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Abstract. We outline some model-building procedures for infinitary
Godel logics, including a suitable ultrapower construction. As an appli-
cation, we provide two proofs of the fact that the usual characteriza-
tions of cardinals x such that the Compactness and Weak Compactness
Theorems hold for the infinitary language L, . are also valid for the
corresponding Gadel logics.
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1 Introduction

Infinitary logics, or logics with infinitely long expressions, were first studied by
Scott and Tarski [7,8]. Specifically, let k and A be cardinal numbers and consider
a language L, » consisting of the following non-logical symbols:

1. finitary predicate symbols,
2. finitary function symbols,
3. constants,

and the following logical symbols:

4. a set of variables of size k,
5. conjunctions \,_s A, and disjunctions \/
6. implication and negation,
7. quantifier chains V,.sx, and 3,5z, for § < .

w5 Ay for 6 < s,

Note, in particular, that we do not necessarily include equality in the language.
We give ourselves as much notational freedom as the context allows. For example,
we might write VZ or A A, if the precise length of the connective is not important.
Infinitary languages quickly gathered interest due to their rich model-
theoretic properties and expressive power. For example, the following formula
separates the standard model of arithmetic from non-standard models:

vV \/n>x.

n<w

Partially supported by FWF grants P-26976-N25, [-1897-N25, 1-2671-N35, and
W1255-N23.
© Springer-Verlag Berlin Heidelberg 2016

J. Vdananen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 22-35, 2016.
DOI: 10.1007/978-3-662-52921-8 2



Compactness in Infinitary Godel Logics 23

As is well known, the usual finitary logic (£, ., in this notation) is compact.
The natural question arose as to whether the languages £, » could satisfy suit-
able analogs of compactness. Recall that a cardinal x is weakly compact if, and
only if, it is inaccessible and satisfies the tree property, i.e., any tree of size x such
that every level has < k nodes has a branch B of length . If so, we say B is a
branch through the tree. A filter' U on some set is x-complete if the intersection
of less than k-many sets in U is also in U. A cardinal & is strongly compact if
any x-complete filter on any set can be extended to a k-complete ultrafilter. If
U is an ultrafilter and X € U, we say X has measure one with respect to U (and
X has measure zero if X € U). Let

P.A={SCA:|5] <k}
We say an ultrafilter on P, A is a fine measure if it contains all sets of the form
At ={SeP,A: ACS}.

It is well known (see, for example, [4,5]) that a cardinal & is strongly compact
if, and only if, for every cardinal A, there exists a fine measure on P, \. By results
of Keisler and Tarski [6] and Hanf [3], the languages L., and L , satisfy a
strong (resp. weak) analog of the usual compactness theory for classical logic
if, and only if, k is a strongly (resp. weakly) compact cardinal. Specifically,
whenever X is an arbitrary set (resp. a set where at most x-many non-logical
symbols appear) of formulae such that every subset of X of cardinality < k has a
model, then X' has a model. We show that, in a sense made precise below, this is
also true when the underlying logic is replaced by any first-order Godel logic. As
we will see, although the proofs are essentially as in the classical case, we need
to circumvent a few minor technicalities that arise. In particular, we will need to
introduce the notion of coherent models for Godel logics and prove Los’s Theorem
for a suitable ultrapower construction. It has a similar flavor to the analog in
continuous model theory (for example, see [2]). An important difference is that,
of course, not all logical connectives in Godel logics are continuous.

2 Godel Logics

Definition 1. Let U be a set and* V C [0,1] be closed and containing 0 and 1.
A valuation [-] of Lg x for U and V' consists of

1. For each variable v, a value [[v] € U;
2. For each function symbol f of arity n, a function [f]: U™ — U
3. Similarly, for each predicate symbol, a function [P]: U™ — V;

A model (or V-model, if we want to be precise) is a structure (U, []).

