Divide-and-Conquer Parallelism
for Learning Mixture Models

Takaya Kawakatsu' ™ Akira Kinoshita!, Atsuhiro Takasu?,
and Jun Adachi?

! The University of Tokyo, 2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan
{kat,kinoshita}@nii.ac.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan
{takasu,adachi}@nii.ac.jp

Abstract. From the viewpoint of load balancing among processors, the
acceleration of machine-learning algorithms by using parallel loops is not
realistic for some models involving hierarchical parameter estimation.
There are also other serious issues such as memory access speed and
race conditions. Some approaches to the race condition problem, such
as mutual exclusion and atomic operations, degrade the memory access
performance. Another issue is that the first-in-first-out (FIFO) scheduler
supported by frameworks such as Hadoop can waste considerable time
on queuing and this will also affect the learning speed. In this paper, we
propose a recursive divide-and-conquer-based parallelization method for
high-speed machine learning. Our approach exploits a tree structure for
recursive tasks, which enables effective load balancing. Race conditions
are also avoided, without slowing down the memory access, by separating
the variables for summation. We have applied our approach to tasks
that involve learning mixture models. Our experimental results show
scalability superior to FIFO scheduling with an atomic-based solution to
race conditions and robustness against load imbalance.

Keywords: Divide and conquer - Machine learning - Parallelization -
NUMA

1 Introduction

There is growing interest in the mining of huge datasets against a backdrop
of inexpensive, high-performance parallel computation environments, such as
shared-memory machines and distributed-memory clusters. Fortunately, modern
computers can have large memories, with hundreds of gigabytes per CPU socket,
and the memory size limitation may not continue to be a severe problem in itself.
For this reason, state-of-the-art parallel computing frameworks like Spark [1,2],
Piccolo [3], and Spartan [4] can take an in-memory approach that stores data in
dynamic random access memory (DRAM) instead of on hard disks. Nonetheless,
there remain four critical issues to consider: memory access speed, load imbalance,
race conditions, and scheduling overhead.

© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 23-47, 2016.
DOI: 10.1007/978-3-662-53455-7_2

24 T. Kawakatsu et al.

A processor accesses data in its memory via a bus and spends considerable
time simply waiting for a response from the memory. In shared-memory systems,
many processors can share the same bus. Therefore, the latency and throughput
of the bus will have a great impact on calculation speed. For distributed-memory
systems in particular, each computation node must exchange data for processing
via message-passing frameworks such as MPI!, with even poorer throughput and
greater latency than bus-based systems. Therefore, we should carefully consider
memory access speeds when considering the computation speed of a program.
The essential requirement is to improve the reference locality of the program.

Load imbalance refers to the condition where one processor can be working
hard while another processor is waiting idly, which can cause serious throughput
degradation. In some data-mining models, the computation cost per observation
data item is not uniform and load imbalance may occur. To avoid this, dynamic
scheduling may be a solution.

Another characteristic issue in parallel computation is the possibility of race
conditions. For shared-memory systems, if several processors attempt to access
the same memory address at the same time, the integrity of the calculation can
be compromised. Mutual exclusion using a semaphore [5] or mutex can avoid
race conditions, but can involve substantial overheads. As an alternative, we can
use atomic operations supported by the hardware. However, this may remain
expensive because of latency in the cache-coherence protocol, as discussed later.

The fourth issue is scheduling overhead. The classic first-in-first-out (FIFO)
scheduler supported by existing frameworks such as OpenMP? and Hadoop? is
implemented under a flat partitioning strategy, which divides and allocates tasks
to each processor without detailed consideration of their interrelationships. A flat
scheduler cannot adjust the granularity of the subtasks and it tends to allocate
tasks with extremely small granularity. Because a FIFO scheduler has only one
task queue and all processors access the queue frequently, the queuing time may
become a serious bottleneck, particularly with fine-grained parallelization.

In this paper, we propose a solution for these four issues by bringing together
two relevant concepts: work-stealing [6,7] and the buffering solution under a
recursive divide-and-conquer-based parallelization approach called ADCA. The
combination of a work-stealing scheduler with our ADCA will reduce scheduling
overheads because of the absence of bottlenecks, while ADCA also achieves effi-
cient load balancing with optimum granularity. Buffering is a method whereby
each processor does local calculations wherever possible, with a master proces-
sor integrating the local results later. This helps to avoid both race conditions
and latency caused by the cache-coherence protocol. ADCA and the buffering
solution are our main contributions.

As target applications for ADCA, we focus on machine-learning algorithms
that repeat a learning step many times, with each step handling the obser-
vation data in parallel. Expectation-maximization (EM) algorithms [8,9] on

! http://www.mpi-forum.org.
2 http://www.openmp.org.
3 http://hadoop.apache.org.

http://www.mpi-forum.org
http://www.openmp.org
http://hadoop.apache.org

Divide-and-Conquer Parallelism for Learning Mixture Models 25

a Gaussian mixture model (GMM) or a hierarchical Poisson mixture model
(HPMM) [10,11] are well-known examples of such applications. Mixture mod-
els are popular and versatile; their applications include wireless sensor networks
[12,13], speech recognition [14,15], and moving object detection [16-19]. Another
principal application, back-propagation-based learning [20] of neural networks,
can also be parallelized using the same approach [21,22].

In Sect. 2, we formulate parallel computing in general terms, introducing our
main concept, three-step parallel computing, and then introduce work-stealing
and the buffering solution. In Sect. 3, we summarize related work on parallel EM
algorithms and then explain our EM algorithm based on ADCA. In Sect. 4, we
demonstrate our method’s superior scalability to FIFO scheduling and to the
atomic solution by experiments with GMMs. We also demonstrate our method’s
robustness against load imbalance by experiments with HPMMs. Finally, we
conclude this paper in Sect. 5.

2 Parallel Computation Models

There are a vast number of approaches to parallel computing; it is not easy for
users to select an approach that meets their requirements. Even though paral-
lel technologies may not seem to cooperate with each other, we can integrate
them according to the three-step parallel computing principle, which contains
three phases: parallelization, execution, and communication. In the paralleliza-
tion phase, the programmer writes the source code specifying those parts where
parallel processing is possible. In the execution phase, a computer executes the
program serially, assigning tasks to its computation units as required. Finally,
in the communication phase, the units synchronize and exchange values.

2.1 Parallelization of Algorithms

In the parallelization phase, the programmer effectively informs the computer
which statements can be executed in parallel. This can be separated into two
subphases: the algorithm phase and the directive phase. In the algorithm phase,
the programmer chooses the form of parallelism: data parallelism [23] or task
parallelism. The programmer then specifies the parallelizable statements in the
directive phase. For data parallelism, the program is described as a loop, as
illustrated in Fig.la. That is also called loop parallelism. OpenMP supports
loop parallelism by the directive parallel for. Furthermore, single-instruction
multiple-data (SIMD) [24] instructions, such as Intel streaming SIMD extensions,
can be categorized as data parallelism. When exploiting data parallelism, we
must assume that the program describes an operator that takes an array element
as an argument.

