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Abstract. How to flexibly manage complex applications over
heterogeneous clouds is one of the emerging problems in the cloud era.
The OASIS Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) aims at solving this problem by providing a language to
describe and manage complex cloud applications in a portable, vendor-
agnostic way. TOSCA permits to define an application as an orchestra-
tion of nodes, whose types can specify states, requirements, capabilities
and management operations — but not how they interact each another.
In this paper we first propose how to extend TOSCA to specify the
behaviour of management operations and their relations with states,
requirements, and capabilities. We then illustrate how such behaviour
can be naturally modelled, in a compositional way, by means of open
Petri nets. The proposed modelling permits to automate different analy-
ses, such as determining whether a deployment plan is valid, which are
its effects, or which plans allow to reach certain system configurations.

1 Introduction

Available cloud technologies permit to run on-demand distributed software sys-
tems at a fraction of the cost which was necessary just a few years ago. On the
other hand, how to flexibly deploy and manage such applications over heteroge-
neous clouds is one of the emerging problems in the cloud era.

In this perspective, OASIS recently released the Topology and Orchestration
Specification for Cloud Applications (TOSCA [24,25]), a standard to support
the automation of the deployment and management of complex cloud-based
applications. TOSCA provides a modelling language to specify, in a portable and
vendor-agnostic way, a cloud application and its deployment and management.
An application can be specified in TOSCA by instantiating component types, by
connecting a component’s requirements to the capabilities of other components,
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and by orchestrating components’ operations into plans defining the deployment
and management of the whole application.

Unfortunately, the current specification of TOSCA [24] does not permit to
describe the behaviour of the management operations of an application. Namely,
it is not possible to describe the order in which the management operations of
a component must be invoked, nor how those operations depend on the require-
ments and affect the capabilities of that component. As a consequence, the ver-
ification of whether a plan to deploy an application is valid must be performed
manually, with a time-consuming and error-prone process.

In this paper, we first propose a way to extend TOSCA to specify the behav-
iour of management operations and their relations with states, requirements, and
capabilities. We define how to specify the management protocol of a TOSCA
component by means of finite state machines whose states and transitions are
associated with conditions on (some of) the component’s requirements and capa-
bilities. Intuitively speaking, those conditions define the consistency of compo-
nent’s states and constrain the executability of component’s operations to the
satisfaction of requirements.

We then illustrate how the management protocols of TOSCA components can
be naturally modelled, in a compositional way, by means of open Petri nets [2, 18].
This allows us to obtain the management protocol of an arbitrarily complex cloud
application by combining the management protocols of its components. The
proposed modelling permits to automate different analyses, such as determining
whether a deployment plan is valid, which are its effects, or which plans allow
to reach certain system configurations.

The rest of the paper is organized as follows. Section 2 introduces the needed
background (TOSCA and open Petri nets), while Sect. 3 illustrates a scenario
motivating the need for an explicit, machine-readable representation of man-
agement protocols. Section 4 describes how TOSCA can be extended to specify
the behaviour of management operations, how such behaviour can be naturally
and compositionally modelled by means of open Petri nets, and how the pro-
posed modelling permits to automate different types of analysis. Related work
is discussed in Sect. 5, while some concluding remarks are drawn in Sect. 6.

2 Background

2.1 TOSCA

TOSCA [24] is an emerging standard whose main goals are to enable (i) the spec-
ification of portable cloud applications and (ii) the automation of their deploy-
ment and management. In this perspective, TOSCA provides an XML-based
modelling language which allows to specify the structure of a cloud application
as a typed topology graph, and deployment/management tasks as plans. More
precisely, each cloud application is represented as a ServiceTemplate (Fig. 1),
which consists of a TopologyTemplate and (optionally) of management Plans.

The TopologyTemplate is a typed directed graph that describes the topo-
logical structure of the composite cloud application. Its nodes (NodeTemplates)



30 A. Brogi et al.

Service Template
Topology Template Node Types

Relationship
Template

- Legenda
@ Property
Node @ Interface
L T_ e_rr_\i)l_a_t_e_ U Capability
U Requirement

Fig. 1. TOSCA ServiceTemplate.

model the application components, while its edges (RelationshipTemplates)
model the relations between those application components. NodeTemplates
and RelationshipTemplates are typed by means of NodeTypes and
RelationshipTypes, respectively. A NodeType defines (i) the observable prop-
erties of an application component C, (ii) the possible states of its instances,
(iii) the requirements needed by C, (iv) the capabilities offered by C' to sat-
isfy other components’ requirements, and (v) the management operations of C'.
RelationshipTypes describe the properties of relationships occurring among
components.

On the other hand, Plans enable the description of application deployment
and/or management aspects. Each Plan is a workflow that orchestrates the oper-
ations offered by the application components (i.e., NodeTemplates) to address
(part of) the management of the whole cloud application®.

2.2 (Open) Petri Nets

Before providing a formal definition of open Petri nets (Definition 2), we recall
the definition of Petri nets just to introduce the employed notation. We instead
omit to recall other very basic notions about Petri nets (e.g., marking of a net,
firing of transitions, etc.) as they are well-know and easy to find in literature [23].

