
Approximate Association via Dissociation

Jie You1,2, Jianxin Wang1, and Yixin Cao2(B)

1 School of Information Science and Engineering,
Central South University, Changsha, China

jxwang@mail.csu.edu.cn
2 Department of Computing, Hong Kong Polytechnic University,

Hong Kong, China
yixin.cao@polyu.edu.hk

Abstract. A vertex set X of a graph G is an association set if each
component of G − X is a clique, or a dissociation set if each component
of G − X is a single vertex or a single edge. Interestingly, G − X is
then precisely a graph containing no induced P3’s or containing no P3’s,
respectively. We observe some special structures and show that if none of
them exists, then the minimum association set problem can be reduced
to the minimum (weighted) dissociation set problem. This yields the first
nontrivial approximation algorithm for the association set problem, with
approximation ratio is 2.5. The reduction is based on a combinatorial
study of modular decomposition of graphs free of these special structures.
Further, a novel algorithmic use of modular decomposition enables us to
implement this approach in O(mn + n2) time.

1 Introduction

A cluster graph comprises a family of disjoint cliques, each an association. Cluster
graphs have been an important model in the study of clustering objects based
on their pairwise similarities, particularly in computational biology and machine
learning [3]. If we represent each object with a vertex, and add an edge between
two objects that are similar, we would expect a cluster graph. If this fails, a
natural problem is then to find and exclude a minimum number of vertices
such that the rest forms a cluster graph; this is the association set problem.
This problem has recently received significant interest from the community of
parameterized computation, where it is more commonly called cluster vertex
deletion [4,15]. The cardinality of a minimum association set of a graph is also
known as its distance to clusters. It is one of the few structural parameters for
dense graphs [9,10], in contrast with a multitude of structural parameters for
sparse graphs, thereby providing another motivation for this line of research. For
example, Bruhn et al. [5] recently showed that the boxicity problem (of deciding
the minimum d such that a graph G can be represented as an intersection graph

Supported in part by NSFC under grants 61572414 and 61420106009, and RGC
under grant 252026/15E.

c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 13–24, 2016.
DOI: 10.1007/978-3-662-53536-3 2

14 J. You et al.

of axis-aligned boxes in the d-dimension Euclidean space) is fixed-parameter
tractable parameterized by the distance to clusters.

The association set problem belongs to the family of vertex deletion problems
studied by Yannakakis et al. [16,18]. The task in these problems is to delete
the minimum number of vertices from a graph so that the remaining subgraph
satisfies a hereditary property; recall that a graph property is hereditary if it
is closed under taking induced subgraphs [16]. It is known that a hereditary
property can be characterized by a (possibly infinite) set of forbidden induced
subgraphs. In our case, the property is “being a cluster graph,” and the forbidden
induced subgraphs are P3’s (i.e., paths on three vertices). A trivial approximation
algorithm of ratio 3 can be derived as follows. We search for induced P3’s, and
we delete all its three vertices if one is found. This trivial upper bound is hitherto
the best known. Indeed, this is a simple application of Lund and Yannakakis’s
observation [18], which applies to all graph classes with finite forbidden induced
subgraphs.

Closely related is the cluster editing problem, which allows us to use, instead
of vertex deletions, both edge additions and deletions [3]. Approximation algo-
rithms of the cluster editing problem have been intensively studied, and the
current best approximation ratio is 2.5 [1,2,8]. Our main result is the first non-
trivial approximation algorithm for the association set problem, with a ratio
matching the best ratio of the closely related cluster editing problem. As usual,
n and m denote the numbers of vertices and edges respectively in the input
graph. Without loss of generality, we assume throughout the paper that the
input graph contains no isolated vertices (vertices of degree 0), hence n = O(m).

Theorem 1. There is an O(mn)-time approximation algorithm of ratio 2.5 for
the association set problem.