Next, task parallelism can be described by using fork and join functions in
a recursive manner, as illustrated in Fig. 1b. After the fork function is called, a
new thread is created and executed. Each thread processes a user-defined task,
and the calculation result is returned to the invoker thread by calling the join

26 T. Kawakatsu et al.

AE i
° S [iteration(0] g fork join (taskl)
3 »| & [iteration[1] :g
3
g & [fteration[2] g
Gl
(] — o : _ | task0
Bl = |iteration[3] = spin wait
5 »| % [iteration[4] >| &
=] . .
“ g |iteration[5] @ join (task2)
(a) Data parallelism. (b) Task parallelism.

Fig. 1. Data parallelism and task parallelism. A parallel program can be described in
a loop manner or a fork—join manner.

function. Actually, the fork and join functions are provided by the pthreads,
pthread_create and pthread_join, respectively.

In many cases, the critical statement that has the most significant impact on
the execution time is a for loop with many iterations. A data-parallel program
can be much simpler than a task-parallel program. For this reason, parallel loops
are frequently exploited in computationally heavy programs. The EM algorithm
on a GMM can be parallelized in the loop manner [25-30]. However, parallel loops
are not applicable when the data have mostly nonarray structures like graphs or
trees. The HPMM is a simple example of such a case. Therefore, parallelizable
machine learning for graphical models must be described in a fork—join manner.

In practice, data and task parallelism can work together in a single program,
such as forking tasks in a parallel loop or exploiting a parallel loop in a recursive
task, because parallel loops can be treated as the syntactical sugar of the fork
and join functions. Of course, there are devices that hardly support task par-
allelism, such as graphical processing units (GPUSs). Task parallelism on a GPU
remains a challenging problem [31,32].

Finally, the directive phase can be categorized as involving ezplicit directives
or implicit directives. The fork and join functions are examples of explicit direc-
tives that permit programmers to describe precisely the relationships between
forked tasks. For the implicit case, a scheduler determines automatically whether
statements are to be executed in parallel or serially. That decision is realized on
the assumption that each task has referential transparency. That is, there are
no side effects such as destructive assignment to a global variable.

2.2 Parallel Execution Mechanism

A program that manages tasks is called a scheduler, dealing with three subphases:
traversal, delivery, and balancing.

In the traversal phase, the scheduler scans the remaining tasks to determine
the order of task execution. In task parallelism, tasks have a recursive tree-based
structure, and in general, there are two primary options, depth-first traversal,
or breadth-first traversal.

Divide-and-Conquer Parallelism for Learning Mixture Models 27

.

idle units

Aal|2a] | 24| | 24) |24 |24 |41 [4] |4 (]
U)WWWU)U)WW(AD[‘H
©|| @} ©f| || <] || ©]| ©|| S| H
PP PHPHRHRHRH Rl B

remaining tasks

8.

Fig. 2. General FIFO-based solution to counter load imbalance. The program is par-
titioned into tasks that are allocated one by one to the computation units.

Then, in the delivery phase, the scheduler determines the computation unit
that executes each task. This phase plays an important role in controlling ref-
erence locality, with the scheduler aiming to reduce load-and-store latency by
allocating each task to a computation unit located near the data associated with
that task. This is particularly important for machine-learning algorithms, where
the computer must repeat a learning step many times until the model converges.
Ideally, the scheduler should assign tasks to the computation units so that each
unit handles the same data chunk in every learning step, reducing the necessity
for data exchanges between units. However, such an optimization does not make
sense if the program then has serious load imbalances. In some machine-learning
algorithms, the computation cost per task may not be uniform.

In the balancing phase, the scheduler relieves a load imbalance when it detects
an idling computation unit. This is an ex post effort, whereas the delivery phase
is an ex ante effort. There are two options for this phase: pushing [33-35] and
pulling [6,7,36-40]. Pushing is when a busy unit takes the initiative as a producer
and sends its remaining tasks to idling units by passing messages whenever
requested by the idling units. In contrast, pulling is when an idle unit takes the
initiative as a consumer and snatches its next task from another unit.

The FIFO scheduling illustrated in Fig.2 is a typical example of a pulling
scheduler. An idling unit tries to snatch its next task for execution from a shared
task queue called the runqueue. The program is partitioned into many subtasks
that are appended to the runqueue by calling the fork function. Because of its
simplicity, FIFO scheduling is widely used in Hadoop and UNIX. While this
may appear to be a good solution, it can cause excessively fine-grained task
snatching and the resulting overhead will reduce the benefits of the parallel
computation. A shared queue is accessed frequently by all computation units
and therefore behaves as a single point of failure. Hence, the queuing time may
become significant, even though the queue implementation utilizes a lock-free-
based protection technique instead of mutual exclusion such as a mutex. To avoid
this, the task partitioning should be as coarse-grained as possible; however, load
balancing will then be less effective. As another issue, we suspect that the ability

28 T. Kawakatsu et al.

stack
deque

|task4| |task1|

stack
steal task2 \/ > deque

Fig. 3. Breadth-first task distribution with a work-stealing scheduler. Idle unit #1 steals
a task in a FIFO fashion to minimize the stealing frequency.

to tune referential locality can be poor and this will become a serious problem,
particularly in the context of distributed processing.

Mohr et al. introduced a novel balancing technique called work-stealing for
their LISP system [6,41]. They focused on the property of a recursive program
that the size of each task can be halved by expanding the tree-structured tasks.
As illustrated in Fig. 3, the work-stealing scheduler first expands the root task
into a minimum number of subtasks, and distributes them to computation units
either by pushing or pulling. When a computation unit becomes idle, the sched-
uler divides another unit’s task in half and reassigns one half to the idle unit.
This behavior is called work-stealing. In this way, the program is always divided
into the smallest number of tasks required, thereby achieving a minimum number
of stealing events.

A typical work-stealing scheduler [35,40,42] is constructed by exploiting a
thread library such as pthreads. Each computation unit is expressed as a worker
thread fixed to the unit and has its own local deque or double-ended queue to
hold tasks remaining to be executed. Tasks are popped by the owner unit and
executed one by one in a last-in first-out (LIFO) fashion. When there are no
idling units, each worker behaves independently of the others. If a unit becomes
idle, with an empty deque, the unit scouts around other units’ deques until it
finds a task and steals it in a FIFO fashion, as described in Algorithm 1.

Of course, a remaining task may create new tasks by calling a fork function,
and such subtasks are appended into the local deque in a LIFO fashion, as shown
in Algorithm 1. Hence, the tasks in each deque are stored in order of descending
age. That is, an idling unit steals the oldest remaining task, and that will be the
one nearest to the root of the task tree. This is the reason for the work-stealing

Divide-and-Conquer Parallelism for Learning Mixture Models 29

Algorithm 1. A worker thread’s behavior in a work-stealing scheduler.