Definition 1. A Petri net is a tuple P = (P, T, e-, -0, My) where P is a set of
places, T is a set of transitions (with PNT = &), e-,-e : T — 2F are functions
assigning to each transition its input and output places, and My : P — IN is the
initial marking of P.

According to [2], an open Petri net is an ordinary Petri net with a distin-
guished set of (open) places that are intended to represent the interface of the
net towards the external environment, meaning that the environment can put or
remove tokens from those places. In this paper, we will employ a subset of open

! A more detailed and self-contained introduction to TOSCA can be found in [10].
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Petri nets, where transitions consume at most one token from each place, and
where the environment can both add/remove tokens to/from all open places.

Definition 2. An open Petri net is a pair Z = (P,I), where P = (P, T, e, o,
My) is an ordinary Petri net, and I C P is the set of open places. The places in
P\I will be referred to as internal places.

3 Motivating Scenario

Consider a developer who wants to deploy and manage the web services Send-
SMS and Forex on a TOSCA-compliant cloud platform. She first describes
her services in TOSCA, and then selects the third-party components (i.e.
NodeTypes) needed to run them. For instance, she indicates that her services
will run on a Tomcat server installed on an Ubuntu operating system, which
in turn runs on an AmazonEC2 virtual machine. Figure 2 illustrates the result-
ing TopologyTemplate, according to the Winery graphical notation [19]. For
the sake of simplicity, and without loss of generality, in the following we focus
only on the lifecycle interface [10] of each NodeType instantiated in the topology
(i.e., the interface containing the operations to install, configure, start, stop, and
uninstall a component,).

SendSMS sDt%'ﬁltoy Forex sDt%F?*lcoy
: oSto ; oSto
(WebService) Undpeploy (WebService) Uné)eploy
WSRuntime { 'SRuntime
We ime

oSetup
oRun .
oConfigure
top
oUninstall

U
Ubuntu
(OperatingSystem)

{/

ner 3}
AmazonEC2
(VirtualMachine)

Fig. 2. Motivating scenario.

Suppose that the developer wants to describe the automation of the deploy-
ment of the SendSMS and Forez services by writing a TOSCA Plan. Since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, developers may produce invalid Plans. For instance,
while Fig.3 illustrates three seemingly valid Plans, only the third is a valid
plan. The other Plans cannot be considered valid since (a) Tomcat’s Configure
operation cannot be executed before Tomcat is running, and (b) Tomcat cannot
be installed when the Ubuntu operating system is not running.

While the validity of P1lans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the
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Fig. 3. Deployment Plans.

validity of Plans, TOSCA should be extended so as to permit specifying the
behaviour of and the relations among NodeTypes’ management operations.

4 Modelling Management Protocols

While a TOSCA NodeType can be described by means of its states, requirements,
capabilities, and management operations, there is currently no way to specify
how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

The objective of the next section is precisely to propose a way to extend
TOSCA to specify the behavior of management operations and their relations
with states, requirements, and capabilities.

4.1 Management Protocols in TOSCA

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with Sy, Ry, Cn, and Oy, respectively.
We want to permit describing whether and how the management operations
of N depend on other operations of the same node as well as on operations of
the other nodes providing the capabilities that satisfy the requirements of N.

— The first type of dependencies can be easily described by specifying the rela-
tionship between states and management operations of N. More precisely, the
order with which the operations of N can be executed can be described by
means of a transition relation 7, that specifies whether an operation o can be
executed in a state s, and which state is reached by executing o in s.

— The second type of dependencies can be described by associating transitions
and states with (possibly empty) sets of requirements to indicate that the
corresponding capabilities are assumed to be provided. More precisely, the
requirements associated with a transition ¢ specify which are the capabili-
ties that must be offered by other nodes to allow the execution of ¢. The
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requirements associated with a state of a NodeType N specify which are the
capabilities that must (continue to) be offered by other nodes in order for N
to (continue to) work properly.

To complete the description, each state s of a NodeType NN also specifies the
capabilities provided by N in s.

Definition 3. Let N = (Sy,Rn,Cn,On, Mpy) be a NodeType, where
Sn, Rn,Cn, and Oy are the sets of its states, requirements, capabilities, and
management operations. My = (3,p,7,T) is the management protocol of N,
where

— 5 € Sy is the initial state,

— p is a function indicating, for each state s € Sy, which conditions on require-
ments must hold (i.e., p(s) C Ry, with p(3) = 9 )?,

- v is a function indicating which capabilities of N are concretely offered in a
state s € Sy (i-e., v(s) C Cn, with v(3) = &), and

-7 C Sy x 28BN x Oy x Sy is a set of quadruples modelling the transition
relation (i.e., (s, H,o0,s") € T means that in state s, and if condition H holds,
o0 is executable and leads to state s’ ).

Syntactically, to describe My we slightly extend the syntax® for describing a
TOSCA NodeType. Namely, we enrich the description of an instance state by
introducing the nested elements ReliesOn and Offers. ReliesOn defines p (of
Definition 3) by enabling the association between states and assumed require-
ments, while 0ffers defines v by indicating the capabilities offered in a state.
Furthermore, we introduce the element ManagementProtocol, which allows to
specify the InitialState s of the protocol, as well as the Transitions defining
the transition relation 7.