! Recall that a (proper) filter U # p(X) on a set X is a collection of subsets of X
that is closed under binary intersections and supersets.
2 As unfortunate as it is, ‘V’ is the usual notation for this.
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In this paper, the term’model’ is used both as in Definition 1 and in the
classical sense. The meaning shall always be clear from the context. Also, V' will
always denote a closed subset of [0, 1] containing 0 and 1. Valuations are naturally
extended to map any term ¢ to an element [[t] € U and any £, x-formula to a
truth value r € V:

[N\ A =inf{[A]: e < 6};

<9

[[\/ A, =sup{[A.]: c < d};

L<0
_J[B] it [A] > [BI,
A= B = {1 if [A] < [B];
[V.<sz, A(Z)] = inf{[A(@)]: u, € U for each ¢ < §};
[B.<sz, A(Z)] = sup{[A(@)]: uw, € U for each ¢ < 6}.

We will also sometimes abuse terminology by making statements about ‘all
@ C U,” when in reality we mean ‘all & C U of the appropriate length.” Hence,
the last line of the above definition could have been written as

[B.<sz, A(Z)] = sup{[A(@)]: © C U}.
Negation is defined by -A = A — 1, so that

_ )0 if [A] >0,
A= {1 if [A] = 0; M

in particular:

0 if[A] =0,
[==Al = {1 if TA] > 0. @

If I' is a set of formulae, we define [I'] = inf{[B]: B € I'}. We say that a
set I' of £,; y-formulae 1-entails A, and write I' = A, if 1 = [I'] implies 1 = [A]
for any valuation [-]. Given a language £, » and a truth-value set V', we can
formally define the Gédel logic Gy as the set of pairs (I') A) such that I' = A.

Indeed, a notion of entailment is usually taken as the central semantic notion
for Godel logics, instead of that of satisfiability. This is due to the fact that
satisfiability can in general be defined from entailment, but not conversely (for
a general treatment of first-order Gédel logics, see [1]).

Suppose I is a set of L, y-sentences. We say that a set S C I" of cardinality
< k is a k-reduction for (I A) if I' = A implies S |= A. The following is the
main definition:

Definition 2.

— We say that L, » satisfies the Weak Compactness Theorem for Gy if every
pair (I'yA) where at most k-many non-logical symbols appear has a k-
reduction.
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— We say that L,  satisfies the Compactness Theorem for Gy if every pair
(I',A) has a k-reduction.

The first-order language £ under consideration is not important for the previous
definition. It should rather be regarded as a statement about , A, and/or V.

2.1 Models Coherent with an Enumeration

Note that our valuations include both interpretations and variable assignments.
Hence, we might find two morally equal models that differ only in this regard.
To remedy this, we consider the following notion:

Definition 3. Let 4 = (U, []) and 20 = (U, () be models over the same lan-
guage. We say 3 and 2J are equivalent if they coincide except perhaps for the
values of variables, i.e., [P(@)] = (P(%)) and [f(@)] = (f(@)) for each @ C U,
each predicate symbol P and each function symbol f.

We denote by 7 (L, ) the set of all terms in the language £, ... In the future,
we might be tempted to assume that the set of £, .-formulae has cardinality x.
This occurs, e.g., if K = k<" and only k-many non-logical symbols appear in
Ly x, as this implies that the set of £, ,-formulae has cardinality x<".

Under this assumption, we shall describe a procedure to replace a Gy -model
by an equivalent one where quantified formulae are nicely witnessed. Although it
is tailored for our purposes, it can easily be adapted to different contexts. This
procedure and its kin will usually be used as Skolemnization supplements for
Godel logics. Let F(Ly ) = {F,: ¢ < k} be an enumeration of all £ .-formulae
and {y>%: £,1 < k,i < w} be a set of distinguished variables whose complement
has size k.

We say an occurrence of a formula F, in F(L ) is irregular if ¢ is of the
form v + k with ~ limit, 0 < k < w, & are free variables in F, and F,, = VT F, or
F, = 37 F,. We say an occurrence of a formula is regular if it is not irregular.

Lemma 4. If k is uncountable and the set of Ly, ,-formulae has cardinality &,
then there is an enumeration F(Ly ;) of Ly, such that:

1. each formula appears unboundedly often;

2. each formula appears reqularly at least once;

3.y~ does not appear in {F,: v <} for any v,€,i;

4. whenever F, = Vecste F(xg)ecs or F, = Fecswe F(xe)ecs appears regularly
for the first time in the sequence, then F,; = F(y? ’i)5<5 for each 0 < i < w.

