Loops and Lists

This chapter explains how repetitive tasks in a program can be automated by loops.
We also introduce list objects for storing and processing collections of data with
a specific order. Loops and lists, together with functions and if tests from Chap. 3,
lay the fundamental programming foundation for the rest of the book. The programs
associated with the chapter are found in the folder src/looplist!.

2.1 While Loops

Our task now is to print out a conversion table with Celsius degrees in the first
column of the table and the corresponding Fahrenheit degrees in the second column.
Such a table may look like this:

-20 -4.
-15 5.
-10 14.
-5 23.
0 32.

5 41.
10 50.
15 59.
20 68.
25 77.
30 86.
35 95.
40 104.

O O OO O0OO0OO0OOO0OOOoO oo

2.1.1 A Naive Solution

The formula for converting C degrees Celsius to F' degrees Fahrenheit is F =
9C /5 + 32. Since we know how to evaluate the formula for one value of C, we can
just repeat these statements as many times as required for the table above. Using

! http://tinyurl.com/pwyasaa/looplist

© Springer-Verlag Berlin Heidelberg 2016 51
H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6, DOI 10.1007/978-3-662-49887-3_2

http://tinyurl.com/pwyasaa/looplist
http://tinyurl.com/pwyasaa/looplist

52 2 Loops and Lists

three statements per line in the program, for compact layout of the code, we can
write the whole program as

C=-20; F =9.0/5%C + 32; print C, F
C =-15; F = 9.0/5*%C + 32; print C, F
C=-10; F = 9.0/5*%C + 32; print C, F
C= -5; F=09.0/5%C + 32; print C, F
C = 0; F = 9.0/6%C + 32; print C, F
C= 5; F=09.0/5%C + 32; print C, F
C= 10; F = 9.0/5*%C + 32; print C, F
C= 15; F = 9.0/5*%C + 32; print C, F
C= 20; F =9.0/5%C + 32; print C, F
C= 25; F =9.0/6%C + 32; print C, F
C= 30; F=9.0/5%C + 32; print C, F
C= 35; F=9.0/5%C + 32; print C, F
C= 40; F =9.0/5%C + 32; print C, F

Running this program (which is stored in the file c2f_table_repeat.py),
demonstrates that the output becomes

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.
15 59.
20 68.
25 77.
30 86.
35 95.
40 104.0

O O O O OO

This output suffers from somewhat ugly formatting, but that problem can quickly be
fixed by replacing print C, F by a print statement based on printf formatting.
We will return to this detail later.

The main problem with the program above is that lots of statements are identi-
cal and repeated. First of all it is boring to write this sort of repeated statements,
especially if we want many more C and F values in the table. Second, the idea
of the computer is to automate repetition. Therefore, all computer languages have
constructs to efficiently express repetition. These constructs are called loops and
come in two variants in Python: while loops and for loops. Most programs in this
book employ loops, so this concept is extremely important to learn.

2.1.2 While Loops

The while loop is used to repeat a set of statements as long as a condition is true.
We shall introduce this kind of loop through an example. The task is to generate the
rows of the table of C and F values. The C value starts at —20 and is incremented

2.1 While Loops 53

by 5 as long as C < 40. For each C value we compute the corresponding F value
and write out the two temperatures. In addition, we also add a line of dashes above
and below the table.

The list of tasks to be done can be summarized as follows:

Print line with dashes
C =-20

While C < 40:

- F=2C+32

— Print C and F

— Increment C by 5

Print line with dashes

This is the algorithm of our programming task. The way from a detailed algorithm
to a fully functioning Python code can often be made very short, which is definitely
true in the present case:

Pieaiig ¢ emmmemmmemmmeeeees ’ # table heading

C=-20 # start value for C

dC = 5 # increment of C in loop

while C <= 40: # loop heading with condition
F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C=C+dC # 3rd statement inside loop

D T R 2 # end of table line (after loop)

A very important feature of Python is now encountered: the block of statements
to be executed in each pass of the while loop must be indented. In the example
above the block consists of three lines, and all these lines must have exactly the
same indentation. Our choice of indentation in this book is four spaces. The first
statement whose indentation coincides with that of the while line marks the end
of the loop and is executed after the loop has terminated. In this example this is
the final print statement. You are encouraged to type in the code above in a file,
indent the last line four spaces, and observe what happens (you will experience that
lines in the table are separated by a line of dashes: ----).

Many novice Python programmers forget the colon at the end of the while line
— this colon is essential and marks the beginning of the indented block of statements
inside the loop. Later, we will see that there are many other similar program con-
structions in Python where there is a heading ending with a colon, followed by an
indented block of statements.

Programmers need to fully understand what is going on in a program and be able
to simulate the program by hand. Let us do this with the program segment above.
First, we define the start value for the sequence of Celsius temperatures: C = -20.
We also define the increment dC that will be added to C inside the loop. Then we
enter the loop condition C <= 40. The first time C is -20, which implies that C
<= 40 (equivalent to C < 40 in mathematical notation) is true. Since the loop
condition is true, we enter the loop and execute all the indented statements. That
is, we compute F corresponding to the current C value, print the temperatures, and

54 2 Loops and Lists

increment C by dC. For simplicity, we have used a plain print C, F without any
formatting so the columns will not be aligned, but this can easily be fixed later.

Thereafter, we enter the second pass in the loop. First we check the condition:
Cis -15 and C <= 40 is still true. We execute the statements in the indented loop
block, C becomes -10, this is still less than or equal to 40, so we enter the loop
block again. This procedure is repeated until C is updated from 40 to 45 in the
final statement in the loop block. When we then test the condition, C <= 40, this
condition is no longer true, and the loop is terminated. We proceed with the next
statement that has the same indentation as the while statement, which is the final
print statement in this example.

Newcomers to programming are sometimes confused by statements like

C=C+dC

This line looks erroneous from a mathematical viewpoint, but the statement is
perfectly valid computer code, because we first evaluate the expression on the right-
hand side of the equality sign and then let the variable on the left-hand side refer to
the result of this evaluation. In our case, C and dC are two different int objects. The
operation C+dC results in a new int object, which in the assignment C = C+dC is
bound to the name C. Before this assignment, C was already bound to an int object,
and this object is automatically destroyed when C is bound to a new object and there
are no other names (variables) referring to this previous object (if you did not get
this last point, just relax and continue reading!).

Since incrementing the value of a variable is frequently done in computer pro-
grams, there is a special short-hand notation for this and related operations:

C += dC # equivalent to C = C + dC
C -=dC # equivalent to C = C - dC
C x= dC # equivalent to C = CxdC
C /= dC # equivalent to C = C/dC

2.1.3 Boolean Expressions

In our first example on a while loop, we worked with a condition C <= 40, which
evaluates to either true or false, written as True or False in Python. Other compar-
isons are also useful:

C == 40 # C equals 40

C !'= 40 # C does not equal 40

C >= 40 # C is greater than or equal to 40
C > 40 # C is greater than 40

C < 40 # C is less than 40

Not only comparisons between numbers can be used as conditions in while loops:
any expression that has a boolean (True or False) value can be used. Such expres-
sions are known as logical or boolean expressions.

The keyword not can be inserted in front of the boolean expression to change
the value from True to False or from False to True. To evaluate not C ==

2.1 While Loops 55

40, we first evaluate C == 40, for C = 1 this is False, and then not turns the
value into True. On the opposite, if C == 40 is True, not C == 40 becomes
False. Mathematically it is easier to read C != 40 than not C == 40, but these
two boolean expressions are equivalent.

Boolean expressions can be combined with and and or to form new compound
boolean expressions, as in

while x > 0 and y <= 1:
print x, y

If cond1l and cond2 are two boolean expressions with values True or False,
the compound boolean expression condl and cond?2 is True if both cond1 and
cond?2 are True. On the other hand, cond1l or cond2 is True if at least one of the
conditions, cond1 or cond2, is True

Remark

In Python, cond1l and cond2or condl or cond2 returns one of the operands
and not just True or False values as in most other computer languages. The
operands condl or cond?2 can be expressions or objects. In case of expressions,
these are first evaluated to an object before the compound boolean expression is
evaluated. For example, (6+1) or -1 evaluates to 6 (the second operand is not
evaluated when the first one is True), and (5+1) and -1 evaluates to -1.