The management protocols of the NodeTypes in the motivating sce-
nario of Sect.3 are shown in Fig.4, where Myyg is the management pro-
tocol for WebServices, Mg for Server, Mpg for OperatingSystem, and
My for VirtualMachine. Consider for instance the management proto-
col Mg of NodeType Server defining the Tomcat server. Its states Sy are
Unavailable (initial state), Stopped, and Working, the only requirement in Ry
is ServerContainer, the only capability in C is WebAppRuntime, and its man-
agement operations are Setup, Uninstall, Run, Stop, and Configure. States
Unavailable and Stopped are not associated with any requirement or capa-
bility. State Working instead specifies that the capability corresponding to the
ServerContainer requirement must be provided (by some other node) in order
for Server to (continue to) work properly. State Working also specifies that
Server provides the WebAppRuntime capability when in such state. Finally, all
transitions (but those involving operations Stop and Configure) constrain their
firability by requiring the capability that satisfies ServerContainer to be offered
(by some other node).

2 Without loss of generality, we assume that the initial state of a management protocol
has no requirements and does not provide any capability.
3 A more detailed syntax for extended NodeTypes can be found in [7].
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Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

Note that Definition3 permits to define operations that have non-
deterministic effects when applied in a state (e.g., a state can have two outgoing
transitions corresponding to the same operation and leading to different states).
This form of non-determinism is not acceptable in the management of a TOSCA
application [10]. We will thus focus on deterministic management protocols, i.e.
protocols ensuring deterministic effects when performing an operation in a state.

Definition 4. Let N = (Sy,Rn,Cn,On, My) be a NodeType. The manage-
ment protocol My = (5, p,v,7) is deterministic if and only if

12 / . _ _ !
V(s1,H1,01,81),(S2, Ha,09,55) € T: 51 = s2 A 01 = 09 = s] = 55

4.2 Encoding Management Protocols in Petri Nets

A (deterministic) management protocol My of a NodeType N can be easily
encoded by an open Petri net. Each state of My is mapped into an internal
place of the Petri net, and each capability and requirement of N is mapped into
an open place of the same net. Furthermore, each transition (s, H,0,s’) of My
is mapped into a Petri net transition ¢ with the following inputs and outputs:

(i) The input places of ¢ are the places denoting s, the requirements that are
needed but not already available in s (i.e., (p(s') U H) — p(s)), and the
capabilities that are provided in s but not in s’ (i.e., y(s) — v(s)).

(ii) The output places of ¢ are the places denoting s, the requirements that were
needed but are no more assumed to hold in s (i.e., (p(s) U H) — p(s’)), and
the capabilities that are provided in s’ but not in s (i.e., y(s") — v(s)).

The initial marking of the obtained net prescribes that the only place initially
containing a token is that corresponding to the initial state 5 of M.
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Fig. 5. Example of Petri net translation.

Definition 5. Let N = (Sy,Rn,Cn,On, My) be a NodeType, with My =
(3,p,7, 7). The management protocol My is encoded into an open Petri net
ZN = <PN,IN>, with PN = <PN,TN, o, ~07M0> and IN g PN, as follows.

- Py = SN URNUCY, i.e. the set Py of places contains a separate place for
each state in Sy, for each requirement in Ry, and for each capability in Cy.
- Iy = Ry UCy, t.e. the set Iy C Py of open places contains the places
denoting the requirements in Ry and the capabilities in Cy .
- Tn = 7 (ie., the set Ty contains a net transition t for each transition
(s,H,o0,8"Y € T), and ¥t = (s,H,0,s') € Ty
(i) ot = {s}U((p(sYUH)—p(s))U(y(s) —(s")), i.e. the set ot of input places
contains the place s, the places denoting the requirements in (p(s')UH) —
p(s), and those denoting the capabilities in y(s) — y(s').
(ii) to = {s'} U ((p(s) U H) — p(s')) U (3(s') — 1(s)), i-c. the set te of output
places contains the place s', the places denoting the requirements in (p(s)U
H) — p(s'), and those denoting the capabilities in v(s') — v(s).
— The initial marking My of Zn is defined as follows:

1 if p denotess
Vp € PN.M0<p) = {0 otherwise

The above definition ensures that the Petri net encoding of a management pro-
tocol satisfies the following properties:

— There is a one-to-one correspondence between the marking of the internal
places of the Petri net and the states of a management protocol. Namely,
there is exactly one token in the internal place denoting the current state, and
no tokens in the other internal places.

— Each operation can be performed if and only if all the necessary requirements
are available in the source state, and no capability required by any connected
component is disabled in the target state.

Consider for instance the management protocol Mg (Fig.4), whose correspond-
ing Petri net is shown in Fig.5. Each state in Mg is translated into an internal
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place (represented as a circle), while the ServerContainer requirement and
the WebAppRuntime capability are translated into open places (represented as
dashed circles). Additionally, protocol transitions are translated into net transi-
tions. For example, the transition (Stopped,{ServerContainer}, Run, Working)
is translated into a Petri net transition, whose inputs places are Stopped and
ServerContainer, and whose outputs places are Working and WebAppRuntime.

