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Abstract. We propose the Synthetic Counter-in-Tweak (SCT) mode,
which turns a tweakable block cipher into a nonce-based authenticated
encryption scheme (with associated data). The SCT mode combines in a
SIV-like manner a Wegman-Carter MAC inspired from PMAC for the
authentication part and a new counter-like mode for the encryption
part, with the unusual property that the counter is applied on the tweak
input of the underlying tweakable block cipher rather than on the plain-
text input. Unlike many previous authenticated encryption modes, SCT
enjoys provable security beyond the birthday bound (and even up to
roughly 2n tweakable block cipher calls, where n is the block length,
when the tweak length is sufficiently large) in the nonce-respecting sce-
nario where nonces are never repeated. In addition, SCT ensures secu-
rity up to the birthday bound even when nonces are reused, in the
strong nonce-misuse resistance sense (MRAE) of Rogaway and Shrimp-
ton (EUROCRYPT 2006). To the best of our knowledge, this is the first
authenticated encryption mode that provides at the same time close-to-
optimal security in the nonce-respecting scenario and birthday-bound
security for the nonce-misuse scenario. While two passes are necessary
to achieve MRAE-security, our mode enjoys a number of desirable fea-
tures: it is simple, parallelizable, it requires the encryption direction only,
it is particularly efficient for small messages compared to other nonce-
misuse resistant schemes (no precomputation is required) and it allows
incremental update of associated data.
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1 Introduction

Background on Authenticated Encryption. Confidentiality and authen-
ticity of data are the two main security properties that one must ensure when
communicating over an insecure channel. In the symmetric key setting, it has
long been known how to ensure both of them independently, e.g., starting from
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a secure block cipher, by using a suitable encryption mode for confidentiality [7]
and a block cipher-based MAC for authenticity [9]. However, how exactly to com-
bine both tools has long been left to the practitioners, leading to major security
breaches [3,18,37]. Sometimes, protocol designers even overlooked that authentic-
ity was a necessary requirement besides confidentiality, as exemplified by padding
oracle attacks [59]. Even when the combination of the encryption and the MAC
schemes is properly done, it might not be the most efficient solution, especially
when the two parts rely on two different primitives. For these reasons, interest has
shifted towards designing “integrated” Authenticated Encryption (AE) schemes
ensuring jointly authenticity and confidentiality of data, which are more efficient
and less likely to be incorrectly used. Besides, it has become standard for an AE
scheme to have the ability to handle so-called associated data (AD), which are
authenticated but not encrypted [51] (such a scheme was for a time called an
AEAD scheme, but since this feature is so important in practice, virtually all mod-
ern AE schemes provide it; we will only talk of AE in this paper, implicitly mean-
ing AEAD). Even though ad-hoc AE schemes were already used since a long time,
the formal treatment of these constructions only started around 2000 [10,11,36].
At about the same time, provably secure AE designs started to appear, such as
IAPM [34,35], XCBC [22], CCM [61], OCB [52,54], or GCM [43]. The CAESAR
competition [1] for authenticated encryption, started in 2014, recently put this
research topic in the limelight. Various AE schemes were proposed, from purely
ad-hoc designs to (tweakable) block cipher operating modes.

Nonce-Misuse Resistance. Since most symmetric-key primitives (in particu-
lar block ciphers) from which AE schemes are built are deterministic, a random
IV or a nonce (i.e., a value which must never be repeated for the same secret key)
is a necessary ingredient for achieving strong security goals. Failing to ensure the
corresponding requirement (high entropy for an IV, non-repetition for a nonce)
can have dramatic consequences for security. For example, reusing a nonce just
a single time for encrypting two messages in OCB completely breaks confiden-
tiality: an attacker can immediately detect repeated message blocks since the
corresponding ciphertext blocks will be equal. The non-repeating requirement
on the nonce can be challenging to fulfill in some contexts, for example when
encryption is implemented in a stateless device.1 It is likely (and it has happened
before) that some implementations will, e.g., simply generate nonces at random,
“hoping” that no collision will occur. For that reason, a recent trend in AE
has been to design schemes achieving nonce-misuse resistance, which informally
means that the impact on security of a nonce repetition should be as limited as
possible. This goal was first put forward by Rogaway and Shrimpton [55], who
formalized the notion of misuse-resistant AE (MRAE). For a scheme enjoying
this property, authenticity is not harmed by nonce repetitions, while confidential-
ity is only damaged insofar as the adversary can detect whether the same triple
of nonce, AD and message values is repeated. Example of schemes achieving this

1 Similarly, the high-entropy requirement on the IV is hard to meet when no good
randomness source is available.
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security notion are EAX [12], SIV [55], AEZ [26], or GCM-SIV [25]. Because the
MRAE notion cannot be achieved for an online scheme (since each bit of the
ciphertext must depend on every bit of the plaintext), Fleischmann et al. [21]
proposed a relaxation of the MRAE notion called online AE (OAE), which can
be achieved with a single pass on the input. Examples of schemes ensuring this
security property are McOE [21], COPA [5], or POET [2]. However, the interest
in the OAE notion has been recently reduced by some serious security concerns,
notably the so-called chosen-prefix/secret-suffix (CPSS) generic attack [27], that
shares some similarities with the BEAST attack [18].

Birthday and Beyond-Birthday Security. Another important shortcom-
ing of most AE operating modes is that they provide only birthday-bound secu-
rity with respect to the block length of the underlying primitive. Since virtually
all existing block ciphers have block length at most 128 bits (in particular the
current block cipher standard AES), this means that security is lost at 264 block
cipher calls at best, which is low given modern security requirements (for 64-bit
block ciphers, the situation is even more problematic). Moreover, this is rarely
a problem with the tightness of the security proof: attacks matching the bound
are often known. For example, Ferguson [19] described a simple collision-based
attack on OCB that breaks authenticity with 264 blocks of messages. Recently,
some AE schemes providing security beyond the birthday bound (BBB) were
proposed [28,29], but they usually come at an expensive performance price. One
could argue that using a double-block-length block cipher would provide the
expected security, but this solution comes with an important efficiency penalty
(as can be seen in generic double-block-length block cipher constructions) and
would be highly problematic for hardware implementations where internal state
size is a major contribution to the total area cost.

AE from Tweakable Block Ciphers. Compared with a conventional block
cipher, a tweakable block cipher (TBC) ˜E takes an additional input called a
tweak bringing inherent variability to the primitive (equivalently, a TBC can be
seen as a family of block ciphers indexed by the tweak). In the same paper that
formalized the corresponding security notion [41], it was pointed out that a TBC
was a very convenient starting point for building various schemes. In particular,
for AE schemes, two prominent examples are the sibling modes TAE [41] and
ΘCB [38] (the TBC-based generalization of OCB). They have “perfect” security
in the sense that, when used with an ideal TBC, the advantage of any adversary
is zero against confidentiality and close to 2−τ against authenticity, where τ is the
tag length. However, as already pointed out, a weakness of both TAE and ΘCB
(even when used with an ideal TBC) is that their security completely collapses as
soon as a nonce is repeated. As a matter of fact, existing AE schemes built from
an ideal TBC either ensure perfect security in the nonce-respecting scenario only
(like TAE or ΘCB), or fulfill the weak OAE notion only (e.g. COPA, once recast
to use an ideal TBC), or ensure MRAE-security but only up to the birthday
bound, even if nonces are not repeated (like AEZ). The PIV construction by
Shrimpton and Terashima [58] allows to construct a variable-input-length TBC
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with BBB-security, which in turn allows to construct (via the Encode-then-
Encipher method) an AEAD scheme with BBB-security against nonce-respecting
adversaries and birthday-bound security against nonce-misusing ones. However,
PIV requires as a building block a fixed-input-length TBC with variable tweak
length (comparable to the maximal input length of the PIV construction), which
in turn requires to appeal to universal hash functions with key length comparable
to the maximal tweak length. Hence, the resulting AEAD scheme must use
very large keys to ensure BBB-security for large messages. As of today, there is
no AEAD scheme based on a fixed-tweak-length TBC that ensures both BBB-
security in the nonce-respecting scenario and (at least) birthday-bound security
in the nonce-misuse scenario. Yet this seems a very desirable goal since such a
scheme would at the same time yield very high (BBB) security guarantees in
the nominal, nonce-respecting use case and retain acceptable (birthday-bound)
security when inadvertently misused.

