
Preface

A decision procedure is an algorithm that, given a decision problem, terminates
with a correct yes/no answer. In this book, we focus on decision procedures
for decidable first-order theories that are useful in the context of automated
software and hardware verification, theorem proving, compiler optimization,
and, since we are covering propositional logic, any problem that is in the
complexity class NP and is not polynomial. The range of modeling languages
that we cover in this book—propositional logic, linear arithmetic, bitvectors,
quantified formulas etc.—and the modeling examples that we include for each
of those, will assist the reader to translate their particular problem and solve
it with one of the publically available tools. The common term for describing
this field is Satisfiability Modulo Theories, or SMT for short, and software
that solves SMT formulas is called an SMT solver.

Since coping with the above-mentioned tasks on an industrial scale de-
pends critically on effective decision procedures, SMT is a vibrant and prosper-
ing research subject for many researchers around the world, both in academia
and in industry. Intel, AMD, ARM and IBM are some of the companies that
routinely apply decision procedures in circuit verification with ever-growing
capacity requirements. Microsoft is developing an SMT solver and applies it
routinely in over a dozen code analysis tools. Every user of Microsoft Windows
and Microsoft Office therefore indirectly enjoys the benefits of this technol-
ogy owing to the increased reliability and resilience to hacker attacks of these
software packages. There are hundreds of smaller, less famous companies that
use SMT solvers for various software engineering tasks, and for solving various
planning and optimization problems.

There are now numerous universities that teach courses dedicated to de-
cision procedures; occasionally, the topic is also addressed in courses on algo-
rithms or on logic for computer science. The primary goal of this book is to
serve as a textbook for an advanced undergraduate- or graduate-level com-
puter science course. It does not assume specific prior knowledge beyond what
is expected from a third-year undergraduate computer science student. The

IX



X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE



XI

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.2

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.

Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all
be seen as alternative modeling languages that can be solved with a variety of
decision procedures. They differ from each other mainly in how naturally they
can be used for modeling various decision problems. For example, consider the
theory of equality, which we describe in Chap. 4: this theory can express any
Boolean combination of Boolean variables and expressions of the form x1 = x2,
where x1 and x2 are variables ranging over, for example, the natural numbers.
The problem of satisfying an expression in this theory can be reduced to a
satisfiability problem of a propositional logic formula (and vice versa). Hence,
there is no difference between propositional logic and the theory of equality in
terms of their ability to model decision problems. However, many problems are
more naturally modeled with the equality operator and non-Boolean variables.

For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.

Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly compared with one another. We refer readers who are interested
in the latest developments in this field to the SMT-LIB web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement

2 Terms such as expressive and decidable have precise meanings, and we will define
them in the first chapter.

PREFACE



XII

them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the
satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book,
and are therefore recommended even for advanced readers. Chapters 2 and 3
describe how propositional formulas are checked for satisfiability, and then
how this capability can be extended to more sophisticated theories. These
chapters are necessary for understanding the rest of the book. Chapters 4–11
are mostly self-contained, and generally do not rely on references to material
other than that in the first three chapters. The last chapter describes the
application of these methods for verifying the correctness of software, and for
solving various problems in computational biology.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
bibliographic notes, and a glossary of symbols.

Teaching with This Book

We are aware of 38 courses worldwide that list the first edition of this book
as the textbook of the course, in addition to our own courses in the Tech-
nion (Haifa, Israel) and Oxford University (UK). Our own courses are com-
bined undergraduate and graduate courses. The slides that were used in these
courses, as well as links to other resources and ideas for projects, appear on
the book’s web page (www.decision-procedures.org). Source code of a
C++ library for rapid development of decision procedures can also be down-
loaded from this page. This library provides the necessary infrastructure for
programming many of the algorithms described in this book, as explained in
Appendix B. Implementing one of these algorithms was a requirement in the
course, and it proved successful. It even led several students to their thesis
topic.

Notes for the Second Edition

The sales of the first edition of this book crossed, apparently, the threshold
above which the publisher asks the authors to write a second one... Writing
this edition was a necessity for more fundamental reasons, however: at the time
the first edition was written (2004–2008) the field now called SMT was in its
infancy, without the standard terminology and canonic algorithms that it has

PREFACE

www.decision-procedures.org


XIII

now. What constituted the majority of Chap. 11 in the first edition (propo-
sitional encodings and the DPLL(T ) framework) became so dominant in the
years that have passed that we expanded it and brought it forward to Chap. 3.
In turn, most of the so-called eager-encoding algorithms have been moved to
Chap. 11. In addition, we updated Chap. 2 with further modern SAT heuris-
tics, added a section about incremental satisfiability, and added a section on
the related constraint satisfaction problem (CSP). To the quantifiers chapter
(Chap. 9) we added a section about general quantification using E-matching
and a section about the Bernays–Schönfinkel–Ramsey fragment of first-order
logic (also called EPR). Finally, we added a new chapter (Chap. 12) on the
application of SMT for software engineering in industry, partially based on
writings of Nikolaj Bjørner and Leonardo de Moura from Microsoft Research,
and for solving problems in computational biology based on writings of Hillel
Kugler, also from Microsoft Research.

Acknowledgments

Many people read drafts of this manuscript and gave us useful advice. We
would like to thank, in alphabetical order, those who helped in the first edition:
Domagoj Babic, Josh Berdine, Hana Chockler, Leonardo de Moura, Benny
Godlin, Alberto Griggio, Alan Hu, Wolfgang Kunz, Shuvendu Lahiri, Albert
Oliveras Llunell, Joel Ouaknine, Hendrik Post, Sharon Shoham, Aaron Stump,
Cesare Tinelli, Ashish Tiwari, Rachel Tzoref, Helmut Veith, Georg Weis-
senbacher, and Calogero Zarba, and those who helped with the second edi-
tion: Francesco Alberti, Alberto Griggio, Marijn Heule, Zurab Khasidashvili,
Daniel Le Berre, Silvio Ranise, Philipp Ruemmer, Natarajan Shankar, and
Cesare Tinelli. We thank Ilya Yodovsky Jr. for the drawing in Fig. 1.

Sep. 2016

Daniel Kroening Ofer Strichman
University of Oxford, United Kingdom Technion, Haifa, Israel

PREFACE



http://www.springer.com/978-3-662-50496-3