Require: myself: the worker thread, victim: another worker thread
procedure FORK(function, arguments)
task = new task(function, arguments)
myself.deque.append (task)
return task
end procedure
procedure JOIN(task)
repeat
if myself.deque.is_empty then
next = victim.deque.pop_FIFO()
next.execute()
else
next = myself.deque.pop_LIFO()
next.execute()
end if
until task.is_finished
end procedure

scheduler being able to achieve the minimum number of stealing events necessary.
In addition, there is no single point of failure, and the overhead will be smaller than
that for the FIFO scheduler.

2.3 Communication Mechanism

In the communication mechanism, each computation unit exchanges values via
a bus or network. For example, when calculating the mean value of a series,
each unit will calculate the mean of a chunk, with a master unit then unifying
the means into a single value. There are two options for the communication
mechanism: distributed memory and shared memory.

In a distributed-memory system, each computation unit has its own memory
and its address space is not shared with other units. Communication among units is
realized by explicit message passing, with greater latency than local memory access.

In a shared-memory system, several computation units have access to a large
memory with an address space shared among all computation units. There is no
need for explicit message passing, with communication achieved by reading from
or writing to shared variables.

A great problem for shared-memory systems is the possibility of race condi-
tions, as shown in Fig. 4a. Suppose that two computation units, #0 and #1, are
adding some numbers into a shared variable total concurrently. Such an oper-
ation is called a load-modify-store operation, but the result can be incorrect,
because of conflicts between loading and storing. Using atomic operations can
be a solution. An atomic operation is guaranteed to exclude any load or store
operations by other computation units until the operation finishes.

Note that, because memory access latency suspends an operation for a time,
modern processors support the out-of-order execution paradigm, going on to

30 T. Kawakatsu et al.

int a=0 buf[0] buf[1]

a=2

_ _ Jjoin
print(a) " N
(a) Race among threads. (b) Buffering solution.

Fig. 4. A race condition among computation units and our buffering solution. The sum
may be incorrect if several units access the same variable at the same time.

execute other instructions until the processor obtains all required data from
the memory. This accelerates serial program execution, but can compromise
the integrity of a parallel program that includes some critical instructions that
must be strictly executed in a particular order. Figure 5 is an example of such a
program, where thread2 waits until threadl updates value. The loop is called
spin waiting or busy waiting, and is frequently used for thread synchronization.
If the statements are executed out of order, thread2 may load an old value
before the update by threadi. As a solution, an atomic operation often involves
a memory fence, instructions that inhibit out-of-order execution.

Considering the memory access patterns of machine-learning algorithms, the
use of atomic operations may not be an adequate solution. Main memories based
on DRAM operate more slowly than processors, so that modern computers insert
caches based on static random-access memory (SRAM) between the processors
and main memories. Main memory access is blocked if the cache memory has
a valid replica of the addressed data. The problem is that several computation
units may have replicas of the same data item in their own cache memories and
the stored replica values may become outdated. Machine-learning algorithms
access all the observation items simultaneously to calculate summations in each
learning step, and cache conflicts may occur frequently. A cache-coherence [43,
44] protocol invalidates the old replica to relieve conflicts, as illustrated in Fig. 6.
However, this may become a serious bottleneck. For this reason, we recommend
a buffering solution, as shown in Fig.4b. The solution separates the memory
addresses physically to avoid cache conflicts. Each computation unit calculates
a summation into its local buffer and the master unit retrieves these to calculate
the total summation after calling a join function. This method can be combined
easily with our divide-and-conquer-based parallelization approach.

2.4 Parallel Computing Frameworks

Many frameworks assist parallelization, parallel execution, and communication.

Divide-and-Conquer Parallelism for Learning Mixture Models 31

threadl thread2
value=8192;
lock=false; ::lt° reorder? while (lock) {}

busy wait print(value) ;

Fig. 5. Data exchange between threads by spin waiting. The synchronization will fail
if the statements are executed out of order.

cache coherence

v v

frequent sparse sparse frequent

Fig. 6. Cache coherence among computation units. The protocol will cause a bottleneck
whenever units are accessing the same address.

As a parallelization framework, we could use a high-performance-computing
(HPC) language such as Cilk [7,36], X10 [45], or Chapel [46]. They support
task parallelism, and Chapel also supports data parallelism with sophisticated
syntax. OpenMP is another well-known framework for task and data parallelism
for shared-memory environments. These languages and libraries are examples of
the explicit-directive approach, while MapReduce [47] is a library-level variant
of the implicit-directive approach.

As a parallel execution framework, we could use a work-stealing scheduler
such as Intel’s TBB*, qthreads [38,39], or MassiveThreads [40]. Pthreads® does
not support work-stealing by itself, but is an essential component for implement-
ing such schedulers.

In the context of communication mechanisms, some general-purpose lan-
guages provide helpful programming models for parallel computation, even
though they were not designed primarily as HPC languages. For example, Go®
supports sophisticated syntax for message passing. In low-level programming,
MPI is a standardized message-passing framework that supports MPI_Send and
MPI Recv. In the context of enterprise applications, Hadoop is a well-maintained
platform for distributed data processing. In the context of shared-memory com-
munication, the simplest example is multithread programming using a thread
library. In C++11, all global variables are shared among threads by default,
unless using a thread_local specifier, and by using std: :atomic templates’, a
programmer can write thread-safe access to shared data.

4 http:/ /www.threadingbuildingblocks.org.

® http://computing.llnl.gov /tutorials /pthreads,.

5 http://golang.org.

" http:/ /www.cplusplus.com /reference /atomic/atomic.

http://www.threadingbuildingblocks.org
http://computing.llnl.gov/tutorials/pthreads/
http://golang.org
http://www.cplusplus.com/reference/atomic/atomic

32 T. Kawakatsu et al.

The ADCA proposal in Sect. 3.2 follows the principles of parallelization, par-
allel execution and communication. In the parallelization phase, ADCA adopts
task parallelism to describe a divide-and-conquer algorithm. In the parallel exe-
cution phase, ADCA utilizes a pulling-based work-stealing scheduler to distrib-
ute tasks to computation units. Then, ADCA realizes communication among
units by using shared-memory; the cache coherence problem is reduced thanks
to the buffering solution.

3 Parallel EM Algorithms

The EM algorithm comprises an E-step and an M-step. The E-step computes a
single posterior P(k|x,) for each pair of an observation item «, and a mixture
component k that indicates how likely it is that the item x, was generated by
the component. In the M-step, the posteriors are summed to estimate revised
parameter values. The E-step is then repeated using the revised model. This EM
iteration continues until the likelihood function £, which indicates how well the
model regenerates the dataset, converges to a maximum.

To parallelize the EM algorithm, we should divide each E-step and M-step
into a number of tasks and allocate them to computation units. For GMMs, the
axis of the observation item x,, and the axis of mixtures k are available for this
division. As illustrated in Fig.7, reference locality is maximized whenever we
divide the posterior table into squares because the total number of observation
items and model parameters to be loaded to calculate the posterior subtable is
minimized. The number of observation items is usually much greater than the
number of mixture components. Consequently, we must divide the n axis more
than the k axis.