Our Contributions. In this paper, we propose the SCT (Synthetic Counter-
in-Tweak) nonce-based AE mode for tweakable block ciphers and prove that
it ensures BBB-security in the nonce-respecting scenario, and birthday-bound
security in the nonce-misuse scenario (in the strong MRAE sense [55]). More
precisely, for the nonce-respecting case, when using a ideal TBC with block
length n and “effective” tweak length2 w, SCT is secure up to roughly 2n TBC
calls when w ≥ n, and up to roughly 2(n+w)/2 TBC calls when w ≤ n, which
is always larger than 2n/2. The SCT mode requires two passes (as is inevitable
for MRAE-security), but it is simple, parallelizable, it requires the encryption
direction only, it is particularly efficient for small messages compared to other
nonce-misuse resistant schemes (no precomputation is required) and it allows
incremental update of associated data.

With respect to how authentication and encryption are combined, our design
draws inspiration from the SIV generic composition method [55]: the nonce N ,
the associated data A, and the message M are first input to a keyed function FK ,
yielding an pseudorandom initial value IV , which will serve as authentication
tag. The message is then encrypted, using the generated IV and the nonce N
(see Fig. 4). This “recycling” of the nonce in the encryption part of the mode
is what makes our high-level construction (called NSIV) crucially different from
SIV and allows to reach BBB-security in the nonce-respecting case.3

It remains to instantiate the two components of the NSIV construction, the
keyed function FK and the encryption scheme. Since we aim at BBB-security
in the nonce-respecting case, a natural starting point for FK is the Wegman-
Carter paradigm [14,56,60]. Hence, we propose a nonce-based MAC mode called
PWC (Parallel Wegman-Carter) which combines a xor-universal hash function
inspired from PMAC [13,52] applied to the AD and the message, and a simple

2 The SCT mode uses 5 tweak prefixes to separate the different usages of the TBC.
The “effective” tweak length is what remains once 3 bits have been used to encode
the prefix.

3 While SIV corresponds to generic composition method A4 in the nomenclature of
Namprempre et al. [46], NSIV does not fit any of the NRS schemes.
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pseudorandom function applied to the nonce. In order to achieve nonce-misuse
resistance (which in general Wegman-Carter MACs do not provide), we add an
additional encryption layer, which results in the EPWC (Encrypted PWC ) mode.

The real challenge lies in designing an encryption scheme which is BBB-secure
in the nonce-respecting case. Since on one hand it seems hard to leverage on the
non-repeating property of the nonce without actually giving the nonce as input
to the encryption mode, and on the other hand we need to make use in some
way of the pseudorandom IV computed from FK ,4 it appears that what we need
to design is actually a combined nonce- and IV-based encryption scheme (nivE
scheme for short). To the best of our knowledge, this notion has never appeared
before, and we introduce it in this paper. The encryption mode that we propose,
called CTRT (CounTeR in Tweak), is a counter-like mode with the unusual
property that the counter is applied on the tweak input of the underlying TBC
rather than on the plaintext input, where the nonce comes in. The combination
of EPWC and CTRT through the NSIV construction (the IV generated by EPWC
being used as initial counter in CTRT) yields the SCT mode, illustrated in Fig. 1.

For completeness, we also describe in the full version of this paper [50] the
CTPWC (CTRT-then-PWC) mode, an online nonce-based AE scheme which com-
bines in an “encrypt-then-MAC” manner a slight variant of the CTRT encryption
mode and the PWC authentication mode. The security guarantees provided by
CTPWC are similar to those of ΘCB, but it is roughly twice less efficient, so that
we do not claim that it is of particularly high interest. One small advantage that
we see for this mode compared with ΘCB is that the nonce length can be as
large as the block length of the underlying TBC, whereas for ΘCB the sum of
the nonce length and of the maximal length of encrypted messages must be less
than the tweak length of the underlying tweakable block cipher, which might be
restrictive in some settings (e.g., for KIASU-BC [32]). It might also escape the
patent issues which hindered the adoption of OCB.

Instantiating the TBC. As just discussed, our new AE modes offer
BBB-security (in the nonce-respecting case) when used with an ideal TBC. If
one aims at leveraging this security level in the real world, one must instanti-
ate the TBC with care. Most existing TBCs are built from conventional block
ciphers in a generic way, the prominent example being the XE/XEX construc-
tion [52] which only ensures security up to the birthday bound. Hence, using
XE/XEX in our schemes would in a sense waste their nice security promises.5

To remedy this problem, one can use either generic TBC constructions with
BBB-security [39,40,44,45] (but they are often inefficient or provably secure in
the ideal cipher model only), or ad-hoc TBC designs without known weaknesses.
The second option was chosen for a number of CAESAR candidates [24,30–32].
In fact, the SCT mode was explicitly designed as a replacement to the COPA
mode used in versions 1.1 and 1.2 of CAESAR candidates Deoxys [30] (128-bit

4 This excludes for example a simple OCB-like encryption mode since it is only nonce-
based, not IV-based.

5 Similarly, the only reason why OCB is secure up to the birthday bound whereas ΘCB
is “perfectly” secure is because it relies on XE/XEX for instantiating the TBC.
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Fig. 1. The SCT mode, using a TBC ˜E with tweak space {1, . . . , 5} × T and domain

X = {0, 1}n. For each call to ˜EK , the tweak enters left while the plaintext enters on

top. We denote ˜Ei
K(T, X) for ˜EK((i, T ), X) and ˜E

i/j
K means that prefix i is used when

the input block is complete and unpadded, whereas j is used when the input block
is incomplete and padded. Function Inc is a cyclic permutation of T , and Conv is a
regular function from X to T (e.g., truncation when X = {0, 1}n and T = {0, 1}w,
w ≤ n).
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blocks, 128-bit tweaks) and Joltik [31] (64-bit blocks, 64-bit tweaks).6 We refer
to the submission documents of these two candidates for a detailed report on
implementation results, which are quite competitive. Other potential candidates
for instantiating the SCT mode are Scream [24] and Threefish, the TBC on which
the hash function Skein [20] is based. There is currently a shift towards designing
dedicated TBCs achieving higher security and efficiency than generic BC-based
constructions, and we hope to see more and more TBC proposals that could be
used with SCT.

Open Problems and Future Work. The CTRT encryption scheme has the
notable feature that its security degrades gracefully with the maximal number
of repetitions of nonces: when the nonce repetitions are limited, security remains
close to the security bound in the nonce-respecting case. In contrast, the secu-
rity of the EPWC authentication mode (and more generally of any encrypted
Wegman-Carter MAC) falls back to birthday bound as soon as the adversary
can repeat one single nonce twice (see Remark 2 in Sect. 5). It remains a pending
question to modify EPWC so that it provides graceful security degradation with
the maximal number of nonce repetitions as well. This would make the result-
ing AE scheme a good candidate for high security in both nonce-respecting
and nonce-misuse models for most practical scenarios. Another challenging open
problem would be to construct an AE scheme which remains BBB-secure even
when nonces are arbitrarily repeated. The main difficulty is to build a determin-
istic, stateless, BBB-secure MAC, which is known to be notably hard [17,62].
Another possible direction for future work would be to design a mode similar
to SCT using only one pass and achieving online nonce-misuse resistance in the
OAE sense [21]. Such a feature would allow users to smoothly choose the best
security achievable, depending on whether two passes can be tolerated or not
by the application. Finally, it would be interesting to analyze how to strengthen
SCT against other misuse scenarios such as release of unverified plaintext [4],
and to study how its security is affected by tag truncation [26].

Organization. In Sect. 2 we provide a high-level description of the various pos-
sibilities that we considered for constructing a BBB-secure nivE scheme. After
introducing the notation and standard security notions in Sect. 3, we describe the
CTRT encryption scheme and prove its security in Sect. 4, while we describe the
PWC and EPWC nonce-based MAC schemes and prove their security in Sect. 5.
Finally, we explain how to combine CTRT and EPWC using the NSIV construc-
tion to build the nonce-based AE mode SCT and prove its security in Sect. 6.

2 Counter-in-Tweak for Beyond-Birthday Security

As motivated in introduction, our goal is to design a simple TBC-based AE
scheme that provides BBB-security in the nonce-respecting setting and (at least)
6 The tweak prefixes used in this paper were chosen for ease of exposition and are

slightly different from the ones used in Deoxys and Joltik v1.3, which were chosen
mainly for efficiency reasons.
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birthday-bound MRAE-security. As already mentioned, an encrypted Wegman-
Carter MAC solves the problem for the authentication part, so that we focus here
on encryption. Hence, our problem is as follows: given a nonce and a synthetic
IV generated pseudorandomly from the nonce, the AD and the message, how
do we use them to encrypt the message with BBB-security? We give a quick
overview of the various constructions that we considered and why, except the
CTRT encryption mode we propose, they fail or are unsatisfactory.

