as determined by the latest updates of the current
system state. It is this continual updating of predictive data that gives the process its
power. This is also the core principle of numerous homeostatic control systems in
physiology and cell biology. This is top-down causation because the goal determines
the outcome, and hence is at a causally higher level than the system controlled. Itis an
emergent property of the system, enabling sophisticated behaviour. But this process
cannot innovate: the outcome is predictable from the outset, as it is determined by the
explicit or implicit goals of the system. Like predictive algorithmic processes, non-
adaptive feedback control systems cannot learn. That requires adaptive selection.’

2.4.4 TD3: Adaptive Selection

The basic feature of adaptive selection [36] is that a process of variation generates
an ensemble of states, from which a best outcome is selected according to some
selection criterion (see Table2.12).*

The reason this is classed as a form of top-down action is that the nature of the
higher level environment is crucial to using selection criteria. The outcome would
be different if either the environment or the criteria were different. Its great power
in evolutionary biology is due to the continued repetition of the adaptation process,
with the best variant being passed on from one generation to the next by a hereditary
mechanism. But that repetition is not essential to the basic process.

The basic dynamics is first a randomisation process, and then a selection process

yitis) = E; () .., yn (), ¢, E) (2.3)

Table 2.12 The basic
features of adaptive selection.
Selection takes place from an

System states < Selection agent Meta-goals
selects state

ensemble of states, the Variation | f !
selection being based on the Ensemble of = Preferred <= Selection
outcome of some selection System States states criteria
criteria in the context of the N
specific current environment. .

Environment

Unwanted states are discarded

31 am aware that some present day feedback control systems use principles of adaptive control.
I believe they should be labeled as such, to distinguish them from the basic cybernetic processes
identified by Wiener, in which the goal is fixed.

4This is what Penrose identifies as bottom-up organisation [53, p. 18], but this is incorrect, because
he fails to recognise the top-down nature of the decision process via higher level selection criteria.

58 2 Digital Computer Systems

Table 2.13 The basic

- h . Final data set Meaningful information = Rejected set: noise
function of adaptive selection

processes: they select what is Sdeftion T « Selection principle
useful or meaningful from an Varied set

ensemble of mainly irrelevant Variation 1t & Variation principle
stuff and reject the rest, thus Initial data set ~ Ensemble of states ~ Random

creating order out of disorder
by selecting states conveying
meaningful information

where 8; is a projection operator selecting one of the y,(#;) and rejecting the rest,
on the basis of the selection criterion c; evaluated in the environmental context E.
It is a non-deterministic process: because of the random element in generating the
ensemble selected from, one cannot predict the outcome before the selection process
takes place.

Itis also for this reason that it can innovate. The process generates new information
that was not there before—or rather, finds information that was hidden in noise
(Table2.13). That is the general process whereby adaptive selection generates useful
information: it finds what is relevant and works from an ensemble of stuff that is
mainly irrelevant or does not work, hence allowing a local flow against the general
tide of increasing disorder. Inter alia, this is the process underlying learning.

Many computational processes build on this possibility. These include:

e Artificial neural networks [11], where selection of node weights occurs through
the training process. The resulting set of node weights is not predictable. (If it
were, one would not need the training process.)

e Many optimization procedures are of this nature, as they search the possibility
space and choose the best outcome encountered. Randomness comes because one
cannot explore the whole space, and we have to choose a subset of points to
investigate, and steps away from these points: the result might depend on this
choice, if local maxima occur.

e Evolutionary computation (EC) [23, 24] encompasses genetic algorithms (GA),
evolution strategies (ES), evolutionary programming (EP), genetic programming
(GP), and classifier systems (CS).

These are all examples of non-deterministic computing [1, pp.412—413]:

The key idea is that expressions in a non-deterministic language can have more than one
possible value [...] our non-deterministic programme evaluator will work by automatically
choosing a possible value and keeping track of the choice. If a subsequent requirement is
not met the evaluator will try a different choice, and it will keep trying new choices until
the evaluation succeeds, or we run out of choices. [...] the non-deterministic evaluator will
free the programmer from the details of how the choice is made [...] it supports the illusion
that time branches, and that our programmes can have different possible execution histories.
When we reach a dead end, we can revisit a previous choice point and proceed along a
different branch.

This is just a version of adaptive selection.

2.4 Bottom-Up and Top-Down Causation 59

Table. 2.14 Adaptive Level 3 Selection criterion Meta-goal
selection of goals U
Level 2 Goal Adaptively selected
4
Level 1 Feedback control = Output

2.4.5 TD4: Feedback Control with Adaptive Goals

Higher level innovation becomes possible when one combines TD2 and TD3 to obtain
TD4: feedback control with adaptive learning. Unlike TD2 where goals are fixed,
these are feedback control systems that select their goals by a process of adaptive
selection: equation (2.3) is applied to a set of goals g, in (2.2) to get

9;tiv) = E(q1(@), ..., gn(t), €}, E) 2.4

where cf are criteria for feedback control goals (see Table2.14).

This is a higher level form of top-down action, as it involves both goals in a home-
ostatic system (TD2) and adaptive selection criteria (TD3). It is used in engineering
in adaptive forms of feedback control, which can be implemented through suitable
digital computer systems.

2.4.6 TD5: Adaptive Selection of Adaptive Goals

One issue inevitably arises: where do the selection criteria in adaptive selection
systems come from? In fact, they, too, may be adaptively selected, giving TDS5: the
case where adaptive selection criteria are determined by adaptive selection. Hence,
(2.3) is applied to the criteria ¢, [guiding selection in (2.3)] in the form

cj(tix1) = ES(c1(t), ..., en(®), ¢§, E) , (2.5)

where c; are criteria for selective criteria (see Table 2.15).

This is a higher form of top-down causation, because adaptive selection is itself a
form of top-down causation. It is of importance in determining strategy in every area
of personal and communal life, e.g., business, education, politics, social policy. It can
be exemplified by ranking systems in search engines [45], where the key element is

Table. 2.15 AdapFive o Level 3 Selection criterion 2 Meta-goal
selection of selection criteria m
Level 2 Selection criterion 1 Adaptively selected
Il

Level 1 Adaptive selection = Output

60 2 Digital Computer Systems

Table 2.16 The hierarchy of

] o Level N + 1 Selection criterion N Non-algorithmic choice
selection criteria

4

Level N Selection criterion N — 1 Adaptively selected

4

U
Level 3 Selection criterion 2 Adaptively selected

4

Level 2 Selection criterion 1 Adaptively selected

U
Level 1 Adaptive selection = Output

selection of criteria for ranking, and the second order adaptive outcome is successful
ranking of web pages (selection of the most relevant according to the chosen criteria).

Closing the Hierarchy. Adaptive selection of adaptive criteria involves choosing a
set of criteria ¢ for suitability of adaptive criteria c;. This appears to be the start of an
infinite recursion: where do these next higher level selection criteria ¢ come from?
Are they, too, selected adaptively? How do we close the logic? (see Table 2.16).

At some point we have to stop and accept a set of highest level selection criteria as
an a priori choice, otherwise we cannot close the system. (if we consider criteria for
this choice and evaluate it, then through that act it is shown not to be the uppermost
level). Any attempt to determine these criteria algorithmically, heuristically, or by
adaptive selection will of necessity introduce a further set of selection values: it
will just postpone the final decision level and choice by adding in a further level to
Table2.8. Naturally, the same issue arises in relation to adaptive selection of goals
(TD4). There, too, there has to be an uppermost level which is just taken as given
and sets the overall direction and purpose of the dynamics. The meta questions are:

e Meta-analysis. How many levels up do you go?
e Choice. How do you decide which criteria to use at the top?

These are philosophical issues, to be chosen according to one’s philosophical posi-
tion. This is where values and purpose come in: this highest level is the level of
meaning (‘telos’), perhaps involving ethics or aesthetics. This choice gives shape to
all the rest, for it transfers down to affect choices made and outcomes at all the lower
levels.

2.4.7 Goals and Learning in Relation to These
Kinds of Causation

This section has looked at five distinct types of top-down causation (TD1-TDS5) that
can occur in computer systems. Three key points to notice are the following:

2.4 Bottom-Up and Top-Down Causation 61

e Goals versus attractors.
e Learning and adaptive selection.
e Intelligent top-down causation.