Our approach is to reduce the association set problem to the weighted disso-
ciation set problem. Given a vertex-weighted graph, the weighted dissociation set
problem asks for a set of vertices with the minimum weight such that its deletion
breaks all P3’s, thereby leaving a graph of maximum degree 1 or 0. This problem
was first studied by Yannakakis [25], who proved that its unweighted version is
already NP-hard on bipartite graphs. Note that a P3 that is not induced must
be in a triangle. Thus, in triangle-free graphs, the weighted version of the asso-
ciation set problem is equivalent to the weighted dissociation set problem. It is
easy to observe that for the association set problem, vertices in a twin class (i.e.,
whose vertices have the same closed neighborhood) are either fully contained in
or disjoint from a minimum solution. This observation inspires us to transform
the input graph G into a vertex-weighted graph Q by identifying each twin class
of G with a vertex of Q whose weight is the size of the corresponding twin class.
We further observe that there are five small graphs such that if G has none
of them as an induced subgraph, then Q either has a simple structure, hence
trivially solvable, or is triangle-free, and can be solved using the ratio-2 approx-
imation algorithm for the weighted dissociation set problem [21,22]. From the
obtained solution for Q we can easily retrieve a solution for the original graph

Approximate Association via Dissociation 15

G. Since each of these five graphs has at most five vertices and at least two of
them need to be deleted to make it free of induced P3’s, the approximation ratio
2.5 follows.

The main idea of this paper appears in the argument justifying the reduction
from the (unweighted) association set problem to the weighted dissociation set
problem. Indeed, we are able to provide a stronger algorithmic result that implies
the aforementioned combinatorial result. We develop an efficient algorithm that
detects one of the five graphs in G, solves the problem completely, or determines
that Q is already triangle-free. Our principal tool is modular decomposition.
A similar use of modular decomposition was recently invented by the authors [17]
in parameterized algorithms. It is worth noting that the basic observation on
vertex deletion problems to graph properties with finite forbidden induced sub-
graphs has been used on both approximation and parameterized algorithms, by
Lund and Yannakakis [18] and by Cai [6] respectively.

After a preliminary version of this work appeared in arxiv, Fiorini et al. [11]
managed to further improve the ratio to 7/3. The first part of their algorithm
is similar as ours, with more small induced subgraphs taken into consideration,
while their analysis, using the “local ratio” technique, is quite different from
ours.

As a final remark, cluster editing has a 2k-vertex kernel [7], while it remains
an open problem to find a linear-vertex kernel for the association set (cluster
vertex deletion) problem.

2 Preliminaries

This paper will be only concerned with undirected and simple graphs. The vertex
set and edge set of a graph G are denoted by V (G) and E(G) respectively. For
� ≥ 3, let P� and C� denote respectively an induced path and an induced cycle
on � vertices. A C3 is also called a triangle. For a given set F of graphs, a
graph G is F-free if it contains no graph in F as an induced subgraph. When
F consists of a single graph F , we use also F -free for short. For each vertex v
in V (G), its neighborhood and closed neighborhood are denoted by NG(v) and
NG[v] respectively.

A subset M of vertices forms a module of G if all vertices in M have the same
neighborhood outside M . In other words, for every pair of vertices u, v ∈ M ,
a vertex x �∈ M is adjacent to u if and only if it is adjacent to v as well. The
set V (G) and all singleton vertex sets are modules, called trivial. A graph on at
least four vertices is prime if it contains only trivial modules, e.g., a P4 and a
C5. Given any partition {M1, . . . ,Mp} of V (G) such that Mi for every 1 ≤ i ≤ p
is a module of G, we can derive a p-vertex quotient graph Q such that for any
pair of distinct i, j with 1 ≤ i, j ≤ p, the ith and jth vertices of Q are adjacent
if and only if Mi and Mj are adjacent in G (every vertex in Mi is adjacent to
every vertex in Mj). It should be noted that a single-vertex graph and G itself
are both trivial quotient graphs of G, defined by the trivial module partitions
{V (G)} and {{v1}, . . . , {vn}} respectively.