A natural direction to explore is to start from a scheme providing
BBB-security for non-repeating nonces, such as TAE [41] or ΘCB [38], which
are similar with regard to encryption: it simply consists in a “tweakable” code-
book mode, the tweak holding the nonce and a message block counter. This is
obviously not nonce-misuse resistant: repeating the nonce a single time will lead
to a complete break of confidentiality since a constant message block leads to
a constant ciphertext block. One could incorporate the IV by simply concate-
nating it to the nonce and the counter to form the tweak. However, this would
require a TBC with larger tweak, which is usually very costly to achieve.7 Rather
than concatenating the nonce and the IV, one could try to combine them into
a single shorter string S, but this would presumably result in birthday security
even in the nonce-respecting scenario (since a collision on S would directly break
confidentiality). Hence, a codebook encryption mode does not seem to be a very
convenient starting point.

For this reason, we preferred to consider a counter mode (note that this was
the encryption mode favored by Rogaway and Shrimpton to instantiate the SIV
composition method [55]). The question now is: how do we feed the nonce, the
IV, and the i-th counter to the TBC in order to create the mask that will be
xored to the i-th message block? We considered several possibilities (we do not
claim this to be exhaustive):

(a) One can put the nonce in the tweak input, and the sum of the IV and
the counter in the plaintext input. The problem is that confidentiality caps
at birthday bound even in the nonce-respecting scenario: the adversary can
query the encryption of a single message with 2n/2 equal blocks, and observe
that no collision occurs in the corresponding ciphertext blocks (since the
nonce is fixed and all TBC calls use the same tweak), which will distin-
guish the ciphertext from a random string (for which a collision would be
expected).

(b) One can concatenate the nonce and the counter in the tweak input, and use
the IV for the plaintext input. Since the tweak is different for each message
block position, this solves the issue of the previous solution. We conjecture
that this mode meets our security objectives, but an important drawback is
that a larger tweak length is required and, as mentioned before, this is very
costly.

7 For example, for TBCs following the TWEAKEY approach [30,31,33], there is a
large gap in the number of rounds needed to make the TBC secure as the tweak
length increases.



Counter-in-Tweak: Authenticated Encryption Modes 41

(c) One can put the sum of the nonce and the counter in the tweak input
(instead of concatenating them) and the IV in the plaintext input. This mode
might meet our security objectives, however the adversary can very easily
provoke collisions on tweak inputs even in the nonce-respecting scenario,
which might complicate the proof of BBB-security. Another drawback is
that in the nonce-misuse scenario, a collision on the IV immediately breaks
confidentiality, which dashes any hope for BBB nonce-misuse resistance.
Note that one could imagine variants where the nonce and the IV are first
encrypted before being used, but it is not clear if this would prevent the
issues just mentioned and this would presumably make the security proof
quite complex.

(d) Finally, one can put the sum of the IV and the counter in the tweak input
and the nonce in the plaintext input, which is exactly the CTRT mode. We
will prove in Sect. 4 that it meets our security goal. The first idea is that
the counter in the tweak input ensures that all the calls to the internal
TBC will use different tweaks for one single message query, so that the
ciphertext looks uniformly random in that case. Thus, the adversary has
to query several messages with different nonce values and hope that many
collisions will occur between tweak inputs in order to observe a divergence
from uniformity in the ciphertexts. However, these collisions are hard to
control since they depend on the pseudorandom IV (in contrast with other
modes discussed above, where the tweak input can be easily controlled by
the adversary). We will show in Sect. 4, using a “balls-into-bins” analysis,
that the number of tweak collisions remains small, so that the distribution
of the ciphertexts remains close to uniform. Moreover, the nonce-misuse
scenario helps the adversary only if it can repeat the same nonce a very
high number of times until a collision happens on the tweaks, so that the
security of the CTRT mode degrades gracefully with the maximal number
of nonce repetitions.

3 Preliminaries

Notation. Given a string X ∈ {0, 1}∗, |X| denotes its length. If X and Y
are respectively n-bit and m-bit strings, n < m, then X ⊕ Y denotes the n-bit
string obtained by xoring X with the n leftmost bits of Y . Given some implicit
length n and a bit-string X of length 1 ≤ |X| < n, we denote X10∗ the string
obtained by appending a single 1 and (n − |X| − 1) 0’s to X. Given two sets X
and Y, the set of all functions from X to Y is denoted Func(X ,Y). A function
F ∈ Func(X ,Y) is said regular if all Y ∈ Y have the same number of preimages
by F (this obviously requires |X | to be a multiple of |Y|).

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
K, tweak space T , and domain X is a mapping ˜E : K × T × X → X such that
for any key K ∈ K and any tweak T ∈ T , X �→ ˜E(K,T,X) is a permutation
of X . We often write ˜EK(T,X) or ˜ET

K(X) in place of ˜E(K,T,X). We denote
TBC(K, T ,X ) the set of all tweakable block ciphers with key space K, tweak
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space T , and domain X . A tweakable permutation with tweak space T and
domain X is a mapping ˜P : T × X → X such that for any tweak T ∈ T ,
X �→ ˜P (T,X) is a permutation of X . We often write ˜PT (X) in place of ˜P (T,X).
We denote TP(T ,X ) the set of all tweakable permutations with tweak space T
and domain X . The security of a TBC is defined as follows.

Definition 1 (TPRP Security). Let ˜E ∈ TBC(K, T ,X ) and A be an adversary
with oracle access to a tweakable permutation with tweak space T and domain X .
The advantage of A in breaking the TPRP-security of ˜E is defined as

AdvTPRP
˜E

(A) =
∣

∣

∣Pr
[

K ←$ K : A
˜EK = 1

]

− Pr
[

˜P ←$ TP(T ,X ) : A
˜P = 1

]∣

∣

∣ .

Note that we do not need the strongest “two-sided” version of TPRP-security
(where the adversary also has access to a decryption oracle) since all construc-
tions considered in this paper only use the forward (encryption) direction of the
underlying TBC.

Tweak Separation. Let ˜E be a TBC with tweak space of the form T ′ = I ×T
for some subset I ⊂ N and some set T . We call T the effective tweak space of ˜E.
Then, for i ∈ I, we denote ˜Ei the tweakable block cipher with the same key and
message spaces as ˜E and tweak space T defined by

˜Ei(K,T,X) = ˜E(K, (i, T ),X).

By the same convention as before, we write ˜Ei
K(T,X) or ˜Ei,T

K (X) for
˜Ei(K,T,X). Clearly, when ˜E is an ideal TBC drawn uniformly at random from
TBC(K, T ′,M), then each ˜Ei is an independent ideal TBC drawn uniformly at
random from TBC(K, T ,M). Given a bit-string X of length 1 ≤ |X| ≤ n, we
compactly write

˜Ei/j(K,T,X(10∗)), ˜E
i/j
K (T,X(10∗)), or ˜E

i/j,T
K (X(10∗))

to mean ˜Ei(K,T,X) when |X| = n and ˜Ej(K,T,X10∗) when |X| < n.

Standard Security Notions. We give the security definitions of a nonce-
based PRF, a nonce-based MAC, and a nonce-based Authenticated Encryption
scheme. All these are standard, except maybe the nonce-based PRF notion which
is a straightforward adaptation of the classical definition of a PRF to the nonce-
based setting. Our definition of the security of a MAC is indistinguishability-
based (which will be more convenient later), but it is easy to see that it is
equivalent to the more conventional unforgeability-based definition. In the fol-
lowing, a nonce-based keyed function is a function F : K × N × D → Y, where
K is the key space, N the nonce space, D the domain and Y the range.

Definition 2 (Nonce-Based PRF). Let F : K×N ×D → Y be a nonce-based
keyed function, and let us write FK(N,D) for F (K,N,D). Let A be an adversary
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with oracle access to a function from N × D to Y. The advantage of A against
the PRF-security of F is defined as

AdvPRF
F (A) =

∣

∣

∣ Pr
[

K ←$ K : AFK = 1
]

− Pr
[

R ←$ Func(N × D,Y) : AR = 1
]

∣

∣

∣.

The adversary is said nonce-respecting if it never repeats a nonce N ∈ N in its
oracle queries. In that case, we denote its advantage AdvnPRF

F (A).