2.4.7.1 Goals Versus Attractors

Dynamical systems with attractors (TD1) can look like feedback systems with goals
(TD2) because initial conditions anywhere in a wide basin of attraction can lead to the
same result. In particular this happens if there is friction (motion dies away as energy
dissipates). Nevertheless, they are completely different in terms of mechanism: the
second (TD2) involves active collection and use of information, while the first (TD1)
does not. The second involves the causal effectiveness of goals as in (2.2), the first
just the flow of the dynamical system according to the initial data as in (2.1).

2.4.7.2 Learning and Adaptive Selection

Learning, and associated collection of new information, is not possible via bottom-
up action alone, or via dynamical systems (TD1) or non-adaptive feedback control
(TD2). TD1 proceeds simply on the basis of information that is available at the
beginning, as in (2.1), while TD2 compares updated information with goals as in
(2.2). Neither generates any new information that was not there to start with. In order
for new information to be acquired, and hence in order that learning can occur, one
needs adaptive selection to take place, that is one needs TD3 as in (2.3), TD4 as in
(2.4), or TDS as in (2.5).

2.4.7.3 Intelligent Top-Down Causation

Intelligent top-down causation is the special case of any of TD1-TD5 where symbolic
systems are used in the analysis, based on using some entity to represent something
else. This is what characterizes intelligent thought: systems and situations are mod-
eled in a symbolic way through use of language, diagrams, maps, physical models,
or mathematical models. In particular higher level goals and selection criteria are
analysed through use of symbolic systems and then adapted to get optimal results.

This use of symbols is an abstract technology that enables us to transcend the
boundaries of what actually exists and consider what might be, what it might mean,
and what methods to use when investigating these issues. The use of symbolic
systems—particularly language—is a key characteristic of being human [22].

Now all digital computer systems are symbolically based—that is the core of how
computers function—so their use to assist decision-making is in a sense automatically
of this kind. However, sometimes computers act as explicitly symbolic computational
systems, rather than just carrying out data analysis or numerical computations. Com-
puter languages such as LISP can be used to perform logical operations and so can

62 2 Digital Computer Systems

be used to investigate goal choice and decision-making algorithmically. Their math-
ematical derivatives, such as MATHEMATICA and MAPLE, are able to perform
algebraic operations (solving an equation symbolically, for example) and symbolic
integration and differentiation, as opposed to numerical differentiation and integra-
tion. The former hold for generic functions whereas the latter hold only for specific
functions. Such languages are of considerable use in evaluating goals and adaptive
criteria.

At adeeper level, computer systems act crucially as extensions of human capacity
in investigating policy options symbolically: computers are used as interactive aids in
decision or design systems, and it is in the human—computer interaction that the real
creative capacity lies. Computer models are used to simulate reality, e.g., computer-
aided design systems for houses or aircraft: the human mind intervenes and tries
new options, the best one being selected. Examples are health policy, housing policy,
energy policy, environmental policy. In each case examining what is possible when
physical and economic constraints are taken into account can play a key role in
determining what are suitable tactical and strategic goals, and indeed in working out
what are the best criteria for such goals. This is particularly because of the unintended
consequences that can arise in complex systems such as ecosystems: you aim for
one effect, but a completely unexpected side-effect dominates the outcome. Neither
the options nor the selection process can be fully algorithmic, because the former
involves imagination and understanding of causal possibilities, and the latter involves
decisions that cannot be reliably reduced to a numerical algorithm, for example, an
architectural design involves aesthetic as well as functional features. When they are
so reduced (as in the case of automated stock options), disaster may ensue.

The core causal feature is the interaction of the user and the machine, the resulting
evaluations being based on models of the target area embodied in suitable symbolic
systems. These evaluations then become the high level causal feature underlying
our plans and consequent actions that are physically effective in the real world. One
attains new patterns that were not there before by optimization and selection of goal
choices, selection criteria, and methods used.

A key feature of such reasoning is that it is recursive: it can be turned on itself,
to adapt the method of reasoning. An open question concerns the degree to which
intelligent computer systems can capture the kind of human reasoning involved in
such analysis. This is of course the contentious area of artificial intelligence [48, 56,
58]. I will not enter the fray except to give the following quote from McCarthy [48,
p. 18]

Formalizing common-sense reasoning needs contexts as objects, in order to match human
ability to consider context explicitly. [...] We propose the formula holds(p,c) to assert that
the proposition p holds in context c. It expresses explicitly how the truth of an assertion
depends on context.

Thus a key to success is adapting the logic to take contextual effects into account,
in line with the central argument of this book. There is, however, a specific open
question as regards TD5:

2.4 Bottom-Up and Top-Down Causation 63

Open Question. Is adaptive selection of adaptive goals only possible through use of symbolic
systems? Or can it be possible without symbolic reasoning?

I suspect the answer is that symbolic reasoning is essential for meaningful TDS5
processes. Then TD5 is necessarily a subclass of intelligent top-down causation.

2.5 The Core Feature: Equivalence Classes

The central feature of all forms of top-down causation in general is multiple realiza-
tion and the associated equivalence classes [5]. This applies in particular to digital
computation. I consider in turn:

e Multiple realization (Sect.2.5.1).
e The link to top-down causation (Sect.2.5.2).
e The ontological nature of computer programs (Sect.2.5.3).

2.5.1 Multiple Realization

The core feature of top-down causation is the way higher level elements can emerge
from many different variants of lower level ones, in both the physical and the logical
context:

Multiple Realisability. Higher level structures and functions can be realised in many dif-
ferent ways through lower level entities and interactions.

In general many lower level states correspond to a single higher level state, because
a higher level state description is arrived at by averaging over lower level states and
throwing away a vast amount of lower level information (coarse-graining). Hence,
specification of a higher level state determines a family of lower level states, any
one of which may be implemented to obtain the higher level state (a light switch
being on, for example, corresponds to many billions of alternative detailed electron
configurations). The specification of structure may be loose (attainable in a very large
number of ways, e.g., the state of a gas) or tight (defining a very precise structure, e.g.,
particular wiring of a VLSI chip in a computer). In the latter case, both description
and implementation require far more information than in the former. Equivalence
classes of lower level operations give the same higher level effect. Some examples
in the case of digital computers are:

e At the circuit level, one can use Boolean algebra to find equivalent circuits to any
circuit [47].

e Atimplementation level, one can compile or interpret a high level program, giving
acompletely different lower level process producing the same higher level outcome
[67].

64 2 Digital Computer Systems

e One can run the same high level software on different microprocessors, using
different instruction sets [47].

e One can run the same algorithms in different programming languages (Basic,
Fortran, Pascal, Java, for example).

e Generic procedures can operate on data represented in different ways
[1, pp. 170, 187].

e At implementation level, there is an equivalence of hardware and software. One
can decide to imbed developed software in a dedicated hardware chip, giving a
completely different nature of lower level physical entities for the same higher
level outcome.

e At the highest level, specific tasks can be allocated either to the user or to the
computer to give the desired high level output (e.g., focusing and exposure in
digital cameras).

At the foundations of computing, the notion of a computable function is extremely
robust and can be defined in many seemingly different, but equivalent terms [14]°:

e One of these definitions is Turing’s original definition via Turing machines that
can encode numbers in the form of digits on infinite tapes that the machine can
manipulate according to actions specified by its program.

e An equivalent definition is via register machines that can directly manipulate nat-
ural numbers with arithmetic operations. This is close to the (assembler) program-
ming language.

e Another completely different but equivalent definition is purely number theoretic,
avoiding reference to any kind of seemingly obscure ‘machinery’: a computable
function is a function whose graph is a Diophantine set

e Another common characterization used in logic is via certain recursive equations,
which is why the word ‘recursive’ is used synonymously with ‘computable’ in this
field.

This variety of ways expresses the notion of a computable function from quite dif-
ferent, but nevertheless equivalent viewpoints.

2.5.2 The Link with Top-Down Causation

The connection with top-down causation is that we only normally have access to
the higher level variables: these are the handles we have to affect the system state.
When we change them we change numerous lower level states in accordance with
the chosen higher level state, that is, we instantiate an instance of the equivalence
class. It does not matter which specific one we instantiate. What matters is which
equivalence class it belongs to, because this determines which higher level state it
represents.

51 thank Vasco Brattke for these characterisations.

2.5 The Core Feature: Equivalence Classes 65

In the implementation hierarchy, once a particular lower level method of imple-
mentation has been chosen, that is the one that exists physically and drives the higher
level dynamics.