Here are some more examples from an interactive session where we just evaluate
the boolean expressions themselves without using them in loop conditions:

>>>x=0; y=1.2
>>> x > 0 and y < 1

False

>>> x> 0or y <1

True

>>>x>0o0ory>1

True

>>> x > 0 or not y > 1
False

>>> -1 < x <=0 # -1 <xand x <=0
True

>>> not (x > 0 or y > 0)
False

In the last sample expression, not applies to the value of the boolean expression
inside the parentheses: x>0 is False, y>0 is True, so the combined expression
with or is True, and not turns this value to False.

The common boolean values in Python are True, False, 0 (false), and any inte-
ger different from zero (true). To see such values in action, we recommend doing
Exercises 2.22 and 2.18.

Boolean evaluation of an object
All objects in Python can in fact be evaluated in a boolean context, and all are
True except False, zero numbers, and empty strings, lists, and dictionaries:

56 2 Loops and Lists

>>> s = ’some string’

>>> bool(s)

True

>>> s = 7’ # empty string
>>> bool(s)

False

>>> L = [1, 4, 6]
>>> bool(L)

True

>>> L = []
>>> bool(L)
False

>>> a = 88.0
>>> bool(a)

True

>>> a = 0.0

>>> bool(a)

False

Essentially, if a tests if a is a non-empty object or if it is non-zero value. Such
constructions are frequent in Python code.

Erroneous thinking about boolean expressions is one of the most common
sources of errors in computer programs, so you should be careful every time you
encounter a boolean expression and check that it is correctly stated.

2.1.4 Loop Implementation of a Sum

Summations frequently appear in mathematics. For instance, the sine function can
be calculated as a polynomial:

X3 5 7

sin(x)%x——+x x—-l-”-, 2.1

3 s
where 3! =3-2-1,51 =5-4.3.2.1, etc., are factorial expressions. Computing
k! =k(k —1)(k —2)---2-1is done by math.factorial (k).

An infinite number of terms are needed on the right-hand side of (2.1) for the
equality sign to hold. With a finite number of terms, we obtain an approximation
to sin(x), which is well suited for being calculated in a program since only powers
and the basic four arithmetic operations are involved. Say we want to compute the
right-hand side of (2.1) for powers up to N = 25. Writing out and implementing
each one of these terms is a tedious job that can easily be automated by a loop.

Computation of the sum in (2.1) by a while loop in Python, makes use of (i)
a counter k that runs through odd numbers from 1 up to some given maximum
power N, and (ii) a summation variable, say s, which accumulates the terms, one at
a time. The purpose of each pass of the loop is to compute a new term and add it to
s. Since the sign of each term alternates, we introduce a variable sign that changes
between —1 and 1 in each pass of the loop.

The previous paragraph can be precisely expressed by this piece of Python code:

22 Lists 57

x = 1.2 # assign some value

N =25 # maximum power in sum
k=1

s =x

sign = 1.0

import math

while k < N:
sign = - sign
k=k+ 2
term = sign*x*xk/math.factorial (k)
s = s + term

print ’sin(%g) = %g (approximation with %d terms)’ % (x, s, N)

The best way to understand such a program is to simulate it by hand. That is, we
go through the statements, one by one, and write down on a piece of paper what the
state of each variable is.

When the loop is first entered, k < N implies 1 < 25, which is True so
we enter the loop block. There, we compute sign = -1.0, k = 3, term =
-1.0*x**3/(3*%2%1)) (note that sign is float so we always have float divided
by int), and s = x - x**3/6, which equals the first two terms in the sum. Then
we test the loop condition: 3 < 25 is True so we enter the loop block again.
This time we obtain term = 1.0%x**5/math.factorial(5), which correctly
implements the third term in the sum. At some point, k is updated to from 23 to
25 inside the loop and the loop condition then becomes 25 < 25, which is False,
implying that the program jumps over the loop block and continues with the print
statement (which has the same indentation as the while statement).

2.2 Lists

Up to now a variable has typically contained a single number. Sometimes numbers
are naturally grouped together. For example, all Celsius degrees in the first col-
umn of our table from Sect. 2.1.2 could be conveniently stored together as a group.
A Python /list can be used to represent such a group of numbers in a program. With
a variable that refers to the list, we can work with the whole group at once, but we
can also access individual elements of the group. Figure 2.1 illustrates the difference
between an int object and a list object. In general, a list may contain a sequence of
arbitrary objects in a given order. Python has great functionality for examining and
manipulating such sequences of objects, which will be demonstrated below.

2.2.1 Basic List Operations

To create a list with the numbers from the first column in our table, we just put all
the numbers inside square brackets and separate the numbers by commas:

¢ = [-20, -15, -10, -5, O, 5, 10, 15, 20, 25, 30, 35, 40]

58 2 Loops and Lists

vari 21

var2 0 20
1 21
2 29
3 4.0

Fig. 2.1 Illustration of two variables: varl refers to an int object with value 21, created by
the statement varl = 21, and var? refers to a 1ist object with value [20, 21, 29, 4.0],
i.e., three int objects and one float object, created by the statement var2 = [20, 21, 29,
4.0]

The variable C now refers to a List object holding 13 list elements. All list elements
are in this case int objects.

Every element in a list is associated with an index, which reflects the position of
the element in the list. The first element has index O, the second index 1, and so
on. Associated with the C list above we have 13 indices, starting with 0 and ending
with 12. To access the element with index 3, i.e., the fourth element in the list, we
can write C[3]. As we see from the list, C [3] refers to an int object with the value
—5.

Elements in lists can be deleted, and new elements can be inserted anywhere.
The functionality for doing this is built into the list object and accessed by a dot
notation. Two examples are C.append (v), which appends a new element v to the
end of the list, and C.insert(i,v), which inserts a new element v in position
number i in the list. The number of elements in a list is given by len(C). Let
us exemplify some list operations in an interactive session to see the effect of the
operations:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35) # add new element 35 at the end
>>> C # view list C

[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

Two lists can be added:

>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

What adding two lists means is up to the list object to define, and not surprisingly,
addition of two lists is defined as appending the second list to the first. The result
of C + [40,45] is a new list object, which we then assign to C such that this
name refers to this new list. In fact, every object in Python and everything you can
do with it is defined by programs made by humans. With the techniques of class
programming (see Chap. 7) you can create your own objects and define (if desired)
what it means to add such objects. All this gives enormous power in the hands of

22 Lists 59

programmers. As one example, you can define your own list object if you are not
satisfied with the functionality of Python’s own lists.

New elements can be inserted anywhere in the list (and not only at the end as we
did with C. append):

>>> C.insert (0, -15) # insert new element -15 as index 0
>>> C

[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

With del C[i] we can remove an element with index i from the list C. Observe
that this changes the list, so C[i] refers to another (the next) element after the
removal:

>>> del C[2] # delete 3rd element

>>> C

[-15, -10, O, 5, 10, 15, 20, 25, 30, 35, 40, 45]

>>> del C[2] # delete what is now 3rd element
>>> C

[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

>>> len(C) # length of list

11

The command C.index (10) returns the index corresponding to the first element
with value 10 (this is the 4th element in our sample list, with index 3):

>>> C.index (10) # find index for an element (10)
3

To just test if an object with the value 10 is an element in the list, one can write the
boolean expression 10 in C:

>>> 10 in C # is 10 an element in C7?
True

Python allows negative indices, which leads to indexing from the right. As demon-
strated below, C[-1] gives the last element of the list C. C[-2] is the element before
C[-11], and so forth.

>>> C[-1] # view the last list element

45

>>> C[-2] # view the next last list element
40

Building long lists by writing down all the elements separated by commas is a te-
dious process that can easily be automated by a loop, using ideas from Sect. 2.1.4.
Say we want to build a list of degrees from —50 to 200 in steps of 2.5 degrees. We
then start with an empty list and use a while loop to append one element at a time:

60 2 Loops and Lists

c=10

C_value = -50

C_max = 200

while C_value <= C_max:
C.append (C_value)
C_value += 2.5

In the next sections, we shall see how we can express these six lines of code with
just one single statement.

There is a compact syntax for creating variables that refer to the various list
elements. Simply list a sequence of variables on the left-hand side of an assignment
to a list:

>>> somelist = [’book.tex’, ’book.log’, ’book.pdf’]
>>> texfile, logfile, pdf = somelist

>>> texfile

’book.tex’

>>> logfile

’book.log’

>>> pdf

’book.pdf’

The number of variables on the left-hand side must match the number of elements
in the list, otherwise an error occurs.