Definition 3 (Nonce-Based MAC). Let F be as in Definition 2. Let B be an
adversary with oracle access to two oracles, the first oracle being a function from
N × D to Y, the second oracle with inputs in N × D × Y and outputs in {1,⊥}.
The advantage of B against the MAC-security of F is defined as

AdvMAC
F (B) =

∣

∣Pr
[

K ←$ K : BFK ,VerK = 1
]

− Pr
[

K ←$ K : BFK ,Rej = 1
]∣

∣ ,

where VerK is an oracle which takes as input a triple (N,D, tag) ∈ N ×D×Y and
returns 1 if FK(N,D) = tag, and ⊥ otherwise, and Rej is an oracle which always
returns ⊥. The adversary is not allowed to ask a verification query (N,D, tag)
if a previous query (N,D) to FK returned tag. The adversary is said nonce-
respecting if it never repeats a nonce N ∈ N in its queries to the first oracle FK .
In that case, we denote its advantage AdvnMAC

F (B).

Note that in the general case where the adversary is allowed to repeat nonces,
F can be seen as a standard (i.e., not nonce-based) keyed function with domain
N ×D, in which case one recovers the standard definitions of a PRF and a MAC
(hence our notation of the advantage when the adversary is unrestricted w.r.t.
nonces). While it is a well-known fact that if F is a secure PRF, then it is a
secure MAC [9,23], we stress that this is not true for the nonce-based variants
of the two notions, which are in fact incomparable.8

We then give the definition of a nonce-based Authenticated Encryption
(nAE) scheme (with associated data), for which we first recall the syntax.
Let K, N , A, and M be non-empty sets. A nAE scheme is a tuple Π =
(K,N ,A,M,Enc,Dec), where Enc and Dec are deterministic algorithms. The
encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N , associ-
ated data A ∈ A, and a message M ∈ M, and outputs a binary string C ∈ {0, 1}∗

(we assume that Enc returns ⊥ if one of the inputs is not in the intended set). The
decryption algorithm Dec takes as input a key K ∈ K, a nonce N ∈ N , associated
data A ∈ A, and a binary string C ∈ {0, 1}∗, and outputs either a message M ∈
M, or a special symbol ⊥. We require that Dec(K,N,A,Enc(K,N,A,M)) = M
for all tuples (K,N,A,M) ∈ K × N × A × M. We write EncK(N,A,M) for
Enc(K,N,A,M) and DecK(N,A,C) for Dec(K,N,A,C).
8 E.g., an nPRF-secure function F might depend only on the nonce, in which case

it is trivial to forge and break nMAC-security, while an nMAC-secure function F
might have all its outputs starting with a 0 bit, which allows to trivially break
nPRF-security.
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Definition 4 (Nonce-Based AE). Let Π = (K,N ,A,M,Enc,Dec) be a nAE
scheme. The advantage of an adversary A in breaking Π is defined as

AdvAE
Π (A) =

∣

∣

∣ Pr
[

K ←$ K : AΠ.EncK(·,·,·), Π.DecK(·,·,·) = 1
]

− Pr
[

ARand(·,·,·),Rej(·,·,·) = 1
] ∣

∣

∣,

where Rand is an oracle which on input (N,A,M) ∈ N × A × M outputs a
random9 string of length |Π.EncK(N,A,M)| and Rej is an oracle which always
outputs ⊥. The adversary is not allowed to make a decryption query (N,A,C) if
a previous encryption query (N,A,M) returned C. The adversary is said nonce-
respecting if it never repeats a nonce N ∈ N in its encryption queries, in which
case we denote its advantage AdvnAE

Π (A).

Note that in the general case where the adversary is allowed to repeat nonces,
Π can be seen as a deterministic AE scheme [55] with header space (in the terms
of [55]) N × A, so that one exactly recovers the definition of the MRAE notion
of Rogaway and Shrimpton [55] (which we simply abbreviate to AE here).

Adversary Characteristics. In all the paper, given some implicit parameter
n, a (q,m, �, σ, t)-adversary against a nonce-based scheme is an adversary:

– which makes at most q oracle queries; when the adversary has access to two
oracles (i.e., when attacking the MAC-security of a keyed function or a nAE
scheme), this means q queries in total to both oracles;

– which uses any nonce at most m times throughout its queries (m = 1 for a
nonce-respecting adversary); when the adversary has access to two oracles,
this only applies to queries to its first oracle (MAC or encryption oracle);

– such that the length of any of its queries (nonce excluded) is at most � blocks
of n bits; for a keyed function with domain D = A × M or a nAE scheme,
this means that both the AD length and the message length of any query is at
most � blocks of n bits;

– such that the total length of all its queries (nonce excluded) is at most σ blocks
of n bits; for a keyed function with domain D = A × M or a nAE scheme,
this means the sum of the AD and the message length over all queries;

– which runs in time at most t.

4 The CTRT Encryption Mode

4.1 Syntax and Security of nivE Schemes

Most existing encryption schemes are either nonce-based [53] or IV-based [7],
i.e., they employ an externally provided value which either should not repeat
(nonce), or should be selected uniformly at random (IV). (See also [46]).

9 We assume that Rand returns the same output if a query is repeated.
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Here, we introduce the notion of combined nonce- and IV-based encryption
scheme (nivE for short).

Syntactically, a nivE scheme is a tuple Π = (K,N , IV ,M,Enc,Dec) where K,
N , IV and M are non-empty sets and Enc and Dec are deterministic algorithms.
The encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N ,
an initial value IV ∈ IV, and a message M ∈ M, and outputs a binary string
C ∈ {0, 1}∗ (we assume that Enc returns ⊥ if one of the inputs is not in the
intended set). The decryption algorithm Dec takes as input a key K ∈ K, a
nonce N ∈ N , an initial value IV ∈ IV, and a binary string C ∈ {0, 1}∗, and
outputs either a message M ∈ M, or a special symbol ⊥. We require that

Dec(K,N, IV,Enc(K,N, IV,M)) = M

for all tuples (K,N, IV,M) ∈ K × N × IV × M.
We denote Enc$ the probabilistic algorithm which takes as input (K,N,M) ∈

K×N ×M, internally generates a uniformly random IV ←$ IV, computes C =
Enc(K,N, IV,M), and outputs (IV,C) ∈ IV×{0, 1}∗. We write EncK(N, IV,M)
for Enc(K,N, IV,M) and Enc$K(N,M) for Enc$(K,N,M). The security of a nivE
scheme is defined as follows.

Definition 5 (Security of a nivE Scheme). Let Π = (K,N , IV ,M,Enc,
Dec) be a nivE scheme. The advantage of an adversary A in breaking Π is defined
as

AdvivE
Π (A) =

∣

∣

∣Pr
[

K ←$ K : AΠ.Enc$K(·,·) = 1
]

− Pr
[

ARand(·,·) = 1
]∣

∣

∣ ,

where Rand is an oracle which on input (N,M) ∈ N × M outputs a random
string of length |Π.Enc$K(N,M)|. The adversary is said nonce-respecting if it
never repeats a nonce N ∈ N in its oracle queries, in which case we denote its
advantage AdvnivE

Π (A).

Note that when the adversary is allowed to repeat nonces, Π can be seen as
a family of purely IV-based encryption (ivE) schemes [46] indexed by the nonce
space N , hence our notation of the advantage in that case.

4.2 Definition and Analysis of the CTRT Mode

We now define the CTRT (CounTeR in Tweak) mode, turning a tweakable
block cipher into a nivE scheme. Let K and T be non-empty sets, and let
˜E ∈ TBC(K, T ′,X ) be a tweakable block cipher with key space K, tweak space10

T ′ = {1} × T , and domain X = {0, 1}n. Let Inc be a cyclic permutation of T .
We construct from ˜E a nivE scheme CTRT[ ˜E] with key space K, nonce space
N = X = {0, 1}n, IV space IV = T , and message space M = {0, 1}∗ as defined
in Fig. 2 and illustrated on bottom of Fig. 1.
10 The CTRT mode does not need tweak separation per se. We use a single 1 prefix in

order to conveniently combine CTRT with EPWC later.
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Fig. 2. Definition of the CTRT mode, using a TBC ˜E ∈ TBC(K, T ′, X ) with T ′ =
{1} × T and X = {0, 1}n.

The security of CTRT is captured by Theorem 1 below. Logarithms are in
base 2 and tCTRT(σ) is an upper bound on the time needed for computing
CTRT[ ˜E].EncK on inputs of total message length at most σ blocks of n bits
when calls to ˜EK cost unit time.