The EM algorithm includes summation processes in the M-step, and we must
take measures against race conditions among computation units. In general, race
conditions are resolved by using mutual exclusion techniques such as semaphores,
or by using atomic instructions. However, we do not recommend these approaches
because mutual exclusion involves a blocking time, and an atomic operation on a
shared variable involves the cache-coherence problem. The best solution is to let
each computation unit use its own local memory to hold intermediate results,
thereby computing a partial sum independently, before a single unit retrieves
the intermediate results to compute the total.

3.1 Related Work

Nonuniform memory access (NUMA) is a shared-memory architecture for which
a computation unit and local memory form a pair called a NUMA node. Modern
processors support NUMA at the chip level and a NUMA node is generally equiv-
alent to a processor socket. The memory address space is continuous, enabling
each NUMA node to access another node’s local memory in the same way as for
its own local memory. In a shared-memory system, all computation units share
the threads of a process and any unit can execute a thread. Because the threads

Divide-and-Conquer Parallelism for Learning Mixture Models 33

Q11 || D12 || F23|| D24

Q21 || D22 || F23|| F24

Q11 || D12 || F23|| F2a|| D15 || D16 || D27

HEEE

18 q31 || I32 || I33 || T34
E Q21 || D22 || D23 || F24 || D25 || F26 || F27 || D28 Qa1 || a2 || Fa3|| Faa
l0data for 1l6pairs 8data for 1l6pairs

(a) Rectangular division. (b) Cubic division.

Fig. 7. Cubic division of the posterior table. Space requirements are minimized when
the posterior table is divided into cubes. The symbols such as 6 and ¢,x are described
in detail in Appendix A.

share a common address space assigned to the process, we can implement pro-
grams without explicit message passing among threads. However, noting that all
NUMA nodes will be interconnected via a bus, nonlocal memory accesses will
have higher latency than local memory accesses for a computation unit. Conse-
quently, programmers should aim to maximize reference locality to increase the
proportion of local memory accesses. Kwedlo [25] proposed a parallel version of
the EM algorithm for a NUMA computer. He used the parallel loop of OpenMP
and introduced two techniques for improving the reference locality, the buffering
solution and first touching.

When we parallelize an EM algorithm, we normally partition the observation
items into a number of data chunks and assign them to threads. On the one hand,
a race condition will never arise in the E-step because there is no summation
over the observation items. On the other hand, parameter recalculation in the
M-step requires summation over the posteriors. Whenever several computation
units read from and write to the same address simultaneously, a race condition
is possible, with the revised parameters differing from the correct values. To
avoid this, Kwedlo arranged an independent array for each unit, with each unit
calculating a partial sum into its own array. The partial sums are then integrated
by a single thread at the end of the M-step. He introduced a buffering solution,
although OpenMP supports safe summation via the reduction clause, because
that clause cannot handle array types [25]. Accordingly, Kwedlo proposed his
own buffering solution, coincidentally similar to Fig. 4b.

First-touching [48,49] is a well-known optimization method in the context of
combining Linux® and NUMA. In Linux, a logical memory address is not bound
to a physical memory address initially. When a thread accesses the logical address
for the first time, a small physical memory space called a page, is selected from
the closest NUMA node and allocated to the logical address. Therefore, Kwedlo
made all threads access their own chunk before running the EM algorithm [25].

8 https://www.kernel.org.

https://www.kernel.org

34 T. Kawakatsu et al.

Distributed memory is a parallel clustering-based architecture that comprises
many computers called nodes interconnected via a network. The meaning of node
in distributed computing is somewhat different from that used in the description
of NUMA. For distributed memory, each node is a processor with several cores
that use a shared-memory architecture. That is, the distributed-memory system
has at least two levels of memory hierarchy: internode and intranode. Internode
communication is realized by explicit message passing, with internode latency
being greater than intranode shared-memory access. Therefore, we must consider
reference locality more carefully than for shared-memory systems.

The message-passing communication model is applicable to both distributed
and shared-memory systems. It rarely depends on the detailed architecture,
with its application being wider than that of the shared-memory programming
model. For this reason, the message-passing model is more popular with pro-
grammers using high-level languages such as Java and Scala. A programmer can
use highly abstract concurrent-execution models such as MapReduce, with the
background scheduler then assigning tasks to the computation units. MapRe-
duce, supported by Hadoop, offers a simple but powerful abstraction. However,
that is too abstract to enable control of the reference locality, unlike NUMA
programming exploiting the first-touch policy. Therefore, MapReduce might be
convenient but can result in poor throughput. Its handling of hard-disk I/O
overhead is another principal reason for its poor performance [1].

Currently, there are several parallel-computing frameworks based on mes-
sage passing, such as Spark [1], Piccolo [3], and GraphLab [50,51]. Spark is a
framework that aligns data in memory to reduce hard-disk I/O overheads, and
provides its own distributed, immutable collection framework called the resilient
distributed dataset (RDD) [2]. Because RDD elements are in memory, Spark
runs faster than Hadoop MapReduce, which must read observation dataset from
hard disks each time they are required. Piccolo is a distributed in-memory hash-
table framework that runs parallel applications with high efficiency, similarly to
RDD. GraphLab is a distributed machine-learning framework in which the pro-
grammer describes calculations and data flows by using directed graphs. Each
node behaves as if it was a local Map or Reduce facility, with the many Map
and Reduce operations all running in parallel.

In the world of low-level programming, hybrid parallel computing [52-54] is a
popular approach. It uses a thread implementation such as pthreads inside the
nodes and MPI among the nodes. Yang et al. [26] proposed an EM algorithm
using a hybrid parallelization approach. It divides and conquers the observation
items and integrates partial sums at the end of the M-step, as shown in Fig. 8.
The implementation has a hierarchical structure. First, the master node assigns
an observation data subset to each distributed node by utilizing MPI. Next, each
distributed node partitions its subset into smaller subsets and allocates them to
threads running on each node. At the end of every M-step, each distributed node
calculates its internal summation and the master node collects them to calculate
the total sum. This approach achieves good reference locality because nodes do
not exchange any values until the intranode calculations are completely finished.

Divide-and-Conquer Parallelism for Learning Mixture Models

master node

Y

35

~

.

N\ (

N\

~

| distributed node #1 |

| distributed node #2 |

| distributed node #3 |

for(n <- NO until N1) {
E step(x[n])
}

for(n <- N1 until N2) {
E_step(x[n])
}

for(n <- N2 until N3) {
E step(x[n])
}

Y

Y

|corell|core2|

A
|corell|core2]| - [corer]

|corell|core2|

| shared memory |

| shared memory |

| shared memory |

|

J

~\

A\
master node

Fig. 8. Hybrid message-passing and shared-memory parallelization. This approach uses
a thread inside the node and message passing among the nodes.

The authors attribute the reduction in scheduling overheads to static scheduling.
That is, their approach divides the data into equal-sized subsets before running
the EM algorithm and never deals with load balancing. Of course, the processing
throughput might suffer if load imbalances occur.

3.2 Our ADCA Proposal

To utilize a work-stealing scheduler, we must transform the EM algorithm to a
divide-and-conquer form, which is not difficult because we can divide the obser-
vation dataset recursively and calculate the posteriors in parallel in the E-step. In
the M-step, we repartition the dataset to recalculate the parameters recursively
as shown in Algorithm 2. This version of the EM algorithm performs effective
dynamic load balancing.