A final comment regards the syntax: some list operations are reached by a dot
notation, as in C.append (e), while other operations requires the list object as an
argument to a function, as in 1en(C). Although C.append for a programmer be-
haves as a function, it is a function that is reached through a list object, and it is
common to say that append is a method in the list object, not a function. There
are no strict rules in Python whether functionality regarding an object is reached
through a method or a function.

2.2.2 ForLoops

The nature of for loops When data are collected in a list, we often want to perform
the same operations on each element in the list. We then need to walk through all list
elements. Computer languages have a special construct for doing this conveniently,
and this construct is in Python and many other languages called a for loop. Let us
use a for loop to print out all list elements:

degrees = [0, 10, 20, 40, 100]
for C in degrees:
print ’list element:’, C
print ’The degrees list has’, len(degrees), ’elements’

The for C in degrees construct creates a loop over all elements in the list
degrees. In each pass of the loop, the variable C refers to an element in the list,
starting with degrees [0], proceeding with degrees [1], and so on, before ending

22 Lists 61

with the last element degrees [n-1] (if n denotes the number of elements in the
list, Llen(degrees)).

The for loop specification ends with a colon, and after the colon comes a block
of statements that does something useful with the current element. Each statement
in the block must be indented, as we explained for while loops. In the example
above, the block belonging to the for loop contains only one statement. The fi-
nal print statement has the same indentation (none in this example) as the for
statement and is executed as soon as the loop is terminated.

As already mentioned, understanding all details of a program by following the
program flow by hand is often a very good idea. Here, we first define a list degrees
containing 5 elements. Then we enter the for loop. In the first pass of the loop,
C refers to the first element in the list degrees, i.e., the int object holding the
value 0. Inside the loop we then print out the text >1ist element:’ and the value
of C, which is 0. There are no more statements in the loop block, so we proceed
with the next pass of the loop. C then refers to the int object 10, the output now
prints 10 after the leading text, we proceed with C as the integers 20 and 40, and
finally C is 100. After having printed the list element with value 100, we move on
to the statement after the indented loop block, which prints out the number of list
elements. The total output becomes

list element: O

list element: 10

list element: 20

list element: 40

list element: 100

The degrees list has 5 elements

Correct indentation of statements is crucial in Python, and we therefore strongly
recommend you to work through Exercise 2.23 to learn more about this topic.

Making the table Our knowledge of lists and for loops over elements in lists puts
us in a good position to write a program where we collect all the Celsius degrees
to appear in the table in a list Cdegrees, and then use a for loop to compute and
write out the corresponding Fahrenheit degrees. The complete program may look
like this:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:

F = (9.0/5)*C + 32

print C, F

The print C, F statement just prints the value of C and F with a default format,
where each number is separated by one space character (blank). This does not
look like a nice table (the output is identical to the one shown in Sect. 2.1.1. Nice
formatting is obtained by forcing C and F to be written in fields of fixed width and
with a fixed number of decimals. An appropriate printf format is %5d (or %5 . 0f) for
Cand %5. 1f for F. We may also add a headline to the table. The complete program
becomes:

62 2 Loops and Lists

Cdegrees = [-20, -15, -10, -5, O, 5, 10, 15, 20, 25, 30, 35, 40]
print ’ C 179
for C in Cdegrees:

F = (9.0/5)*C + 32

print ’%5d %5.1f’ % (C, F)

This code is found in the file c2f _table_list.py and its output becomes

!

C
-20 -4.
-15 5.
-10 14.

-5 23.
0 32.
5 41.

10 50.

15 59.

20 68.

25 T77.

30 86.

35 95.

40 104.

(ool elNelNelNelNeNeNelNe N N Nel

2.3 Alternative Implementations with Lists and Loops

We have already solved the problem of printing out a nice-looking conversion table
for Celsius and Fahrenheit degrees. Nevertheless, there are usually many alterna-
tive ways to write a program that solves a specific problem. The next paragraphs
explore some other possible Python constructs and programs to store numbers in
lists and print out tables. The various code snippets are collected in the program file
session.py.

2.3.1 While Loop Implementation of a for Loop

Any for loop can be implemented as a while loop. The general code

for element in somelist:
<process element>

can be transformed to this while loop:

index = 0

while index < len(somelist):
element = somelist[index]
<process element>
index += 1

In particular, the example involving the printout of a table of Celsius and Fahrenheit
degrees can be implemented as follows in terms of a while loop:

http://tinyurl.com/pwyasaa/looplist/c2d_table_list.py
http://tinyurl.com/pwyasaa/looplist/session.py

2.3 Alternative Implementations with Lists and Loops 63

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
index = 0
print ’ C F’
while index < len(Cdegrees):
C = Cdegrees[index]
F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)
index += 1

2.3.2 The Range Construction

It is tedious to write the many elements in the Cdegrees in the previous programs.
We should use a loop to automate the construction of the Cdegrees list. The range
construction is particularly useful in this regard:

range (n) generates integers 0, 1, 2, ..., n-1.
range(start, stop, step) generates a sequence if integers start,
start+step, start+2*step, and so on up to, but not including, stop. For
example, range (2, 8, 3) returns 2 and 5 (and not 8), while range (1, 11,
2) returns 1, 3, 5,7, 9.

e range(start, stop) is the same as range(start, stop, 1).

A for loop over integers are written as

for i in range(start, stop, step):

We can use this construction to create a Cdegrees list of the values —20, —15, ...
40:

Cdegrees = []
for C in range(-20, 45, 5):
Cdegrees.append(C)

or just
Cdegrees = range(-20, 45, 5)

Note that the upper limit must be greater than 40 to ensure that 40 is included in the
range of integers.

Suppose we want to create Cdegrees as —10, —7.5, —5,...,40. This time we
cannot use range directly, because range can only create integers and we have
decimal degrees such as —7.5 and 1.5. In this more general case, we introduce an
integer counter / and generate the C values by the formula C = —10 4 i - 2.5 for
i =0,1,...,20. The following Python code implements this task:

Cdegrees = []

for i in range(0, 21):
C=-10 + i*¥2.5
Cdegrees .append (C)

64 2 Loops and Lists

2.3.3 ForLoops with List Indices

Instead of iterating over a list directly with the construction

for element in somelist:

we can equivalently iterate of the list indices and index the list inside the loop:

for i in range(len(somelist)):
element = somelist[i]

Since len(somelist) returns the length of somelist and the largest legal index
is len(somelist) -1, because indices always start at 0, range (1en(somelist))
will generate all the correct indices: 0, 1, ..., len(somelist)-1.

Programmers coming from other languages, such as Fortran, C, C++, Java, and
C#, are very much used to for loops with integer counters and usually tend to
use for i in range(len(somelist)) and work with somelist [i] inside the
loop. This might be necessary or convenient, but if possible, Python programmers
are encouraged to use for element in somelist, which is more elegant to read.

Iterating over loop indices is useful when we need to process two lists simul-
taneously. As an example, we first create two Cdegrees and Fdegrees lists, and
then we make a list to write out a table with Cdegrees and Fdegrees as the two
columns of the table. Iterating over a loop index is convenient in the final list:

Cdegrees = []

n =21
C_min = -10
C_max = 40

dC = (C_max - C_min)/float(n-1) # increment in C
for i in range(0, n):

C = -10 + i*dC

Cdegrees.append(C)

Fdegrees = []

for C in Cdegrees:
F = (9.0/5)*C + 32
Fdegrees.append (F)

for i in range(len(Cdegrees)):
C = Cdegrees[il
F = Fdegrees[i]
print ’%5.1f %5.1f’ % (C, F)

Instead of appending new elements to the lists, we can start with lists of the right
size, containing zeros, and then index the lists to fill in the right values. Creating
a list of length n consisting of zeros (for instance) is done by

somelist = [0]*n

2.3 Alternative Implementations with Lists and Loops 65

With this construction, the program above can use for loops over indices every-
where:

n =21
C_min = -10
C_max = 40

dC = (C_max - C_min)/float(n-1) # increment in C

Cdegrees = [0]*n
for i in range(len(Cdegrees)):
Cdegrees[i] = -10 + ixdC

Fdegrees = [0]*n
for i in range(len(Cdegrees)):
Fdegrees[i] = (9.0/5)*Cdegrees[i] + 32

for i in range(len(Cdegrees)):
print ’%5.1f %5.1f° % (Cdegrees[i], Fdegrees[i])

Note that we need the construction [0] *n to create a list of the right length, other-
wise the index [1] will be illegal.