Proof. Assign a formula to each limit ordinal < k in such a way that conditions
1 and 3 are verified. Condition 2 is verified automatically, as a formula can only
be irregular at a successor stage. If F, is a regular-for-the-first-time occurrence of
a formula whose outermost symbol is a chain of quantifiers, define F,; for i < w
in such a way that condition 4 is witnessed to hold; otherwise, set F,; = F, for
1< w. O
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We say an enumeration F (L, ) = {F,: ¢ < k} is suitable if either k = Ry or
F(Ly, ) satisfies conditions 1-4 in the statement of Lemma 4.

Definition 5. We say a model (U, [-]) is F (L, )-coherent if F (L, ) is suitable
and whenever a formula F, = Vecsxe F(x¢)es or F, = Jecsxe Fxe)e<s appears
reqularly for the first time in the sequence, then

[F] = lim [F] 3)

Proposition 6. Suppose the set of L ,-formulae has cardinality k. Let F =
F(Ly,x) be a suitable enumeration and 8 = (U, [-]). Then, there exists an F-
coherent model 20 = (U, () equivalent to 4.

Proof. This is clear if kK = Rg. Suppose X; < k and partition the set of variables
in the language into Y = {y%%: ¢,1 < k,i < w} and its complement, Y’ and fix
a bijection g from Y’ onto the set of all variables. We define the valuation ()
to be equal to [-] except for the values of variables. Set (v) = [g(v)] whenever
v € Y’. It remains to define (-) at Y. Let ug be an arbitrary, fixed element of U
such that [v] = ug for some variable v.

Suppose A is a formula with a chain (or a block of chains) of quantlﬁers as
outermost symbol, e.g., A = V& F/(Z). We have that [VZ F'(Z)] = inf{F( t):tc
U}. Let = Ih(f). Fix an w-sequence of n-sequences {f; C U: i < w} such that
lim; ., F(t;) = [VZ F(Z)]. Let F, be the first regular occurrence of V# F(Z) in F.

We define
(]yg,il) _ (ti)i if&<n
t U otherwise.

By construction, clearly (3) holds whenever F, has a chain (or a block of
chains) of quantifiers as outermost symbol and appears regularly for the first
time. Moreover, [B(u)] and (B(@)) coincide for every formula B and every
uCU. O

2.2 Ultraproducts

Let U be an ultrafilter on some set I and let {4l,: ¢ € I} be a family of models
in the language £, x. We define the ultraproduct of {{f,: ¢ € I} in the obvious
way, namely, by setting U = [],.; U,/ =, where

f=gif, and only if, {v: f(v) =g(¢)} € U.
For a function symbol F', we set
FIf] = [g] if, and only if, {0: F(£()) = g()} € U.
For a predicate symbol P, we define [P[f]] = r if, and only if,
for every € > 0, {¢: |P(f(v)) —r|<e} eU.

The ultraproduct is well-defined:
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Lemma 7. Assume P is atomic. Then {¢: |P(f(¢)) — 7| < e} € U for exactly
one r € [0,1], so that the ultraproduct is well-defined. Moreover, if U is (280)*-
complete, then [P[f]] = if, and only if, {v: P(f(¢))=r} € U.

Proof. Suppose that for no r is it the case that {v: |P(f(+)) —r| < e} € U for
every e. For each r, choose €, > 0 witnessing this. By (topological) compactness
of V, finitely-many intervals (r —e,,r+¢,) cover V. However, by finite additivity
of the ultrafilter, not all of the sets

{e: [P(f(1) = 7] <&}

can have measure zero—a contradiction. Similarly, let rg and r; be distinct and
e <|rg —r1|/2. Then A; = {v: |[P(f(¢)) — r;| < £} cannot have measure one for
both i =0and ¢t =1, as AgN A; = . A similar argument shows that if U is
(2%0)*-complete, then

{t: P(f(1))=r} €U
for exactly one r € V. a

We now show that Los’s Theorem holds in most cases of interest:

Proposition 8. Assume U is a (k + Ry)-complete ultrafilter on I. Let 4 =
(W, -] be the ultraproduct of {ih,: v € I} by U. Then, Los’s Theorem holds for
Lz, €., for any formula ¢ € L,; »,

[olfle<s] =7 if, and only if, for every e >0, {v: [[p(f(1))e<s] —7| <} € U. (4)

Moreover, if 2% < k, then

[olfle<s] =7 if, and only if, {v: [p(f(1))e<s] =7} € U. ()

Proof. To spare the reader from an otherwise unreadable proof, we will some-
times identify formulae with their truth values and assume predicates are
monadic. The proof is by a straightforward induction as usual.

