
Chapter 6
Process Discovery: An Introduction

Process discovery is one of the most challenging process mining tasks. Based on an
event log a process model is constructed thus capturing the behavior seen in the log.
This chapter introduces the topic using the rather naïve α-algorithm. This algorithm
nicely illustrates some of the general ideas used by many process mining algorithms
and helps to understand the notion of process discovery. Moreover, the α-algorithm
serves as a stepping stone for discussing challenges related to process discovery.

6.1 Problem Statement

As discussed in Chap. 2, there are three types of process mining: discovery, con-
formance, and enhancement. Moreover, we identified various perspectives, e.g., the
control-flow perspective, the organizational or resource perspective, the data per-
spective, and the time perspective. In this chapter, we focus on the discovery task
and the control-flow perspective. This combination is often referred to as process
discovery. The general process discovery problem can be formulated as follows.

Definition 6.1 (General process discovery problem) Let L be an event log as de-
fined in Definition 5.3 or as specified by the XES standard (cf. Sect. 5.3). A process
discovery algorithm is a function that maps L onto a process model such that the
model is “representative” for the behavior seen in the event log. The challenge is to
find such an algorithm.

This definition does not specify what kind of process model should be gener-
ated, e.g., a BPMN, EPC, YAWL, or Petri net model. Moreover, event logs with
potentially many attributes may be used as input. Recall that the XES format allows
for storing information related to all perspectives whereas here the focus is on the
control-flow perspective. The only requirement is that the behavior is “representa-
tive”, but it is unclear what this means.

© Springer-Verlag Berlin Heidelberg 2016
W. van der Aalst, Process Mining, DOI 10.1007/978-3-662-49851-4_6

163

http://dx.doi.org/10.1007/978-3-662-49851-4_6


164 6 Process Discovery: An Introduction

Fig. 6.1 WF-net N1 discovered for L1 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉]

Definition 6.1 is rather broad and vague. The target format is not specified and
a potentially “rich” event log is used as input without specifying tangible require-
ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 5.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 3.2.3. Based on these choices we reformulate the process discovery
problem and make it more concrete.

Definition 6.2 (Specific process discovery problem) A process discovery algo-
rithm is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) =
(N,M). Ideally, N is a sound WF-net and all traces in L correspond to possible
firing sequences of (N,M).

Function γ defines a so-called “Play-In” technique as described in Chap. 2.
Based on L1, a process discovery algorithm γ could discover the WF-net shown
in Fig. 6.1, i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible
firing sequence of WF-net N1 shown in Fig. 6.1. Therefore, it is easy to see that
the WF-net can indeed replay all traces in the event log. In fact, each of the three
possible firing sequences of WF-net N1 appears in L1.

Let us now consider another event log,

L2 = [〈a, b, c, d〉3, 〈a, c, b, d〉4, 〈a, b, c, e, f, b, c, d〉2, 〈a, b, c, e, f, c, b, d〉,
〈a, c, b, e, f, b, c, d〉2, 〈a, c, b, e, f, b, c, e, f, c, b, d〉]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 6.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence 〈a, c, b, e, f, c, b, d〉



6.1 Problem Statement 165

Fig. 6.2 WF-net N2 discovered for L2 = [〈a, b, c, d〉3, 〈a, c, b, d〉4, 〈a, b, c, e, f, b, c, d〉2,
〈a, b, c, e, f, c, b, d〉, 〈a, c, b, e, f, b, c, d〉2, 〈a, c, b, e, f, b, c, e, f, c, b, d〉]

does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 6.2 does not require all firing sequences of (N,M) to be traces in L.

In this chapter, we focus on the discovery of Petri nets. The reason is that Petri
nets are simple and graphical while still allowing for the modeling of concurrency,
choices, and iteration. This is illustrated by Figs. 6.1 and 6.2. In both models ac-
tivities b and c are concurrent. In N1, there is choice following a. In N2, there is
choice between d and e each time both b and c complete. Both N1 and N2 are sound
WF-nets. As explained in Chap. 3, WF-nets are a natural subclass of Petri nets tai-
lored toward the modeling and analysis of operational processes. A process model
describes the life-cycle of one case. Therefore, WF-nets explicitly model the cre-
ation and the completion of the cases. The creation is modeled by putting a token in
the unique source place i (place start in Figs. 6.1 and 6.2). The completion is mod-
eled by reaching the state marking the unique sink place o (place end in Figs. 6.1
and 6.2). Given a unique source place i and a unique sink place o, the soundness
requirement described in Definition 3.7 follows naturally. Recall that a WF-net N is
sound if and only if

• (N, [i]) is safe, i.e., places cannot hold multiple tokens at the same time;
• For any marking M ∈ [N, [i]〉, o ∈ M implies M = [o], i.e., if the sink place is

marked, all other places should be empty (proper completion);
• For any marking M ∈ [N, [i]〉, [o] ∈ [N,M〉, i.e., it is always possible to mark

the sink place (option to complete); and
• (N, [i]) contains no dead transitions, i.e., all parts of the model are potentially

reachable.

Most process modeling notations use or assume correctness criteria similar to
soundness. For instance, deadlocks and livelocks are symptoms of a process that
cannot complete (properly). These phenomena are undesired, independent of the
notation used.

Although we use WF-nets in this chapter, this does not imply that discovered
process models cannot be presented using other notations. As discussed in Chap. 3,
there exist many translations from Petri nets into other notations and vice versa.



166 6 Process Discovery: An Introduction

Fig. 6.3 Two BPMN models: (a) the model corresponding to WF-net N1 discovered for L1, and
(b) the model corresponding to WF-net N2 discovered for L2

Compact formalisms with formal semantics like Petri nets are most suitable to de-
velop and explain process mining algorithms. The representation used to show re-
sults to end users is less relevant for the actual process discovery task. For example,
the WF-nets depicted in Figs. 6.1 and 6.2 can also be presented in terms of the
two trace equivalent BPMN models shown in Fig. 6.3. Similarly, the discovered
models could have been translated into equivalent EPCs, UML activity diagrams,
statecharts, YAWL models, BPEL specifications, etc.

In the general problem formulation (Definition 6.1) we stated that the discovered
model should be “representative” for the behavior seen in the event log. In Defi-
nition 6.2, this was operationalized by requiring that the model is able to replay all
behavior in this log, i.e., any trace in the event log is a possible firing sequence of the
WF-net. This is the so-called “fitness” requirement. In general, there is a trade-off
between the following four quality criteria:

• (Fitness) The discovered model should allow for the behavior seen in the event
log.

• (Precision) The discovered model should not allow for behavior completely un-
related to what was seen in the event log.

• (Generalization) The discovered model should generalize the example behavior
seen in the event log.

• (Simplicity) The discovered model should be as simple as possible.



6.2 A Simple Algorithm for Process Discovery 167

A model having a good fitness is able to replay most of the traces in the log. Preci-
sion is related to the notion of underfitting presented in the context of data mining
(see Sect. 4.6.3). A model having a poor precision is underfitting, i.e., it allows for
behavior that is very different from what was seen in the event log. Generaliza-
tion is related to the notion of overfitting. An overfitting model does not generalize
enough, i.e., it is too specific and too much driven by examples in the event log. The
fourth quality criterion is related to Occam’s Razor which states that “one should not
increase, beyond what is necessary, the number of entities required to explain any-
thing” (see Sect. 4.6.3). Following this principle, we look for the “simplest process
model” that can explain what is observed in the event log.