2.3.4 Changing List Elements

We have two seemingly alternative ways to traverse a list, either a loop over ele-
ments or over indices. Suppose we want to change the Cdegrees list by adding 5
to all elements. We could try

for ¢ in Cdegrees:
c +=5

but this loop leaves Cdegrees unchanged, while

for i in range(len(Cdegrees)):
Cdegrees[i] += 5

works as intended. What is wrong with the first loop? The problem is that c is an
ordinary variable, which refers to a list element in the loop, but when we execute ¢
+= 5, we let ¢ refer to a new float object (c+5). This object is never inserted in
the list. The first two passes of the loop are equivalent to

= Cdegrees[0] # automatically done in the for statement
+= 5
= Cdegrees[1] # automatically done in the for statement
+= 5

o o0 0 0

The variable c can only be used to read list elements and never to change them.
Only an assignment of the form

66 2 Loops and Lists

Cdegrees[i] = ...

can change a list element.
There is a way of traversing a list where we get both the index and an element in
each pass of the loop:

for i, ¢ in enumerate(Cdegrees):
Cdegrees[i] = c + 5

This loop also adds 5 to all elements in the list.

2.3.5 List Comprehension
Because running through a list and for each element creating a new element in
another list is a frequently encountered task, Python has a special compact syntax

for doing this, called list comprehension. The general syntax reads

newlist = [E(e) for e in list]

where E (e) represents an expression involving element e. Here are three examples:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]
C_plus_5 = [C+5 for C in Cdegrees]

List comprehensions are recognized as a for loop inside square brackets and will
be frequently exemplified throughout the book.

2.3.6 Traversing Multiple Lists Simultaneously

We may use the Cdegrees and Fdegrees lists to make a table. To this end, we need
to traverse both arrays. The for element in list construction is not suitable in
this case, since it extracts elements from one list only. A solution is to use a for
loop over the integer indices so that we can index both lists:

for i in range(len(Cdegrees)):
print ’%5d %5.1f’ % (Cdegrees[i], Fdegrees[i])

It happens quite frequently that two or more lists need to be traversed simultane-
ously. As an alternative to the loop over indices, Python offers a special nice syntax
that can be sketched as

for el, e2, e3, ... in zip(listl, list2, list3, ...):
work with element el from listl, element e2 from list2,
element e3 from list3, etc.

2.4 Nested Lists 67

The zip function turns n lists (1ist1l, 1list2, list3, ...) into one list of n-
tuples, where each n-tuple (el,e2,e3,...) has its first element (el) from the
first list (1ist1), the second element (e2) from the second list (1ist2), and so
forth. The loop stops when the end of the shortest list is reached. In our specific
case of iterating over the two lists Cdegrees and Fdegrees, we can use the zip
function:

for C, F in zip(Cdegrees, Fdegrees):
print ’%5d %5.1f’ % (C, F)

It is considered more Pythonic to iterate over list elements, here C and F, rather than
over list indices as in the for i in range(len(Cdegrees)) construction.

2.4 Nested Lists

Nested lists are list objects where the elements in the lists can be lists themselves.
A couple of examples will motivate for nested lists and illustrate the basic opera-
tions on such lists.

2.4.1 Atable as a List of Rows or Columns

Our table data have so far used one separate list for each column. If there were n
columns, we would need 7 list objects to represent the data in the table. However,
we think of a table as one entity, not a collection of n columns. It would therefore
be natural to use one argument for the whole table. This is easy to achieve using
a nested list, where each entry in the list is a list itself. A table object, for instance,
is a list of lists, either a list of the row elements of the table or a list of the column
elements of the table. Here is an example where the table is a list of two columns,
and each column is a list of numbers:

Cdegrees = range(-20, 41, 5) # -20, -15, ..., 35, 40
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table = [Cdegrees, Fdegrees]

(Note that any value in [41, 45] can be used as second argument (stop value) to
range and will ensure that 40 is included in the range of generate numbers.)

With the subscript table [0] we can access the first element in table, which is
nothing but the Cdegrees list, and with table [0] [2] we reach the third element
in the first element, i.e., Cdegrees [2].

However, tabular data with rows and columns usually have the convention that
the underlying data is a nested list where the first index counts the rows and the
second index counts the columns. To have table on this form, we must construct
table as a list of [C, F] pairs. The first index will then run over rows [C, F].
Here is how we may construct the nested list:

68 2 Loops and Lists

tablet 0 0 20 table2 0 0 20
1 25 1 68.0
2 30 1 0 25
3 35 1 77.0
4 40 2 0 30
1 0 68.0 1 86.0
1 77.0 3 0 35
2 86.0 1 95.0
3 95.0 4 0 40
4 104.0 1 104.0

Fig. 2.2 Two ways of creating a table as a nested list. Left: table of columns C and F, where C
and F are lists. Right: table of rows, where each row [C, F] is a list of two floats

table = []
for C, F in zip(Cdegrees, Fdegrees):
table.append([C, F])

We may shorten this code segment by introducing a list comprehension:

table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]

This construction loops through pairs C and F, and for each pass in the loop we
create a list element [C, F].

The subscript table[1] refers to the second element in table, which is a [C,
F] pair, while table[1] [0] is the C value and table[1] [1] is the F value. Fig-
ure 2.2 illustrates both a list of columns and a list of pairs. Using this figure, you
can realize that the first index looks up an element in the outer list, and that this
element can be indexed with the second index.

2.4.2 Printing Objects

Modules for pretty print of objects We may write print table to immediately
view the nested list table from the previous section. In fact, any Python object obj
can be printed to the screen by the command print obj. The output is usually one
line, and this line may become very long if the list has many elements. For example,
a long list like our table variable, demands a quite long line when printed.

[[-20, -4.0], [-15, 5.0], [-10, 14.0], , [40, 104.0]]

2.4 Nested Lists 69

Splitting the output over several shorter lines makes the layout nicer and more
readable. The pprint module offers a pretty print functionality for this purpose.
The usage of pprint looks like

import pprint
pprint.pprint (table)

and the corresponding output becomes

[[-20, -4.01,
[-15, 5.0],
[-10, 14.0],
[-5, 23.0],
[0, 32.01,
[5, 41.0],
[10, 50.0],
[15, 59.0],
[20, 68.0],
[25, 77.0],
[30, 86.0],
[35, 95.0],
[40, 104.0]]

With this book comes a slightly modified pprint module having the name
scitools.pprint2. This module allows full format control of the printing of
the float objects in lists by specifying scitools.pprint2.float_format as
a printf format string. The following example demonstrates how the output format
of real numbers can be changed:

>>> import pprint, scitools.pprint2

>>> somelist = [15.8, [0.2, 1.7]1]

>>> pprint.pprint (somelist)

[15.800000000000001, [0.20000000000000001, 1.71]
>>> scitools.pprint2.pprint(somelist)

[15.8, [0.2, 1.71]

>>> # default output is ’%g’, change this to
>>> scitools.pprint2.float_format = ’7.2e’

>>> scitools.pprint2.pprint(somelist)

[1.58e+01, [2.00e-01, 1.70e+00]]

As can be seen from this session, the pprint module writes floating-point numbers
with a lot of digits, in fact so many that we explicitly see the round-off errors.
Many find this type of output is annoying and that the default output from the
scitools.pprint2module is more like one would desire and expect.

The pprint and scitools.pprint2 modules also have a function pformat,
which works as the pprint function, but it returns a pretty formatted string rather
than printing the string:

s = pprint.pformat(somelist)
print s

This last print statement prints the same as pprint.pprint (somelist).