() Let o[f] = A, @y[f]- Write r = [\, o [f]] = inf, [, [f]] and [ [f]] =75
Let € > 0. The induction hypothesis gives that for every -,

Ay = {13 Loy (F0) = o] < /3} €U,
By k-completeness, A := (]7 A, € U. Pick 7y such that 7., —r < /3. Since
lp(f () = [ < [o(f (1)) = @y0 (F (1))
+ |<)070(f(‘)) - T'Y(J| + |T"/0 - T|7

it suffices to show that [¢(f(¢)) — ¢, (f(¢))] < €/3 in some measure-one set.
Suppose not, so that for every ¢ in some A’ € U, there is some ~y(¢) such
that @, (f(¢)) > @) (f()) +¢/3. Since U is r-complete and the set of all
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possible v has cardinality < &, then v(¢) must take a constant value, say v*,
in a measure-one subset of A’. We apply the induction hypothesis to ., to
obtain a refinement A” of A’ such that

A" = A O {0t oy (F(0)) = 1] < £/6} € T, (6)

and once more to obtain a further refinement of A” that witnesses the analog
of (6) for v*. From this follows that ¢+ «[f] < ¢4, [f] — /3. Hence, r =
inf, r, <r,- <r,, —e/3; a contradiction.

Conversely, if ¢[f] = 7’ # r, then by the argument above,

{e: lo(f() =r[ <" =r|/2} £ U.

(V) Let r = [Vecsze p(we)e<s] = [VZo(Z)] = inf 7{[[f]]}. Choose a sequence
of (sequences of) terms {f;: i < w} such that o(f;) converges to r and let
i = [¢lfi]]- From the induction hypothesis follows that for any i < w, and
any € > 0, .
{e:lo(fi()) =i <e} €U.

In fact, RXj-completeness gives that for any ¢ > 0,
A= {u: |o(fi(1)) — 74| < & for every i} € U.
Hence, VZ ¢(Z) < r in a measure-one set. We show that for every ¢ > 0,

{t:r = VZpZ(1) <e} € U.

Suppose towards a contradiction that for some 0 < £* < 1/2, we have
VZp(T) + e* < r in a measure-one subset of A. Define § € (I],¢; UL)(S by

setting

- some sequence of terms 7 such that [p(£)], +*/2 <7 if it exists
L) =
some arbitrary term otherwise.

We claim that §(¢) is defined using the first clause in a measure-one set.
This follows from the fact that A" := {v: [VZo(Z)], + &* < r} € U. Indeed,
for each ¢ € A’, there must exist some sequence of terms ¢, such that 0 <
[e(t)]. — [VZp(Z)], < €*/2. But then [¢(f,)], + £*/2 < r. Hence the claim
follows.

Let " < r be such that for all € > 0, {¢: |0(g(¢)) — | < ¢} € U. We must
necessarily have 7' +¢*/2 < r. We apply the induction hypothesis to obtain,
say, ¢[g] +€*/3 < r, which contradicts r = inff{go[ﬂ}.

To obtain the converse implication, we use the one we just proved as in the
first case to show that if VZ (&) =1’ # r, then

{v: VZ(Z()) — 7| < |r' —r|/2} € U.
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(—) Let r = A[f] — B[f], s = A[f], and t = BJ[f]. First suppose s < ¢ so that
r=1,and let 0 < € < (t — s)/2. By induction hypothesis,

{t: JA(f(v)) — s| <eand |B(f(1) —t| <e} e, (7)
so that A(f(¢)) — B(f(¢+)) = 1 on a measure-one set. Now suppose s > ¢, so
that r =tand 0 <e < (t— ) /2. As above, the induction hypothesis gives (7)
and so A(f(¢)) — B(f(¢)) =t on a measure-one set. The converse is obtained

as before.

The remaining cases are similar. Finally, if 2% < x, then (5) holds for atomic
formulae by Lemma 7 and the same inductive argument goes through. a

Corollary 9. Los’s Theorem holds for the language L., ., and the logic Gy for
ultraproducts by countably complete ultrafilters.