It turns out to be challenging to balance the four quality criteria. For instance, an
oversimplified model is likely to have a low fitness or lack of precision. Moreover,
there is an obvious trade-off between underfitting and overfitting. We discuss these
four quality criteria later in this chapter. However, we first introduce a concrete
process discovery algorithm.

6.2 A Simple Algorithm for Process Discovery

This section introduces the α-algorithm [157]. This algorithm is an example of a
γ function as mentioned in Definition 6.2, i.e., given a simple event log it pro-
duces a Petri net that (hopefully) can replay the log. The α-algorithm was one of the
first process discovery algorithms that could adequately deal with concurrency (see
Sect. 7.6). However, the α-algorithm should not be seen as a very practical mining
technique as it has problems with noise, infrequent/incomplete behavior, and com-
plex routing constructs. Nevertheless, it provides a good introduction into the topic.
The α-algorithm is simple and many of its ideas have been embedded in more com-
plex and robust techniques. We will use the algorithm as a baseline for discussing
the challenges related to process discovery and for introducing more practical algo-
rithms.

6.2.1 Basic Idea

Input for the α-algorithm is a simple event log L over A , i.e., L ∈ B(A ∗). In the
remainder, we will simply refer to L as the event log. We refer to the elements of
A as activities, see Sect. 3.2. These activities will correspond to transitions in the
discovered Petri net. In this chapter, we will use the convention that capital letters
refer to sets of activities (e.g., A,B ⊆ A ), whereas for individual activities no cap-
italization is used (e.g., a, b, c, . . . ∈ A ). The output of the α-algorithm is a marked
Petri net, i.e., α(L) = (N,M). We aim at the discovery of WF-nets. Therefore, we
can omit the initial marking and write α(L) = N (the initial marking is implied;
M = [i]).



168 6 Process Discovery: An Introduction

Table 6.1 Footprint of L1:
a#L1a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ‖L1 →L1 #L1

c ←L1 ‖L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

The α-algorithm scans the event log for particular patterns. For example, if ac-
tivity a is followed by b but b is never followed by a, then it is assumed that there is
a causal dependency between a and b. To reflect this dependency, the correspond-
ing Petri net should have a place connecting a to b. We distinguish four log-based
ordering relations that aim to capture relevant patterns in the log.

Definition 6.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A .

• a >L b if and only if there is a trace σ = 〈t1, t2, t3, . . . , tn〉 and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b;

• a →L b if and only if a >L b and b ≯L a;
• a#Lb if and only if a ≯L b and b ≯L a; and
• a‖Lb if and only if a >L b and b >L a.

Consider, for instance, L1 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉] again. For this
event log, the following log-based ordering relations can be found:

>L1 = {
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 = {
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 = {
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

‖L1 = {
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace 〈a, b, c, d〉. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in a
“causality” relation, e.g., c →L1 d because sometimes d directly follows c and never
the other way around (c >L1 d and d ≯L1 c). b‖L1c because b >L1 c and c >L1 b,
i.e., sometimes c follows b and sometimes the other way around. b#L1e because
b ≯L1 e and e ≯L1 b.

For any log L over A and x, y ∈ A , x →L y, y →L x, x#Ly, or x‖Ly, i.e., pre-
cisely one of these relations holds for any pair of activities. Therefore, the footprint
of a log can be captured in a matrix as shown in Table 6.1.

The footprint of event log L2 is shown in Table 6.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2 one
can see that only the e and f columns and rows differ.



6.2 A Simple Algorithm for Process Discovery 169

Table 6.2 Footprint of
L2 = [〈a, b, c, d〉3,
〈a, c, b, d〉4,
〈a, b, c, e, f, b, c, d〉2,
〈a, b, c, e, f, c, b, d〉,
〈a, c, b, e, f, b, c, d〉2,
〈a, c, b, e, f, b, c, e, f, c,

b, d〉]

a b c d e f

a # → → # # #

b ← # ‖ → → ←
c ← ‖ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 6.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b#Lc because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split
pattern is the XOR-join pattern as shown in Fig. 6.4(b)–(c). If a →L c, b →L c, and
a#Lb, then this suggests that after the occurrence of either a or b, c should happen.
Figure 6.4(d)–(e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b‖Lc, then it appears that after a both b and c can be executed in par-
allel (AND-split pattern). If a →L c, b →L c, and a‖Lb, then the log suggests that
c needs to synchronize a and b (AND-join pattern).

Figure 6.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Fig. 6.4 Typical process patterns and the footprints they leave in the event log



170 6 Process Discovery: An Introduction

Fig. 6.5 WF-net N3 derived from L3 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉2, 〈a, b, c,

d, e, f, b, c, d, e, f, b, d, c, e, g〉]

Fig. 6.6 WF-net N4 derived from L4 = [〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]

Table 6.3 Footprint of L3 a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ‖ → # #

d # ← ‖ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Consider, for example, WF-net N3 depicted in Fig. 6.5 and the event log L3

describing four cases,

L3 = [〈a, b, c, d, e, f, b, d, c, e, g〉,
〈a, b, d, c, e, g〉2,

〈a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g〉]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 6.5).
Table 6.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c‖L3d , c →L3 e, and d →L3 e. The
choice following e is revealed by e →L3 f , e →L3 g, and f #L3g; etc.



6.2 A Simple Algorithm for Process Discovery 171

Another example is shown in Fig. 6.6. WF-net N4 can be derived from L4,

L4 = [〈a, c, d〉45, 〈b, c, d〉42, 〈a, c, e〉38, 〈b, c, e〉22]

L4 contains information about 147 cases that follow one of the four possible traces.
There are two start and two end activities. These can be detected easily by looking
for the first and last activities in traces.

6.2.2 Algorithm

After showing the basic idea and some examples, we describe the α-algorithm [157].

Definition 6.4 (α-algorithm) Let L be an event log over T ⊆ A . α(L) is defined
as follows:

1. TL = {t ∈ T | ∃σ∈L t ∈ σ },
2. TI = {t ∈ T | ∃σ∈L t = first(σ )},
3. TO = {t ∈ T | ∃σ∈L t = last(σ )},
4. XL = {(A,B) | A ⊆ TL ∧ A �= ∅ ∧ B ⊆ TL ∧ B �= ∅ ∧

∀a∈A∀b∈B a →L b ∧ ∀a1,a2∈A a1#La2 ∧ ∀b1,b2∈B b1#Lb2},
5. YL = {(A,B) ∈ XL | ∀(A′,B ′)∈XL

A ⊆ A′ ∧ B ⊆ B ′ =⇒ (A,B) = (A′,B ′)},
6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL},
7. FL = {(a,p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ YL ∧ b ∈

B} ∪ {(iL, t) | t ∈ TI } ∪ {(t, oL) | t ∈ TO}, and
8. α(L) = (PL,TL,FL).