70 2 Loops and Lists

Manual printing Many will argue that tabular data such as those stored in the
nested table list are not printed in a particularly pretty way by the pprint module.
One would rather expect pretty output to be a table with two nicely aligned columns.
To produce such output we need to code the formatting manually. This is quite easy:
we loop over each row, extract the two elements C and F in each row, and print these
in fixed-width fields using the printf syntax. The code goes as follows:

for C, F in table:
print ’%5d %5.1f’ % (C, F)

2.4.3 Extracting Sublists

Python has a nice syntax for extracting parts of a list structure. Such parts are known
as sublists or slices:
A[i:] is the sublist starting with index i in A and continuing to the end of A:

>>> A = [2, 3.5, 8, 10]
>>> A[2:]
[8, 10]

A[i:j] is the sublist starting with index i in A and continuing up to and includ-
ing index j-1. Make sure you remember that the element corresponding to index j
is not included in the sublist:

>>> A[1:3]
[3.5, 8]

A[:1] is the sublist starting with index O in A and continuing up to and including
the element with index i-1:

>>> A[:3]
[2, 3.5, 8]

A[1:-1] extracts all elements except the first and the last (recall that index -1
refers to the last element), and A[:] is the whole list:

>>> A[1:-1]
[3.5, 8]

>>> A[:]

[2, 3.5, 8, 10]

In nested lists we may use slices in the first index, e.g.,

>>> table[4:]
[[o, 32.0], [5, 41.0], [10, 50.0], [15, 59.0], [20, 68.0],
[25, 77.0], [30, 86.0], [35, 95.0], [40, 104.0]]

2.4 Nested Lists 71

We can also slice the second index, or both indices:

>>> table[4:7][0:2]
[[0, 32.0], [5, 41.0]1]

Observe that table[4:7] makesalist [[0, 32.0], [5, 41.0], [10, 50.0]]
with three elements. The slice [0:2] acts on this sublist and picks out its first two
elements, with indices O and 1.

Sublists are always copies of the original list, so if you modify the sublist the
original list remains unaltered and vice versa:

>>> 11
>>> 12
>>> 12
[1, 4]
>>> 11[0] = 100

>>> 11 # 11 is modified
[100, 4, 3]

>>> 12 # 12 is not modified
[1, 4]

[1, 4, 3]
11[:-1]

The fact that slicing makes a copy can also be illustrated by the following code:

>>> B = A[:]
>>> C = A

>>> B == A

True

>>> B is A

False

>>> C is A

True

The B == A boolean expression is True if all elements in B are equal to the cor-

responding elements in A. The test B is A is True if A and B are names for the
same list. Setting C = A makes C refer to the same list object as A, whileB = A[:]
makes B refer to a copy of the list referred to by A.

Example We end this information on sublists by writing out the part of the table
list of [C, F] rows (see Sect. 2.4) where the Celsius degrees are between 10 and
35 (not including 35):

>>> for C, F in table[Cdegrees.index(10) :Cdegrees.index(35)]:
print ’%5.0f %5.1f’ % (C, F)

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

You should always stop reading and convince yourself that you understand why
a code segment produces the printed output. In this latter example, Cdegrees.

72 2 Loops and Lists

index (10) returns the index corresponding to the value 10 in the Cdegrees list.
Looking at the Cdegrees elements, one realizes (do it!) that the for loop is equiv-
alent to

for C, F in table[6:11]:

This loop runs over the indices 6,7, ..., 10 in table.

2.4.4 Traversing Nested Lists

We have seen that traversing the nested list table could be done by a loop of the
form

for C, F in table:
process C and F

This is natural code when we know that table is a list of [C, F] lists. Now we
shall address more general nested lists where we do not necessarily know how many
elements there are in each list element of the list.

Suppose we use a nested list scores to record the scores of players in a game:
scores [1] holds a list of the historical scores obtained by player number i. Dif-
ferent players have played the game a different number of times, so the length of
scores [i] depends on i. Some code may help to make this clearer:

scores = []

score of player no. 0:

scores.append([12, 16, 11, 12])

score of player no. 1:

scores.append ([9])

score of player no. 2:

scores.append([6, 9, 11, 14, 17, 15, 14, 20])

The list scores has three elements, each element corresponding to a player. The
element no. g in the list scores[p] corresponds to the score obtained in game
number g played by player number p. The length of the lists scores [p] varies and
equals 4, 1, and 8 for p equal to 0, 1, and 2, respectively.

In the general case we may have n players, and some may have played the game
a large number of times, making scores potentially a big nested list. How can
we traverse the scores list and write it out in a table format with nicely formatted
columns? Each row in the table corresponds to a player, while columns correspond
to scores. For example, the data initialized above can be written out as

12 16 11 12
9
6 9 11 14 17 15 14 20

In a program, we must use two nested loops, one for the elements in scores and
one for the elements in the sublists of scores. The example below will make this
clear.

2.4 Nested Lists 73

There are two basic ways of traversing a nested list: either we use integer indices
for each index, or we use variables for the list elements. Let us first exemplify the
index-based version:

for p in range(len(scores)):
for g in range(len(scores[pl)):
score = scores[p] [g]
print ’%4d’ % score,
print

With the trailing comma after the print string, we avoid a newline so that the column
values in the table (i.e., scores for one player) appear at the same line. The single
print command after the loop over c adds a newline after each table row. The
reader is encouraged to go through the loops by hand and simulate what happens in
each statement (use the simple scores list initialized above).

The alternative version where we use variables for iterating over the elements in
the scores list and its sublists looks like this:

for player in scores:
for game in player:
print ’%4d’ Y, game,
print

Again, the reader should step through the code by hand and realize what the values
of player and game are in each pass of the loops.

In the very general case we can have a nested list with many indices: somelist
[i11 [12] [i3].. .. To visit each of the elements in the list, we use as many nested
for loops as there are indices. With four indices, iterating over integer indices look
as

for il in range(len(somelist)):
for i2 in range(len(somelist[il])):
for i3 in range(len(somelist[i1][i2])):
for i4 in range(len(somelist[i1] [i2] [13])):
value = somelist[i1] [12] [i3] [14]
work with value

The corresponding version iterating over sublists becomes

for sublistl in somelist:
for sublist2 in sublistl:
for sublist3 in sublist2:
for sublist4 in sublist3:
value = sublist4
work with value

74 2 Loops and Lists

2.5 Tuples

Tuples are very similar to lists, but tuples cannot be changed. That is, a tuple can
be viewed as a constant list. While lists employ square brackets, tuples are written
with standard parentheses:

>>>t = (2, 4, 6, ’temp.pdf’) # define a tuple with name t

One can also drop the parentheses in many occasions:

>>> t =2, 4, 6, ’temp.pdf’
>>> for element in ’myfile.txt’, ’yourfile.txt’, ’herfile.txt’:
print element,

myfile.txt yourfile.txt herfile.txt

The for loop here is over a tuple, because a comma separated sequence of objects,
even without enclosing parentheses, becomes a tuple. Note the trailing comma
in the print statement. This comma suppresses the final newline that the print
command automatically adds to the output string. This is the way to make several
print statements build up one line of output.

Much functionality for lists is also available for tuples, for example:

>>>t =t + (-1.0, -2.0) # add two tuples
>>> t

(2, 4, 6, ’temp.pdf’, -1.0, -2.0)

>>> t[1] # indexing

4

>>> t[2:] # subtuple/slice
(6, ’temp.pdf’, -1.0, -2.0)

>>> 6 in t # membership
True

Any list operation that changes the list will not work for tuples:
>>> t[1] = -1
f&feError: object does not support item assignment
>>> t.append (0)
AééributeError: ’tuple’ object has no attribute ’append’
>>> del t[1]
f&éeError: object doesn’t support item deletion

Some list methods, like index, are not available for tuples. So why do we need
tuples when lists can do more than tuples?

e Tuples protect against accidental changes of their contents.
e Code based on tuples is faster than code based on lists.

2.6 Summary 75

e Tuples are frequently used in Python software that you certainly will make use
of, so you need to know this data type.

There is also a fourth argument, which is important for a data type called dictionar-
ies (introduced in Sect. 6.1): tuples can be used as keys in dictionaries while lists
can not.

2.6 Summary
2.6.1 Chapter Topics

While loops Loops are used to repeat a collection of program statements several
times. The statements that belong to the loop must be consistently indented in
Python. A while loop runs as long as a condition evaluates to True:

>>> t =0; dt = 0.5; T = 2
>>> while t <= T:

print t
t += dt
0
0.5
1.0
1.5
2.0
>>> print ’Final t:’, t, ’; t <= T is’, t <= T

Final t: 2.5 ; t <= T is False

Lists A list is used to collect a number of values or variables in an ordered se-
quence.

>>> mylist = [t, dt, T, ’mynumbers.dat’, 100]

A list element can be any Python object, including numbers, strings, functions, and
other lists, for instance.

The table below shows some important list operations (only a subset of these are
explained in the present chapter).