Also, from the proof of Proposition 8 follows that:

Corollary 10. Los’s Theorem holds for the language L, ., and the logic Gy
whenever V is finite.

3 Compactness Theorems

3.1 Weak Compactness
Theorem 11. Let k be an uncountable cardinal.

1. If L, . satisfies the Weak Compactness Theorem for Gy, then k is weakly
compact;

2. If K 1is weakly compact, then L, . satisfies the Weak Compactness Theorem
for Gy .

Proof. 1. We only need the seemingly weaker assumption that L, ., satisfies the
Weak Compactness Theorem. Assume L, ., contains a unary predicate symbol
P and a set of constant symbols {c,: @ < £}. To see that  is inaccessible, note
that if {ka: o < A} were a sequence of length A < x cofinal in &, then there
would be no k-reduction for (I', L), where I" is the set consisting of the sentences

- \/a<)\ \/L<,<;Cy P(cb)’

— =P(¢,) for ¢ < k.

Clearly S £ L for any proper subset S of I'—a model witnessing this is provided
by interpreting ¢, as ¢ and setting [P](¢) = 1 for each ¢ € {{ < k: =P(ce) € I'}
and [P](c) = 0 for all other ¢ (if it is in I', \V/, .\ V, . P(c,) is witnessed to be
true by any ¢ such that —=P(c,) & I'); while I" = L vacuously. Hence, k is regular.

If kK were not a strong limit, so that 2* > k for some A < k, then there would
be no k-reduction for (I, L) if I" is the set consisting of the formulae

= N\~ @P(ey), for f1 A -2, (8)
a<
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where =" has the obvious meaning. Indeed, if S is a proper subset of I, then
let g: A — 2 be such that the corresponding instance of (8) does not belong
to S. Interpret each ¢, as o and set [P](«) to be 0 or 1 according as g(«) equals
0 or 1. Then [-'*f(®P(¢,)] = 1 for each a < A if, and only if, f = g, and
[-1+/()P(c,)] = 0 for some a otherwise (negated formulae only take values 0
and 1 by (1)), so that (8) takes value 1 if, and only if, f # g; in particular,
[S] = 1. However, I = L vacuously as [I'] = 1 is impossible, for the function g
on \ defined by g(a) = [-—P(c,)] must be distinct from each f: A — 2. To see
this, notice that for any such f, we must have by (8) that [-!*/(®)P(c,)] = 0
for some «, but
[~ e e, = 1

for each o < A. To see this, notice that it follows by (2) we have:

I+ [=Plea)lp(e )] = [=P(ca)] if [P(ca)] =0,
: Plca)] {[[ﬁ—'P(ca)]} if [P(ca)] > 0.

The claim then follows by (1) and (2). Hence, & is inaccessible.

It remains to show k has the tree property. Let T be a tree of size k such that
each level has cardinality < . Denote by I(«) the ath level of T. We consider
the set of sentences I' consisting of

— 2(P(ca) AP(cp)), for every o and 3 that are T-incomparable, and
= Veei(a) Plce), for every .

For any subset S of I' of cardinality < k, there is a model witnessing S [~
L; namely, choose a large-enough downwards-closed fragment of T" as universe,
assign «a to the constant c, and have P take value 1 along a sufficiently-large
well-ordered set and 0 everywhere else. By the Weak Compactness Theorem,
there is also a model witnessing I" [~ L. For each T-incomparable a and [,

[=(P(ca) AP(cg))] =1
o either [P(cq)] = 0 or [P(cg)] = 0.

In particular, all points lying on the same level are incomparable, so that

[V Ple]=1

§€l(a)

implies that P must evaluate to 1 on one point in each level. The ordinals «
such that [P(c,)] = 1 determine a branch through 7. Therefore, T has the tree

property.

2. Let I" be a set of L, ,-formulae of cardinality x. Suppose x is a weakly
compact cardinal and S £ A for every S C I' of cardinality < x. We will assume
all symbols in L, ,, appear in I', so that there are only x-many L, ,-formulae,
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and construct a model (U, [-]) such that [B] = 1 for each B € I" and [4] < 1.
The assumption that all symbols in L, ,, appear in I" results in no loss of general-
ity, for any symbol not appearing in I" can be evaluated arbitrarily by the model
while preserving the conclusion. Fix some T = 7(L,, ), and some suitable (in
the sense of Sect. 2.1) enumeration F = F(Ly; ).