16 J. You et al.

A module M is strong if for every other module M ′ that intersects M , one of
M and M ′ is a proper subset of the other. All trivial modules are clearly strong.
We say that a strong module M different from V (G) is maximal if the only strong
module properly containing M is V (G). (It can be contained by non-strong
modules, e.g., in a graph that is a clique, the maximal strong modules are simply
the singletons, while every subset of vertices is a module.) The set of maximal
strong modules of G partitions V (G), and defines a special quotient graph of G,
denoted by ˜Q(G).1 The reader who is unfamiliar with modular decomposition is
referred to the survey of Habib and Paul [13] for more information. The following
proposition will be crucial for our algorithm.

Proposition 1. [12,20] If a graph G is connected, then ˜Q(G) is either a clique
or prime. Any prime graph contains an induced P4.

Let Q be a quotient graph of G, and let M be a module of G in the module
partition defining Q. By abuse of notation, we will also use M to denote the
corresponding node of Q; hence M ∈ V (Q) and M ⊆ V (G), and its meaning
will be clear from context. Accordingly, by NG(M) we mean those vertices of G
adjacent to M in G, and by NQ(M) we mean those nodes of Q adjacent to M in
Q—note that the union of those vertices of G represented by NQ(M) is exactly
NG(M). Sets NG[M] and NQ[M] are understood analogously.

The weighted versions of the associated set problem and the dissociation set
problem are formally defined as follows.

Associated set

Input: A vertex-weighted graph G.
Task: find a subset X ⊂ V (G) of the minimum weight such that every compo-

nent of G − X is a clique.

Dissociation set

Input: A vertex-weighted graph G.
Task: find a subset X ⊂ V (G) of the minimum weight such that every compo-

nent of G − X is a single vertex or a single edge.

Let asso(G) and diss(G) denote respectively the weights of minimum asso-
ciation sets and minimum dissociation sets of a weighted graph G. It is routine
to verify that asso(G) ≤ diss(G). Their gap can be arbitrarily large, e.g., if G
is a clique on n vertices, then asso(G) = 0 and diss(G) = n−2. A vertex set X
is an association set or a dissociation set of a graph G if and only if G − X con-
tains no P3 as an induced subgraph or as a subgraph, respectively. The following
proposition follows from the fact that every P3 in a C3-free graph is induced.

1 If G is a clique or an independent set, then ˜Q(G) is isomorphic to G and is the largest

quotient graph of G; if ˜Q(G) is prime, then it is the smallest nontrivial quotient graph
of G, both cardinality-wise and inclusion-wise (see Lemma 5). Otherwise, there can

be other quotient graph larger or smaller than ˜Q(G).

Approximate Association via Dissociation 17

Proposition 2. If a graph G is C3-free, then asso(G) = diss(G).

Theorem 2 ([21,22]). There is an O(mn)-time approximation algorithm of
ratio 2 for the weighted dissociation set problem.

Note that an unweighted graph can be treated as a special weighted graph
where every vertex receives a unit weight. In this case, asso(G) is the same as
the cardinality of the minimum association set of G.

A {C4, P4}-free graph is called a trivially perfect graph. A vertex is universal
if it is adjacent to all other vertices in this graph, i.e., has degree n−1. It is easy
to verify that each universal vertex is a maximal strong module of the graph.

Proposition 3 ([14,23,24]). Every connected trivially perfect graph has a uni-
versal vertex. One can in O(m)-time either decide that a graph is a trivially
perfect graph, or detect an induced P4 or C4.