L is an event log over some set T of activities. In Step 1, it is checked which
activities do appear in the log (TL). These will correspond to the transitions of the
generated WF-net. TI is the set of start activities, i.e., all activities that appear first in
some trace (Step 2). TO is the set of end activities, i.e., all activities that appear last in
some trace (Step 3). Steps 4 and 5 form the core of the α-algorithm. The challenge is
to determine the places of the WF-net and their connections. We aim at constructing
places named p(A,B) such that A is the set of input transitions (•p(A,B) = A) and B

is the set of output transitions (p(A,B)• = B) of p(A,B).
The basic motivation for finding p(A,B) is illustrated by Fig. 6.7. All elements

of A should have causal dependencies with all elements of B , i.e., for all (a, b) ∈
A × B: a →L b. Moreover, the elements of A should never follow one another, i.e.,
for all a1, a2 ∈ A: a1#La2. A similar requirement holds for B .

Table 6.4 shows the structure in terms of the footprint matrix introduced earlier.
If we only consider the columns and rows related to A ∪ B and group the rows
and columns belonging to A respectively B , we get the pattern shown in Table 6.4.
There are four quadrants. Two quadrants only contain the symbol #. This shows that
the elements of A should never follow another (upper-left quadrant) and that the
elements of B should never follow another (lower-right quadrant). The upper-right



172 6 Process Discovery: An Introduction

Fig. 6.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 6.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. . . . . . . . . . . . . . . . . . . . . . . . . . .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. . . . . . . . . . . . . . . . . . . . . . . . . . .

bn ← ← . . . ← # # . . . #

quadrant only contains the symbol →, any of the elements in A can be followed
by any of the elements in B but never the other way around. By symmetry, the
lower-left quadrant only contains the symbol ←.

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case,

XL1 = {({a}, {b}), ({a}, {c}), ({a}, {e}), ({a}, {b, e}), ({a}, {c, e}),
({b}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {d}), ({c, e}, {d})}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, non-empty set A′ ⊆ A, and non-empty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all non-maximal pairs are removed, thus yielding

YL1 = {({a}, {b, e}), ({a}, {c, e}), ({b, e}, {d}), ({c, e}, {d})}

Step 5 can also be understood in terms the footprint matrix. Consider Table 6.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 6.4. Therefore, we only consider maximal matrices for constructing YL.



6.2 A Simple Algorithm for Process Discovery 173

Table 6.5 Footprint of L5 a b c d e f

a # → # # → #

b ← # → ← ‖ →
c # ← # → ‖ #

d # → ← # ‖ #

e ← ‖ ‖ ‖ # →
f # ← # # ← #

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting transi-
tions A to transitions B . In addition PL also contains a unique source place iL and
a unique sink place oL (cf. Step 6). Remember that the goal is to create a WF-net.1

In Step 7, the arcs of the WF-net are generated. All start transitions in TI have
iL as an input place and all end transitions TO have oL as output place. All places
p(A,B) have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL,TL,FL) that describes the behavior seen in event log L.

Thus far we presented four logs and four WF-nets. Application of the α-
algorithm shows that indeed α(L3) = N3 and α(L4) = N4. In Figs. 6.5 and 6.6,
the places are named based on the sets YL3 and YL4 . Moreover, α(L1) = N1 and
α(L2) = N2 modulo renaming of places (because different place names are used
in Figs. 6.1 and 6.2). These examples show that the α-algorithm is indeed able to
discover WF-nets based on event logs.

Let us now consider event log L5,

L5 = [〈a, b, e, f 〉2, 〈a, b, e, c, d, b, f 〉3, 〈a, b, c, e, d, b, f 〉2,

〈a, b, c, d, e, b, f 〉4, 〈a, e, b, c, d, b, f 〉3]

Table 6.5 shows the footprint of the log.
Let us now apply the 8 steps of the algorithm for L = L5:

TL = {a, b, c, d, e, f }
TI = {a}
TO = {f }
XL = {({a}, {b}), ({a}, {e}), ({b}, {c}), ({b}, {f }), ({c}, {d}),

({d}, {b}), ({e}, {f }), ({a, d}, {b}), ({b}, {c, f })}

YL = {({a}, {e}), ({c}, {d}), ({e}, {f }), ({a, d}, {b}), ({b}, {c, f })}

PL = {p({a},{e}), p({c},{d}), p({e},{f }), p({a,d},{b}), p({b},{c,f }), iL, oL}
FL = {

(a,p({a},{e})), (p({a},{e}), e), (c,p({c},{d})), (p({c},{d}), d),

1Nevertheless, the α-algorithm may construct a Petri net that is not a WF-net (see, for instance,
Fig. 6.12). Later, we will discuss such problems in detail.



174 6 Process Discovery: An Introduction

Fig. 6.8 WF-net N5 derived from L5 = [〈a, b, e, f 〉2, 〈a, b, e, c, d, b, f 〉3, 〈a, b, c, e, d, b, f 〉2,
〈a, b, c, d, e, b, f 〉4, 〈a, e, b, c, d, b, f 〉3]

(e,p({e},{f })), (p({e},{f }), f ), (a,p({a,d},{b})), (d,p({a,d},{b})),

(p({a,d},{b}), b), (b,p({b},{c,f })), (p({b},{c,f }), c), (p({b},{c,f }), f ),

(iL, a), (f, oL)
}

α(L) = (PL,TL,FL)

Figure 6.8 shows N5 = α(L5), i.e., the model just computed. N5 can indeed
replay the traces in L5. Place names are not shown in Fig. 6.8, and we will also
not show them in later WF-nets, because they can be derived from the surrounding
transition names and just clutter the diagram.

6.2.3 Limitations of the α-Algorithm

In [157], it was shown that the α-algorithm can discover a large class of WF-nets
if one assumes that the log is complete with respect to the log-based ordering re-
lation >L. This assumption implies that, for any complete event log L, a >L b if
a can be directly followed by b. Consequently, a footprint like the one shown in
Table 6.5 is assumed to be valid. We revisit the notion of completeness later in this
chapter.

Even if we assume that the log is complete, the α-algorithm has some problems.
There are many different WF-nets that have the same possible behavior, i.e., two
models can be structurally different but trace equivalent. Consider, for instance, the
following event log:

L6 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d,f, g〉2, 〈b,f, d, g〉4]

α(L6) is shown in Fig. 6.9. Although the model is able to generate the observed
behavior, the resulting WF-net is needlessly complex. Two of the input places of g

are redundant, i.e., they can be removed without changing the behavior. The places
denoted as p1 and p2 are so-called implicit places and can be removed without



6.2 A Simple Algorithm for Process Discovery 175

Fig. 6.9 WF-net N6 derived from L6 = [〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d,f, g〉2, 〈b,f, d, g〉4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 6.10 Incorrect WF-net
N7 derived from
L7 = [〈a, c〉2, 〈a, b, c〉3,
〈a, b, b, c〉2,
〈a, b, b, b, b, c〉1]

Fig. 6.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 6.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 6.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 6.10, which shows the result of applying the basic
algorithm to L7,

L7 = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2, 〈a, b, b, b, b, c〉1]

The resulting model is not a WF-net as transition b is disconnected from the rest of
the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown
in [11]. Using an improved version of the α-algorithm one can discover the WF-net
shown in Fig. 6.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 6.12
which shows the result of applying the basic algorithm to L8,

L8 = [〈a, b, d〉3, 〈a, b, c, b, d〉2, 〈a, b, c, b, c, b, d〉]



176 6 Process Discovery: An Introduction

Fig. 6.12 Incorrect WF-net N8 derived from L8 = [〈a, b, d〉3, 〈a, b, c, b, d〉2, 〈a, b, c, b, c, b, d〉]

Fig. 6.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b‖L8c. Hence the basic algorithm incorrectly assumes that b and c

are in parallel because they follow one another. The model shown in Fig. 6.12 is not
even a WF-net because c is not on a path from source to sink. Using the extension
described in [11], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 6.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [11] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 6.2.2. The α+-
algorithm uses a pre- and post-processing phase. The pre-processing phase deals
with loops of length two whereas the pre-processing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called non-local dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 6.14.
This net would be a good candidate after observing the following event log:

L9 = [〈a, c, d〉45, 〈b, c, e〉42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 6.6, although the traces 〈a, c, e〉 and
〈b, c, d〉 do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [185].