Let T be the subtree of V<" consisting of all ¢: v — V such that v < x and
there exists an F-coherent model (W, (-)) fulfilling the following three conditions:

1. (F,) = t(e) for all ¢ < ;
2. t() =1if F, € T
3. t(1) < 1if F, = A

By hypothesis and Proposition 6, there is one such t for each subset of I
of cardinality < k. Additionally, each level of T has size |V| and & has the tree
property, whereby there exists a branch B through 7. This branch assigns a
unique value in V to each formula in F. For each initial segment ¢ of B, there
exists a model agreeing with ¢ on all valuations.

Define a relation = to hold between two terms r,s € 7 whenever for each
atomic P(x), there exists ¢ < & such that P(r) and P(s) appear before F, in
F and are assigned the same value by the branch. We let the universe U of the
model to be equal to 7/ =. For each atomic formula F, € F, we set

[F.] = r if, and only if, t(¢) = r for some ¢ € B. (9)

This is well-defined, by the definition of =. In order to finish the proof, it
remains to check that Eq. (9) holds true for arbitrary formulae. If so, then we
will have a model where [I'] = 1 and [A] < 1. We will check that the following
properties hold:

. [B—=C]=[C] i [B] >[C], and [B — C] = 1 otherwise.
- [V, 5 B.] = sup{[B].: ¢ < d}.

- [Aics B.] = inf{[B],: ¢ < 6}.

. Vicsz, B(Z)] = inf{[B(@)]: w, € T for each + < d}.

. [Bicsz, B(Z)] = sup{[B(@)]: u, € T for each ¢ < §}.

Tk LW N~

Notice that B evaluates all validities to 1 and respects entailment: if ¢(:) = 1
and F, = Fg, then ¢(€) = 1. The following observation will be used repeatedly:
if t(t) =1 and F, = B — C, then [B] < [C]. This follows from the fact that
in every model where (B — C) = 1, we must have (B) < (C). This already
gives one half of property (1). Conversely, assume ¢(¢) < 1 and F, = B — C.
Let £ be large enough so that both B and C appear before F¢. In any model
agreeing with B up to &, necessarily (B — C) < 1, whence (B — C)) = (C) and
so [B — C] =[C].

For property (2), notice that Be — \/,_5 B, is valid and thus [\/,_ s B.] >
sup{[B].: ¢ < ¢}. Conversely, let t* be an ordinal such that all B, appear before
F,~. Since any model must evaluate \/, B, to the infimum of the values of the B,
and there exists a model agreeing with B up to ¢*, it follows that [\/, s B.] =
sup{[B].: ¢ < ¢}. Property (3) is proved analogously.
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We show (4): clearly [V,<sz, B(Z)] < [B(u)] for any sequence of terms o
in 7, as V,<sz, B(Z) — B(#) is valid. To see that equality holds, it suffices to
notice that, if F) is the first regular occurrence of V,«sx, B(Z), since there exists
an F-coherent model agreeing with B up to level t+w, then [F,] = lim;«,, [F, ]

As for property (5), we clearly have [3,<s5x, B(Z)] > [B(@)] for any sequence
of terms @. Suppose [D] > [B(@)] for any sequence of terms « and some
formula D. Then we have [B(@) — D] = 1 by property (1). This implies
[VZ(B(Z) — D)] = 1 by property (4), whereby also [3Z B(Z¥) — D] = 1, for

VZ#(B(Z) — D) = 3% B(Z) — D.

This yields [3Z B(Z)] < [D] as desired and finishes the proof. O

3.2 Strong Compactness
Theorem 12. Let k be a cardinal.

1. If L, , satisfies the Compactness Theorem for Gy, then k is strongly compact;
2. If K is strongly compact, then L, . satisfies the Compactness Theorem for

Gy.

Proof. 1. The classical proof goes through. As before, we only suppose for the
first claim that L, , satisfies the Compactness Theorem for Gy. Let F be a
k-complete filter on some set I. Assume L, contains a unary predicate S for
every subset S of I and a constant c. Let I" be the set of

— (extension) sentences S(c) for every S € F;

— all sentences true in the (classical) structure (I,{S}scr), in particular:
— (monotonicity) S(c) — 8'(c) for every S C S’ C I,

— (k-completeness) A\, _58.(c) — S(c), for 6 < x and S = J
— (maximality) S(c) V =8(c) for every S C I.