Theorem 1 (Security of CTRT). Let ˜E ∈ TBC(K, T ′,X ) with X = {0, 1}n,
T ′ = {1} × T , and |T | ≥ 8. Let A be a (q,m, �, σ, t)-adversary against CTRT[ ˜E]
with � ≤ |T |. Then there exists an adversary A′ against the TPRP-security of
˜E, making at most σ oracle queries and running in time at most t + tCTRT(σ),
such that

AdvivE
CTRT[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
2(m − 1)σ + 1

|T | + f(σ),

where

f(σ) =
2σ log2 σ

|X | when 8 ≤ σ ≤ |T |,

=
2σ2 log2 |T |

|X ||T | when σ ≥ |T |.

In particular, if A is nonce-respecting (m = 1), one has

AdvnivE
CTRT[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
1

|T | + f(σ).

Before proceeding to the proof, we comment the security bound of this
theorem. Consider first the case of a nonce-respecting adversary A. Assuming
|T | ≥ |X |, then A must makes queries of total message length σ blocks of n
bits with σ close to |X | = 2n (neglecting logarithmic factors) before being able
to distinguish the outputs of CTRT[ ˜E] from random.11 On the other hand, if
11 Note that in that case the size of the tweak space T only impacts the maximal

message length �, not the security bound.
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|T | = 2w < |X |, then CTRT[ ˜E] is secure up to roughly 2(n+w)/2 TBC calls
(again, neglecting logarithmic factors), which is always larger than 2n/2. In par-
ticular, if w = n/2 (as e.g. for KIASU-BC [32]), then security is ensured up to
roughly 23n/4 TBC calls. In the nonce-misuse scenario, note that the additional
term 2(m − 1)σ/|T | remains small as long as nonces are not repeated too many
times (e.g. m ≤ 100) and σ � |T |, and turns into a birthday-like term only in
the extreme case where a few nonces are repeated close to σ times. This means
that a few nonce repetitions will not hurt and that nonces must be “seriously”
mishandled before security goes down to birthday bound.

Proof of Theorem 1. Fix a (q′,m, |T |, σ, t)-adversary A against CTRT[ ˜E] (we
denote q′ the maximal number of adversarial queries and will later use q for
the actual number of queries in a specific attack). The first part of the proof
is standard, and consists in introducing an intermediate game where all calls
to ˜EK in the CTRT construction are replaced by calls to a random tweakable
permutation ˜P . Consider the following adversary A′ against the TPRP-security
of ˜E. Let G ∈ { ˜EK , ˜P} be the oracle to which A′ has access. Adversary A′ runs
A, answers its encryption queries (N,M) by drawing a random IV and executing
the code in Fig. 2 on input (N, IV,M), replacing calls to ˜EK by oracle calls to
G, and finally outputs the same bit as A. Clearly, A′ makes at most σ oracle
queries and runs in time at most t + tCTRT(σ). Moreover, it is easy to see that

AdvivE
CTRT[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) + δ, (1)

where

δ =
∣

∣

∣Pr
[

˜P ←$ TP(T ,X ) : ACTRT[ ˜P ].Enc$ = 1
]

− Pr
[

ARand = 1
]

∣

∣

∣ (2)

and CTRT[ ˜P ] is a slight abuse of notation for the CTRT construction based on
an arbitrary tweakable permutation ˜P .

Upper bounding δ is now a purely information-theoretic problem, so that we
allow A to be computationally unbounded, and hence, wlog, deterministic. The
adversary is now trying to distinguish between CTRT[ ˜P ] for a random ˜P (there-
after called the “real world”) and Rand (thereafter called the “ideal world”).
We assume wlog that A always makes queries of length a multiple of the block
length n, and of total length σ blocks (if not, we pad all queries whose final
block is incomplete with zeros for free, which can only increase the adversary’s
advantage).

Following the H-coefficients method [15,48], we summarize the interaction of
A with its oracle in the so-called transcript of the attack

τ = ((N1,M1, IV1, C1), . . . , (Nq,Mq, IVq, Cq)),

where (Ni,Mi) denotes the i-th query of the attacker and (IVi, Ci) the corre-
sponding answer of the oracle. Furthermore, we denote Mi = Mi,1‖ · · · ‖Mi,�i ,
Ci = Ci,1‖ · · · ‖Ci,�i , where �i is the number of blocks of the i-th message, and
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IVi,j = Incj−1(IVi) the j-th counter for the i-th message, j = 1, . . . , �i. Let Θre,
resp. Θid, denote the distribution of the transcript in the real world, resp. ideal
world. We say that a transcript τ is A-attainable (or simply attainable) if the
probability to obtain τ in the ideal world is non-zero. Note that the number of
queries q and the lengths of the queries �1, . . . , �q are themselves random vari-
ables (they can vary for distinct A-attainable transcripts), yet by the assumption
that the attacker always asks the maximal number of allowed blocks throughout
its queries, one always has

∑q
i=1 �i = σ.

From τ we define for each possible tweak T ∈ T the “load” of the tweak as

L(T ) = |{(i, j) : IVi,j = T}|.

In words, L(T ) is the number of times the tweak T appears as a counter when
encrypting the queries of the adversary. Clearly, one has

∑

T∈T
L(T ) = σ. (3)

The proof relies on the fundamental lemma of the H-coefficients technique
(see e.g. [15] for the proof).

Lemma 1. Assume that the set of A-attainable transcripts is partitioned into
two disjoint sets GoodT and BadT, and that there exists ε1 and ε2 such that for
any τ ∈ GoodT, one has

Pr [Θre = τ ]
Pr [Θid = τ ]

≥ 1 − ε1,

and Pr [Θid ∈ BadT] ≤ ε2. Then δ ≤ ε1 + ε2, with δ as defined by (2).

We say that an attainable transcript τ is bad if one of the two following
conditions are met:

(C-1) there exists (i, j) 
= (i′, j′) such that IVi,j = IVi′,j′ and Ni = Ni′ ;
(C-2) there exists (i, j) 
= (i′, j′) such that IVi,j = IVi′,j′ , Ni 
= Ni′ , and Mi,j ⊕

Ci,j = Mi′,j′ ⊕ Ci′,j′ .

Note that condition (C-1) can only be satisfied for a nonce-misuse adversary,
since (by the assumption that the length of each query is at most |T | blocks of
n bits so that counters do not loop) IVi,j = IVi′,j′ requires i 
= i′, which implies
that Ni 
= Ni′ for a nonce-respecting adversary. Note also that the condition (C-
2) can only be satisfied in the ideal world. Indeed, in the real world, Mi,j ⊕Ci,j =
˜P (IVi,j , Ni) and Mi′,j′ ⊕ Ci′,j′ = ˜P (IVi′,j′ , Ni′), so that if IVi,j = IVi′,j′ and
Ni 
= Ni′ one necessarily has Mi,j ⊕ Ci,j 
= Mi′,j′ ⊕ Ci′,j′ .

We let BadT be the set of bad transcripts, and GoodT be the set of attain-
able transcripts which are not bad, henceforth called good transcripts. We first
consider good transcripts.
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Lemma 2. Let τ ∈ GoodT be a good transcript. Then

Pr[Θre = τ ]
Pr[Θid = τ ]

≥ 1.

Proof. Note that a good transcript has the property that for each (i, j) 
= (i′, j′)
such that IVi,j = IVi′,j′ , one has Ni 
= N ′

i and Mi,j ⊕ Ci,j 
= Mi′,j′ ⊕ Ci′,j′ . In
other words, the transcript encodes a partial tweakable permutation, where for
each tweak T ∈ T there are exactly L(T ) distinct values Ni mapped to some
value Mi,j ⊕ Ci,j . The probability to obtain a good transcript τ in the ideal and
real worlds can now be easily computed. In the ideal world, since the IVi’s and
the Ci’s are uniformly random, one has

Pr[Θid = τ ] =
1

|IV|q · |X |σ .

In the real world, the IVi’s are random as well, but now the probability to obtain
the Ci’s can easily be seen to be the probability that the random tweakable
permutation ˜P is compatible with the partial tweakable permutation encoded
by τ [15]. Hence, one has

Pr[Θre = τ ] =
1

|IV|q ·
∏

T∈T

1
(|X |)L(T )

,

where (a)b denotes the falling factorial a(a − 1) · · · (a − b + 1), with (a)0 = 1 by
convention. From this, we deduce that

Pr[Θre = τ ]
Pr[Θid = τ ]

=
|X |σ

∏

T∈T (|X |)L(T )

(3)
=

∏

T∈T

|X |L(T )

(|X |)L(T )
≥ 1.