Construction Meaning

a =[] initialize an empty list

a=1[1, 4.4, initialize a list

’run.py’]

a.append(elem) add elem object to the end

a + [1,3] add two lists

a.insert(i, e) insert element e before index i

a[3] index a list element

al-1] get last list element

al1:3] slice: copy data to sublist (here: index 1, 2)

del al[3] delete an element (index 3)

76 2 Loops and Lists

Construction Meaning

a.remove (e) remove an element with value e
a.index(’run.py’) find index corresponding to an element’s value
’run.py’ in a test if a value is contained in the list

a.count (v) count how many elements that have the value v
len(a) number of elements in list a

min(a) the smallest element in a

max (a) the largest element in a

sum(a) add all elements in a

sorted(a) return sorted version of list a

reversed(a) return reversed sorted version of list a

b[3] [0] [2] nested list indexing

isinstance(a, list) is True if a is a list
type(a) is list is True if a is a list

Nested lists If the list elements are also lists, we have a nested list. The following
session summarizes indexing and loop traversal of nested lists:

>>> nl = [[0, 0, 1], [-1, -1, 2], [-10, 10, 5]]
>>> nl1[0]
[0, 0, 1]
>>> nl[-1]
[-10, 10, 5]
>>> nl1[0] [2]
1
>>> nl[-1][0]
-10
>>> for p in nl:
print p
[0, 0, 1]
[-1, -1, 2]
[-10, 10, 5]
>>> for a, b, ¢ in nl:
print ’%3d %3d %3d’ % (a, b, c)

0 O 1

-1 -1 2
-10 10 5

Tuples A tuple can be viewed as a constant list: no changes in the contents of
the tuple is allowed. Tuples employ standard parentheses or no parentheses, and
elements are separated with comma as in lists:

>>> mytuple = (t, dt, T, ’mynumbers.dat’, 100)
>>> mytuple t, dt, T, ’mynumbers.dat’, 100

Many list operations are also valid for tuples, but those that changes the list content
cannot be used with tuples (examples are append, del, remove, index, and sort).

An object a containing an ordered collection of other objects such that a[i]
refers to object with index i in the collection, is known as a sequence in Python.

2.6 Summary 77

Lists, tuples, strings, and arrays are examples on sequences. You choose a sequence
type when there is a natural ordering of elements. For a collection of unordered
objects a dictionary (see Sect. 6.1) is often more convenient.

For loops A for loop is used to run through the elements of a list or a tuple:

>>> for elem in [10, 20, 25, 27, 28.5]:
print elem,

10 20 25 27 28.5

The trailing comma after the print statement prevents the newline character, which
otherwise print would automatically add.

The range function is frequently used in for loops over a sequence of integers.
Recall that range (start, stop, inc) does not include the upper limit stop
among the list item.

>>> for elem in range(l, 5, 2):
print elem,

13
>>> range(1, 5, 2)
[1, 3]

Implementation of a sum Z,N= u 4(Jj), where g(j) is some mathematical expres-
sion involving the integer counter j, is normally implemented using a for loop.
Choosing, e.g., ¢(j) = 1/j2, the sum is calculated by

s = 0 # accumulation variable
for j in range(M, N+1, 1):
s += 1./j*%2

Pretty print To printalist a, print acan be used, butthe pprint and scitools.
pprint2 modules and their pprint function give a nicer layout of the output for
long and nested lists. The scitools.pprint2 module has the possibility to
control the formatting of floating-point numbers.

Terminology The important computer science terms in this chapter are

list

tuple

nested list (and nested tuple)
sublist (subtuple) or slice a[i: j]
while loop

for loop

list comprehension

boolean expression

78 2 Loops and Lists

2.6.2 Example: Analyzing List Data

Problem The file src/misc/0xford_sun_hours.txt?contains data of the num-
ber of sun hours in Oxford, UK, for every month since January 1929. The data are
already on a suitable nested list format:

L

[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],

The list in every line holds the number of sun hours for each of the year’s 12 months.
That is, the first index in the nested list corresponds to year and the second index
corresponds to the month number. More precisely, the double index [i] [j] corre-
sponds to year 1929 + i and month 1 + j (January being month number 1).

The task is to define this nested list in a program and do the following data
analysis.

o Compute the average number of sun hours for each month during the total data
period (1929-2009).

o Which month has the best weather according to the means found in the preceding
task?

e For each decade, 1930-1939, 1940-1949, ..., 2000-2009, compute the aver-
age number of sun hours per day in January and December. For example, use
December 1949, January 1950, ..., December 1958, and January 1959 as data
for the decade 1950-1959. Are there any noticeable differences between the
decades?

Solution Initializing the data is easy: just copy the data from the Oxford_sun_
hours. txt file into the program file and set a variable name on the left hand side
(the long and wide code is only indicated here):

data = [

[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...]1,
[63.7, 72.0, 142.3, ...],

For task 1, we need to establish a list monthly_mean with the results from the
computation, i.e., monthly_mean[2] holds the average number of sun hours for
March in the period 1929-2009. The average is computed in the standard way: for
each month, we run through all the years, sum up the values, and finally divide by
the number of years (1en(data) or 2009 — 1929 + 1).

2 http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt

http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt
http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt

2.6 Summary 79

monthly_mean = []
n = len(data) # no of years
for m in range(12): # counter for month indices
s =0 # sum
for y in data: # loop over "rows" (first index) in data
s += y[m] # add value for month m
monthly_mean.append(s/n)

An alternative solution would be to introduce separate variables for the monthly
averages, say Jan_mean, Feb_mean, etc. The reader should as an exercise write the
code associated with such a solution and realize that using the monthly_mean list
is more elegant and yields much simpler and shorter code. Separate variables might
be an okay solution for 2-3 variables, but not for as many as 12.

Perhaps we want a nice-looking printout of the results. This can elegantly be
created by first defining a tuple (or list) of the names of the months and then running
through this list in parallel with monthly_mean:

month_names = ’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’,\
>Jul’, ’Aug’, ’Sep’, ’0Oct’, ’Nov’, ’Dec’
for name, value in zip(month_names, monthly_mean):
print ’%s: %.1f’ % (name, value)

The printout becomes

Jan: 56.6
Feb: 72.7
Mar: 116.
Apr: 153.
May: 191.
Jun: 198.
Jul: 193.
Aug: 184.
Sep: 138.
Oct: 104.
Nov: 67.4
Dec: 52.4

DD W Wo U~ N O

Task 2 can be solved by pure inspection of the above printout, which reveals
that June is the winner. However, since we are learning programming, we should
be able to replace our eyes with some computer code to automate the task. The
maximum value max_value of a list like monthly_mean is simply obtained by
max (monthly_mean). The corresponding index, needed to find the right name of
the corresponding month, is found frommonthly_mean. index (max_value). The
code for task 2 is then

max_value = max(monthly_mean)

month = month_names [monthly_mean.index(max_value)]

print ’%s has best weather with J%.1f sun hours on average’ % \
(month, max_value)

Task 3 requires us to first develop an algorithm for how to compute the decade
averages. The algorithm, expressed with words, goes as follows. We loop over the

80 2 Loops and Lists

decades, and for each decade, we loop over its years, and for each year, we add the
December data of the previous year and the January data of the current year to an
accumulation variable. Dividing this accumulation variable by 10 - 2 - 30 gives the
average number of sun hours per day in the winter time for the particular decade.
The code segment below expresses this algorithm in the Python language:

decade_mean = []
for decade_start in range(1930, 2010, 10):
Jan_index = 0; Dec_index = 11 # indices
s =0
for year in range(decade_start, decade_start+10):
y = year - 1929 # list index
print dataly-1] [Dec_index] + dataly] [Jan_index]
s += datal[y-1] [Dec_index] + dataly] [Jan_index]
decade_mean.append(s/(20.*30))
for i in range(len(decade_mean)):
print ’Decade %d-%d: %.1f’ % \
(1930+i*10, 1939+i*10, decade_mean[i])

The output becomes

Decade 1930-1939:
Decade 1940-1949:
Decade 1950-1959:
Decade 1960-1969:
Decade 1970-1979:
Decade 1980-1989:
Decade 1990-1999:
Decade 2000-2009:

I R e T
= 00 O O 00 00 00

The complete code is found in the file sun_data. py.

Remark The file Oxford_sun_hours.txt is based on data from the UK Met
Office®. A Python program for downloading the data, interpreting the content, and
creating a file like Oxford_sun_hours. txt is explained in detail in Sect. 6.3.3.