In logical hierarchy, the higher level function drives the lower level design and
hence the lower level operation. This is embodied in the nature of modularity, involv-
ing encapsulation and information hiding [57, pp.233,476—483]: one can change the
nature of the private methods, while overall function and interface remain unchanged:

Equivalence Classes. Top-down causation takes place by instantiating a specific lower level
instance of an equivalence class representing a higher level variable. This happens by giving
a higher level variable a specific value, an action which sets specific values for all the relevant
lower level variables. Which specific such values are set is not determined by the chosen
high level value.

2.5.3 The Ontological Nature of Computer Programs

Because of this multiple realisability, a higher level element is not ontologically the
same as any specific lower level realization. It is the equivalence class of all of them

[5]:

The Ontological Nature of a Computer Program. In terms of the lower level elements
that represent or instantiate it, this is nothing other than the functional equivalence class of
such lower level elements that give the desired high level function.

This characterizes in precisely what way computer programs are abstract entities.
They are not the same as any specific physical state: they are in essence equivalent
to the set of all physical states that embodies their logic:

Reality of Computer Programs. They are real and exist as higher level entities, because
the equivalence class of lower level elements exists, and is causally effective. It determines
uniquely what happens at the macro level.

The same is true for data: it can be represented logically in many different ways,
e.g., binary or hexadecimal. It can be instantiated physically in electronic states or
in printed or spoken form. The essence of the data is not any specific representation
of either equivalence class: it is the equivalence class itself.

2.6 Resources: Memory and Deleting

Formal language theory proposes that there are an infinite number of possible state-
ments in any language [38, p.320]. This is based on the idea that statements can
have an unbounded length: one can always add another clause to them. In the case
of computers, the tape in a Turing machine is supposed to be infinite: it can store an
infinitely long programme and an infinite amount of data. But infinities cannot occur

66 2 Digital Computer Systems

in physical reality: resources are limited and in reality infinity is unattainable. This
has important practical applications for computing. I consider in turn:

e The unphysical nature of infinity (Sect.2.6.1).
e Deletion and garbage collection (Sect.2.6.2).

e The memory hierarchy (Sect.2.6.3).

e Modular hierarchical structure and scoping of variables (Sect.2.6.4).
e Deletion, adaptive selection, and irreversibility (Sect.2.6.5).

2.6.1 The Unphysical Nature of Infinity

Turing states [65]:

Some years ago I was researching on what might now be described as an investigation of the
theoretical possibilities and limitations of digital computing machines. I considered a type
of machine which had a central mechanism, and an infinite memory which was contained on
an infinite tape. This type of machine appeared to be sufficiently general [...] It was essential
in these theoretical arguments that the memory should be infinite. It can easily be shown that
otherwise the machine can only execute periodic operations.

But an infinite memory or an infinite tape cannot be read. Infinity is not just a very
large number: it is a magnitude that is never attained. It is always beyond reach.
That is its most essential feature. No matter how much has been read, there will
always be more to read, because that is what infinity means—something that is never
completed, it is always unattainable. David Hilbert remarked [35]:

The infinite is nowhere to be found in reality, no matter what experiences, observations, and
knowledge are appealed to.

A real computer has finite storage capacity and only survives for a finite length of
time, and so can only carry out a finite number of operations in its lifetime.

One can calculate an absolute limit to what a computer can possibly read in its life-
time by estimating how many bytes can be read by a machine that reads continuously
for 24 hours a day, every day for say 1200 years at a rate of say 10° bytes a second,
giving 10° x 60 x 60 x 24 x 365 x 1200 = 378 432 000 000 000 000 bytes: a large
number but obviously not infinite. No real computer can exceed this limit in its life-
time (inter alia because it will need maintenance, and will not in fact last that length of
time). Indeed the computational capacity of the entire universe is finite [44]. Hence,
there is a finite limit to the length of any statement that could be read by a computer
in its entire lifetime in a physically realistic setting. And anyway, sentences actually
usable for computational purposes, the raison d’étre of computers, are very much
shorter:

Computational Finiteness. The set of possible computable programs €2, and the set of
potentially associated data 24 are both large but finite.

2.6 Resources: Memory and Deleting 67

The implication is that there are a finite number of possible computer languages,
programmes, and data, whence the possibility space for computer operations is finite.
The idea of a computer that can process an infinite tape or read an infinite amount
of data does not make physical sense. Formal language theory should take this into
account.

What about Turing’s comment that if a machine has finite memory then it can only
execute periodic operations? This is in principle true, as the operation space is then
compact, and if the machine continues to operate for an unlimited time, Poincaré’s
eternal return theorem applies: eventually all possible states will have been visited
and the next and all subsequent ones will be repeats of ones already utilised, so cycles
will occur. But this assumes that the machine will continue operating for an infinite
time, something which cannot happen inter alia because the Earth will come to an
end in a finite time, when the Sun comes to the end of its life. The alleged problem
arises because of this implicit infinity, which is unphysical. Computer memories are
now so large that this will not be an inevitable outcome in practice.

2.6.2 Deletion and Garbage Collection

In practical terms, this limitation on memory has important implications for how
memory is handled, and leads to the need for garbage collection and the ongoing
deletion of records, freeing up memory space for reuse.

Garbage Collection. During a program run [1, pp. 540-546], this is a key strategy
for handling memory limits, giving the illusion of infinite memory even though in
fact the memory space is finite. Memory cells used to hold intermediate results during
a calculation can be cleared at the end of the calculation, freeing up memory space
to be reused in the next calculation.

This is related to persistence [12, pp.75-77]: keeping in memory objects and
names across different contexts. Objects take up some amount of space and exist for
a particular amount of time. But one has to clear them out to make room for new
objects, or memory will fill up and operations will cease.

Deleting Records. As regards long term memory, deletion of records to free up
memory is a key requirement, not just because storage space is limited, but also
because otherwise we simply cannot handle the vast amounts of data we accumulate.
We eventually forget we have stored specific data, or cannot locate the relevant
records in the fog of data clogging up our machine. The key strategy here is that the
user deletes all those records they don’t want to keep and puts the rest into suitably
formatted short term or longer term storage, depending on their usage needs. This
process of sorting emails, music, digital images, and so on, deleting those that are
unwanted and keeping those that are still useful, refines and organises our files into
meaningful collections suited to our purposes.

Together with the organisational methods discussed in the following sections,
deletion and reuse of memory is the key to handling memory limitations resulting

68 2 Digital Computer Systems

from finite resource availability, giving an illusion of infinite memory space, despite
the available space being strictly limited.

2.6.3 The Memory Hierarchy

Given the hierarchy and memory limits, one still has to handle the practical limits
on memory. This is done through the memory hierarchy. Turing states the problem
as follows [65]:

A problem might easily need a storage of three million entries, and if each entry was equally
likely to be the next required, the average journey up the tape would be through a million
entries, and this would be intolerable. One needs some form of memory with which any
required entry can be reached at short notice [. . .] Another desirable feature is that it should
be possible to record into the memory from within the computing machine, and this should
be possible whether or not the storage already contains something, i.e., the storage should
be erasible.

Even with more modern forms of memory, memory bottlenecks are the key design
issue for computers. This breeds the memory hierarchy of short term, medium term,
and long term memory. Thus one has [39]:

e Main memory. DRAM semiconductor memory in which most of the program
and data are stored when the program is running (short term memory).

e Cache memory. Very high-speed semiconductor memory that caches frequently-
used programs and data from main memory (storing them in a quick access area
of medium term memory).

e Paging memory. Slower memory, usually disk, which provides swap files as an
extra area for the main memory (medium term memory not used so often).

e Hard drives. Disk or tape memory for files (long term memory).

There is an entire science of how to design caches [37], and special languages
designed handle the memory hierarchy efficiently [29]. As is clear from the above, a
key issue is what to delete and what to keep. But additionally, a suitable hierarchical
structure makes a big difference.

2.6.4 Modular Hierarchical Structure and Scoping
of Variables

The fundamental principle is locality of reference, realised in modular hierarchical
structures, with related aspects of temporal locality and algorithmic locality. One
limits applicability of a variable both in logical space and in time. This is done by
the mechanism of scoping, i.e., specifying the context within which it will be valid.