3 The Approximation Algorithm

The association set problem admits a naive 3-approximation algorithm [18]. It
finds an induced P3 and deletes from G all the three vertices in this P3, and
repeats. Since any minimum association set has to contain some of the three
vertices, the approximation ratio is at most 3. A P3 can be found in linear time,
while the process can be repeated at most n/3 times, and thus the algorithm can
be implemented in time O(mn). We present here a very simple 2.5-approximation
algorithm, which runs in a high-order polynomial time, and we will show in the
next section how to implement it in an efficient way to achieve the running time
claimed in Theorem 1.

Fig. 1. Small subgraphs on 4 or 5 vertices.

Let F denote the set of five small graphs depicted in Fig. 1, i.e., {C4, bull,
dart, fox, gem}. A quick glance of Fig. 1 convinces us that from each induced
subgraph in F , at least two vertices need to be deleted to make it P3-free.

Proposition 4. Let X ⊆ V (G). If G[X] ∈ F , then asso(G − X) ≤ asso(G)−2.

In polynomial time we can decide whether G contains an induced subgraph
in F , and find one if it exists. We delete all its vertices if it is found. If G
is not connected, then we work on its components one by one. In the rest of
this section we may focus on connected F-free graphs. In such a graph, every

18 J. You et al.

nontrivial module M induces a {C4, P4}-free subgraph: A P4 in G[M], together
with any v ∈ NG(M) (it exists because G is connected and M is nontrivial),
makes a gem.

One may use the definition of modular decomposition to derive the following
combinatorial properties of F-free graphs. Since we will present a stronger result
in the next section that implies this lemma, its proof is omitted here.

Lemma 1. Let G be an F-free graph that is not a clique, and let Q = ˜Q(G).
Either G consists of a set of universal vertices and two disjoint cliques, or Q is
C3-free and the following hold for every maximal strong module M of G:

(1) The subgraph G[M] is a cluster graph. If it is not a clique, then |NG(M)| = 1.
(2) If |NQ(M)| > 2, then the module M is trivial (consisting of a single vertex

of G).

In the first case, G has simply two intersecting cliques C1 and C2, and the
problem is trivial: We delete either C1 ∩ C2 (i.e., all universal vertices), or one
of C1 \ C2 and C2 \ C1, whichever is smaller. Therefore, we focus on the other
case where ˜Q(G) is C3-free. If some maximal strong module M does not induce
a clique in a connected F-free graph G, then we can delete the unique neighbor
of M and consider the smaller graph G−NG[M]. Now that G is not a clique but
every maximal strong module M of G is, we can define a vertex-weighted graph
Q isomorphic to the quotient graph ˜Q(G), where the weight of each vertex in
Q is the number of vertices in the corresponding module, i.e., |M |. We apply
the algorithm of Tu and Zhou [21] to find a dissociation set of this weighted
graph Q. Since Q is C3-free, by Proposition 2 and Theorem 2, the total weight
of the obtained dissociation set is at most 2diss(Q) = 2asso(Q) = 2asso(G).
Putting together these steps, an approximation algorithm with ratio 2.5 follows
(see Fig. 2).

Theorem 3. The output of algorithm approx-asso(G) is an association set of
the input graph G and its size is at most 2.5asso(G).

4 An Efficient Implementation

We now discuss the implementation issues that lead to the claimed running time.
A simpleminded implementation of the algorithm given in Fig. 2 takes O(n6)
time, which is decided by the disposal of induced subgraphs in F (step 3). It
is unclear to us how to detect them in a more efficient way than the O(n5)-
time enumeration. But we observe that what we need are no more than the
conditions stipulated in Lemma 1, for which being F-free is sufficient but not
necessary. The following relaxation is sufficient for our algorithmic purpose: We
either detect an induced subgraph in F or determine that G has already satisfied
these conditions. Once a subgraph is found, we can delete all its vertices and
repeat the process. In summary, we are after an O(mn)-time procedure that
finds a set of subgraphs in F such that its deletion leaves a graph satisfying the
conditions of Lemma 1.

Approximate Association via Dissociation 19

Fig. 2. Outline of the approximation algorithm for association set.