4.3 Modelling the Management of a ServiceTemplate

We now show how the Petri net modelling the management protocol of a
TOSCA TopologyTemplate (specifying a whole cloud-based application) can
be obtained, in a compositional way, from the Petri nets modelling the manage-
ment protocols of the NodeTypes in such TopologyTemplate.

We first need to model (by open Petri nets working as a capability con-
trollers) the Relationship-Templates that define in a TopologyTemplate the
association between the requirements of a NodeTypes and the capabilities of other
NodeTypes. To do that, we first define an utility binding function that returns
the set of requirements with which a capability is associated.

Definition 6. Let S be a ServiceTemplate, and let ¢ be a capability offered
by a NodeType in S. We define b(c,S) = {r1,...,rn}, where r1,...,r, are the
requirements connected to ¢ in S by means of RelationshipTemplates.

We now exploit function b to define capability controllers. On the one hand, the
controller must ensure that once a capability c is available, the nodes exposing
the connected requirements 1, ..., r, are able to simultaneously exploit it. This
is obtained by adding a transition c; able to propagate the token from place
¢ to places rq,...,r, (ie., the input place of ¢; is ¢, and its output places
are 11,...,7). On the other hand, the controller has also to ensure that the
capability is not removed while at least another node is actively assuming its
availability (with a condition on a connected requirement). Thus, we introduce
a transition ¢; whose input places are ry,...,r, and whose output place is c.

Definition 7. Let S be a ServiceTemplate, and let ¢ be a capability offered by
a NodeType instantiated in S. Let ry,...,r, be the requirements exposed by the
nodes in S such that b(c,S) = {r1,...,rn}. The controller of ¢ is an open Petri
net Z. = (P., I..), with P. = (P., T, e-,-e, My), defined as follows.

— The set P, of places contains a separate place for the capability ¢ and for each
requirement 11, . .., ry. It also contains a place r. that witnesses the availability
of the capability c.

— The set I, coincides with P,.

— The set T, contains only two Petri net transitions ¢t and c|.

o The input and output places of ¢ are the place c, and the places r1,...,1y
and r., respectively (i.e., ¢y = {c} and cyo = {r1,...,rp} U{r:.}).
o The input and output places of c| are the places ri,...,ry and r., and the

place ¢, respectively (i.e., ecy = {r1,...,rn} U{r.} and ce = {c}).
— The initial marking My of Z. is Vp € P..My(p) = 0.
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Fig. 6. Example of capability controller.

An example of controller (for a capability ¢ connected to two requirements 71
and rg) is illustrated in Fig. 6.

We can now compose the nets modelling the management protocols of
the NodeTypes instantiated in a ServiceTemplate’s topology by interconnect-
ing them with the above introduced controllers. The composition is quite
simple: We just collapse the open places corresponding to the same require-
ments/capabilities.

Definition 8. Let S be a ServiceTemplate. We encode S with an open Petri
net Zs = (Pg, Is), where Pg = (Pg,Ts,e-, -0, My), as follows.

— For each node N in the topology of S, we encode its management protocol with
an open Petri net Zy obtained as shown in Definition5.

— For each capability ¢ exposed by a NodeTemplate in S, we create an open Petri
net Z. (acting as its controller) as shown in DefinitionT7.

— We then compose the above mentioned nets by taking their disjoint union and
merging the places denoting the same requirement r or capability c.

— The initial marking My is the union of the markings of the collapsed nets.

For example, Fig. 7 shows the net obtained for the motivating scenario in Sect. 3.
For the sake of readability, in the figure we omit, for each capability ¢, the place
r. of its controller.

A very convenient property of the obtained encoding is that it is safe (i.e., the
number of tokens in each place does not exceed one, for any marking M that
is reachable from the initial marking My [23]). To prove it, we need to further
characterize the Petri net encoding we provided through Definitions 5, 7 and 8.

Property 1. Let S be a ServiceTemplate, and let Zg be its Petri net encoding.
Zg is safe.

Proof. The property follows from the properties (i), (ii), and (iii) shown in
Lemma 1 (see Appendix). More precisely, (i) proves that the internal places
denoting node states can contain at most one token, (ii) proves that each open
place denoting a capability ¢ (as well as the corresponding place r.) can contain
at most one token, and (iii) proves that each open place denoting a requirement
can contain at most one token. Therefore, all places in Z¢ can contain at most
one token (in any reachable marking), thus making the whole net safe [23]. O
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4.4 Analyzing the Management of a ServiceTemplate

The Petri net encoding of the management of a ServiceTemplate S permits
us defining what is a wvalid plan according to such management. Essentially,
thanks to the encoding of capability controllers and to the way we compose
these controllers with management protocol encodings, the obtained net ensures
that no requirement can be assumed to hold if the corresponding capability
is not provided, and that no capability can be removed if at least one of the
corresponding requirements is assumed to hold. This permits to consider a plan
valid if and only if it corresponds to a firing sequence in the net encoding of S.