��

It remains to upper bound the probability to obtain a bad transcript in the
ideal world. For i ∈ {1, 2}, let BadTi be the set of attainable transcripts satisfying
condition (C-i). We first consider condition (C-1).

Lemma 3. One has

Pr [Θid ∈ BadT1] ≤ 2(m − 1)σ
|T | .

Proof. Consider two distinct queries (Ni,Mi) and (Ni′ ,Mi′). If the nonces are
the same (Ni = Ni′), then the probability, over the random draw of IVi and IVi′

in T , that there exists j and j′ such that IVi,j = IVi′,j′ , is (�i + �i′ − 1)/|T |.
If the nonces are distinct, then clearly condition (C-1) cannot be satisfied for i
and i′. Hence, summing over all possible nonces, we have

Pr [Θid ∈ BadT1] ≤
∑

N∈N

∑

1≤i<i′≤q
Ni=Ni′=N

�i + �i′ − 1
|T | .



50 T. Peyrin and Y. Seurin

Fix some nonce N , and assume for notational simplicity that the first q′ queries
use nonce N , with q′ ≤ m by assumption. Then the probability that condition
(C-1) is met for nonce N is at most

q′−1
∑

i=1

q′
∑

i′=i+1

�i + �i′ − 1
|T | ≤

q′−1
∑

i=1

(q′ − 1)�i + �(N)
|T |

≤ 2(q′ − 1)�(N)
|T |

≤ 2(m − 1)�(N)
|T | ,

where �(N) is the total length of queries using nonce N . The result follows by
summing over all possible nonces, using

∑

N∈N �(N) = σ. ��

We handle condition (C-2) in the following lemma.

Lemma 4. One has

Pr [Θid ∈ BadT2] ≤ 1
|T | + min{σ, |T |} · (Lmax)2

2|X | ,

where Lmax = 2 log σ when 8 ≤ σ ≤ |T | and Lmax = 2σ log |T |
|T | when σ ≥ |T |.

Proof. Let BadT3 be the set of transcripts satisfying the following condition
(Lmax being defined as in the statement of the lemma):
(C-3) there exists T ∈ T such that L(T ) ≥ Lmax.
Then

Pr[Θid ∈ BadT2] ≤ Pr [Θid ∈ BadT2 |Θid /∈ BadT3] + Pr [Θid ∈ BadT3] .

Note that in the ideal world, the values L(T ) only depend on the random draw
of the IVi’s, and that once the L(T )’s are fixed, condition (C-2) only depends on
the random draw of the Ci,j ’s. In particular, since in the ideal world the Ci,j ’s
are uniformly random, one has

Pr [Θid ∈ BadT2 |Θid /∈ BadT3]

≤
∑

T∈T

∑

(i,j),(i′,j′)
IVi,j=IVi′,j′=T

Pr [Mi,j ⊕ Ci,j = Mi′,j′ ⊕ Ci′,j′ ]

≤
∑

T∈T

L(T )(L(T ) − 1)
2|X |

≤ min{σ, |T |} · (Lmax)2

2|X | ,

where for the third inequality we used that there are at most min{σ, |T |} tweaks
T such that L(T ) ≥ 1.
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It remains to upper bound the probability that condition (C-3) is satisfied,
which can be recast as a “balls-into-bins” problem. Thinking of each tweak
T as a bin, each random IVi determines a sequence of �i consecutive12 bins
where a ball is thrown. If the attacker only made queries of length one block,
then this would be a standard “balls-into-bins” problem, where each ball is
thrown independently in a bin chosen uniformly at random, and we could use
classical results about the maximal occupancy of any bin directly. However, the
attacker can choose the length of each message at will and we need to take this
into account.13 Intuitively, for some fixed total number σ of balls, using messages
of length �i > 1 should lower the maximal occupancy since balls thrown in
consecutive bins cannot end in the same bin. We formalize this intuition in a
separate Lemma below, which implies that

Pr [Θid ∈ BadT3] ≤ 1
|T | .

The result follows. ��

The lemma below is a simple variant on the standard balls-into-bins problem.
A similar result was proved in [6] (and potentially in many other papers).

Lemma 5. Consider a set of |T | ≥ 8 bins and σ ≥ 8 balls. Fix an integer q ≤
σ and a sequence of integers (�1, . . . , �q) with 1 ≤ �i ≤ |T | and

∑q
i=1 �i = σ.

Consider the following random process: for i = 1, . . . , q, a chain of �i balls is thrown
in consecutive bins, the initial bin being chosen independently and uniformly at
random. Then the probability that, at the end of the process, any bin contains Lmax

balls or more, is less than 1/|T |, where

(a) Lmax = 2 log σ when σ ≤ |T |;
(b) Lmax = 2σ log |T |

|T | when σ ≥ |T |.

Proof. See the full version of the paper [50].

Completing the Proof of Theorem 1. From Lemmas 3 and 4, we obtain by
the union bound that

Pr [Θid ∈ BadT] ≤ 2(m − 1)σ + 1
|T | + f(σ), (4)

with f(σ) as in the statement of Theorem 1. Combining (4) with Lemmas 1 and
2 (taking ε1 = 0), we obtain the same upper bound for δ (defined by (2)) as for
Pr [Θid ∈ BadT]. Finally, Eq. (1) yields the result.

Variants. In the full version of the paper [50], we describe two variants of
CTRT, a purely nonce-based one and a purely IV-based one.
12 The successor of the tweak T is Inc(T ).
13 Note that the adversary must commit to the length �i of the chain before knowing

the initial bin IVi since it first makes the query (Ni, Mi) and only then receives the
answer (IVi, Ci).
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5 The PWC and EPWC Message Authentication Codes

In this section, we describe two related modes for message authentication, PWC
(Parallel Wegman-Carter) and EPWC (Encrypted PWC ). Let K and T be two
sets, and let ˜E be a tweakable block cipher with key space K, tweak space14 T ′ =
{2, . . . , 5} × T , and domain X = {0, 1}n. Let Inc be a cyclic permutation of T .
From ˜E, we construct two nonce-based keyed functions, PWC[ ˜E] and EPWC[ ˜E],
both with key space K, nonce-space N = X = {0, 1}n, domain D = A × M,
where A = M = {0, 1}∗,15 and range Y = X = {0, 1}n, as defined in Fig. 3 and
illustrated on top of Fig. 1 (for PWC, just omit the final call to ˜E4,0

K ). We will
prove that both PWC[ ˜E] and EPWC[ ˜E] are 2n-secure as nonce-based MAC and
nonce-based PRF, and that EPWC[ ˜E] is moreover a birthday bound-secure PRF
in the nonce-misuse scenario.

The PWC construction follows the Wegman-Carter paradigm [14,56,60] by
combining a xor-universal hash function H inspired from PMAC [13,52] applied
to (A,M), and a pseudorandom function F applied to the nonce N . This pseudo-
random function is constructed from ˜E by summing two independent pseudoran-
dom permutations in order to obtain security beyond the birthday bound [42].
The EPWC construction is simply PWC with an additional layer of encryption
to provide nonce-misuse resistance.

Before stating and proving the security results for (E)PWC, we focus on how
to obtain the BBB-secure pseudorandom function F from ˜E. A straightforward
way would be to “put the nonce in the tweak”, e.g.,

F ′
K(N) = ˜E6,N

K (0).

This would result in a uniformly random value for each new nonce, but this is
only possible when the intended nonce space is smaller than the effective tweak
space T of ˜E. In order to allow the nonce length to be as large as the block
length of ˜E, we use instead the “sum-of-PRPs” construction by defining (the
exact tweak prefixes are unimportant)

FK(N) = ˜E2,0
K (N) ⊕ ˜E2,1

K (N). (5)

The pseudorandomness of this construction has been well studied. Assuming that
˜E2,0

K and ˜E2,1
K are perfectly random and independent permutations, Lucks [42,

Theorem 5] showed that an information-theoretic adversary trying to distinguish
FK from a random function ρ : {0, 1}n → {0, 1}n within q queries has an advan-
tage upper bounded by q3/22n−1 (see also [16]). Better bounds were proposed
in three different papers: Bellare and Impagliazzo [8] proved that the advan-
tage is upper bounded by O(n)(q/2n)1.5, while Patarin proved in two different
14 We use a set of prefixes which is disjoint from the set used for the CTRT mode in

order to later combine the two modes smoothly.
15 When constructing an AE scheme, it is more convenient to directly define a vector-

input MAC, rather than a string-input MAC that must later be transformed to
handle vectors of strings, as required for an AE scheme.
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Fig. 3. Definition of the PWC and EPWC modes, using a TBC ˜E ∈ TBC(K, T ′, X ) with
T ′ = {2, . . . , 5}×T and X = {0, 1}n. The boxed statement only applies to EPWC. For
notational simplicity, we identify T with {0, . . . , |T | − 1} and Inci(0) with i.

ways [47,49] an upper bound O(q/2n). However, in all three cases the exact O(·)
function was left unspecified and the upper bound was not explicitly worked out.
For the sake of concreteness, we propose the following optimistic conjecture.