L<5

For every subset A of I' of cardinality < k, there is a model witnessing A }= L.
In fact, there is a model that takes only values 0 and 1 obtained by taking I
as universe and interpreting S as S for each predicate S appearing in A and ¢
as some element belonging to (gc 4 S, which exists by x-completeness. By the
Compactness Theorem, there is a model (U, [-], {S*}scr,c) witnessing I" }= L.
Define

S € F* if, and only if, [S(c)] = 1.

Clearly, F'* extends F, as S(c) € I for every S € F, whence [S(c)] = 1. Also,
F* is a k-complete filter: suppose S € F™*, so that [S(c)] = 1, and S" D S. Since
S(c) — 8'(c) € T, then [S(c) — 8'(¢)] = 1, which implies [S(c)] = [S'(¢)] = 1.

Suppose S, € F* for every ¢ < § and § < k. It follows that [S,(¢)] = 1 for
each ¢ < 6. Letting S =, 5., we have that A, _;8,(c) — S(c) € I', whence
[S(c)] = 1. Hence, F* is a x-complete filter. In fact, F* is an ultrafilter, for
S(c) V =S(c) € I', so that if S ¢ F*, then [S(¢)] < 1, and so the fact that
[S(c) vV =8(c)] = 1 implies that [-S(c)] = 1.
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2. Conversely, suppose that x is a strongly compact cardinal and that for
any S C I of cardinality I', we have S £ A, as witnessed by a model g =
(Us, []s)- Consider the ultraproduct & = (U, [-]) by a fine measure on P,I". By
Proposition 8 and the fact that £ > (2%)* (k is inaccessible), the ultraproduct
satisfies (5), i.e., for any formula p(x¢)e<s,

lelfle<s] = r if, and only if, {S € P.I": [¢(f(S))e<s] = r} has measure one.

Fineness of the measure implies that {¢} T={S € P.I": {¢} C S} has measure
one for any ¢ € I'. Moreover, [¢]s = 1 for any S € {¢} T, and so [¢] = 1.
Similarly, [A] < 1, because [A]s < 1 for all S € P.I". O

4 An Alternative Proof

(The proofs of) Theorems 11 and 12 are evidence that, sufficiently high up Can-
tor’s realm, the influence of logics’ size on their behavior becomes progressively
more prevalent, and, that of other traits, progressively less. An example of this
is the fact that, for Godel logics, the truth-value set V seems to play no role
whatsoever, in clear contrast to usual finitary first-order logics.

This should not be surprising. Indeed, large cardinalities allow us to diffuse
otherwise-characteristic properties of logics by means of codings. Herein, a key
ingredient is the regularity of the models Proposition 6 yields. This provides
us with alternative proofs of 11.2 and 12.2. These proofs are somewhat more
extensive than the ones provided originally, although they do have the clear
advantage that with little or no effort, they can be adapted into other contexts.
For definiteness, we focus on weak compactness in the following.

Another proof of 11.2 Suppose k is a weakly compact cardinal and S = A
for every S C I' of cardinality < k. As before, without loss of generality, we
assume all symbols in L, ,; appear in I'. Define a first-order infinitary language
L, . consisting of

— the same set of variables Var as L, .,

— the same set of function and constant symbols as L,; ,,

— a predicate PY (&) for every r € V whenever C(7) is a L, ,-formula,

— predicates S B(&,¢) and W B(F, ) whenever C(F) and B(y) are L .-
formulae.

Only k-many non-logical symbols appear in L, ,; thus, the set of L, .-
formulae has cardinality . Consequently, only x-many non-logical symbols
appear in L . We will interpret the infinitary Gy-logic over Ly , in classical
logic. The intended interpretation of P (%) is ‘C(%) has truth value r.” Simi-
larly, the intended interpretations of S (%, 7) and W B (&, i) are, respectively,
‘C(%) has a (strictly) smaller truth value than B(%).” Let F(Ly ) = {F,: ¢ < Kk}
be a suitable enumeration of all £,; ,.-formulae with distinguished set of variables
{Y6": &0 < ki <w}. If C = VecszeF(ve)ecs or C = Jecsze F(xe)e<s and F,
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is the first regular appearance of C' in F, we denote by Var(F, (x¢)e<s) the set
{yb': € < 6,i <w}.