6.2 A Simple Algorithm for Process Discovery 177

Fig. 6.14 WF-net N9 having a non-local dependency

Fig. 6.15 Two constructs
that may jeopardize the
correctness of the discovered
WF-net

Another limitation of the α-algorithm is that frequencies are not taken into ac-
count. Therefore, the algorithm is very sensitive to noise and incompleteness (see
Sect. 6.4.2).

The α-algorithm is able to discover a large class of models. The basic 8-line
algorithm has some limitations when it comes to particular process patterns (e.g.,
short-loops and non-local dependencies). Some of these problems can be solved
using various refinements. As shown in [11, 157], the α-algorithm guarantees to
produce a correct process model provided that the underlying process can be de-
scribed by a WF-net that does not contain duplicate activities (two transitions with
the same activity label) and silent transitions (activities that are not recorded in the
event log), and does not use the two constructs shown in Fig. 6.15. See [11, 157] for
the precise requirements.

Even if the underlying process is using constructs as shown in Fig. 6.15, the α-
algorithm may still produce a useful process model. For instance, the α-algorithm is
unable to discover the highlighted places (p1 and p2) in Fig. 6.14, but still produces
a sound process model that is able to replay the log.

6.2.4 Taking the Transactional Life-Cycle into Account

When describing the typical information in event logs in Chap. 5, we discussed the
transactional life-cycle model of an activity instance. Figure 5.3 shows examples
of transaction types, e.g., schedule, start, complete, and suspend. Events often have
such a transaction type attribute, e.g., #trans(e) = complete. The standard life-cycle
extension of XES also provides such an attribute. The α-algorithm can be easily
adapted to take this information into account. First of all, the log could be projected



178 6 Process Discovery: An Introduction

Fig. 6.16 Mining event logs with transactional information; the life-cycle of each activity is rep-
resented as a subprocess

onto smaller event logs in which each of the smaller logs contains all events related
to a specific activity. This information can be used to discover the transactional life-
cycle for each activity. Second, when mining the overall process, information about
the general transactional life-cycle (e.g., Fig. 5.3) or information about an activity-
specific transactional life-cycle can be exploited. Figure 6.16 illustrates the latter.
All events related to an activity are mapped onto transitions embedded in a subpro-
cess. The relations between the transitions for each subprocess are either discovered
separately or modeled using domain knowledge. Figure 6.16 shows a sequence of
three activities. Activities a and c share a common transactional life-cycle involving
the event types assign, start, and complete. Activity b has a transactional life-cycle
involving the event types start, suspend, resume, and complete.

6.3 Rediscovering Process Models

In Chap. 8, we will describe conformance checking techniques for measuring the
quality of a process model with respect to an event log. However, when discussing
the results of the α-algorithm, we already concluded that some WF-nets “could
not be discovered” based on an event log. This assumes that we aim to discover a
particular, known, model. In reality, we often do not know the “real” model. In fact,
in practice, there is no such thing as the model describing a process. There may
be many models (i.e., views on the same reality) and the process being studied may
change while being discovered. However, as sketched in Fig. 6.17, we can create the
experimental setting for testing process discovery algorithms in which we assume
the original model to be known.



6.3 Rediscovering Process Models 179

Fig. 6.17 The rediscovery problem: Is the discovered model N ′ equivalent to the original
model N?

Fig. 6.18 Three trace equivalent transition systems: TS1 and TS2 are not bisimilar, but TS2 and
TS3 are bisimilar

Starting point in Fig. 6.17 is a process model, e.g., a WF-net N . Based on this
model we can run many simulation experiments and record the simulated events
in an event log. Let us assume that the event log is complete with respect to some
criterion, e.g., if x can be followed by y in N it happened at least once according to
log. Using the complete event log as input for a process discovery algorithm (e.g.,
the α-algorithm), we can construct a new model. Now the question is: “What do the
discovered model N ′ and the original model N have in common? Are they equiva-
lent?” Equivalence can be viewed at different levels. For example, it is unreasonable
to expect that a discovery algorithm is able to reconstruct the original layout as this
information is not in the log; layout information is irrelevant for the behavior of
a process. For the same reason, it is unreasonable to expect that the original place
names of the WF-net can be reconstructed. The α-algorithm generates places named
p(A,B). These are of course not intended to match original place names. Therefore,
we need to focus on behavior (and not on layout and syntax) when comparing the
discovered model N ′ and the original model N .

Three notions of behavioral equivalence
As shown in [176], many equivalence notions can be defined. Here, we in-
formally describe three well-known notions: trace equivalence, bisimilarity,



180 6 Process Discovery: An Introduction

and branching bisimilarity. These notions are defined for a pair of transition
systems TS1 and TS2 (Sect. 3.2.1) and not for higher-level languages such
as WF-nets, BPMN, EPCs, and YAWL. However, any model with executable
semantics can be transformed into a transition system. Therefore, we can as-
sume that the original process model N and the discovered process model N ′
mentioned in Fig. 6.17 define two transition systems that can be used as a
basis for comparison.

Trace equivalence considers two transition systems to be equivalent if their
sets of execution sequences are identical. Let TS2 be the transition system cor-
responding to WF-net N6 = α(L6) shown in Fig. 6.9 and let TS1 be the tran-
sition system corresponding to the same WF-net but now without places p1
and p2. Although both WF-nets are syntactically different, the sets of execu-
tion sequences of TS1 and TS2 are the same. However, two transition systems
that allow for the same set of execution sequences may also be quite different
as illustrated by Fig. 6.18.

The three transition systems in Fig. 6.18 are trace equivalent: any trace in
one transition system is also possible in any of the other transition systems.
For instance, the trace 〈birth, curse, curse, curse,heaven〉 is possible in all
three transition systems. However, there is a relevant difference between TS1
and TS2. In TS1 one can end up in state s3 where one will always go to heaven
despite the cursing. Such a state does not exist in TS2; while cursing in state
s6 one can still go to hell. When moving from state s2 to state s3 in TS1 a
choice was made which cannot be seen in the set of traces but that is highly
relevant for understanding the process.