2.6.3 How to Find More Python Information

This book contains only fragments of the Python language. When doing your own
projects or exercises you will certainly feel the need for looking up more detailed
information on modules, objects, etc. Fortunately, there is a lot of excellent docu-
mentation on the Python programming language.

The primary reference is the official Python documentation website*: docs.
python.org. Here you can find a Python tutorial, the very useful Library Refer-
ence [3], and a Language Reference, to mention some key documents. When you
wonder what functions you can find in a module, say the math module, you can go
to the Library Reference search for math, which quickly leads you to the official

3 http://www.metoffice.gov.uk/climate/uk/stationdata/
4 http://docs.python.org/index.html

http://tinyurl.com/pwyasaa/looplist/sun_data.py
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://docs.python.org/index.html
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://docs.python.org/index.html

2.6 Summary 81

documentation of the math module. Alternatively, you can go to the index of this
document and pick the math (module) item directly. Similarly, if you want to
look up more details of the printf formatting syntax, go to the index and follow the
printf-style formatting index.

Warning

A word of caution is probably necessary here. Reference manuals are very tech-
nical and written primarily for experts, so it can be quite difficult for a newbie to
understand the information. An important ability is to browse such manuals and
dig out the key information you are looking for, without being annoyed by all the
text you do not understand. As with programming, reading manuals efficiently
requires a lot of training.

A tool somewhat similar to the Python Standard Library documentation is the
pydoc program. In a terminal window you write

Terminal

Terminal> pydoc math

In IPython there are two corresponding possibilities, either

In [1]: !pydoc math

or

In [2]: import math
In [3]: help(math)

The documentation of the complete math module is shown as plain text. If a specific
function is wanted, we can ask for that directly, e.g., pydoc math.tan. Since
pydoc is very fast, many prefer pydoc over web pages, but pydoc has often less
information compared to the web documentation of modules.

There are also a large number of books about Python. Beazley [1] is an excellent
reference that improves and extends the information in the web documentation. The
Learning Python book [17] has been very popular for many years as an introduc-
tion to the language. There is a special web page’ listing most Python books on
the market. Very few books target scientific computing with Python, but [4] gives
an introduction to Python for mathematical applications and is more compact and
advanced than the present book. It also serves as an excellent reference for the ca-
pabilities of Python in a scientific context. A comprehensive book on the use of
Python for assisting and automating scientific work is [13].

Quick references, which list almost to all Python functionality in compact tabular
form, are very handy. We recommend in particular the one by Richard Gruet® [6].

The website http://www.python.org/doc/ contains a list of useful Python intro-
ductions and reference manuals.

3 http://wiki.python.org/moin/PythonBooks
S http://rgruet.free.fr/PQR27/PQR2.7.html

http://wiki.python.org/moin/PythonBooks
http://rgruet.free.fr/PQR27/PQR2.7.html
http://www.python.org/doc/
http://wiki.python.org/moin/PythonBooks
http://rgruet.free.fr/PQR27/PQR2.7.html

82 2 Loops and Lists

2.7 Exercises

Exercise 2.1: Make a Fahrenheit-Celsius conversion table
Write a Python program that prints out a table with Fahrenheit degrees 0, 10, 20, . . .,
100 in the first column and the corresponding Celsius degrees in the second column.

Hint Modify the c2f_table_while.py program from Sect. 2.1.2.
Filename: £2c_table_while.

Exercise 2.2: Generate an approximate Fahrenheit-Celsius conversion table
Many people use an approximate formula for quickly converting Fahrenheit (F') to
Celsius (C) degrees:

C ~C = (F-30)/2 (2.2)

Modify the program from Exercise 2.1 so that it prints three columns: F, C, and
the approximate value C.
Filename: f2c_approx_table.

Exercise 2.3: Work with a list

Set a variable primes to a list containing the numbers 2, 3,5, 7, 11, and 13. Write
out each list element in a for loop. Assign 17 to a variable p and add p to the end
of the list. Print out the entire new list.

Filename: primes.

Exercise 2.4: Generate odd numbers

Write a program that generates all odd numbers from 1 to n. Set n in the beginning
of the program and use a while loop to compute the numbers. (Make sure that if n
is an even number, the largest generated odd number is n-1.)

Filename: odd.

Exercise 2.5: Compute the sum of the first n integers

Write a program that computes the sum of the integers from 1 up to and including
n. Compare the result with the famous formulan(n + 1)/2.

Filename: sum_int.

Exercise 2.6: Compute energy levels in an atom
The n-th energy level for an electron in a Hydrogen atom is given by

4
1
E, = ¢
8edh? n?
where m, = 9.1094 - 1073! kg is the electron mass, e = 1.6022 - 1071° C is the
elementary charge, €) = 8.8542 - 107'2 C? s> kg~! m~3 is the electrical permittivity
of vacuum, and & = 6.6261 - 10734 Js.

a) Write a Python program that calculates and prints the energy level E, forn =
1,...,20.

2.7 Exercises 83

b) The released energy when an electron moves from level n; to level ny is given

by
4
mee 1 1
=g\)
€ n;y ng
Add statements to the program from a) so that it prints a second, nicely formatted

table where the cell in column i and row f contains the energy released when
an electron moves from energy level i to level f, fori, f =1,...,5.

Filename: energy_levels.

Exercise 2.7: Generate equally spaced coordinates
We want to generate n + 1 equally spaced x coordinates in [a, b]. Store the coordi-
nates in a list.

a) Start with an empty list, use a for loop and append each coordinate to the list.

Hint With n intervals, corresponding to n + 1 points, in [a, b], each interval has
length i = (b — a)/n. The coordinates can then be generated by the formula
xi=a+ih,i =0,...,n+1.

b) Use a list comprehension as an alternative implementation.
Filename: coor.

Exercise 2.8: Make a table of values from a formula
The purpose of this exercise is to write code that prints a nicely formatted table of ¢
and y(t) values, where

1
y(t) = vot — Egtz.

Use n + 1 uniformly spaced ¢ values throughout the interval [0, 2v,/g].

a) Use a for loop to produce the table.
b) Add code with a while loop to produce the table.

Hint Because of potential round-off errors, you may need to adjust the upper limit
of the while loop to ensure that the last point (t = 2vy/g, y = 0) is included.
Filename: ball_tablel.

Exercise 2.9: Store values from a formula in lists

This exercise aims to produce the same table of numbers as in Exercise 2.8, but with
different code. First, store the ¢ and y values in two lists t and y. Thereafter, write
out a nicely formatted table by traversing the two lists with a for loop.

Hint In the for loop, use either zip to traverse the two lists in parallel, or use an
index and the range construction.
Filename: ball_table2.

84 2 Loops and Lists

Exercise 2.10: Simulate operations on lists by hand
You are given the following program:

a=1[1, 3, 5, 7, 11]
b [13, 17]
c=a+b
print c
b[0] = -1
d = [e+tl for e in a]
print d
d.append(b[0] + 1)
d.append(b[-1] + 1)
print d[-2:]
for el in a:

for e2 in b:

print el + e2

Go through each statement and explain what is printed by the program.
Filename: simulate_lists.

Exercise 2.11: Compute a mathematical sum

The following code is supposed to compute the sum s = Zf{”: ! %:

s =0; k=1; M=100

while k < M:
s += 1/k
print s

This program does not work correctly. What are the three errors? (If you try to run
the program, nothing will happen on the screen. Type Ctrl+c, i.e., hold down the
Control (Ctrl) key and then type the c key, to stop the program.) Write a correct
program.

Hint There are two basic ways to find errors in a program:

1. read the program carefully and think about the consequences of each statement,
2. print out intermediate results and compare with hand calculations.

First, try method 1 and find as many errors as you can. Thereafter, try method 2 for
M = 3 and compare the evolution of s with your own hand calculations.
Filename: sum_while.

Exercise 2.12: Replace a while loop by a for loop

Rewrite the corrected version of the program in Exercise 2.11 using a for loop over
k values instead of a while loop.

Filename: sum_for.