We use the fact that if x is weakly compact, then £, , satisfies the Weak
Compactness Theorem for classical logic, as recalled in Sect. 1. Let X consist of
all sentences of one of the following forms:

1. V,cy PE(7), for each C(Z) € Ly ;

2. P TCE:Z"’) —PC (%), for each C(%F) € L, ,, and each r # s in V;

3. 89B(Z7) < V,ev Vievae (PY(z )/\PB( 7)), for each C(Z), B(j) €
L‘H,n;

4. WOB(Z,§) < V,ov Vievap (P(Z) A PE(Y)), for each C(&), B(¥) €
Ly

5. W/\,<sc Ce((Z,)1<s, Te) for each € < § < k and each C(Z) € Ly x;

6. PT/\L<a (G ies = Newo \/5<§ Vtevm[r,r+e] Pt ¢ (ge), for each sequence of for-
mulae C’L(?ﬁ) S [-"K,,K;
7. WOVics O (Fe, (4,),<5) for each € < § < w and each C(Z) € Ly, 4;

8. Py (G)e<s < Neso Vews Vievap—en P (e ), for each sequence of for-
mulae C,(9,) € Ly ;
9. WYEC.C (i) for each C(§) € Ly.n;
VZC (% = - SN
10. YD) o Moo Vicvarem Vievapasg PCE ), for each C(Z.7) €
ﬁn,nQ
11. W&3C () for each C(§) € Ly x;
3EC(F) | S o o
12. ,]CDT ( )<y) < NAeso \/ZGVar(C,f) \/tGVﬁ[Tfe,T] PE(Z,9), for each C(2,7) €
13. WOB(%,4) — PE—B (&, 7)), for every C(), B(ij) € L.
14. (SBC(&,§) A PB( 7)) — PC~B(Z, ), for every C(&), B(§) € Ly,
15. /\TGVﬁ[O 1) Pr )
16. PE(Z), for every B(¥) € I'.

The first two conditions above state that each formula has exactly one truth
value. Conditions 3 and 4 define the predicates S (&, ) and WB (&, 7).
Conditions 5-14 define how truth values should behave in nonatomic formu-
lae. Specifically, conditions 5-8 define conjunctions and disjunctions, conditions
9-12 define quantifiers, and conditions 13 and 14 define implication.

The restriction of the domain of the conjunction in conditions 10 and 12 is
necessary in order to avoid a conjunction of length x. The last two conditions
state that any formula in I" must have truth value 1 and A must not.

Let A be a subset of X' of cardinality < x and

AQ—{BE;&KN EA}

By hypothesis, there is a Gy-model witnessing Ag = A. The key point is that,
by Proposition 6, we can find an F-coherent model 20 = (U, [-]) witnessing
Ay = A. We define a (classical) model U for A with the same universe:

— For any function symbol f, we set

U= f(Z) =y if, and only if, [f](Z) = y. (10)
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— For any atomic formula C', we set
U = PC(a@) if, and only if, [C(@)] = - (11)

Any F € A of the form 1-16 is satisfied: one verifies by induction that (11)
holds for arbitrary formulae C(a@). For example, if F is of the form 10 or 12, then
M= F because 20 is F-coherent.

Hence, any subset of X of cardinality < x has a classical model, whereby the
Weak Compactness Theorem for classical logic yields a model of X, say, L. Let
U be the universe of this model. We define a Gy -model with universe U via (10)
and (11).

The classical model 4 satisfies sentences 1-16. Since it satisfies 1 and 2, each
formula is assigned exactly one truth value in the Gy -model. One verifies—once
more by induction—that (11) holds for arbitrary formulae C(@). For example,
suppose C' = VzF(x). Let r = [VaF(z)] and 7, = [F(u)], so that r = inf,c7 ry.
By induction hypothesis, { = Pi(“) for each u. By Egs. 1, 2, 4, and 9, 4
PY @) for some s < r. But necessarily s = r, for {ru: u € Var(C, )} converges
to r by 10. The other cases are treated similarly. Finally, the model witnesses
I' £ A by 15 and 16. O
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