Bisimulation equivalence, or bisimilarity for short, is a more refined notion
taking into account the moment of choice. Two transition systems are bisim-
ilar if the first system can “mimic any move” of the second, and vice versa
(using the same relation). Consider, for example, TS2 and TS3 in Fig. 6.18.
TS2 can simulate TS3 and vice versa. The states of both transition systems are
related by dashed lines; s5 is related to s8, s6 is related to both s9 and s10,
and s7 is related to s11. In two related states the same set of actions needs
to be possible and taking any of these actions on one side should lead to a
related state when taking the same action on the other side. Because TS2 can
move from s5 to s6 via action birth, TS3 should also be able to take a birth
action in s8 resulting in a related state (s9). TS2 and TS3 are bisimilar because
any action by one can be mimicked by the other. Now consider TS1 and TS2.
Here, it is impossible to relate s3 in TS1 to a corresponding state in TS2. If s3
is related to s6, then in s3 it should be possible to do a hell action, but this
is not the case. Hence, TS2 can simulate TS1, i.e., any action in TS1 can be
mimicked by TS2, but TS1 cannot simulate TS2. Therefore, TS1 and TS2 are
not bisimilar. Bisimulation equivalence is a stronger equivalence relation than
trace equivalence, i.e., if two transition systems are bisimilar, then they are
also trace equivalent.



6.3 Rediscovering Process Models 181

Branching bisimulation equivalence, or branching bisimilarity for short,
takes silent actions into account. In Chap. 3 we introduced already the label
τ for this purpose. A τ action is “invisible”, i.e., cannot be observed. In terms
of process mining this means that the corresponding activity is not recorded
in the event log. As before, two transition systems are branching bisimilar
if the first system can “follow any move” of the second and vice versa, but
now taking τ actions into account. (Here, we do not address subtle differ-
ences between weak bisimulation, also known as observational equivalence,
and branching bisimulation equivalence [176].) If one system takes a τ ac-
tion, then the second system may also take a τ action or do nothing (as long
as the states between both systems remain related). If one system takes a non-
τ action, then the second system should also be able to take the same non-τ
action possibly preceded by sequence of τ actions. The states before and after
the non-τ action, need to be related. Figure 6.19 shows two YAWL models
and their corresponding transition systems TS1 and TS2. The two transition
systems are not branching bisimilar. The reason is that in the YAWL model
on the left, a choice is made after task check, whereas in the other model
the choice is postponed until either reject or accept happens. Therefore, the
YAWL model on the left cannot simulate the model on the right. Technically,
states s3 and s4 in TS1 do not have a corresponding state in TS2. It is impos-
sible to relate s3 and s4 to s7 since s7 allows for both actions whereas s3
and s4 allow for only one action. The YAWL model on the right models the
so-called deferred choice workflow pattern whereas the YAWL model on the
left models the more common exclusive choice pattern [155].

Branching bisimulation equivalence is highly relevant for process mining
since typically not all actions are recorded in the event log. For example, if the
choice made in task check is not recorded in the event log, then one discovers
the YAWL model on the right, i.e., the right moment of choice cannot be
captured.

Although both models in Fig. 6.19 are not branching bisimilar they are
trace equivalent. In both models there are only two possible (visible) traces:
〈check, reject〉 and 〈check,accept〉.

We refer to [176] for formal definitions of the preceding concepts. Here we
discuss these concepts because they are quite important when judging process
mining results.

The different notions of equivalence show that the comparison of the original
model and the discovered model in Fig. 6.17 is not a simple syntactical check. In-
stead a choice must be made with respect to the type of behavioral equivalence that
is appropriate.

As mentioned before, the experimental setting shown in Fig. 6.17 can only be
used in the situation in which the model is known beforehand. In most applica-



182 6 Process Discovery: An Introduction

Fig. 6.19 Two YAWL models and the corresponding transition systems

tions such a model is not known. Moreover, classical notions such as trace equiv-
alence, bisimilarity, and branching bisimilarity provide only true/false answers. As
discussed in [14], a binary equivalence is not very useful in the context of process
mining. If two processes are very similar (identical except for some exceptional
paths), classical equivalence checks will simply conclude that the processes are not
equivalent rather than stating that the processes are, e.g., 95% similar. Therefore,
this book will focus on the comparison of a model and an event log rather than
comparing two models. For instance, in Chap. 8 we will show techniques that can
conclude that 95% of the event log “fits” the model.

6.4 Challenges

The α-algorithm was one of the first process discovery algorithms to adequately
capture concurrency (see also Sect. 7.6). Today there are much better algorithms
that overcome the weaknesses of the α-algorithm. These are either variants of the
α-algorithm or algorithms that use a completely different approach, e.g., genetic
mining or synthesis based on regions. In Chap. 7, we review some of these alter-
native approaches. However, before presenting new process discovery techniques,
we first elaborate on the main challenges. For this purpose we show the effect that
a representational bias can have (Sect. 6.4.1). Then we discuss problems related to
the input event log that may be noisy or incomplete (Sect. 6.4.2). In Sect. 6.4.3,
we discuss the four quality criteria mentioned earlier: fitness, precision, generaliza-
tion, and simplicity. Finally, Sect. 6.4.4 again emphasizes that discovered models
are just a view on reality. Hence, the usefulness of the model strongly depends on
the questions one seeks to answer.



6.4 Challenges 183

Fig. 6.20 A WF-net having
two transitions with the same
label describing event log
L10 = [〈a, a〉55]

6.4.1 Representational Bias

At the beginning of the chapter we decided to focus on a mining algorithm that
produces a WF-net, i.e., we assumed that the underlying process can be adequately
described by a WF-net. Any discovery technique requires such a representational
bias. For example, algorithms for learning decision trees (see Sect. 4.2) make similar
assumptions about the structure of the resulting tree. For instance, most decision tree
learners can only split once on an attribute on every path in the tree.

When discussing the α-algorithm we assumed that the process to be discovered
is a sound WF-net. More specifically, we assumed that the underlying process can
be described by a WF-net where each transition bears a unique and visible label.
In such a WF-net it is not possible to have two transitions with the same label (i.e.,
l(t1) = l(t2) implies t1 = t2) or transitions whose occurrences remain invisible (i.e.,
it is not possible to have a so-called silent transition, so for all transitions t , l(t) �= τ ).
(See Sect. 3.2.2 and the earlier discussion on branching bisimulation equivalence.)
These assumptions may seem harmless, but have a noticeable effect on the class
of process models that can be discovered. We show two examples illustrating the
impact of such a representational bias.

For an event log like L10 = [〈a, a〉55], i.e., for all cases precisely two a’s are
executed, ideally one would like to discover the WF-net shown in Fig. 6.20. Unfor-
tunately, this process model will not be discovered due to the representational bias
of the α-algorithm. There is no WF-net without duplicate and τ labels that has the
desired behavior and the α-algorithm can only discover such WF-nets (i.e., each
transition needs to have unique visible label).

Let us now consider event log L11 = [〈a, b, c〉20, 〈a, c〉30]. Figure 6.21(a) de-
scribes the underlying process well: activity b can be skipped by executing the τ

transition. Figure 6.21(b) shows an alternative WF-net using two a transitions and
no τ transition. These two models are trace equivalent. (They are not branching
bisimilar because the moment of choice is different.) However, it is not possible to
construct a WF-net without duplicate and τ labels that is trace equivalent to these
two models. Figure 6.21(c) shows the model produced by the α-algorithm; because
of the representational bias, the algorithm is destined to fail for this log. The WF-net
in Fig. 6.21(c) can only reproduce trace 〈a, b, c〉 and not 〈a, c〉.