Definition 9. Let S be a ServiceTemplate and let Zg = (Pg,Is), with
Ps = (Ps,Ts,e-,-e, M), be the Petri net encoding of S. A sequence 0102...0,
of management operations is a valid sequential plan for S if and only if there is
a firing sequence t1ta ... t, (with t; € Ts) from the initial marking My such that

01-02~...-Om:)\(tl)-)\(tg)'..m/\(tn),

where - indicates the concatenation operator* and:

() = e ift denotes a ¢y or c|transition
o if t denotes a management protocol transition (s, H,o,s’)

It is easy to see now that plan (c) of Fig. 3 is valid since, for instance,

AmazonEC2:Start Container; Ubuntu:Install Ubuntu:Start SoftwareContainer;
Tomcat:Setup Tomcat:Run Tomcat:Configure WebAppRuntime; SendSMS:Deploy
SendSMS:Start Forex:Deploy Forexr:Start

is a corresponding firing sequence for the Petri net in Fig.7. Conversely, plans
(a) and (b) in Fig. 3 are not valid as there are no corresponding firing sequences.
Intuitively speaking, (a) is not valid since after firing, for instance,

AmazonEC2:Start Container; Ubuntu:Install Ubuntu:Start SoftwareContainer;
Tomcat:Setup

transition Tomcat:Configure cannot be fired. It indeed requires a token in the
Working place, but that place is empty and it is not possible to add tokens to it
without firing Tomcat:Run. On the other hand, (b) is not valid since after firing

AmazonEC2:Start Container; Ubuntu:Install

transition Tomcat:Setup cannot fire. It requires a token in the place denoting the
ServerContainer requirement, but that place is empty and it is not possible to
add tokens to it without firing SoftwareContainers, which in turn cannot fire as
it misses a token in the place denoting the Ubuntu’s SoftwareContainer capa-
bility (and no token can be added to such place without firing Ubuntu:Start).
We can easily extend the definition of validity from sequential plans to generic
workflow Plans, by constraining all their sequential traces to be valid.

4 The empty string € is the neutral element of -, hence controllers’ net transitions are
ignored (as A(t) = € when ¢ denotes a ¢y or ¢| transition).
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Fig. 7. Petri net encoding for the motivating scenario in Sect. 3.

Definition 10. Let S be a ServiceTemplate, and let Zg be its Petri net encod-
ing. A workflow Plan P is valid for S if and only if all its sequential traces are
valid sequential plans for S (see Definition9).

However, the above Definition 10 does not ensure that all traces end up in the
same setting of the ServiceTemplate. Two different traces can reach two dif-
ferent markings with a different token assignment for the internal places. This
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would mean that, by differently inter-leaving the activities in a workflow Plan,
the nodes in a ServiceTemplate can end up in different states (thus potentially
activating different capabilities and assuming different requirements). This is
not acceptable in the management of a TOSCA application, as we would expect
a Plan to have deterministic effects (independently of the inter-leaving of the
activities that compose such Plan). We thus define the notion of deterministic
Plans, after introducing that of internally equivalent markings.

Definition 11. Let Z = (P,I), with P = (P,T,e-,-e, M), be an open Petri
net. Two markings My, My : P — IN are internally equivalent (M; =y Ms) if
and only if

Vp € P\I.Mi(p) = M2(p)

Definition 12. Let S be a ServiceTemplate, and let Z5 = (Ps,Is), with
Ps = (Ps,Tg,e-,-e My), be the Petri net encoding of S. Let also P be a valid
workflow Plan for S. P is also deterministic if and only if for each pair My, My
of markings reached by executing two finite, complete® sequential traces of P

M1 =M Mg.

The effects of a plan on the states of the components of a TOSCA
ServiceTemplate, as well as on the requirements that are satisfied and the
capabilities that are available, can then be directly determined from the mark-
ing that is reached performing the corresponding firing sequence. We thus first
characterize the states, requirements, and capabilities that are active in a mark-
ing (Definition 13), and we then employ such characterization to list the effects
of a deterministic Plan (Remark 1).

Definition 13. Let S be a ServiceTemplate, and let Zg = (Pg, Is), with Ps =
(Pg,Tg,e-, -0, M), be the Petri net encoding of S. Let also N; = (Sn,, Rn,,Cn,,
On,, Mn,), with My, = (3, p,7,7), be a node in S. Finally, let M be a marking.

— The active states in M are
AM ={s|se€ Ps\IsAM(s)=1}.
— The assumed requirements in M are
AM ={r | M(r)=0A7r€b(c,S)ANM(r.) =1}
— The offered capabilities in M are
AY ={c| M(c)=1V M(r.,) = 1}.

Remark 1. Let S be a ServiceTemplate and let Zg be its Petri net encoding.
Let also P be a deterministic Plan, and let My and M be the initial marking
and a marking equivalent to the markings reached by performing the (complete)
sequential traces of P in M.

5 A sequential trace for a Plan P is complete if and only if its first and last operation
correspond to an initial and to a final activity of P.
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— The requirements that are assumed after P are AY (where the newly assumed
ones are A¥\A¥°), while those that are no more assumed are AR\ AY.

— The capabilities that are offered after P are AY (where the newly added ones
are AM\AX°), while those that are no more offered are A}°\AM.

Please note that it is possible to consider as initial marking any other (reach-
able) marking so as to analyze maintenance plans (starting from non-initial
states) besides deployment plans. Obviously, the very same properties and tech-
niques also apply in this case.