Conjecture 1. There is an absolute constant C such the advantage of any adver-
sary trying to distinguish the sum of two independent random permutations of
X from a random function from X to X within q queries is at most Cq/|X |.

The security of PWC and EPWC is captured by Theorems 2 and 3 below.
We denote by tPWC(σ), resp. tEPWC(σ), an upper bound on the time needed to
compute PWC[ ˜E], resp. EPWC[ ˜E] on inputs of total (AD + message) length at
most σ blocks of n bits when calls to ˜EK cost unit time.

Theorem 2 (PRF-Security of PWC and EPWC). Let ˜E ∈ TBC(K, T ′,X )
with X = {0, 1}n and T ′ = {2, . . . , 5} × T , and assume Conjecture 1. Let A be
a (q,m, �, σ, t)-adversary against the PRF-security of PWC[ ˜E], resp. EPWC[ ˜E],
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with � ≤ |T | − 2. Then there exists an absolute constant C and an adversary A′,
resp. A′′, against the TPRP-security of ˜E, making at most σ + 2q, resp. σ + 3q
oracle queries and running it time at most t + tPWC(σ), resp. t + tEPWC(σ), such
that

(a) if A is nonce-respecting (m = 1), then

AdvnPRF
PWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
Cq

|X | ;

AdvnPRF
EPWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′′) +
Cq

|X | ;

(b) if A is allowed to repeat nonces (m > 1), then

AdvPRF
EPWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′′) +
q2

|X | .

Proof. Fix a (q,m, |T |−2, σ, t)-adversary A against the PRF-security of PWC[ ˜E]
or EPWC[ ˜E], trying to distinguish the construction from a random function
R ←$ Func(N × D,Y), where D = A × M. We start by proving (a), assuming
A is nonce-respecting (m = 1). First, slightly abusing the notation, let us see
(E)PWC as a construction based on an arbitrary tweakable permutation, iden-
tifying (E)PWC[ ˜E]K with (E)PWC[ ˜EK ]. We start by replacing ˜EK in the secu-
rity experiment by a uniformly random tweakable permutation ˜P . One can see
APWC[·], resp. AEPWC[·], as an adversary A′, resp. A′′ against the TPRP-security
of ˜E, making at most σ + 2q, resp. σ + 3q queries to its oracle (since a query of
�i blocks to PWC, resp. EPWC, costs �i + 2, resp. �i + 3 calls to ˜E) and running
in time at most t′ = t + tPWC(σ), resp. t′ = t + tEPWC(σ), so that

AdvnPRF
PWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) + δ, (6)

AdvnPRF
EPWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′′) + δ, (7)

where

δ =
∣

∣

∣Pr
[

˜P ←$ TP(T ′,X ) : A(E)PWC[ ˜P ] = 1
]

−Pr [R ←$ Func(N × D,Y) : AR = 1
]

∣

∣

∣. (8)

In order to upper bound δ, we abstract the high-level structure of (E)PWC[ ˜P ]
as follows. First, we see how A and M are handled as applying a keyed hash
function (the key being ˜P ) to the pair (A,M), viz.

H
˜P (A,M)

def=

(

�a−1
⊕

i=1

˜P 2,i+1(Ai)

)

⊕ ˜P 2/3,�a+1(A�a(10∗))

⊕
(

�m−1
⊕

i=1

˜P 4,i(Mi)

)

⊕ ˜P 4/5,�m(M�m(10∗)). (9)
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We also define a pseudorandom function (again with key ˜P ) as

F
˜P (N)

def= ˜P 2,0(N) ⊕ ˜P 2,1(N). (10)

Then, (E)PWC[ ˜P ] can be written

PWC[ ˜P ](N,A,M) = F
˜P (N) ⊕ H

˜P (A,M), (11)

EPWC[ ˜P ](N,A,M) = ˜P 4,0
(

F
˜P (N) ⊕ H

˜P (A,M)
)

, (12)

which should make it clear that the PWC construction follows the Wegman-
Carter paradigm [60] with an additional layer of encryption for EPWC (note
that the three sets of tweaks used in F , H, and for the final encryption call are
disjoint, so that these three building blocks are independent).

We start by showing that the hash function family (H
˜P ), with ˜P ∈

TP(T ′,X ), is xor-universal, i.e., for any two distinct inputs (A,M), (A′,M ′), and
any X ∈ X = {0, 1}n, the probability, over the random draw of ˜P ←$ TP(T ′,X ),
that

H
˜P (A,M) ⊕ H

˜P (A′,M ′) = X, (13)

is less than 1/|X |. Assume that A 
= A′ (the reasoning is similar if A = A′ and
M 
= M ′), let �a = |A|/n and �′

a = |A′|/n, and assume wlog that �a ≥ �′
a.

Denote A = A1‖ · · · ‖A�a and A′ = A′
1‖ · · · ‖A′

�′
a
. Assume first that �a > �′

a.
Then (13) is equivalent to

˜P 2/3,�a+1(A�a(10∗)) = Z,

where Z is independent of permutations ˜P 2,�a+1 and ˜P 3,�a+1, hence the proba-
bility is exactly 1/|X |. Assume now that �a = �′

a. There is necessarily an index
i ≤ �a such that Ai 
= A′

i. If i < �a, then (13) is equivalent to

˜P 2,i+1(Ai) ⊕ ˜P 2,i+1(A′
i) = Z,

where Z is a value potentially depending on ˜P for tweaks different from (2, i+1).
Since the probability of this equality (over the random draw of ˜P 2,i+1) is either
0 when Z = 0 or exactly 1/|X | when Z 
= 0, it follows that the condition is met
with probability at most 1/|X | in that case. Similarly, if i = �a, then (13) is
equivalent to

˜P 2/3,i+1(Ai(10∗)) ⊕ ˜P 2/3,i+1(A′
i(10∗)) = Z,

where Z is a value potentially depending on ˜P for tweaks different from (2, i+1)
and (3, i+1). Again, the condition is met with probability at most 1/|X | in that
case. This concludes the proof that H is xor-universal.

As a second step, we replace F
˜P by a uniformly random function ρ from

N = {0, 1}n to X = {0, 1}n. Let PWC′[ρ, ˜P ], resp. EPWC′[ρ, ˜P ] be defined as
in (11), resp. (12), except that F

˜P is replaced by a call to ρ. Since A is nonce-
respecting, then both PWC′[ρ, ˜P ] and EPWC′[ρ, ˜P ] are perfectly indistinguishable



56 T. Peyrin and Y. Seurin

from Rand (this is obvious for PWC′, while for EPWC′ this follows from the
fact that applying any fixed permutation to uniformly random values yields
uniformly random values). Hence, it remains to upper bound A’s advantage
in distinguishing (E)PWC[ ˜P ] from (E)PWC′[ρ, ˜P ]. By a straightforward hybrid
argument, this is exactly the advantage of an adversary A′′′ simulating H (and
˜P 4,0 for EPWC) in distinguishing F

˜P from ρ within at most q queries (since each
query to the construction translates in exactly one query to the function applied
to the nonce). Using Conjecture 1, this advantage is upper bounded by Cq/|X |.
Combining this with (6), resp. (7), we obtain the result.

We then prove (b), assuming A is allowed to repeat nonces (m > 1). Exactly
as before, one has

AdvPRF
EPWC[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′′) + δ,

with δ defined as in (8). We now see EPWC[ ˜P ] as a construction based on a
universal hash function applied to (N,A,M) followed by a PRF. More precisely,
let

H ′
˜P
(N,A,M) = F

˜P (N) ⊕ H
˜P (A,M),

with H and F as defined in resp. (9) and (10). Then

EPWC[ ˜P ](N,A,M) = ˜P 4,0(H ′
˜P
(N,A,M)).