2.6 Resources: Memory and Deleting 69

Scoping as Regards Context. Algorithmic locality happens via the distinction
between local and global variables, embodied in the scope of a variable. Local vari-
ables must be readily available when a module is run, but can be cleared when another
one is run. Global variables must be available all the time. The existence of the mod-
ules enables this distinction and so clarifies which variables can be cleared when the
active module is changed.

Scoping Variables in Time. This follows from the fact that local variables are only
valid for a certain time and cease to be needed when other local variables become
relevant because another module is run. But there is another aspect: a key idea is that
of a function f(¢) with an unchanging name, which keeps its identity as we evaluate
it at different times, rather than regarding each of its values as separate ontological
entities x := f(t1), y := f(t2), z := f(t3), etc. This allows one to overwrite old
values of the variable as new values are calculated. One can discard the old value
because it is no longer needed: what matters in most cases is just the value of the
function at the present time, and perhaps a few times steps before that (if we are taking
numerical derivatives). Exceptions are when the records are needed in the long term
(financial or medical records for example), but then they can be transferred from
short term memory to long term memory and stored on hard drives for later recall if
necessary. Short term memory is freed up for reuse.

Streams. A related concept is the idea of delayed evaluation of streams [1, pp.316—
330]. These are lists which can be used to represent sequences that are infinitely
long (such as the set of integers), even though in fact we only compute as much of
the stream as we need to access [1, p.326]. This is done by constructing streams
partially and passing the partial list to the program that uses the list. Thus one writes
the program as if the entire sequence was being processed, but interleaves the con-
struction of the stream with its use. In this case, at the end of the calculation, there
is no obligation to delete the variables that are part of the list but were never needed,
because they were never activated in the first place.

2.6.5 Deletion, Adaptive Selection, and Irreversibility

The big picture is that (see Table2.13):

One Creates Order by Deleting. Adaptive selection of what is meaningful, and hence
creation of ordered meaningful information, is centrally based on deleting what is not wanted.

Examples are deleting old files and emails, as well as deleting old values of variables,
and indeed no longer used variables themselves. This is what allows the freeing up
memory for reuse, and so creates the illusion of infinite memory.

Irreversibility. As pointed out by Landauer [43], these processes are where irre-
versibility, associated with physical entropy production, happens in computations
(quoted by Bennett [8]):

70 2 Digital Computer Systems

Any logically irreversible manipulation of information, such as the erasure of a bit or the
merging of two computation paths, must be accompanied by a corresponding entropy increase
in non-information bearing degrees of freedom of the information processing apparatus or
its environment.

One is creating logical order by deleting (see Table2.13), as regards information
locally going against the overall flow of increase of entropy. There is a consequent
physical energy cost characterized by the Landauer limit: the minimum amount
of energy required to change one bit of information is given by k7 In2, where
k ~ 1.38 x 1072J/K is the Boltzmann constant and T is the temperature of the
circuit in kelvin. This principle linking information and entropy creation has been
experimentally verified by Bérut et al. [10]. Hence, there is an energy cost to gener-
ating useful information.

Ladyman et al. [41] analyse in detail what it means for a physical system to
implement a logical transformation L, and make this precise by defining the notion
of an L-machine. They show that logical irreversibility of L implies thermodynamic
irreversibility of every corresponding L-machine. This relates in particular to the
operation Reset which clears a logical system to its original state by replacing all
variable values generated in the previous cycle with default values and so freeing
it up to start a new cycle of operation. Overall, the conclusion is that dealing with
logical infinity in a system of finite size is irrevocably tied to physical irreversibility.

2.7 The Outcome: Causation in Digital Computers

Even though computers are the epitome of algorithmic machine operations, they are
also systems where non-physical entities (programs, algorithms, data) are causally
effective, and enable symbolic operations to take place that are independent of the
underlying physics. Here we consider:

e Computer programs are non-physical, but causally effective (Sect.2.7.1).
Computer programs embody abstract logic, and act top-down (Sect.2.7.2).
Room at the bottom (Sect.2.7.3).

Predictable explanation (Sect.2.7.4).

Possibility spaces and their causal effects (Sect.2.7.5).

Top-down action from the mind (Sect.2.7.6).

Genuine emergence (Sect.2.7.7).

2.7.1 Computer Programs Are Non-physical,
but Causally Effective

Virtual machines are the core of computing systems (Table2.3), and although they
do not exist as physical entities, they are real: they exist as causally effective entities.

2.7 The Outcome: Causation in Digital Computers 71
2.7.1.1 The Non-physical Nature of Computer Programs

Computer programs are not the same as what is printed in a listing, or stored in a
disc, or saved in computer memory, or presented on a blackboard, and neither are
they what exists in a programmer’s mind. These are all instantiations of an entity
that is not itself a physical thing. It is not fully realised in any of these instantiations:
precisely because it can be realised in the others. It is not the same as any of its
instantiations. Rather, it is essentially equal to all of them:

e When considered in lower level terms, the real nature of a program is that it is an
equivalence class of such representations (Sect.2.5).

e When considered in higher level terms, it is an abstract entity obeying rigidly
prescribed syntactic laws, and through a combination of bottom-up and top-down
causation, it is causally effective at its own level.

It is not equal to any particular physical manifestation, e.g., on a CD disk or as
electronic states in a computer. These are just vehicles whereby it is instantiated.

2.7.1.2 The Causal Effectiveness of Computer Programs

Given the physical computer, a loaded program, and input data, the output is uniquely
determined:
(physical structure, program, data) =—=> output . (2.6)

The first two will be fixed and unchanging in a given run (with the same high level
software loaded) and can be taken for granted then. So, within this context, the given
constraints imply

(data) == output, 2.7)

program

showing that abstract information is causally effective in the given context of a
specific program, which determines in a top-down way the family of results obtained
from arbitrary data. But as we have seen, the program is an abstract entity. According
to Abelson and Sussman [1, p. 1]:

Computational processes are abstract beings that inhabit a computer. As they evolve,
processes manipulate other abstract things called data. The evolution process is directed
by a pattern of rules called a program. People create programs to direct processes. In effect,
we conjure the spirits of the computer with our spells.

That gets it just right. Abstract entities produce concrete results. They are causally
effective through the computer hardware. The ultimate reason this is so is because
they were designed to do so: they are an example of the causal efficacy of the human
mind. Consequently:

Causal Effectiveness. Computer programs are not physical entities, but are nevertheless
causally effective in numerous ways.

72 2 Digital Computer Systems

For example they can do engineering and calculations that result in specific physical
structures such as aircraft and automobiles coming into existence. Furthermore, they
facilitate economic interactions such as shopping and banking, social interaction
through internet applications such as email and facebook, and education through the
internet in conjunction with search engines such as Google and encyclopedias such
as Wikipedia. They make a real difference in the real world. A final note for the
philosophically cautious:

Existence. Because computer programs are causally effective, they clearly exist.

Here I use as a criterion that whatever is causally effective in the physical world
must certainly exist (Sect. 1.3.5). If this is not true, we will have to face existence of
uncaused entities or events in the physical universe.

2.7.2 Computer Programs Embody Abstract Logic,
and Act Top-Down

This is possible because logical entities can cause physical effects, enabled by the
interaction of bottom-up emergence and top-down causation. In particular, this hap-
pens in the interaction between the logical and physical systems. These systems are
emergent systems based on the underlying physics, but then acquiring an abstract
character at the higher levels.

2.7.2.1 The Implementation Hierarchy: Logical
Levels and Descriptions

A series of interlocked computer programs, each representing the same logical
structure, power the virtual machines at each level in the implementation hierar-
chy (Table?2.2). They are what give the system its dynamics. The downward link is
via compilers and interpreters (Sect.2.3.4). The upward link is via implementation,
in essence according to Turing’s prescription of reading a tape and performing the
next logical operation specified thereon (Sect.2.1).

The physical system is designed to embody logical relations, which are coded in a
hierarchical manner through the interaction between system hardware and software.
There are different layers in the description of computers and, in particular, the
following®:

1. Digital circuits that can be directly implemented using certain physical devices.

2. Register machines that describe computation on a higher level of abstraction (in
terms of very simple arithmetic operations).

3. Object-oriented programming languages that offer very abstract ways to describe
data structures and operations on them.

6T am indebted to Vasco Brattke (private communication) for the following comments.

http://dx.doi.org/10.1007/978-3-662-49809-5_1

2.7 The Outcome: Causation in Digital Computers 73

One of the questions seems to be: how is it possible to implement on one relatively
primitive level a layer that seems to offer a much higher degree of abstraction?