ADCA also achieves good reference locality. The divided observation subset
and its counterpart will be aligned closely in the memory address space. Machine-
learning algorithms repeat learning steps until the model regenerates the training
data. Therefore, the programmer can optimize ADCA so that each computation
unit retrieves a chunk of the dataset from storage before processing, and handles
only its own local chunk in every subsequent step. This optimization may reduce
internode I/O transactions dramatically in distributed-memory systems, which
is a direction for our future work.

Note that the observation items should not be divided into single data items
because the calculation cost per observation item would then be very small, and
too-frequent task-switching operations might degrade the processing throughput.
Therefore, we introduce a grain size parameter as the minimum size for a subset
of the observation data. When recursive division of the subsets reaches the grain
size, no further division occurs. Although we do not examine selection methods

36 T. Kawakatsu et al.

Algorithm 2. Divide&conquer-based EM algorithm for a GMM.
Require: x,: observation items, IN: number of observation items, grain: grain size
Ensure: wy: weight, py: mean, Si: covariance

repeat procedure MSTEP(chunk of @)
Estep(x1,..,zN) if chunksize > grain then
Mstep(z1, .., zN) taskl = Mstep(half of x,,)
until likelihood converges task2 = Mstep(half of x,,)
sum' = join taskl
procedure ESTEP(chunk of x) sum? = join task2
if chunksize > grain then return sum® + sum?
Estep(half of x,,) else
Estep(half of x,,) sum =0
else for each pair (xsn, k) do
for each pair (z,,k) do sump += (Gnk, qnkTn, qnrT>)
calculate gnr as P(k|xr) end for
end for return sum
end if end if
end procedure end procedure

for the grain size here, it can be smaller than for the FIFO scheduler because of
the small overhead of the work-stealing-based scheduler, as described in Sect. 2.2.

ADCA has another advantage, the avoidance of race conditions. As shown
in Algorithm 2, the parameter recalculation in the M-step is implemented using
buffering, and there are no critical sections. Accordingly, there is no need for
mutual exclusion or atomic operations on shared variables, which enables much
faster computation. Of course, our approach may have the disadvantage of requir-
ing more memory than other approaches do.

4 Experiment and Results

Table 1 describes the experimental environments. For most experiments, we used
the hu080, but the strong and weak scaling of ADCA were also measured using
the hp160. Both are shared-memory computers with many NUMA nodes, using
CentOS? and the GNU compiler collections (gcc!?) 5.2 and 4.8.

To demonstrate the scalability and robustness against load imbalance of our
approach, we transformed the EM algorithms into the divide-and-conquer form
shown in Algorithm 2. In a previous paper [55], we described the implementation
of ADCA in the programming language Chapel, employing MassiveThreads [40]
as the work-stealing scheduler, and compared it with a FIFO approach that used
OpenMP. For the purposes of this paper, we have implemented a work-stealing
scheduler and a FIFO scheduler in C++11 to unify the experimental conditions,

9 http://www.centos.org.
10 http://gec.gnu.org.

http://www.centos.org
http://gcc.gnu.org

Divide-and-Conquer Parallelism for Learning Mixture Models 37

Table 1. Experimental machine environments.

Name |hu080 hp160

CPU | Xeon |E7 4870 Xeon |E7 8891 v2
Clock | 2.4 GHz Clock | 3.2 GHz

Cores | 10 Cores |10

Cache |Lld |32kB/core |Lld |32kB/core
L2 256 kB/core | L2 256 kB/core
L3 30.0 MB L3 37.5MB
NUMA | Nodes | 8 Nodes | 16

RAM |64 GB/node | RAM |0.75 TB/node

excluding the schedulers and parallelization approaches. Both schedulers employ
the lock-free deque implementation proposed by Arora et al. [56], instead of using
a mutex-based deque such as MassiveThreads. We examined three aspects of the
system: the effect of the buffering solution, robustness against fine-grained paral-
lelism, and robustness against load imbalance. The effect of the buffering solution
was ascertained by comparison with the atomic solution using a GMM. Robust-
ness against fine-grained parallelism was tested by comparison with the FIFO
approach, again using the EM algorithm on a GMM. Robustness against load
imbalance was examined by learning both load-imbalanced and load-balanced
HPMM datasets.

For the experiments, we prepared randomly generated training data. For the
GMMs, each observation item was generated by eight mixture components, and
was expressed as an eight-dimensional vector, with each value expressed in 64-bit
floating-point form. For the HPMMs, each item was generated by eight mixture
components, and was expressed as a two-dimensional 64-bit integer vector.

The graphs below show results for both strong and weak scaling. They indi-
cate how processing speed varies with the number of computation units, but the
size of the dataset is fixed in strong scaling, whereas the size varies in proportion
to the number of units in weak scaling. For strong scaling, the vertical axis indi-
cates the throughput in megarecords per second (MRPS), whereas it indicates
the processing time per EM iteration for weak scaling.

4.1 Effect of Buffering Solution

To demonstrate the effect of the buffering solution, we compared the difference
in scalability between the buffering solution and the atomic solution for the EM
algorithm on a GMM. We adopted the FIFO approach in both cases and set the
grain size to 256. That is, each task handles 256 observation items. The datasets
had 268,435,456 items in total in strong scaling and 2,097,152 items per core in
weak scaling. Figure 9 shows the comparison results. The atomic solution did not
so much speed up as slow down in weak scaling, whereas the buffering solution
achieved an almost linear speedup. The atomic solution decelerated at a rate

38 T. Kawakatsu et al.

60.

9 FIFO atomic (grain 256)
50| @@ FIFO buffer (grain 256) /

2500

& FIFO0 atomic (grain 256)
e—e FIFO buffer (grain 256) /

2000

' -
| ol
e

1500 ol

_—y
/

throughput [MRPS]

processing time per iteration [s]

20 / o
10| /'/ 200 / /
A s s a Al s i
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#cores #cores
(a) Strong scaling. (b) Weak scaling.
Fig. 9. Atomic solution vs buffering solution (hu080).
70 : : : . 160 . : : -
¢ FIFO (grain 16) / & FIFO (grain 16)
60t e FIFO (grain 256) e — 140 6o FIFO (grain 256) 2 4
4—a ADCA (grain 16) A 120/ A4 ADCA (grain 16)
sef i i
v—v ADCA (grain 256) v—v ADCA (grain 256) /
//'/ 100 /
20
80 &

%/‘

.
,4//"/

"
>

>
>

throughput [MRPS]

N
>

v

3 ¥
// — @ 00 @ @ e] z 2 =

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#cores #cores

>
s
\a

=
>

N
>

processing time per iteration [s]

=}

>

5)
=)

(a) Strong scaling. (b) Weak scaling.
Fig. 10. Scalability of the EM algorithm on a GMM (hu080).

of 28 seconds per core. Note that the total throughput was invariant regardless
of the number of cores. This suggests that there exists a bottleneck setting the
upper limit of the throughput. We suspect that the cache-coherence protocol
was the main factor.