Event logs L10 and L11 illustrate the effect a representational bias can have.
However, from the viewpoint of the α-algorithm, the choice to not consider dupli-
cate labels and τ transitions is sensible. τ transitions are not recorded in the log
and hence any algorithm will have problems reconstructing their behavior. Multiple
transitions with the same label are undistinguishable in the event log. Therefore, any
algorithm will have problems associating the corresponding events to one of these
transitions.



184 6 Process Discovery: An Introduction

Fig. 6.21 Three WF-nets for the event log L11 = [〈a, b, c〉20, 〈a, c〉30]

The problems sketched previously apply to many process discovery algorithms.
For example, the choice between the concurrent execution of b and c or the ex-
ecution of just e shown in Fig. 6.1 cannot be handled by many algorithms. Most
algorithms do not allow for so-called “non-free-choice constructs” where concur-
rency and choice meet. The concept of free-choice nets is well-defined in the Petri
net domain [45]. A Petri net is free choice if any two transitions sharing an input
place have identical input sets, i.e., •t1 ∩•t2 �= ∅ implies •t1 = •t2 for any t1, t2 ∈ T .
Most analysis questions (e.g., soundness) can be answered in polynomial time for
free-choice nets [136, 168]. Moreover, many process modeling languages are inher-
ently free-choice, thus making this an interesting subclass. Unfortunately, in reality
processes tend to be non-free-choice. The example of Fig. 6.1 shows that sometimes
the α-algorithm is able to deal with non-free-choice constructs. However, there are
many non-free-choice processes that cannot be discovered by the α-algorithm (see
for example N9 in Fig. 6.14). The non-free-choice construct is just one of many
constructs that existing process mining algorithms have problems with. Other exam-
ples are arbitrary nested loops, cancelation, unbalanced splits and joins, and partial
synchronization. In this context it is important to observe process discovery is, by
definition, restricted by the expressive power of the target language, i.e., the repre-
sentational bias.



6.4 Challenges 185

For the reader interested in the topic, we refer to the workflow patterns [155, 191]
mentioned earlier. These patterns help to discuss and identify the representational
bias of a language.

The representational bias helps limiting the search space of possible candidate
models. This can make discovery algorithms more efficient. However, it can also
be used to give preference to particular types of models. It seems that existing ap-
proaches can benefit from selecting a more suitable representational bias. For in-
stance, the α-algorithm may yield models that have deadlocks or livelocks. Here
it would be nice to have a representational bias to limit the search space to only
sound models (i.e., free of deadlocks and other anomalies). Unfortunately, cur-
rently, this can typically only be achieved by severely limiting the expressiveness
of the modeling language or by using more time-consuming analysis techniques.
Consider, for example, the so-called block-structured process models. A model is
block-structured if it satisfies a number of syntactical requirements such that sound-
ness is guaranteed by these requirements. Different definitions exist [49, 132, 187].
Most of these definitions require a one-to-one correspondence between splits and
joins, e.g., concurrent paths created by an AND-split need to be synchronized by
the corresponding AND-join. Since many real-life processes are not block struc-
tured (see for example Figs. 14.1 and 14.10), one should be careful to not limit the
expressiveness too much. Note that techniques that turn unstructured models into
block-structured process models tend to introduce many duplicate or silent activi-
ties. Therefore, such transformations do not alleviate the core problems.

6.4.2 Noise and Incompleteness

To discover a suitable process model it is assumed that the event log contains a
representative sample of behavior. Besides the issues mentioned in Chap. 5 (e.g.,
correlating events and scoping the log), there are two related phenomena that may
make an event log less representative for the process being studied:

• (Noise) The event log contains rare and infrequent behavior not representative for
the typical behavior of the process.2

• (Incompleteness) The event log contains too few events to be able to discover
some of the underlying control-flow structures.

6.4.2.1 Noise

Noise, as defined in this book, does not refer to incorrect logging. When extract-
ing event logs from various data sources one needs to try to locate data problems

2Note that the definition of noise may be a bit counter-intuitive. Sometimes the term “noise” is
used to refer to incorrectly logged events, i.e., errors that occurred while recording the events.
Such a definition is not very meaningful as no event log will explicitly reveal such errors. Hence,
we consider “outliers” as noise. Moreover, we assume that such outliers correspond to exceptional
behavior rather than logging errors.



186 6 Process Discovery: An Introduction

as early as possible. However, at some stage one needs to assume that the event
log contains information on what really happened. It is impossible for a discovery
algorithm do distinguish incorrect logging from exceptional events. This requires
human judgment and pre- and postprocessing of the log. Therefore, we use the term
“noise” to refer to rare and infrequent behavior (“outliers”) rather than errors related
to event logging. For process mining it is important to filter out noise and several
process discovery approaches specialize in doing so, e.g., heuristic mining, genetic
mining, and fuzzy mining.

Recall the support and confidence metrics defined in the context of learning
association rules. The support of a rule X ⇒ Y indicates the applicability of the
rule, i.e., the fraction of instances for which with both antecedent and consequent
hold. The confidence of a rule X ⇒ Y indicates the reliability of the rule. If rule
tea ∧ latte ⇒ muffin has a support of 0.2 and a confidence of 0.9, then 20% of the
customers actually order tea, latte and muffins at the same time and 90% of the cus-
tomers that order tea and latte also order a muffin. For learning association rules we
defined a threshold for both confidence and support, i.e., rules with low confidence
or support are considered to be noise.

Let us informally apply the idea of confidence and support to the basic α-
algorithm. Starting point for the α-algorithm is the >L relation. Recall that a >L b

if and only if there is a trace in L in which a is directly followed by b. Now we can
define the support of a >L b based on number of times the pattern 〈. . . , a, b, . . .〉
appears in the log, e.g., the fraction of cases in which the pattern occurs. Subse-
quently, we can use a threshold for cleaning the >L relation. The confidence of
a >L b can be defined by comparing the number of times the pattern 〈. . . , a, b, . . .〉
appears in the log divided by the frequency of a and b. For example, suppose that
a >L b has a reasonable support, e.g., the pattern 〈. . . , a, b, . . .〉 occurs 1000 times
in the log. Moreover, a occurs 1500 times and b occurs 1200 times. Clearly, a >L b

has a good confidence. However, if the pattern 〈. . . , a, b, . . .〉 occurs 1000 times and
a and b are very frequent and occur each more than 100,000 times , then the con-
fidence in a >L b is much lower. The >L relation is the basis for the footprint ma-
trices as shown in Tables 6.1, 6.2, 6.3, and 6.5. Hence, by removing “noisy a >L b

rules”, we obtain a more representative footprint, and a better starting point for the
α-algorithm. (There are several complications when doing this, however, the basic
idea should be clear.) This simplified discussion shows how “noise” can be quan-
tified and addressed when discovering process models. When presenting heuristic
mining in Sect. 7.2 we return to this topic.

In the context of noise, we also talk about the 80/20 model. Often we are inter-
ested in the process model that can describe 80% of the behavior seen in the log.
This model is typically relatively simple because the remaining 20% of the log ac-
count for 80% of the variability in the process.

6.4.2.2 Incompleteness

When it comes to process mining the notion of completeness is also very important.
It is related to noise. However, whereas noise refers to the problem of having “too



6.4 Challenges 187

much data” (describing rare behavior), completeness refers to the problem of having
“too little data”.