The emergence from layer 1 to 2 above happens on the level of microcode, which is
implemented in digital circuits and offers the first layer of programming. Microcode
operations are very simple and they are actually used to implement assembler lan-
guages that offer pretty much the same type of instructions as register machines. On
the level of microcode, one still reasons in terms of digital circuits and very elemen-
tary operations that transfer content from one position in the memory to another.

On the level of assembler languages one no longer has to think in terms of dig-
ital circuits, but the reasoning happens on the higher level of registers and certain
arithmetic and logical operations. On this level one can actually implement abstract
object-oriented programming languages such as Java (although in practice there are
several intermediate layers, such as the operating system). In particular, all such
things as indirect addressing, pointers, etc., can be implemented easily on the level
of register machines.

In fact, as shown in [14], all these ‘programming languages’, register machines,
recursive functions, Java programs, and so on, satisfy the so-called SMN proper-
ties(Kleene’s translation theorem) and UTM properties (Turing’s universal function
theorem). Hence, it follows from the equivalence theorem of Rogers that each of them
can be simulated in any of the others [14]. The level of description and abstraction
is very different, but the power of expressiveness is essentially the same. Already at
level 1 in Table2.5, the zeros and ones are conceptual representations of physical
states. The actual physical state is a charge or current [47]. It is conceptually referred
to by binary notation: an abstraction that is the effective language of the logic that is
built into the gates by their properties and connectivity in logical circuits.

Given this structure, the hierarchy of languages can be constructed, with compilers
and interpreters [3, 6] acting top-down to link the levels. But they are just computer
programs. Abelson and Sussman [1, p.360] state the following:

Metalinguistic abstraction—establishing new languages—plays an important role in all
branches of engineering design. It is particularly important to computer programming,
because in programming not only can we formulate new languages but we can also implement
these languages by constructing evaluators. An evaluator (or interpreter) for a programming
language is a procedure that, when applied to an expression of the language, performs the
actions required to evaluate that expression. It is no exaggeration that this is the most fun-
damental idea in programming: the evaluator, which determines the meaning of expressions
in a programming language, is just another program.

This enables the emergence of higher level entities such as the higher level systems
programs and application programs, both realised when the low level systems pro-
grams are run. They subsequently exert top-down effects on lower level dynamics
(Sect.2.4). Universal computation is then possible, able to model arbitrarily complex
systems.

74 2 Digital Computer Systems
2.7.2.2 The Logical Hierarchy

To enable high level computation additionally requires modular hierarchical struc-
turing of a logical hierarchy (Table?2.4) at each level of the implementation hierar-
chy, enabling abstraction, information-hiding, and so on (Sect.2.2.2). This structure
enables contextual information processing. James McClelland describes it thus [46]:

Interactive models of language processing assume that information flows both bottom-up
and top-down, so that the representations formed at each level may be influenced by higher
as well as lower levels. I describe a framework called the interactive activation framework
that embeds this key assumption among others, including the assumption that influences
from different sources are combined non-linearly. This non-linearity means information that
may be decisive under some circumstances has little or no effect under other conditions. [...]
feedback from higher levels is computationally desirable [because] it allows lower levels to
be tuned by contextual factors so that they can supply more accurate information to higher
levels.

The 5 different types of top-down causation (Sect.2.4) can be implemented and
enable complex behaviour to emerge on the basis of purely algorithmic operations
at the bottom.

2.7.2.3 Symbolic Logic Independent of the Underlying Physics

Itis clear from Turing’s work (Sect. 2.1) that what one can do symbolically via digital
computers is not in any way restricted or constrained by the lower level physical
implementation [14]. It is determined by the logic of the higher level possibility
space (the effective laws of logic, mathematics, and semiotic representation), not by
the underlying laws of physics that enable the computer to function.

2.7.3 Room at the Bottom

How is there room at the bottom for top-down action in a mechanistic system, where
the low level operations are completely deterministic?’” The main way higher level
structures exert an effect on lower levels is by setting various constraints on their
functioning:

e The physical structuring of the computer (hardware) embodies patterns of con-
nection that constrain what happens at gate level.

e The loaded high level software establishes further constraints on the logical struc-
ture of the lower level interactions.

"I only consider classical computers here, where quantum uncertainty in the underlying physics has
no effect on microcomputer operations because they have been carefully designed so that this will
be the case. Quantum computing raises many further possibilities I do not engage with in this text.

2.7 The Outcome: Causation in Digital Computers 75

e Finally, the data establishes sufficient further constraints on the lower level inter-
actions to give a unique output.

This works out in the following ways (discussed further in Sect. 5.3).

2.7.3.1 Context

Firstly, the context determines what algorithmic operations take place. The physical
context of computer structure does not alter the lower level physics: it constrains its
actions. Paradoxically, constraint creates the possibility of complexity. For example,
the wiring in a computer means that a specific gate G is connected only to further
gates G, and G3 and not to any other gates in the system, and this is what enables
these three gates to produce a specific logical operation, such as AND-OR-INVERT
[47]. This would not be possible if inputs from other randomly selected gates were
also connected. More generally, motifs occur in complex systems and shape their
behaviour by constraining interactions [2].

The logical context of loaded programs also constrains what happens. Gate opera-
tions at the bottom are individually identical, whether a music program, a spreadsheet,
a word processor, or an image-processing program is running. The specific sequence
of low level operations that takes place, and the consequent high level output, is com-
pletely different depending on the higher level context of what program is running
and what data are entered.

2.7.3.2 Environment

Secondly, part of the context is the environment, which lies outside the control of the
algorithmic system and exerts a causal influence on operations. In many computer
applications, new data comes in during a run that was not present at the start: so the
computer is not a closed system, it is influenced by the environment—a top-down
effect. This happens, for example, in continually updated weather forecasting sys-
tems, online stock control systems, ATM operations, and feedback control systems.

2.7.3.3 Randomness and Adaptive Selection

Thirdly, processes of adaptive selection allow learning to take place, with new infor-
mation beng garnered by selection processes whereby masses of irrelevant informa-
tion are discarded as irrelevant. This is non-deterministic, and hence not uniquely
implied by the initial data, because the variation processes include random elements
(Sect.5.6.6). It is top-down because the outcome depends on the choice of selection
criteria at higher levels in the hierarchy of causation. It may also happen in adaptive
selection processes where non-algorithmic higher level criteria are used on the fly
during the selection process. This occurs, for example, in the use of spreadsheets, and

http://dx.doi.org/10.1007/978-3-662-49809-5_5
http://dx.doi.org/10.1007/978-3-662-49809-5_5

76 2 Digital Computer Systems

all those computer-aided design processes in which the operator chooses between
options.

2.7.3.4 Mutable Lower Level Elements

Fourthly and crucially, the behaviour of lower level elements is not generally
immutable, but depends on context: they are adapted to their role in the hierarchy
(see Sect.5.4). Put briefly:

Contextually Determined Nature. The nature of the lower level entities—the way they
respond to events—is often determined by context.

In digital computers this occurs through the late time binding that enables polymor-
phism in object-oriented systems [57, pp.506-531]. More generically, parameters
are passed down from the higher level to set or alter the data-handling method used
by modules at the lower level, thereby determining the specific outcomes. The lower
class functions can in this way underlie many different higher level functions, through
the setting of parameters that control function at the lower level.

2.7.3.5 The Enabling Role of Physics

One cannot derive algorithmic logic from physics: e.g., one cannot derive Quicksort
either from the physical operation of electromagnetic interactions, or from the logical
form of Maxwell’s equations. Yet it is algorithmic logic that drives what happens at
the higher levels in a computer, and hence at the lower levels.

The underlying physics enables this to happen: it dances to the tune of this abstract
logic, which gets embodied in particular patterns of energy states at the micro level.
They are the outcome of the logic, not its cause. The logic of the algorithms derives
from the nature of what is possible in logical terms.

2.7.4 Predictable Outcome?

Computers are the epitome of algorithmic operations: is the outcome predictable?
There are three ways in which the outcome may not be implied by the initial data:

1. It is not predictable because of the complexity.

2. It can have new input: data fed in during the runtime (open systems).

3. It can have a random element inserted (by a random generator or clock time or
radioactive decay).

The first is non trivial, as remarked by Turing[aut] [66]:

The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which
philosophers and mathematicians are particularly subject. This is the assumption that as

http://dx.doi.org/10.1007/978-3-662-49809-5_5

2.7 The Outcome: Causation in Digital Computers 77

soon as a fact is presented to a mind, all consequences of that fact spring into the mind
simultaneously with it. It is a very useful assumption under many circumstances, but one too
easily forgets that it is false. A natural consequence of doing so is that one then assumes that
there is no virtue in the mere working out of consequences from data and general principles.