4.2 Robustness Against Fine-Grained Parallelism

To demonstrate the robustness against fine-grained parallelization, we compared
the difference in scalability between the FIFO-based approach and ADCA, while
varying the grain size from 256 items to 16 items. The sizes of the datasets were
the same as those for Fig.9. Figure 10 shows the evaluation result. When the
grain size was set to 256, the FIFO approach accelerated between 1 and 80 cores
at a rate that was 15.7 % less than that for ADCA. When the grain size was set
to 16, the FIFO approach decelerated beyond 24 cores, and it did not speed up
beyond a factor of 17.5. In contrast, our approach achieved a near-linear speedup
in both cases. This could be explained by the overhead of the shared runqueue.

Divide-and-Conquer Parallelism for Learning Mixture Models 39

'
5000 %
@ >
=
2 4000 °
2 X °
o °
g
5 3000 ° .
I ®
3
g
[3

Z 5000 e ° o
E o
£ 00 ° ~

o o2& CNF 4

o R Ao
10 20 30 40 50 60 70 80

#cores

Fig. 11. Maximum queuing time with FIFO scheduling (hu080).

50,

N
n

94— equal (1024 segments) / _
e—o equal (16384 segments) 2
40 <
4—a slope (1024 segments) / EZ."
2 v—v slope (16384 segments) g L g PRI —A
£ 39 2 ————9
5 A 2
5 @
gz" 2 1.
= / g‘ & fixed (8 segments / core)
1 e ﬁe_c oo fixed (128 segments / core)
/ § a—A scale (8 segments / core)
“/’/ o v—v scale (128 segments / core)
% 10 20 30 40 50 60 70 80 0.9 10 20 30 40 50 60 70 80

#cores #cores

(a) Strong scaling. (b) Weak scaling.

Fig. 12. Scalability of the EM algorithm on an HPMM (hu080).

To test that hypothesis, we also measured the queuing time of the shared
runqueue. The queuing time was shorter than a millisecond, which made direct
measurements difficult. We therefore implemented a program that repeats task-
popping from a shared queue 268,435,456 times to calculate the average queuing
time. Figure 11 shows the result. The queuing time increased as the number of
cores increased. That is, a popping request was cancelled when several compu-
tation units simultaneously tried to obtain a task from the queue, thanks to
the protection technique proposed by Arora et al. [56]. As seen in Fig. 11, the
queuing required several micro-seconds whenever a queuing rush occurred.

As seen in Fig. 10, a single core could handle 0.9 observation items per
microsecond, which means that the queuing time has a great impact on the
lack of acceleration. For the FIFO case, the shared runqueue was accessed fre-
quently by all computation units. For the ADCA, such rushes are rare. This is
the reason for the superior robustness against fine-grained parallelization.

40 T. Kawakatsu et al.

4.3 Robustness Against Load Imbalance

To demonstrate the robustness against load imbalance of ADCA, we evaluated
strong and weak scaling using the EM algorithm on an HPMM. For the strong
scaling, we tested two datasets: equal and slope. In the equal dataset, each
segment had the same number of observation items. In the slope dataset, the
number of observation items in each segment was made proportional to the
segment ID, assigned continuously from 1 to either 1024 or 16,384. The datasets
comprised 134,217,728 observation items. The grain size was set to 256. For
weak scaling, we tested two series of datasets: fixed and scale. In the fixed
datasets, the number of segments was constant, regardless of the number of cores.
In the scale datasets, the number of segments was proportional to the number
of cores. The datasets contained 1,048,576 items per core and the grain size was
set to 256. Figure 12 shows the results. For both the equal and slope datasets,
ADCA achieved an almost linear speedup. Note that the graphs almost exactly

250,

-
Y]

e ADCA (grain 1ez4)| -
200 <L
S
7
I °
5 /l 2 0. o —
=15 '”‘ , oo
5 _/ PR i
S
] 10!)'/ %
2 s s
s ././l 20.4
A [
50 o § oo
a [o— ADCA (grain 1024)
o 20 40 60 80 100 120 140 160 0.0 20 40 60 80 100 120 140 160
#cores #cores
(a) Strong scaling. (b) Weak scaling.

Fig. 13. Scalability of the EM algorithm on a GMM (hp160).

5,

60 - - - - -
e—e ADCA (8192 segments)l -
I8
— ©
£ 40 /]
ﬂs: t: 3
5. §_ Po o o o o — —+—
g A
2 52
3 I8
25 e o
= / 5
10 /‘ s
5 2
e |H ADCA (32 segments / core)
C 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
#cores #cores
(a) Strong scaling. (b) Weak scaling.

Fig. 14. Scalability of the EM algorithm on an HPMM (hp160).

Divide-and-Conquer Parallelism for Learning Mixture Models 41

match each other, with load imbalance having little influence. The weak scaling
results demonstrate the great flexibility of ADCA, which is applicable to both
large tasks handling many observation items and to small tasks handling a few
observation items. In all cases, the throughput was constant and the processing
time was determined only by the size of the dataset.

4.4 Scalability on a 160-Core NUMA Machine

We evaluated strong and weak scaling for our method not only on hu080, but
also on hp160. The GMM datasets involved a total of 268,435,456 observation
items for strong scaling and 1,048,576 observation items per core for weak scal-
ing. The HPMM datasets involved a total of 134,217,728 observation items for
strong scaling and 524,288 observation items per core for weak scaling. In the
HPMM case, the number of items in each segment followed a continuous uniform
distribution for strong scaling and a Gaussian distribution for weak scaling. The
grain size was 1024. Figures 13 and 14 show the results, indicating a near-linear
speedup.

5 Conclusions

We have investigated a divide-and-conquer-based parallel computation strategy
for machine-learning algorithms. Our approach not only reduces task-scheduling
overheads dramatically, but also realizes efficient load balancing by cooperating
with a work-stealing scheduler. Furthermore, the divide-and-conquer algorithm
derives parameters without requiring mutual exclusion or atomic operations with
shared variables by using a buffering solution that avoids the bottleneck of cache-
coherence protocols in NUMA environments. We tested the scalability of our
approach with both 80-core and 160-core NUMA computers and found that
the divide-and-conquer solution achieved far superior scalability to FIFO-based
parallelization and showed robustness against load-imbalanced datasets.

In this work, we have evaluated our method only for shared-memory com-
puters with little discussion of reference locality because the buffering solution
dealt with much of the reference-locality problem effectively. However, we intend
to investigate ADCA for distributed-memory environments in future work, and
the buffering solution alone would not be sufficient provision against the greater
latency of message passing. Considering the memory access patterns of machine-
learning algorithms, there is room for improved reference locality, given that the
algorithms access observation items one by one continuously at each learning
step, and repeat the steps many times. That is, after the scheduler assigns tasks
and observation subsets to nodes before processing, enabling each task to access
only its local data, the scheduler could improve reference locality by sending the
same tasks to the same nodes at every step, as proposed by Yang et al. [26].