Like in any data mining or machine learning context one cannot assume to have
seen all possibilities in the “training material” (i.e., the event log at hand). For WF-
net N1 in Fig. 6.1 and event log L1 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉], the set
of possible traces found in the log is exactly the same as the set of possible traces
in the model. In general, this is not the case. For instance, the trace 〈a, b, e, c, d〉
may be possible but did not (yet) occur in the log. Process models typically allow
for an exponential or even infinite number of different traces (in case of loops).
Moreover, some traces may have a much lower probability than others. Therefore,
it is unrealistic to assume that every possible trace is present in the event log.

The α-algorithm assumes a relatively weak notion of completeness to avoid this
problem. Although N3 has infinitely many possible firing sequences, a small log like
L3 = [〈a, b, c, d, e, f, b, d, c, e, g〉, 〈a, b, d, c, e, g〉2, 〈a, b, c, d, e, f, b, c, d, e, f, b,

d, c, e, g〉] can be used to construct N3. The α-algorithm uses a local completeness
notion based on >L, i.e., if there are two activities a and b, and a can be directly
followed by b, then this should be observed at least once in the log.

To illustrate the relevance of completeness, consider a process consisting of 10
activities that can be executed in parallel and a corresponding log that contains infor-
mation about 10,000 cases. The total number of possible interleavings in the model
with 10 concurrent activities is 10! = 3,628,800. Hence, it is impossible that each
interleaving is present in the log as there are fewer cases (10,000) than potential
traces (3,628,800). Even if there are 3,628,800 cases in the log, it is extremely un-
likely that all possible variations are present. To motivate this consider the following
analogy. In a group of 365 people it is very unlikely that everyone has a different
birthdate. The probability is 365!/365365 ≈ 1.454955 × 10−157 ≈ 0, i.e., incredibly
small. The number of atoms in the universe is often estimated to be approximately
1079 [189]. Hence, the probability of picking a particular atom from the entire uni-
verse is much higher than covering all 365 days. Similarly, it is unlikely that all
possible traces will occur for any process of some complexity because most pro-
cesses have much more than 365 possible execution paths. In fact, because typically
some sequences are less probable than others, the probability of finding all traces is
even smaller. Therefore, weaker completeness notions are needed. For the process
in which 10 activities can be executed in parallel, local completeness can reduce
the required number of observations dramatically. For example, for the α-algorithm
only 10 × (10 − 1) = 90 rather than 3,628,800 different observations are needed to
construct the model.

6.4.2.3 Cross-Validation

The preceding discussion on completeness and noise shows the need for cross-
validation as discussed in Sect. 4.6.2. The event log can be split into a training
log and a test log. The training log is used to learn a process model whereas the test
log is used to evaluate this model based on unseen cases. Chapter 8 will present con-



188 6 Process Discovery: An Introduction

crete techniques for evaluating the quality of a model with respect to an event log.
For example, if many traces of the test log do not correspond to possible firing se-
quences of the WF-net discovered based on the training log, then one can conclude
that the quality of the model is low.

Also k-fold cross-validation can be used, i.e., the event log is split into k equal
parts, e.g., k = 10. Then k tests are done. In each test, one of the subsets serves as a
test log whereas the other k − 1 subsets serve together as the training log.

One of the problems for cross validation is the lack of negative examples, i.e.,
the log only provides examples of possible behavior and does not provide explicit
examples describing scenarios that are impossible (see discussion in Sect. 4.6.3).
This is complicating cross-validation. One possibility is to insert artificially gener-
ated negative events [59, 60, 122]. The basic idea is to compare the quality of the
discovered model with respect to the test log containing actual behavior with the
quality of the discovered model with respect to a test log containing random behav-
ior. Ideally, the model scores much better on the log containing actual behavior than
on the log containing random behavior.

Cross-validation can also be applied at the level of the footprint matrix. Simply
split the event log in k parts and construct the footprint matrix for each of the k parts.
If the k footprint matrices are very different (even for smaller values of k), then one
can be sure that the event log does not meet the completeness requirement imposed
by the α-algorithm. Such a validation can be done before constructing the process
model. If there are strong indications that >L is far from complete, more advanced
process mining techniques need to be applied and the results need to be interpreted
with care (see also Chap. 7).

6.4.3 Four Competing Quality Criteria

Completeness and noise refer to qualities of the event log and do not say much about
the quality of the discovered model. Determining the quality of a process mining
result is difficult and is characterized by many dimensions. In this book, we refer to
four main quality dimensions: fitness, simplicity, precision, and generalization. In
this section, we review these four dimensions without providing concrete metrics.
Some of the dimensions will be discussed in later chapters in more detail. However,
after reading this section it should already be clear that they can indeed be quantified.

Figure 6.22 gives a high-level characterization of the four quality dimensions.
A model with good fitness allows for the behavior seen in the event log. A model has
a perfect fitness if all traces in the log can be replayed by the model from beginning
to end. There are various ways of defining fitness. It can be defined at the case level,
e.g., the fraction of traces in the log that can be fully replayed. It can also be defined
at the event level, e.g., the fraction of events in the log that are indeed possible
according to the model. When defining fitness many design decisions need to be
made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.



6.4 Challenges 189

Fig. 6.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

Fig. 6.23 The so-called
“flower Petri net” allowing
for any log containing
activities {a, b, . . . , h}

In Sect. 4.6.1, we defined performance measures like error, accuracy, tp-rate, fp-
rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures the
proportion of positive instances indeed classified as positive (tp/p). The traces in the
log are positive instances. When such an instance can be replayed by the model, then
the instance is indeed classified as positive. Hence, the various notions of fitness can
be seen as variants of the recall measure. Most of the notions defined in Sect. 4.6.1
cannot be used because there are no negative examples, i.e., fp and tn are unknown
(see Fig. 4.14). Since the event log does not contain information about events that
could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 4.6.3. In the context of process discovery this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [101]
for an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 4.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [63, 190].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 6.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the



190 6 Process Discovery: An Introduction

α-algorithm. The added start and end activities in Fig. 6.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based
on the occurrences of activities only. The resulting model is simple and has a per-
fect fitness. Based on the first two quality dimensions this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

If the “flower model” is on one end of the spectrum, then the “enumerating
model” is on the other end of the spectrum. The enumerating model of a log simply
lists all the sequences possible, i.e., there is a separate sequential process fragment
for each trace in the model. At the start there is one big XOR split selecting one of
the sequences and at the end these sequences are joined using one big XOR join. If
such a model is represented by a Petri net and all traces are unique, then the number
of transitions is equal to the number of events in the log. The “enumerating model”
is simply an encoding of the log. Such a model is complex but, like the “flower
model”, has a perfect fitness.

Extreme models such as the “flower model” (anything is possible) and the “enu-
merating model” (only the log is possible) show the need for two additional dimen-
sions. A model is precise if it does not allow for “too much” behavior. Clearly, the
“flower model” lacks precision. A model that is not precise is “underfitting”. Under-
fitting is the problem that the model over-generalizes the example behavior in the
log, i.e., the model allows for behaviors very different from what was seen in the
log.

A model should generalize and not restrict behavior to the examples seen in the
log (like the “enumerating model”). A model that does not generalize is “overfit-
ting”. Overfitting is the problem that a very specific model is generated whereas
it is obvious that the log only holds example behavior, i.e., the model explains the
particular sample log, but a next sample log of the same process may produce a
completely different process model.