Indeed, if the outcome were predictable, we would not need the computer!

The second case is logically obvious, but operationally important: the cases of
stock control, weather forecasting, and aircraft automatic pilots are examples.

As regards the third, unpredictable effects occur despite algorithmic operation in
the case of adaptive selection, based on random lower level processes plus higher
level selection effects. This results in accumulation of unpredictable information,
and build-up of effective structures adapted to higher level function and environment,
not uniquely determined by the initial data. Genetic algorithms and neural nets are
examples. They can learn only because they get input from their environment in
their training phase, enabling them to use high order selection criteria in the context
of this specific environment—a form of top-down action. Then the outcome is not
determined, even though the process is.

To Be Done. There is an interesting issue that arises here: such programs need a source
of randomness so that the outcome is not predictable, allowing genuine learning. One
can use a pseudo-random number generator, or a genuine random number generator
(see the discussion in TD1 above). Both generate outcomes not implicit in the initial
data, but the first is a disguised algorithmic process, while the second is not: it is
truly non-deterministic. The issue is whether this makes a genuine difference to the
outcome: does it really matter which choice is made? The answer is not clear.

2.7.5 Possibility Spaces and Their Causal Effects

What can be done by computers is characterized by a possibility space: the space of
all possible computations €2.. This in turn is based on the set of all possible algorithms
2., which includes the set of possible computer programs €2, (prog).

2.7.5.1 Possible Algorithms

What is possible algorithmically is based on the space of logically possible algorithms
2,. This can be thought of as an eternal unchanging space of what is and what is not
logically possible. We discover these possibilities, that is, we work out that they are
indeed possible and valid first by inspiration or invention (imagining the possibilities),
then by working out the details by logical argumentation (development), and then by
checking that they are indeed valid (verification), again by logical argumentation).
The same algorithms are valid anywhere in the universe: near Alpha Centauri
and in the Andromeda galaxy, and at any time. They were valid before humans

78 2 Digital Computer Systems

existed and will reman valid after we are long gone. For example, there are various
possible ways to sort a list: shellsort, heapsort, mergesort, bubble sort, quicksort,
library sort, and so on [42, 68]. These have been discovered by human beings over
the course of history, and indeed some were known long before computers existed.
The corresponding subset €2, (sort) of €2, is finite (a typical list of sort algorithms
will mention about 20 possibilities), as is each algorithm itself (an infinite algorithm
would be of no use whatever, as discussed in Sect.2.6.1).

The space €2, is hierarchically structured: more complex algorithms such as the
Google search algorithm and pattern recognition algorithms [45] build on combina-
tions of simpler ones such as quicksort. Although this logical space is progressively
explored by the human mind as we discover more and more algorithms, it is inde-
pendent of the mind: the logical possibility and validity of those algorithms is true
independently of what we think. Like the mathematics possibility space 2, the
space 2, embodies eternal truths independent of place and time and culture, and so
can be thought of as an abstract Platonic space, as is argued in the case of Q, by
Penrose [54] and Connes [17]. In summary:

The Space of Algorithmic Possibilities 2, . This is a hierarchically structured abstract
Platonic space. We explore it through logical analysis by the action of the mind [19]. Instances
of algorithms existing in 2, are causally effective when we implement them in computer
programs [42, 45, 68].

This space is not implied by physics or physical laws, but by logic. Our understanding
of this space cannot be tested by physics laboratory experiments (although these may
possibly give hints as to how some algorithms operate). This understanding can,
however, be tested by running computer programs embodying specific algorithms
we have discovered and developed. They either work to give the desired results, or
they don’t!

2.7.5.2 Possible Computations: Limits of Computability
and Applicability

Because computer programs are in essence just high level algorithms made by com-
bining lower level algorithms in a structured way so as to produce a complete calcu-
lation, the space of possible computer programs is in essence a subspace €2, (prog)
of ©,. But this is not the same as the space of possible computations €2.. Various
issues intervene.

What can be computed and what cannot? There are four aspects here:

1. What kinds of problems are algorithmically expressible?

2. What algorithmic problems can be computed in principle by a physical device?
3. What is algorithmically computable by programs in a finite time?

4. What is computable in a realistic time?

These are deep issues, which I will only touch upon in the briefest of ways.

2.7 The Outcome: Causation in Digital Computers 79

1. What kinds of problems are algorithmically expressible? How much of what
humans understand can be algorithmically encoded? The brain does not naturally
work in an algorithmic way, although it can be trained to do so. It operates by pattern
recognition, enabled by the overall pattern of neural connections in the cortex [33],
the connection weights in these neural networks (Churchland [19]), and synchronized
patterns of oscillations between them (Buzsaki [16]).

These are not at all like the algorithmic operations of a digital computer, so it
is not obvious that all that they can do can be represented by algorithmic processes
(Penrose [52, 53]), unless those processes mimic the adaptive properties of neural
networks [11], that is, they don’t model the pattern of understanding attained, rather
they model the process by which it is attained.

2. What Kinds of algorithmic problems can be computed in principle by a phys-
ical device? This is the subject of the Church—Turing thesis, stated by Brattke [14]
as follows:

Church-Turing Thesis (1936). A function f :C N¥ — N is computable in the formal
sense if and only if it can be computed by some physical device.

This form of the thesis is not a mathematical statement since it relates the mathemat-
ically concept of computable functions to the question of what it means to compute
something with a physical device. Copeland states it this way [20]:

Thesis M. Whatever can be calculated by a machine (working on finite data in accordance
with a finite program of instructions) is Turing-machine-computable. Thesis M itself admits
of two interpretations, according to whether the phrase “can be generated by a machine” is
taken in the narrow, this-worldly, sense of “can be generated by a machine that conforms to
the physical laws (if not to the resource constraints) of the actual world”, or in a wide sense
that abstracts from the issue of whether or not the notional machine in question could exist
in the actual world. Under the latter interpretation, thesis M is false. It is straightforward
to describe notional machines, or ‘hypercomputers’ that generate functions not Turing-
machine-computable. It is an open empirical question whether or not the narrow this-worldly
version of thesis M is true.

The latter is the case of physical interest.

3. What is algorithmically computable by programs in a finite time? This is the
issue of the halting problem [21]: given a valid program, will the computation come
to an end in a finite time? The algorithmic structure of the program may be logically
correct, but the computation may never conclude, and no algorithmic computation
can determine whether this will happen or not. Chaitin states this as follows [18]:

Turing’s train of thought now takes a very dramatic turn. What, he asks, is impossible for
such a machine? What can’t it do? And he immediately finds a problem that no Turing
machine can solve: the halting problem. This is the problem of deciding in advance whether
a Turing machine (or a computer program) will eventually find its desired solution and halt.

A solution to the halting problem would determine the space of possible computations
2. as a subset of €2,(prog), but this is unsolvable by any Turing Machine.

4. What is computable in a realistic time? This is the whole subject of computa-
tional complexity and computation times. Issues occurring include time functions,

80 2 Digital Computer Systems

complexity measures, and complexity classes [14, Sect.3.6]. The necessary amount
of auxiliary storage, stability, and effects on indexing keys are also important when
comparing algorithms. Together these determine a subspace €2.(realisable) of €2
representing those possible algorithms that can be effectively implemented. This is a
very context-dependent concept: as computer memory size and speed increase, what
was previously impractical becomes possible. This is of great practical importance.

2.7.5.3 The Causal Effectiveness of Platonic Possibility Spaces

Overall, the key issue is the causal effectiveness of algorithms. This is what enables
computer applications in engineering, science, and commerce, which cause real
changes in the physical world. So where do they come from? The chain of cau-
sation is shown in Table2.17. As explained above, algorithms ultimately originate
in the Platonic space of logically possible algorithms €2,. Thus the conclusion is as
follows:

Causal Effectiveness of Platonic Spaces: The abstract possibility spaces €2, and 2. are the
ultimate source of the causal powers of digital computers in the physical world.