In other future work, our approach will seek to exploit the characteristics of
GPUs. As stated in Sect. 2.1, GPUs are hardly applicable to graphical models
on their own. Fortunately, a CPU can cooperate with a GPU by using CUDA

42 T. Kawakatsu et al.

[57,58], and a GPU could realize load balancing by cooperating with ADCA
through CUDA. As shown in Algorithm 2, our approach employs a loop at the
grain level. We expect GPUs to be able to accelerate this loop.

Acknowledgment. This work was supported by the CPS-IIP (http://www.cps.nii.
ac.jp.) project under the research promotion program for national challenges Research
and development for the realization of the next-generation IT platforms of the Ministry
of Education, Culture, Sports, Science and Technology (MEXT), Japan. The experi-
mental environment was made available by Assistant Prof. Hajime Imura at the Meme
Media Laboratory, Hokkaido University, and Yasuhiro Shirai at HP Japan Inc.

A General EM Algorithm

A.1 EM on GMM

The GMM is a popular probabilistic model described by a weighted linear sum
of K normal distributions:

K
p(x) = Zwk/\/(w§ Hks Sk)s (1)
k=1
where wy, is the weight, pty is the mean, and Sy, is the covariance matrix of the kth
normal distribution. An observation item @ is generated by a normal distribution
selected with a probability of wy. We transcribe parameters 0, = (wg, i, Sk)
for the sake of simplicity, and 0 is the set of all 6. The likelihood function £(6)
indicates how likely it is that the probabilistic model regenerates the training
dataset. Assuming independence among observation items, £(#) is equal to the
joint probability of all observation data. £ is defined in log-likelihood terms
because p(x,|0) is very small:

N K
L) = log D wiN (@n; ur, St)- (2)
n k

In the EM context, we need only maximize £. However, because a GMM is a
latent-variable model, it requires step-by-step improvement. The posterior prob-
ability g, that the nth observation item x, is generated by the kth normal
distribution is:

N(xn; pr, S
goie = 2 @nibii S) (3)

> weN (@n; p, i)
k

Of the two repeated steps, the E-step calculates g, for all pairs of data x,, and
the kth normal distribution, and the M-step updates the parameters as follows:

1 N
UA)k: = N Einm (4)

http://www.cps.nii.ac.jp
http://www.cps.nii.ac.jp

Divide-and-Conquer Parallelism for Learning Mixture Models 43

| X
(b = —— nkLn;)
fur kazn:q KT (5)

N
X 1 o)
Sk = Nap En Gnk(Tr, — fui)" (T — fr). (6)

The E-step and M-step are repeated alternately until £ converges. In practice,
the covariance matrix Sy is assumed to be a diagonal matrix and the calculation
is therefore simplified as follows:

N
A 1 N .

In the E-step, N x K ¢, is calculated, and in the M-step, g, is summed in the
N axis and the parameter 05 is updated. However, the posterior table can be
too large and can exceed the hard-disk capacity when N is very large. Because
of poor memory throughput, the processing speed will then degrade greatly. To
avoid this condition, the parallel EM algorithm requires a large memory space.

A.2 EM on HPMM

Kinoshita et al. used an HPMM to detect traffic incidents [10]. They assumed
that probe-car records follow a hierarchical PMM and that each road segment
has its own local parameters. In their model, the probability of a single record
x in a segment s is described as follows:

K
p(a)s) =D waP(x; pa), (8)
k=1
where wgy, is the kth Poisson distribution’s weight in segment s, and py, is the
kth Poisson distribution’s mean. wgy, is particular to the segment, whereas py, is
common to all segments. The log-likelihood L£(0) is defined as follows:

S
LO)=>"

where Ny is the number of records in segment s. As for GMMs, we must calculate
the posterior probability gsnr that the nth record x,, in segment s is generated
by the kth Poisson distribution for all pairs of (s,n, k) in each E-step:

N K

Z longskP(msn; BE), 9)

n=1 k=1

Wk P(Tsn; b
Qsnk = K b (k) . (10)

Z wskp(xs7b§ ,u’k)

k=1

44 T. Kawakatsu et al.

In the M-step, the weight wg; and mean py are recalculated:

R 1
Wsk = 7+ Z Qsnk, (11)

I:Lk; _ s=1n=1) (12)

Each road segment has a massive number of records, with the actual number
varying greatly from segment to segment. This implies that we should take mea-
sures against load imbalance.

References

1. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenkerand, S., Stoica, I.: Spark: clus-
ter computing with working sets. In: Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing, June 2010

2. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., MacCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, April 2012

3. Power, R., Li, J.: Piccolo: building fast, distributed programs with partitioned
tables. In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, October 2010

4. Huang, C., Chen, Q., Wang, Z., Power, R., Ortiz, J., Li, J., Xiao, Z.: Spartan:
a distributed array framework with smart tiling. In: Proceedings of the USENIX
Annual Technical Conference, July 2015

5. Dijkstra, E.W.: Cooperating sequential processes. EWD: EWD123 (1968)

6. Mohr, E., Kranz Jr., D.A., Halstead, R.H.: Lazy task creation: a technique for
increasing the granularity of parallel programs. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, May 1990

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
August 1995

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1-38
(1977)

9. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley,
Hoboken (2008)

10. Kinoshita, A., Takasu, A., Adachi, J.: Traffic incident detection using probabilistic
topic model. In: Proceedings of the Workshops of the EDBT/ICDT 2014 Joint
Conference, March 2014

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Divide-and-Conquer Parallelism for Learning Mixture Models 45

Kinoshita, A., Takasu, A., Adachi, J.: Real-time traffic incident detection using a
probabilistic topic model. Inf. Syst. 54(C), 169-188 (2015)

Pereira, S.S., Lopez-Valcarce, R., Pages-Zamora, A.: A diffusion-based EM algo-
rithm for distributed estimation in unreliable sensor networks. IEEE Signal
Process. Lett. 20(6), 595-598 (2013)

Chen, J., Salim, M.B., Matsumoto, M.: A gaussian mixture model-based continuous
boundary detection for 3d sensor networks. Sensors 10(8), 7632-7650 (2010)
Miura, K., Noguchi, H., Kawaguchi, H., Yoshimoto, M.: A low memory bandwidth
gaussian mixture model (GMM) processor for 20,000-word real-time speech recog-
nition FPGA system. In: 2008 International Conference on ICECE Technology,
December 2008

Gupta, K., Owens, J.D.: Three-layer optimizations for fast GMM computations on
GPU-like parallel processors. In: IEEE Workshop on Automatic Speech Recogni-
tion & Understanding, December 2009

Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, June 1999

Li, H., Achim, A., Bull, D.R.: GMM-based efficient foreground detection with
adaptive region update. In: Proceedings of the 16th IEEE International Conference
on Image Processing, November 2009

Patel, C.I., Patel, R.: Gaussian mixture model based moving object detection from
video sequence. In: Proceedings of the International Conference and Workshop on
Emerging Trends in Technology, February 2011

Song, Y., Li, X., Liu, Q.: Fast moving object detection using improved gaussian
mixture models. In: International Conference on Audio, Language and Image
Processing, July 2014