Process mining algorithms need to strike a balance between “overfitting” and
“underfitting”. A model is overfitting if it does not generalize and only allows for
the exact behavior recorded in the log. This means that the corresponding mining
technique assumes a very strong notion of completeness: “If the sequence is not in
the event log, it is not possible!”. An underfitting model over-generalizes the things
seen in the log, i.e., it allows for more behavior even when there are no indications
in the log that suggest this additional behavior (like in Fig. 6.23).

Let us now consider some examples showing that it is difficult to balance
between being too general and too specific. Consider, for example, WF-net N4
shown in Fig. 6.6 and N9 shown in Fig. 6.14. Both nets can produce the log
L9 = [〈a, c, d〉45, 〈b, c, e〉42], but only N4 can produce L4 = [〈a, c, d〉45, 〈b, c, d〉42,
〈a, c, e〉38, 〈b, c, e〉22]. Clearly, N4 is the logical choice for L4. Moreover, although
both nets can produce L9, it is obvious that N9 is a better model for L9 as none of the
87 cases follows one of the two additional paths (〈b, c, d〉 and 〈a, c, e〉). However,
now consider L12 = [〈a, c, d〉99, 〈b, c, d〉1, 〈a, c, e〉2, 〈b, c, e〉98]. One can argue that



6.4 Challenges 191

Fig. 6.24 Four alternative models for the same log

N4 is a better model for L12 as all traces can be reproduced. However, 197 out of
200 traces can be explained by the more precise model N9. If the three traces are
seen as noise, the main behavior is captured by N9 and not N4. Such considera-
tions show that there is a delicate balance between “overfitting” and “underfitting”.
Hence, it is difficult, if not impossible, to select “the best” model.



192 6 Process Discovery: An Introduction

Figure 6.24 illustrates the preceding discussion using the example from Chap. 2.
Assume that the four models that are shown are discovered based on the event log
also depicted in the figure. There are 1391 cases. Of these 1391 cases, 455 followed
the trace 〈a, c, d, e,h〉. The second most frequent trace is 〈a, b, d, e, g〉 which was
followed by 191 cases.

If we apply the α-algorithm to this event log, we obtain model N1 shown in
Fig. 6.24. A comparison of the WF-net N1 and the log shows that this model is quite
good; it is simple and has a good fitness. Moreover, it balances between overfitting
and underfitting.

The other three models in Fig. 6.24 have problems with respect to one or more
quality dimensions. WF-net N2 models only the most frequent trace, i.e., it only
allows for the sequence 〈a, c, d, e,h〉. Hence, none of the other 1391 − 455 = 936
traces fits. Moreover, the model does not generalize, i.e., N2 is also overfitting.

WF-net N3 is a variant of the “flower model”. Only the start and end transi-
tions are captured well. The fitness is good, the model is simple, and not over-
fitting. However, N3 lacks precision, i.e., is underfitting, as for example the trace
〈a, b, b, b, b, b, b,f,f,f,f,f, g〉 is possible. This behavior seems to be very differ-
ent from any of the traces in the log.

Figure 6.24 shows only a part of WF-net N4. This model simply enumerates the
21 different traces seen in the event log. This model is precise and has a good fitness.
However, WF-net N4 is overly complex and is overfitting.

The four models in Fig. 6.24 illustrate the four quality dimensions. Each of these
dimensions can be quantified as shown in [121]. In [121], a replay technique is de-
scribed to quantify fitness resulting in a value between 0 (very poor fitness) to 1
(perfect fitness). A notion called “structural appropriateness” considers the simplic-
ity dimension; the model is analyzed to see whether it is “minimal in structure”.
Another notion called “behavioral appropriateness” analyzes the balance between
overfitting and underfitting. There are different ways to operationalize the four qual-
ity dimensions shown in Fig. 6.22. Depending on the representational bias and goals
of the analyst, different metrics can be quantified.

6.4.4 Taking the Right 2-D Slice of a 3-D Reality

The simple examples shown in this chapter already illustrate that process discovery
is a non-trivial problem that requires sophisticated analysis techniques. Why is pro-
cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen);

• Due to concurrency, loops, and choices the search space has a complex structure
and the log typically contains only a fraction of all possible behaviors; and



6.4 Challenges 193

Fig. 6.25 Creating a 2-D
slice of a 3-D reality: the
process is viewed from a
specific angle, the process is
scoped using a frame, and the
resolution determines the
granularity of the resulting
model

• There is no clear relation between the size of a model and its behavior (i.e.,
a smaller model may generate more or less behavior although classical analysis
and evaluation methods typically assume some monotonicity property).

The next chapter will show several process discovery techniques that adequately
address these problems.

As we will see in Part IV, the discovered process model is just the starting point
for analysis. By relating events in the log to the discovered model, all kinds of
analysis are possible, e.g., checking conformance, finding bottlenecks, optimizing
resource allocation, reducing undesired variability, time prediction, and generating
recommendations.

One should not seek to discover the process model. Process models are just a
view on reality. Whether a process model is suitable or not, ultimately depends on
the questions one would like to answer. Real-life processes are complex and may
have many dimensions; models only provide a view on this reality. As discussed
in Sect. 5.5, this means that the “3-D reality needs to be flattened into a 2-D pro-
cess model” in order to apply process mining techniques. For instance, there are
many “2-D slices” that one could take of a data set involving customer orders, or-
der lines, deliveries, payments, replenishment orders, etc. Obviously, the different
slices result in the discovery of different process models. Using the metaphor of a
“process view”, a discovered process model views reality from a particular “angle”,
is “framed”, and is shown using a particular “resolution”:

• A discovered model views reality from a particular angle. For example, the same
process may be analyzed from the viewpoint of a complete order, a delivery,
a customer, or an order line.

• A discovered model frames reality. The frame determines the boundaries of the
process and selects the perspectives of interest (control-flow, information, re-
sources, etc.).

• A discovered model provides a view at a specific resolution. The same process
can be viewed using a coarser or finer granularity showing less or more details.



194 6 Process Discovery: An Introduction

Figure 6.25 illustrates the “process view” metaphor. Given a data set it is possible to
zoom in, i.e., selecting a smaller frame and increasing resolution, resulting in a more
fine-grained model of a selected part of the process. It is also possible to zoom out,
i.e., selecting a larger frame and decreasing resolution, resulting in a more coarse-
grained model covering a larger part of the end-to-end process. Both the data set
used as input and the questions that need to be answered determine which 2-D slices
are most useful.



http://www.springer.com/978-3-662-49850-7


	Chapter 6: Process Discovery: An Introduction
	6.1 Problem Statement
	6.2 A Simple Algorithm for Process Discovery
	6.2.1 Basic Idea
	6.2.2 Algorithm
	6.2.3 Limitations of the alpha-Algorithm
	6.2.4 Taking the Transactional Life-Cycle into Account

	6.3 Rediscovering Process Models
	6.4 Challenges
	6.4.1 Representational Bias
	6.4.2 Noise and Incompleteness
	6.4.2.1 Noise
	6.4.2.2 Incompleteness
	6.4.2.3 Cross-Validation

	6.4.3 Four Competing Quality Criteria
	6.4.4 Taking the Right 2-D Slice of a 3-D Reality