Additionally, various classical notions in the Petri net context assume a spe-
cific meaning in the context of TOSCA applications. For example the problem of
finding whether there is a plan which achieves a specific goal (e.g., bringing some
components of an application to specific states or making some capabilities avail-
able) can be reduced in a straightforward way to the coverability problem [23]
on the associated Petri net. To show it, we first define the notion of goal, that
is a marking putting exactly one token in the places denoting the states and
capabilities that have to be active.

Definition 14. Let S be a ServiceTemplate, and let N; = (Sy,,Rn,,Cn;,
On,, Mn;,), with My, = (3,p,7,7), be a node in S. A goal for planning in Zg
is a pair G = (Sq,Cq) such that

(a) Sa C U, S, is the set of states to be reached, and
(b) Cq €U, Cn, is the set of capabilities to be offered.

A walid sequential plan P for S reaches the goal G = (Sg,Cq) if and only if

(a) Vs € Sg.s € SN, = s is the current state of N;, and
(b) Yec € Cg.c € Cn, A s is the current state of N; = ¢ € (s).

Theorem 1. Let S be a ServiceTemplate, and let Zg be the Petri net encoding
of S. Finding a valid sequential plan for S that reaches a goal G corresponds to
solving a coverability problem in Zg.

Proof. Let G = (S¢, Cq). We can easily build a marking Mg : Ps — {0,1} as
follows:
1 ifpeSg
Vp € Ps.Mg(p) =41 ifp=r.Ac€Cqg
0 otherwise

From the above, it follows that finding a sequential plan that reaches the goal
G corresponds to solving the coverability problem for the marking Mg. O

Theorem 2. Let S be a ServiceTemplate, and let G be a goal. Finding a valid
sequential plan for S that reaches G can be solved with polynomial space.

Proof. The proof follows from the facts that the Petri net encoding Zg of S is
safe, that finding a sequential plan in Zg that reaches G corresponds to solving
a coverability problem, and that coverability in safe Petri nets is PSPACE-
complete [12]. O
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Another classical notion in the Petri net context that assumes a specific mean-
ing is that of reversibility [23]: The Petri net encoding of a ServiceTemplate S is
reversible if and only if it is always possible to softly reset the application, i.e. if
whatever (valid) sequence of operations we perform, we can always get back to
the initial state of S by performing another (valid) sequence of operations. This
is a very convenient property, because it guarantees that it is always possible to
generate a sequential plan for any reachable goal from any application state.

Definition 15. Let S be a ServiceTemplate, and let Sg be its initial configu-
ration (i.e., the configuration in which all the management protocols of its nodes
are in their initial state). We say that S is softly resettable if and only if for
each valid sequential plan for S

0102...0m,
there exists a continuation

Om+10m+42---Om+n

such that
0102...0m0m+10m+2---Om+4n

is a valid sequential plan for S such that the firing of 0102...0m0m+10m+2---Om+tn
from Sg leads to Sg.

Theorem 3. Let S be a ServiceTemplate, and let Zg be the Petri net encoding
of S.
S is softly resettable < Zg is reversible.

Proof. By Definition 15, S is softly resettable if and only if the following con-
dition holds: (C) For each valid sequence 010s...0,, we can always determine a
longer valid sequence 0102...0,0m41...0m+n such that by firing it in the initial
configuration Sg we end up in the same configuration 3g.

Notice that Sg corresponds to the initial marking of the Petri net encoding
Zg, and that a valid sequence of operations corresponds to a firing sequence in
Zg. Thus, condition C corresponds to saying that whatever firing sequence we
can perform in the initial marking, we can always find a longer firing sequence
that (starts and) ends up in the initial marking. This in turn corresponds to say-
ing that Zg is reversible (since whatever marking we can reach with a sequence
of firings, we can always come back to the initial marking). a

5 Related Work

Automating application management is a well-known problem in computer sci-
ence. With the advent of cloud computing, it has become even more prominent
because of the complexity of both applications and platforms [11]. This is wit-
nessed by the proliferation of so-called configuration management systems, like
Chef (https://www.chef.io/chef/) or Puppet (https://puppetlabs.com/). These
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systems provide a domain-specific language to model the desired configuration
for a machine and employ a client-server model in which a server holds the
model and the client ensures this configuration is met. However, the lack of a
machine readable representation of management protocols of application com-
ponents inhibits the possibility of automating verification on components’ con-
figurations and dependencies.

A large body of research has been devoted to model interacting systems
by means of finite state machines, Petri nets, and other formal models (e.g.,
[5,16]). Our approach to protocol specification and analysis brings some similar-
ities for instance with [3,14,22,26], that employ high-level Petri nets for protocol
specification, and exploit notions like firability, reachability, and coverability, to
analyse such protocols. For instance, [3] employs “numeric” Petri nets to model
and analyse communication protocols. Such nets generalize tokens into tuples
of variables to model fields in protocol messages, introduce net data variables
to store “global values”, and associate conditions and operations with transi-
tions to permit checking and editing net variables. As the problem we address is
simpler, we do not need a complex system like [3] since we just need to synchro-
nize the management of connected components, by allowing each component to
determine whether a needed capability is actually offered. Similar considerations
apply to [14,22,26].

A detailed comparison with other existing approaches is beyond the scope of
this paper®. We focus next on the subset of approaches more closely related to
ours, tailored to model the behaviour of cloud application management.