Three-dimensional printers are able to create physical objects because the algorithms
that enable this are valid algorithms, and that fact is a consequence of the nature of
the Platonic space €2,.

Their Existence. The claim that all these spaces exist, i.e., that they are ontologically
real, rests upon a philosophical analysis of what kinds of things must be recognised as
existing. The view taken here (see [30] and Sect. 1.3.5) is that we must recognise the
existence of any kind of entity that demonstrably has a causal influence on physical
systems.

The possibility spaces discussed here are certainly causally effective, even though
non-physical, so they must be realised as existing. They are the ultimate source of
computational power.

Table. 2.17 The origin Of, Level 4 Possibility space €2, Possible algorithms
algorithms and programs in
the abstract possibility spaces 4
Q. (possible algorithms) and Level 3 Possibility space 2. Possible computations
Q¢ (possible computations). [
These lead to real world Level 2 Written programs p; Selected algorithms a
effects such as 3D printing of U ’
physical objects
Level 1 Computer run Selected program and data
U

Level 0 Output data/actions —> Real world effects

http://dx.doi.org/10.1007/978-3-662-49809-5_1

2.7 The Outcome: Causation in Digital Computers 81

2.7.6 Top-Down Action from the Mind

Computer programs based in the possibility spaces €2, and €2, are not physical
entities, but are nevertheless causally effective in numerous ways [45]. The final
puzzle is this: how are these possibility spaces causally effective in this way? How
do they influence what gets realised in computers?

The answer is through the human mind, which explores these spaces by logical
reasoning. This is enabled by the ability of neural networks to learn about such
abstract spaces through processes of pattern recognition based on the operation of
neural networks in our brains, as explained clearly by Churchland [19]. Hence, 1
emphasize:

Causal Effectiveness of Platonic Spaces. It is through adaptive selection processes in the
mind, enabled by the neural circuits in the brain, that the possibility spaces are understood
and hence causally effective.

This enables not only the existence of operational programs and algorithms, but also
computers themselves: the physical entities that make this all happen. They ulti-
mately originate, not only from our exploration of possible algorithms €2,, but also
from our explorations of the physical possibility space 2y, restricting what is phys-
ically possible due to the nature of physical interactions (described by the laws of
physics). Their development embodies the combined experience of numerous work-
ers in aspects ranging from basic concepts to solid state physics to system design
to effective algorithms to high level design patterns. This leads to the extraordinary
ability of digital systems to represent language, pictures, sound, mathematical rela-
tionships, and indeed all human knowledge. Overall, this is the effect of intelligent
top-down causation from the human mind to physical systems (the computer itself)
and abstract systems (the set of programs that make a computer work).

At a higher level, the existence of computers is an outcome of the human drive
for meaning and purpose: it is an expression of the possibility space of meanings,

the higher levels whereby we guide what actions take place. This will be discussed
in Chap. 8.

2.7.7 Genuine Emergence

Although they are the ultimate in algorithmic causation, as characterized so pre-
cisely by the concept of Turing machines, digital computers embody and demonstrate
the causal efficacy of various kinds of non-physical entities—algorithms, programs,
data—which enable truly complex behaviour to emerge from simple constituents.

Itis noteworthy here that one is able to regard level 0 in Table 2.1 as the bottommost
level, the level ‘where the work is really done’, even though this is not in fact the case
if one takes a strict reductionist viewpoint: that level emerges from lower physical
levels, which are really where the work is done!

http://dx.doi.org/10.1007/978-3-662-49809-5_8

82 2 Digital Computer Systems

Why is it then legitimate to regard the emergent level O as real, as is taken for
granted by all computer scientists and engineers? The answer is that this level does
indeed do real work, as do all the levels in Table 2.1:

Genuine Emergence. Each of the levels in Table 2.1 is a causally effective emergent level
of structure. They are all equally real.

Just as in the case of neurons and the mind, and indeed biology as a whole [50],
this is the only approach that makes sense. And it is valid because of the reality of
top-down causation in the hierarchies, as discussed in this chapter. I revisit this issue
in Sect.8.1.

The operations at each level in both the logical and implementation hierarchies
are realizations of possibilities occurring in abstract Platonic spaces such as €2,
(Sect.2.7.5), and these are the ultimate source of the possibility of computation.
Their implementation in physical terms is possible because the human mind is able
to comprehend the nature of these possibility spaces [19].

References

1. H. Abelson, G.J. Sussman, J. Sussman, Structure and Interpretation of Computer Programs
(MIT Press, Cambridge, 1996)

2. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chap-
man and Hall/CRC, London, 2007)

3. A.W. Appel, Modern Compiler Implementation in Java (Cambridge University Press, Cam-
bridge, 2002)

4. W. Ross Ashby, An Introduction to Cybernetics (Chapman and Hall, London, 1957). http://
pep-lanl.gov/books/IntroCyb.pdf

5. G. Auletta, G.FR. Ellis, L. Jaeger, Top-down causation: From a philosophical problem to a
scientific research program. J. R. Soc. Interface 5, 1159-1172 (2008). arXiv:0710.4235

6. A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools
Paperback (Pearson, 2013)

7. S. Beer, Brain of the Firm (Wiley, Chichester, 1981)

8. C.H. Bennett, Notes on Landauer’s principle, reversible computation and Maxwell’s demon.
Stud. History Philos. Modern Phys. 34, 501-510 (2003)

9. S. Bennett, S. McRobb, R. Farmer, Object-Oriented Systems Analysis and Design (McGraw
Hill, Maidenhead, 2010)

10. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental
verification of Landauer’s principle linking information and thermodynamics. Nature 483,
187-190 (2012)

11. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford,
1999)

12. G. Booch, Object-Oriented Analysis and Design with Applications (Addison Wesley, New
York, 1994)

13. G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide (Addison
Wesley, New York, 1998)

14. V. Brattka, Computability Theory (University of Cape Town Notes, 2011)

15. V. Brilhante, Computer modelling hierarchy: the model reflects the hierarchy of the system
being modelled. J. Braz. Comp. Soc. 11(2), Campinas (2005)

16. G. Buzsaki, Rhythms of the Brain (Oxford University Press, Oxford, 2006)

http://dx.doi.org/10.1007/978-3-662-49809-5_8
http://pcp.lanl.gov/books/IntroCyb.pdf
http://pcp.lanl.gov/books/IntroCyb.pdf
http://arxiv.org/abs/0710.4235

References 83

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.
32.
33.
34.
35.

36.
37.

38.

39.

40.

41.

42.
43.

44,
45.

46.

J.-P. Changeux, A. Connes, Conversations on Mind, Matter, and Mathematics (Princeton Uni-
versity Press, Princeton, 1998)

G.J. Chaitin, Computers, paradoxes and the foundations of mathematics. Am. Sci. 90, 164-171
(2002)

P. Churchland, Plato’s camera: how the physical brain captures a landscape of Abstract Uni-
versals (Cambridge) (The MIT Press, Cambridge, 2012)

B.J. Copeland, The Church-Turing Thesis. The Stanford Encyclopedia of Philosophy, (Fall
2008 edition), ed. by E.N. Zalta (2002). http://plato.stanford.edu/archives/fall2008/entries/
church-turing/

J. Copeland, The Essential Turing (Oxford University Press, Oxford, 2004)

T. Deacon, The Symbolic Species: The Co-Evolution of Language and the Human Brain (Pen-
guin, London, 1997)

K.A. De Jong, Evolutionary Computation: A Unified Approach (MIT Press, Cambridge, 2006)
G. Dyson, Darwin Among the Machines (Penguin, London, 1997)

G.FR. Ellis, True complexity and its associated ontology, in Science and Ultimate Reality:
Quantum Theory, Cosmology and Complexity, ed. by J.D. Barrow, P.C.W. Davies, C.L. Harper
(Cambridge University Press, Cambridge, 2004), pp. 607-636

G.ER. Ellis, On the nature of causation in complex systems. Trans. R. Soc. S. Africa 63, 69-84
(2008)

G.FR. Ellis, Top-down causation and emergence: some comments on mechanisms. J. R. Soc.
Interface Focus 2, 126-140 (2012)

G.FR. Ellis, D. Noble, T. O’Connor (eds.), Top-down causation: An integrating theme within
and across the sciences? R. Interface Focus Spec. Issue 2, 1-140 (2012)