2.7 Exercises 85

Exercise 2.13: Simulate a program by hand
Consider the following program for computing with interest rates:

initial_amount = 100

p = 5.5 # interest rate

amount = initial_amount

years = 0

while amount <= 1.5%initial_amount:
amount = amount + p/100*amount
years = years + 1

print years

a) Use a pocket calculator or an interactive Python shell and work through the
program calculations by hand. Write down the value of amount and years in
each pass of the loop.

b) Setp = 5 instead. Why will the loop now run forever? (Apply Ctrl+c, see Ex-
ercise 2.11, to stop a program with a loop that runs forever.) Make the program
robust against such errors.

¢) Make use of the operator += wherever possible in the program.

d) Explain with words what type of mathematical problem that is solved by this
program.

Filename: interest_rate_loop.

Exercise 2.14: Explore Python documentation
Suppose you want to compute with the inverse sine function: sin~! x. How do you
do that in a Python program?

Hint The math module has an inverse sine function. Find the correct name of the
function by looking up the module content in the online Python Standard Library’
document or use pydoc, see Sect. 2.6.3.

Filename: inverse_sine.

Exercise 2.15: Index a nested list
We define the following nested list:

q= [[)a)’ ’b’, ’C’], [’d’, ;e)’ ;f:]’ [)g)’ ’h’]]

a) Index this list to extract 1) the letter a; 2) the list [’d’, ’e’, ’f’];3)the last
element h; 4) the d element. Explain why q[-1] [-2] has the value g.
b) We can visit all elements of q using this nested for loop:

for i in q:
for j in range(len(i)):

print i[j]

What type of objects are i and j?

Filename: index_nested_list.

7 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://docs.python.org/2/library/

86 2 Loops and Lists

Exercise 2.16: Store data in lists

Modify the program from Exercise 2.2 so that all the F, C, and C values are
stored in separate lists F, C, and C_approx, respectively. Then make a nested list
conversion so that conversion[i] holds a row in the table: [F[i], C[i],
C_approx[i]]. Finally, let the program traverse the conversion list and write
out the same table as in Exercise 2.2.

Filename: f2c_approx_lists.

Exercise 2.17: Store data in a nested list

The purpose of this exercise is to store tabular data in two alternative ways, either
as a list of columns or as a list of rows. In order to write out a nicely formatted
table, one has to traverse the data, and the technique for traversal depends on how
the tabular data is stored.

a) Compute two lists of # and y values as explained in Exercise 2.9. Store the two
lists in a new nested list ty1 such that ty1[0] and ty1[1] correspond to the
two lists. Write out a table with # and y values in two columns by looping over
the data in the ty1 list. Each number should be written with two decimals.

b) Make a list ty2 which holds each row in the table of and y values (ty1 is a list
of table columns while ty2 is a list of table rows, as explained in Sect. 2.4).
Loop over the ty2 list and write out the # and y values with two decimals each.

Filename: ball_table3.

Exercise 2.18: Values of boolean expressions
Explain the outcome of each of the following boolean expressions:

C =41

C == 40

C !'= 40 and C < 41

C !=40 or C < 41

not C == 40

not C > 40

C <= 41

not False

True and False

False or True

False or False or False
True and True and False

False == 0

True == 0

Lz == il
Note
It makes sense to compare True and False to the integers O and 1, but not other
integers (e.g., True == 12 is False although the integer 12 evaluates to True

in a boolean context, as in bool (12) or if 12).

Filename: eval_bool.

2.7 Exercises 87

Exercise 2.19: Explore round-off errors from a large number of inverse
operations

Maybe you have tried to hit the square root key on a calculator multiple times and
then squared the number again an equal number of times. These set of inverse
mathematical operations should of course bring you back to the starting value for
the computations, but this does not always happen. To avoid tedious pressing of
calculator keys, we can let a computer automate the process. Here is an appropriate
program:

from math import sqrt

for n in range(1, 60):

.0

in range(n):

= sqrt(r)

in range(n):

= r**2

print ’%d times sqrt and **2: %.16f’ % (n, r)

r =
for

for

R oF R OE N

Explain with words what the program does. Then run the program. Round-off
errors are here completely destroying the calculations when n is large enough! In-
vestigate the case when we come back to 1 instead of 2 by fixing an n value where
this happens and printing out r in both for loops over i. Can you now explain why
we come back to 1 and not 2?

Filename: repeated_sqrt.

Exercise 2.20: Explore what zero can be on a computer
Type in the following code and run it:

eps = 1.0

while 1.0 != 1.0 + eps:
RS Yoo coo0000000000 ’, eps
eps = eps/2.0

print ’final eps:’, eps

Explain with words what the code is doing, line by line. Then examine the output.
How can it be that the “equation” 1 # 1 4+ eps is not true? Or in other words, that
anumber of approximately size 107! (the final eps value when the loop terminates)
gives the same result as if eps were zero?

Filename: machine_zero.

Remarks The nonzero eps value computed above is called machine epsilon or
machine zero and is an important parameter to know, especially when certain math-
ematical techniques are applied to control round-off errors.

Exercise 2.21: Compare two real numbers with a tolerance
Run the following program:

a = 1/947.0%947
b=1
if a != b:
print ’Wrong result!’

88 2 Loops and Lists

The lesson learned from this program is that one should never compare two
floating-point objects directly using a == b or a != b, because round-off errors
quickly make two identical mathematical values different on a computer. A better
result is to test if abs(a - b) < tol, where tol is a very small number. Modify
the test according to this idea.

Filename: compare_floats.

Exercise 2.22: Interpret a code

The function time in the module t ime returns the number of seconds since a partic-
ular date (called the Epoch, which is January 1, 1970, on many types of computers).
Python programs can therefore use time.time () to mimic a stop watch. Another
function, time.sleep(n) causes the program to pause for n seconds and is handy
for inserting a pause. Use this information to explain what the following code does:

import time

t0 = time.time()

while time.time() - tO < 10:
print ’....I like while loops!’
time.sleep(2)

print ’0Oh, no - the loop is over.’

How many times is the print statement inside the loop executed? Now, copy the
code segment and change the < sign in the loop condition to a > sign. Explain what
happens now.

Filename: time_while.

Exercise 2.23: Explore problems with inaccurate indentation
Type in the following program in a file and check carefully that you have exactly
the same spaces:

C = -60; dC = 2
while C <= 60:
F = (9.0/5)*C + 32
print C, F
C=C+dC

Run the program. What is the first problem? Correct that error. What is the next
problem? What is the cause of that problem? (See Exercise 2.11 for how to stop
a hanging program.)

Filename: indentation.

Remarks The lesson learned from this exercise is that one has to be very care-
ful with indentation in Python programs! Other computer languages usually en-
close blocks belonging to loops in curly braces, parentheses, or begin-end marks.
Python’s convention with using solely indentation contributes to visually attractive,
easy-to-read code, at the cost of requiring a pedantic attitude to blanks from the
programmer.

2.7 Exercises 89

Exercise 2.24: Explore punctuation in Python programs

Some of the following assignments work and some do not. Explain in each case
why the assignment works/fails and, if it works, what kind of object x refers to and
what the value is if we do a print x.

LT T T T
[[}
I

Hint Explore the statements in an interactive Python shell.
Filename: punctuation.

Exercise 2.25: Investigate a for loop over a changing list
Study the following interactive session and explain in detail what happens in each
pass of the loop, and use this explanation to understand the output.

>>> numbers = range(10)
>>> print numbers
[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for n in numbers:
i = len(numbers)/2
del numbers[i]
print ’n=%d, del %d’ % (n,i), numbers

n=0, del 5 [0,

1, 2, 3, 4, 6, 7, 8, 9]
n=1, del 4 [0, 1, 2, 3, 6, 7, 8, 9]
n=2, del 4 [0, 1, 2, 3, 7, 8, 9]
n=3, del 3 [0, 1, 2, 7, 8, 9]
n=8, del 3 [0, 1, 2, 8, 9]

Warning

The message in this exercise is to never modify a list that we are looping over:
Modification is indeed technically possible, as shown above, but you really need
to know what you are doing. Otherwise you will experience very strange pro-
gram behavior.

Filename: for_changing_list.

2 Springer
http://www.springer.com/978-3-662-49886-6

& Primer on Scientific Programming with Python
Langtangen, H.P.

2016, X0, 922 p. 88 illus,, 20 illus, in color.,, Hardcover
ISBN: @78-3-662-40B86-6

	2 Loops and Lists
	2.1 While Loops
	2.2 Lists
	2.3 Alternative Implementations with Lists and Loops
	2.4 Nested Lists
	2.5 Tuples
	2.6 Summary
	2.7 Exercises