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. In: Neurocomputing: Foundations of Research, January 1988
Liu, Z., Li, H., Miao, G.: MapReduce-based backpropagation neural network over
large scale mobile data. In: Sixth International Conference on Natural Computa-
tion, August 2010

Gu, R., Shen, F., Huang, Y.: A parallel computing platform for training large scale
neural networks. In: IEEE International Conference on Big Data, October 2013
Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. Commun. ACM Spec. Issue
Parallelism 29(12), 1170-1183 (1986)

Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans.
Comput. C—21(9), 948-960 (1972)

Kwedlo, W.: A parallel EM algorithm for Gaussian mixture models implemented
on a NUMA system using OpenMP. In: 22nd Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), February 2014
Yang, R., Xiong, T., Chen, T., Huang, Z., Feng, S.: DISTRIM: parallel GMM
learning on multicore cluster. In: IEEE International Conference on Computer
Science and Automation Engineering (CSAE), May 2012

Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In:
Proceedings of the 25th International Conference on Machine Learning, July 2008
Kumar, N.S.L.P., Satoor, S., Buck, L.: Fast parallel expectation maximization
for gaussian mixture models on GPUs using CUDA. In: 11th IEEE International
Conference on High Performance Computing and Communications, June 2009

46

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

T. Kawakatsu et al.

Machlica, L., Vanek, J., Zajic, Z.: Fast estimation of gaussian mixture model para-
meters on GPU using CUDA. In: 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT), October 2011
Altinigneli, M.C., Plant, C., Bohm, C.: Massively parallel expectation maximiza-
tion using graphics processing units. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, August 2013
Bergstrom, L., Reppy, J.: Nested data-parallelism on the GPU. In: Proceedings of
the 17th ACM SIGPLAN International Conference on Functional Programming,
September 2012

Lee, H., Brown, K.J., Sujeeth, A.K., Rompf, T., Olkotun, K.: Locality-aware map-
ping of nested parallel patterns on GPU. In: Proceedings of eht 47th Annual
IEEE/ACM International Symposium on Microarchitecture, December 2014
Feeley, M.: A message passing implementation of lazy task creation. In: Halstead,
R.H., Ito, T. (eds.) PSC 1992. LNCS, vol. 748, pp. 94-107. Springer, Heidelberg
(1993). doi:10.1007/BFb0018649

Umatani, S., Yasugi, M., Komiya, T., Yuasa, T.: Pursuing laziness for efficient
implementation of modern multithreaded languages. In: Veidenbaum, A., Joe, K.,
Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 174-188. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-39707-6_13

Acar, U.A., Chargueraud, A., Rainey, M.: Scheduling parallel programs by work
stealing with private deques. In: Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, February 2013

Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, May 1998

Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters.
In: Fifth Conference on Partitioned Global Address Space Programming Models,
October 2011

Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task paral-
lelism on multi-socket multicore systems. In: Proceedings of the 1st International
Workshop on Runtime and Operating Systems for Supercomputers, May 2011
Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore numa systems. Int. J. High Perform. Com-
put. Appl. 26(2), 110-124 (2012)

Nakashima, J., Nakatani, S., Taura, K.: Design and implementation of a customiz-
able work stealing scheduler. In: 3rd International Workshop on Runtime and Oper-
ating Systems for Supercomputers, June 2013

Kranz, D.A., Halstead, R.H., Mohr Jr., E.: Mul-T: a high-performance parallel
lisp. In: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation, June 1989

Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: an API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, April 2008

Molka, D., Hackenberg, D., Shone, R., Muller, M.S.: Memory performance and
cache coherency effects on an intel nahalem multiprocessor system. In: 18th
International Conference on Parallel Architectures and Compilation Techniques,
September 2009

Molka, D., Hackenberg, D., Schone, R., Nagel, W.E.: Cache coherence protocol and
memory performance of the intel haswell-EP architecture. In: 44th International
Conference on Parallel Processing, September 2015

http://dx.doi.org/10.1007/BFb0018649
http://dx.doi.org/10.1007/978-3-540-39707-6_13

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Divide-and-Conquer Parallelism for Learning Mixture Models 47

Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C.,
Saraswat, V., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, October
2005

Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-
guage. In: 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, April 2004

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation, vol. 6, December 2004

Furmento, N., Goglin, B.: Enabling high-performance memory migration for mul-
tithreaded applications on Linux. In: IEEE International Symposium on Parallel
& Distributed Processing, May 2009

Lameter, C.: NUMA (non-uniform memory access): an overview. Queue 11(7), 40
(2013)

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.:
GraphLab: a new framework for parallel machine learning. In: Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, June 2010

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. In: Proceedings of the VLDB Endowment, April 2012

Hamidouche, K., Falcou, J., Etiemble, D.: A framework for an automatic hybrid
MPI+ openMP code generation. In: Proceedings of the 19th High Performance
Computing Symposia, April 2011

Si, M., Pena, A.J., Balaji, P., Takagi, M., Ishikawa, Y.: MT-MPI: multithreaded
MPI for many-core environments. In: Proceedings of the 28th ACM International
Conference on Supercomputing, June 2014

Luo, M., Lu, X., Hamidouche, K., Kandalla, K., Panda, D.K.: Initial study of multi-
endpoint runtime for MPI4+ openMP hybrid programming model on multi-core
systems. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, February 2014

Kawakatsu, T., Kinoshita, A., Takasu, A., Adachi, J.: Highly efficient paral-
lel framework: a divide-and-conquer approach. In: Chen, Q., Hameurlain, A.
Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp.
162-176. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22852-5_15

Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, June 1998

Kirk, D.B., Hwu, W.W.: Processors, Programming Massively Parallel: A Hands-on
Approach. Morgan Kaufmann, San Francisco (2010)

Nvidia. CUDA C programming guide version 6.5, August 2014

http://dx.doi.org/10.1007/978-3-319-22852-5_15

2 Springer
http://www.springer.com/978-3-662-53454-0

Transactions on Large-Scale Data- and
Knowledge-Centered Systems XXV

Special Issue on Database- and Expert-Systems
Applications

Hameurlain, A.; King, J.: Wagner, R.; Chen, Q. (Eds.)
2016, X1, 157 p. 43 illus., Softcover

ISBM: 978-3-662-53454-0

	Divide-and-Conquer Parallelism for Learning Mixture Models
	1 Introduction
	2 Parallel Computation Models
	2.1 Parallelization of Algorithms
	2.2 Parallel Execution Mechanism
	2.3 Communication Mechanism
	2.4 Parallel Computing Frameworks

	3 Parallel EM Algorithms
	3.1 Related Work
	3.2 Our ADCA Proposal

	4 Experiment and Results
	4.1 Effect of Buffering Solution
	4.2 Robustness Against Fine-Grained Parallelism
	4.3 Robustness Against Load Imbalance
	4.4 Scalability on a 160-Core NUMA Machine

	5 Conclusions
	A General EM Algorithm
	A.1 EM on GMM
	A.2 EM on HPMM

	References