A first attempt to master the complexity of the cloud is given by the Aeo-
lus component model [15]. The Aeolus model is specifically designed to describe
several characteristics of cloud application components (e.g., dependencies, non-
functional requirements, etc.), as well as the fact that component interfaces
might vary depending on the internal component state. However, the model only
allows to specify what is offered and required in a state. Our approach instead
allows developers to clearly separate the requirements ensuring the consistency
of a state from those constraining the applicability of a management opera-
tion. This allows developers to easily express transitions where requirements are
affecting only the applicability of an operation and not the consistency of a state
(e.g., the transition (Unavailable, {ServerContainer}, Setup, Stopped) of the
management protocol Mg in Fig.4). Such a kind of transitions cannot be eas-
ily modelled in Aelous. Furthermore, Aelous and other emerging solutions like
Juju (https://jujucharms.com/) and Engage [17], differ from our approach since
they are geared towards the deployment of cloud applications, thus not including
also their maintenance. Additionally, Aelous, Juju, and Engage are currently not
integrated with any cloud interoperability standard, thus limiting their applica-
bility to only some supported cloud platforms. Our approach, instead, intends to
model the entire lifecycle of a cloud application component, and achieves cloud
interoperability by relying on the TOSCA standard [24].

5 A more detailed discussion on existing approaches exploiting Petri nets for protocol
engineering can be found in [13].
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To this end, TOSCA offers a rich type system permitting to match, adapt
and reuse existing solutions [10]. Since our proposal extends this type system,
it can also be exploited to refine existing reuse techniques, like [9,27]. Cur-
rently, these techniques are matchmaking and adapting (fragments of) existing
ServiceTemplates to implement a desired NodeType by checking whether the
features of the latter are all offered by the former. To overcome syntactic dif-
ferences, ontologies may be employed to check whether two different names are
denoting the same concept. However, these techniques are behaviour-unaware:
There is no way to determine whether the behaviour of the identified (fragment
of) ServiceTemplate is coherent with that of the desired Node-Type. Since our
approach permits describing the behaviour of management operations, it can be
exploited to extend the aforementioned techniques to become behaviour-aware.

It is also worth highlighting that we could directly compose the finite state
machines specifying management protocols, and model valid plans as the lan-
guage accepted by the composite finite state machine [6]. However, the size
of the latter grows exponentially with the number of application components.
This results in a high computational complexity, even if we exploit composition-
oriented automata (e.g., interface automata [1]). On the other hand, with open
Petri nets [2,18], we have a very simple composition approach, and the exponen-
tial growth only affects the amount of reachable markings (instead of the size of
the net). A simpler composition approach is even more convenient since cloud
applications can change over time. For instance, to add another web service to
our motivating scenario, our approach just requires to add the open Petri net
encoding its management protocol, and to connect the open places denoting its
requirement with the corresponding c¢; and c¢| transitions. On the other hand,
with an automata based approach, the composition would be much harder, as it
requires to compute the Cartesian product of the automatons’ states.

6 Conclusions

In this paper we have proposed an extension of TOSCA that permits to specify
the behaviour of management operations of cloud-based applications, and their
relations with states, requirements, and capabilities. We have then shown how
the management protocols of TOSCA components can be naturally modelled, in
a compositional way, by means of open Petri nets, and that such modelling per-
mits to automate different analyses, such as determining whether a plan is valid,
which are its effects, or which plans allow to reach certain system configurations.

Please note that, while some of those Petri-net analyses have an exponential
time complexity in the worst case, they still constitute a significant improvement
with respect to the state of the art, where the validity of deployment plans can be
verified only manually, after delving through the documentation of application
components. Please also note that our approach builds on top of, but is not
limited to, TOSCA. It can be easily adapted to other stateful behaviour models
of systems that describe states, requirements, capabilities, and operations.

We see different possible extensions of our work. We are currently working
on a prototype implementation of our approach, which includes a graphical user
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interface to support the definition of valid TOSCA specifications that include
management protocols. The graphical user interface will compile the manage-
ment protocols of a TOSCA application into a PNML file [4], hence enabling to
plug-in different PNML processing environments (e.g., LoLa, ProM, or WoPeD,
just to mention some) to implement the analyses described in Sect. 4.4. Another
interesting direction for future work is to investigate the applicability of more
sophisticated fault diagnosis analyses (like [20,21]) to identify the reasons why
a plan may not be valid (besides just showing the points in which a plan may
get stuck, as we currently do). Finally, we want to extend the matchmaking and
adaptation techniques we previously proposed [9,27] by including the behaviour
information coming from management protocols.

Appendix

The objective of this appendix is to provide the properties of the Petri net
encoding of a ServiceTemplate (see Definition 8) that are needed to prove its
safeness (see Proposition 1). First, since each node N; in a ServiceTemplate S
can be in a unique state, exactly one of the internal places denoting its states
contains one token, while the others contain no token. This holds at any given
time, and thus in any marking that can be reached from the initial marking of the
Petri net encoding of Zg. In short, (i) each internal place of the net encoding a
ServiceTemplate contains at most one token. The same holds also for the open
places modeling (ii) capabilities and (iii) requirements.