K. Fatahalian, T.J. Knight, M. Houston, M. Erez, D.R. Horn, L. Leem, J.Y. Park, M. Ren, A.
Aiken, W.J. Dally, P. Hanrahan, Sequoia: Programming the memory hierarchy, in SC 2006
Conference, Proceedings of the ACM/IEEE (2006)

R.L. Flood, E.R. Carson, Dealing with Complexity: An Introduction to the Theory and Appli-
cation of Systems Science (Plenum Press, London, 1990)

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object
Oriented Software (Addison Wesley, New York, 1995)

P. Gray, Psychology (Worth Publishers, New York, 2011)

J. Hawkins, On Intelligence (Holt Paperbacks, New York, 2004)

D. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid (Penguin, London, 1980)

D. Hilbert, On the infinite, in Philosophy of Mathematics, ed. by P. Benacerraf, H. Putnam
(Prentice Hall, Englewood Cliff, 1964), p. 134

J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1992)

B. Jacobs, S.W. Ng, D.T. Wang, Memory Systems: Cache, DRAM, Disk (Elsevier, Burlington,
2008)

N.L. Kamorova, M.A. Nowak, Language, learning, and evolution, in Language Evolution, ed.
by M.H Christensen, S. Kirby (Oxford University Press, Oxford, 2005), pp. 317-337

R.M. Keller, Computer Science: Abstraction to Implementation. http://www.cs.hmc.edu/
~keller/cs60book/

J.F. Kurose, K.W. Ross, Computer Networking: A Top-Down approach (Addison-Wesley, New
York, 2012)

J. Ladyman, S. Presnell, A.J. Short, B. Groisman, The connection between logical and ther-
modynamic irreversibility (2006). http://philsci-archive.pitt.edu/id/eprint/2689

R. Lafore, Data Structures and Algorithms in Java (SAMS, Indianapolis, 2002)

R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5,
183-191 (1961)

S. Lloyd, Computational capacity of the universe (2001). arXiv:quant-phy/0110141

J. MacCormack, Nine Algorithms that Changed the Future: The Ingenious Ideas that Drive
Today’s Computers (Princeton University Press, Princeton, 2012)

J.L. McClelland, The case for interactionism in language processing. Technical Report AIP-2
(Department of Psychology, Carnegie-Mellon University Pittsburgh, PA 15213 USA, 1987)

http://plato.stanford.edu/archives/fall2008/entries/church-turing/
http://plato.stanford.edu/archives/fall2008/entries/church-turing/
http://www.cs.hmc.edu/~keller/cs60book/
http://www.cs.hmc.edu/~keller/cs60book/
http://philsci-archive.pitt.edu/id/eprint/2689
http://arxiv.org/abs/quant-phy/0110141

84

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.

2 Digital Computer Systems

M.M. Mano, C.R. Kime, Logic and Computer Design Fundamentals (Pearson/Prentice Hall,
2008)

J. McCarthy, Artificial intelligence, logic and formalizing common sense (1990). http:/www-
formal.stanford.edu/jmc/

J.H. Miller, S.E. Page, Complex Adaptive Systems: An Introduction to Computational Models
of Social Life (Princeton University Press, Princeton, 2007)

D. Noble, A theory of biological relativity: no privileged level of causation. Interface Focus 2,
55-64 (2012)

Object Management Group (OMG), OMG Unified Modeling Language (OMG UML) Super-
structure Version 2.2. http://www.omg.org/spec/UML/2.4.1/

R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics
(Oxford University Press, New York, 1989)

R. Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness (Oxford
University Press, Oxford, 1994)

R. Penrose, The Large, the Small and the Human Mind (Cambridge University Press, Cam-
bridge, 1997)

J. Porway, Q.C. Wang, S.C. Zhu, A hierarchical and contextual model for aerial image parsing.
http://vcla.stat.ucla.edu/Aerial_Image_Parsing/index.html

S Russell and P Norvig (2009) Artificial Intelligence: A Modern Approach (Prentice Hall)

W. Savitch, Absolute Java (Pearson, Boston, 2010)

S.C. Shapiro, Artifical intelligence, in Encyclopaedia of Artificial Intelligence, ed. by S.C.
Shapiro (Wiley, New York, 1992), pp. 54-57

J.R. Searle, Is the brain a digital computer? https://mywebspace.wisc.edu/Ishapiro/web/
Phil554_filess/SEARLE-BDC.HTM

A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts (Wiley, New York, 2010)
H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, 1992)

A.S. Tanenbaum, Structured Computer Organisation (Prentice Hall, Englewood Cliffs, 2006)
R.L. Trask, Language and Linguistics: The Key Concepts (Routledge, Abingdon, 2007)

AM. Turing, On computable numbers, with an application to the Entscheidungsproblem, in
Proceedings of the London Mathematical Society, vol. 42, pp. 230-265 (1936) (Reprinted in
J. Copeland, The Essential Turing (Oxford University Press, Oxford, 2004), p. 58)

A.M. Turing, Lecture on the automatic computing engine (1947) (Reprinted in J. Copeland,
The Essential Turing (Oxford University Press, Oxford, 2004), p. 378)

A.M. Turing, Computing machinery and intelligence. Mind 59, 433-460 (1950) (Reprinted in
J. Copeland, The Essential Turing (Oxford University Press, Oxford, 2004), p. 433)

D.A. Watt, D.F. Brown, Programming Language Processors in Java: Compilers and Inter-
preters (Prentice Hall, Harlow, 2000)

M.A. Weiss, Data Structure and Algorithm Analysis in Java (Addison Wesley/Longman, 1999)

http://www-formal.stanford.edu/jmc/
http://www-formal.stanford.edu/jmc/
http://www.omg.org/spec/UML/2.4.1/
http://vcla.stat.ucla.edu/Aerial_Image_Parsing/index.html
https://mywebspace.wisc.edu/lshapiro/web/Phil554_files/SEARLE-BDC.HTM
https://mywebspace.wisc.edu/lshapiro/web/Phil554_files/SEARLE-BDC.HTM

2 Springer
http://www.springer.com/978-3-662-49807-1

How Can Physics Underlie the Mind?
Top-Down Causation in the Human Context
Ellis, G,

2016, X0, 482 p. 36 illus., Hardcover
ISEM: 978-3-662-49807-1

	2 Digital Computer Systems
	2.1 Computational Basics
	2.2 Modular Hierarchical Structures
	2.2.1 Structures: Combination and Abstraction
	2.2.2 Decomposition and Modularity
	2.2.3 Encapsulation and Information-Hiding
	2.2.4 Naming, Combination, and Recursion
	2.2.5 Hierarchy: Class Structure and Object Structure
	2.2.6 Evolution

	2.3 Orthogonal Modular Hierarchical Structures
	2.3.1 The Two Kinds of Hierarchies
	2.3.2 The Implementation (Vertical) Hierarchies
	2.3.3 The Logical (Horizontal) Hierarchies
	2.3.4 The Relation Between the Two Hierarchies
	2.3.5 Causality in the Hierarchies

	2.4 Bottom-Up and Top-Down Causation
	2.4.1 The Combination of Bottom-Up and Top-Down Action
	2.4.2 TD1: Deterministic Top-Down Processes
	2.4.3 TD2: Non-adaptive Feedback Control Systems
	2.4.4 TD3: Adaptive Selection
	2.4.5 TD4: Feedback Control with Adaptive Goals
	2.4.6 TD5: Adaptive Selection of Adaptive Goals
	2.4.7 Goals and Learning in Relation to These Kinds of Causation

	2.5 The Core Feature: Equivalence Classes
	2.5.1 Multiple Realization
	2.5.2 The Link with Top-Down Causation
	2.5.3 The Ontological Nature of Computer Programs

	2.6 Resources: Memory and Deleting
	2.6.1 The Unphysical Nature of Infinity
	2.6.2 Deletion and Garbage Collection
	2.6.3 The Memory Hierarchy
	2.6.4 Modular Hierarchical Structure and Scoping of Variables
	2.6.5 Deletion, Adaptive Selection, and Irreversibility

	2.7 The Outcome: Causation in Digital Computers
	2.7.1 Computer Programs Are Non-physical, but Causally Effective
	2.7.2 Computer Programs Embody Abstract Logic, and Act Top-Down
	2.7.3 Room at the Bottom
	2.7.4 Predictable Outcome?
	2.7.5 Possibility Spaces and Their Causal Effects
	2.7.6 Top-Down Action from the Mind
	2.7.7 Genuine Emergence

	References