It is easy to adapt the proof that H is xor-universal to show that H ′ is also
xor-universal (hence, in particular, universal, which is all we need here). The
remaining of the proof is now standard [57], and we only sketch it. We first
replace ˜P 4,0 in EPWC[ ˜P ] by a uniformly random function ρ : X → X , and denote
EPWC′′[ρ, ˜P ] the resulting construction. By the PRP-PRF switching lemma, A

can distinguish EPWC[ ˜P ] from EPWC′′[ρ, ˜P ] with advantage at most q2/(2|X |),
and because H ′ is universal, it can distinguish EPWC′′[ρ, ˜P ] from Rand with
advantage at most q2/(2|X |). The result follows. ��

Theorem 3 (MAC-Security of PWC and EPWC). Let ˜E ∈ TBC(K, T ′,X )
with X = {0, 1}n and T ′ = {2, . . . , 5} × T , and assume Conjecture 1. Let B be
a nonce-respecting (q, 1, �, σ, t)-adversary against the MAC-security of PWC[ ˜E],
resp. EPWC[ ˜E], with � ≤ |T | − 2. Then there exists an absolute constant C and
an adversary B′, resp. B′′, against the TPRP-security of ˜E, making at most
σ +2q, resp. σ +3q oracle queries and running it time at most t+ tPWC(σ), resp.
t + tEPWC(σ), such that

AdvnMAC
PWC[ ˜E]

(B) ≤ AdvTPRP
˜E

(B′) +
(C + 1)q

|X | ;

AdvnMAC
EPWC[ ˜E]

(B) ≤ AdvTPRP
˜E

(B′′) +
(C + 1)q

|X | .

Proof. The proof is standard and deferred to the full version of the paper [50].
��
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Remark 1. While it is in principle possible to save one encryption call in the
EPWC construction by keeping the final AD or message block unencrypted as in
the standard PMAC construction [13,52], we avoid this to ensure that static AD
always gets treated the same, independently of the message. Indeed, applying
this optimization would result in a construction where the final block of AD
should be treated differently depending on whether the message is empty or not.
Handling the AD independently of the message allows to precompute

auth′ =
�a−1
⊕

i=1

˜P 2,i+1(Ai) ⊕ ˜P 2/3,�a+1(A�a(10∗))

and to process the nonce and the message later (in particular, when the AD is
static, auth′ need not be recomputed each time).

Remark 2. In the nonce-misuse scenario, there is a simple birthday attack
against EPWC[ ˜E] as soon as the adversary can repeat a single nonce twice.
The attack proceeds as follows: simply query EPWC[ ˜E]K for roughly 2n/2 pairs
(Ni, A,M) with distinct nonces and the same AD and message until a collision
occurs on the outputs for two nonces N1 and N2. Clearly, a collision on the MACs
implies that FK(N1) = FK(N2) (where FK is given by (5)). Hence, the adversary
can now query Y = EPWC[ ˜E]K(N1, A

′,M ′) for a new pair (A′,M ′) 
= (A,M).
Then Y is a valid forgery for (N2, A

′,M ′). It remains an open problem to design
a nonce-based MAC scheme ensuring graceful degradation of security with the
maximal number of nonce repetitions.

6 The SCT Mode

6.1 The NSIV Construction

In this section, we present the nAE mode SCT and analyze its security. We first
describe a generic composition method named NSIV, which defines a nAE scheme
from a nonce-based keyed function and an nivE scheme. The NSIV construction
results from a small (but important from a security viewpoint) modification to
the (generic) SIV construction [55]. While in SIV the encryption part is purely
IV-based, NSIV relies on a combined nonce- and IV-based encryption (nivE)
scheme, the nonce being used as input both to the keyed function and the nivE
scheme. This is the only difference with SIV, where the nonce is only given as
input to the keyed function.

More formally, let F be a nonce-based keyed function with key-space K1, nonce
space N , domain D = A × M, and range Y, and Π = (K2,N , IV,M,Enc,Dec)
be a nivE scheme. Fix a regular function Conv : Y → IV. We define the nAE
scheme16 NSIV[F,Π] = (K,N ,A,M,Enc,Dec) with key-space K = K1 × K2 as
specified on Fig. 4.
16 Our formalization of an nAE scheme in Definition 4 assumes that the ciphertext is a

binary string, whereas in our description, NSIV[F, Π].Enc returns a pair (C, tag). We
assume some implicit encoding of this pair into a single binary string.
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Fig. 4. The NSIV construction, defining a nAE scheme from a nonce-based keyed
function F : K1 × N × D → Y where D = A × M and a nivE scheme Π =
(K2, N , IV, M, Enc, Dec). Function Conv is a regular function from Y to IV.

The security of NSIV[F,Π] is given by Theorem4 below. We assume that
A = M = {0, 1}∗ for convenience, but this restriction can be lifted easily.
We denote by tΠ(σ) an upper bound on the time needed for computing Π.Enc
or Π.Dec on inputs of total message length at most σ blocks of n bits, and
we assume that computing Conv(tag) or sampling uniformly from Conv−1(IV )
takes negligible time for any tag ∈ Y and IV ∈ IV. The proof of this theorem
is similar to the security proof of SIV, and deferred to the full version of the
paper [50].

Theorem 4 (Security of NSIV). Let F : K1 × N × D → Y, where D = A × M,
be a nonce-based keyed function, Π = (K2,N , IV ,M,Enc,Dec) be a nivE scheme,
and Conv : Y → IV be a regular function. Let A be a (q,m, �, σ, t)-adversary against
NSIV[F,Π]. Then, letting t′ = t + tΠ(σ), the following holds:

(a) if A is allowed to repeat nonces (m > 1), then there exists a (q,m, �, σ, t′)-
adversary A′ against Π and a (q, q, �, σ, t′)-adversary A′′ against the PRF-
security of F such that

AdvAE
NSIV[F,Π](A) ≤ AdvivE

Π (A′) + AdvPRF
F (A′′) +

q

|Y| ;
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(b) if A is nonce-respecting (m = 1), then there exists a (q, 1, �, σ, t′)-adversary
A′ against Π and (q, 1, �, σ, t′)-adversaries A′′ and A′′′ against respectively the
PRF- and the MAC-security of F , all nonce-respecting, such that

AdvnAE
NSIV[F,Π](A) ≤ AdvnivE

Π (A′) + AdvnPRF
F (A′′) + AdvnMAC

F (A′′′).

6.2 From NSIV to SCT

The SCT[ ˜E] mode is simply NSIV[F,Π] where F is instantiated with EPWC[ ˜E]
and Π is instantiated with CTRT[ ˜E]. Additionally, in order to be able to use
the same key for calls to ˜E both in EPWC and in CTRT, we use tweak sep-
aration to ensure that all calls to ˜E in EPWC and in CTRT are independent.
The resulting construction is illustrated in Fig. 1. Combining Theorem 4 with
Theorems 1, 2 and 3, we finally obtain the following result for the security of
SCT.17 We denote by tSCT(σ) an upper bound on the time needed for computing
SCT[ ˜E].EncK or SCT[ ˜E].DecK on inputs of total (AD + message) length at most
σ blocks of n bits when calls to ˜EK cost unit time.

Theorem 5 (Security of SCT). Let ˜E ∈ TBC(K, T ′,X ) with X = {0, 1}n,
T = {1, . . . , 5} × T , and |T | ≥ 8. Let Conv be a regular18 function from X
to T . Assume Conjecture 1 and let f(σ) be defined as in Theorem 1. Let A be
a (q,m, �, σ, t)-adversary against SCT[ ˜E] with � ≤ |T | − 2. Then there exists
an absolute constant C and an adversary A′ against the TPRP-security of ˜E,
making at most σ + 3q oracle queries and running in time at most t + tSCT(σ),
such that

(a) if A is allowed to repeat nonces in encryption queries (m > 1), then

AdvAE
SCT[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
2(m − 1)σ + 1

|T | + f(σ) +
q2 + q

|X | ;

(b) if A is nonce-respecting (m = 1), then

AdvnAE
SCT[ ˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
1

|T | + f(σ) +
(2C + 1)q

|X | .
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17 In more details, it is more convenient to prove Theorem 5 by first replacing ˜EK by
a uniformly random tweakable permutation, and then applying Theorems 1, 2, and 3
for a perfect TBC.

18 Note that this regularity condition imposes |T | ≤ |X |. However, when T | > |X |, the
security bounds of CTRT and EPWC do not depend on the tweak length (only the
maximal message length does). Hence, one can always use a subset of tweaks of size
|X | in case |T | > |X |.
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