Lemma 1. Let S be a ServiceTemplate and let Zg = (Pg,Is), with Ps =
(Pg,Tg,e-,-8, M), be the Petri net encoding of S. Let also M be a mark-
ing reachable from the initial marking My of Zg. For each node N; =
(Sn,, Rn,,Cn,, On,, Mn,) (with My, = (5,p,7,7)) in S, the following prop-
erties hold:

(i) 38’ € Sn,.M(s') =1 A Vs € Sn,.s # s = M(s) =0 or, equivalently:
ESESNiM(S) =1

(ii) Let s be the current state of a node N; (i.e. s € Sy, A M(s) =1). For any
capability ¢ € Ch,, the number of tokens in the open places r. and c is:
cgy(s)e M(c)+ M(r.) =0
cev(s) e M(c)+ M(r.) =1

(iii) Let s be the current state of a node N; (i.e. s € Sy, AN M(s) =1). For any
requirement r € Ry, bound to a capability ¢ (i.e., r € b(c, S)), the number
of tokens in the open places v and 7. is:

r & p(s) & (M(r) = M(re) = 0)

v (M(r) = M(r) = 1)
rep(s)e M(r)=0AM(r.) =1

~—
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Proof. The proofs for (i), (ii), and (iii) are listed below.

(i)

For each node N;, the places denoting its states are internal to Zg. Hence,
their input and output transitions are not changed by the merge process,
which in turn means that only the net transitions (encoding the protocol
transitions) of the same node N; can add/remove tokens to/from them.
By construction, the above mentioned transitions always input exactly one
token from an internal place and output exactly one token to an inter-
nal place (potentially the same). This guarantees that the total number of
tokens in the internal places of a single node cannot change:

ZSESNiM<S> = ZSESN,Lv Ml(s)a

where M’ is a marking reached by firing a transition in M.

The above, along with the fact that the initial marking Mj of Zg includes

a token only in the places denoting the initial states of the nodes in S
(i.e., for each node N;, Yscsy Mo(s) = 1), implies that any sequence of
firings starting from the initial marking will preserve exactly one token in
the internal places denoting the states of each node.
First, we show that the property holds in the initial marking M, of Zg.
According to the definition of management protocols (Definition 3), v(35) =
&, which means that (in order for the property to hold) the initial marking
My of the open places must be empty (i.e., for each capability ¢, M(c) +
M(r.) = 0). This follows from the construction of Zg (Definition 8), thus
the property holds for M.

Since the property holds for the initial marking, we can prove that it

holds for every reachable marking, by showing that no transition can inval-
idate the property. We will thus consider it as invariant.
Consider the capability ¢ of a node NN;. The places mentioned in the prop-
erty (i.e., ¢ and r.) are connected to the ¢; and ¢| transitions, and to the
transitions of N; that input/output a token to/from c. These are the only
transitions that might affect the invariant, since the transitions connected to
the requirements managed by the controller of ¢ cannot change the marking
of ¢ nor that of r..

The ¢t and c| transitions cannot affect the invariant, since they do not
change the total number of tokens in ¢ and r.. This is because, whenever
¢y fires, it removes one token from ¢, but it also adds one token to r. (and
to all of the other r; places). Symmetrically, whenever ¢ fires, it removes
one token from r. (and from each of the other r; places), but it also adds
one token to c.

Thus, the only transitions that might invalidate the invariant are the
transitions of the node N; that input/output one token to/from c. Since
all these transitions move a token from a state s to a state s’, they can be
classified as follows:

(a) c is either provided in both s and s’ or in neither of them (i.e., ¢ €

Y(s) Ny(s) Ve d y(s) Ury(s));

(b) ¢ is provided in &', but it is not provided in s (i.e., ¢ € y(s') — v(s));
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(c) cis provided in s, but it is not provided in s’ (i.e., ¢ € y(s) — v(s')).
Each of these cases is consistent with the property that we want to prove.

(a) In the first case, transitions do not affect ¢ at all, as (by construction) they
are not even connected to c¢. They thus preserve the sum M (c) + M(r.),
as well as the truth value of ¢ € 7(-).

(b) In the second case, transitions lead to a state s’ such that ¢ € y(s'), but
they also add a token to c. If the invariant held before the transition
(i.e., M(c)+ M(r.) = 0 with M(s) =1 Ac ¢ 7(s)), it also holds after the
transition, because the sum becomes M(c) + M (r.) = 1 with M(s') =
1Acer(s).

(¢) The third case is precisely the opposite of the second one, since transitions
lead to a state s’ such that ¢ ¢ v(s’) and they remove a token from c.
If the invariant held before the transition (i.e., M(c) + M(r.) = 1 with
M(s) = 1 Ac € 7y(s)), then it also holds after the transition. The sum
indeed becomes M(c) + M (r.) = 1 with M(s') =1 A c & ~(s).

In conclusion, since the invariant holds for My and none of the transitions
can invalidate it, by induction (over the length of a firing sequence) it holds
for any reachable marking.

(iii) The proof of the property follows the same line as the one for (ii). Namely,
the property can be proved to hold for any reachable marking by induction
over the length of a firing sequence, by showing that it holds for the initial
marking M, and that none of the transitions can invalidate such property.

O
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