Toward this end a particular obstacle is the C3-free condition in the second
case of Lemma 1. Indeed, the detection of triangles in linear time is a notorious
open problem that we are not able to solve. Therefore, we may have to aban-
don the simple “search and remove” approach. The first idea here is that we
may dispose of all triangles of ˜Q(G) in O(mn) time. This is, however, still not
sufficient, because after deleting a set X of some vertices, its maximal strong
modules change, and more importantly, ˜Q(G − X) may not be an (induced)
subgraph of ˜Q(G); see, e.g., Fig. 3. Our observation is that ˜Q(G − X) is either
a clique, an independent set, or an induced subgraph of ˜Q(G[M]) for some (not
necessarily maximal) strong module M of G.

We start from recalling some simple facts about modular decomposition.
For each maximal strong module M of G, we can further take the maximal
strong modules and the quotient graph ˜Q(G[M]). This process can be recursively
applied until every module consists of a single vertex. If we represent each module
used in this process as a node, and add edges connecting every M with all
maximal strong modules of G[M], we obtain a tree rooted at V (G), called the
modular decomposition tree of G. The nodes of the modular decomposition tree
are precisely all strong modules of G, where the leaves are all singleton vertex
sets, and for every non-leaf node M , its children are the maximal strong modules
of G[M] [12]. It is known that the modular decomposition tree can be constructed
in linear time [19].

Proposition 5. If ˜Q(G) is prime, then every nontrivial quotient graph of G

contains ˜Q(G) as an induced subgraph.

20 J. You et al.

Fig. 3. ˜Q(G[U]) may not be an induced subgraph of ˜Q(G).

On the one hand, since V (G) itself is a strong module of G, every vertex set
U ⊆ V (G) is contained in some strong module. On the other hand, since two
strong modules are either disjoint or one containing the other, there is a unique
one that is inclusion-wise minimal of all strong modules containing U .

Theorem 4. Let U ⊆ V (G) be a subset of vertices of G, and let M be the
inclusion-wise minimal strong module of G that contains U . If ˜Q(G[U]) is prime,
then it is a subgraph of ˜Q(G[M]) induced by those maximal strong modules of
G[M] that intersect U .

We remark that if ˜Q(G[U]) is a clique or independent set, then it is not
necessarily an induced subgraph of ˜Q(G[M]); see, e.g., Fig. 3.

We are now ready to present the efficient implementation for the first phase,
which would replace the first three steps of algorithm approx-asso (Fig. 2).

Lemma 2. In O(mn) time we can find a set H of disjoint induced subgraphs of
G such that each H ∈ H is in F and G − ⋃

H∈H V (H) satisfies the conditions
of Lemma 1.

Proof. We use the procedure described in Fig. 4. Step 0 is trivial. Step 1 uses the
algorithm of McConnell and Spinrad [19], and step 2 uses simple enumeration,
i.e., for each edge uv, we find all the common neighbors of u and v, which can
be done in time O(nm). This leads the disposal of triangles in step 3. During
its progress, a maximal strong module M of the input graph G may not remain
a maximal strong module of the current graph (i.e., G − X). But if M is not
completely deleted (i.e., M �⊆ X), then its remnant (i.e., M \ X) is always a
module of G − X.

Note that the three modules in each triangle must have the same parent in
the modular decomposition tree. For each triangle {M1,M2,M3}, we focus on
their parent M (in the modular decomposition tree) and the subgraph G[M]
(step 3.1). All the modules mentioned in steps 3.2–3.7 are maximal strong mod-
ules of subgraph G[M]; they correspond to V (Q). If either of the conditions of
steps 3.2 and 3.3 is true, then the triangle has been disposed of and we can
continue to the next one. If the deletion of vertices in previous iterations has

Approximate Association via Dissociation 21

Fig. 4. Procedure for the first phase.

22 J. You et al.

made NQ[Mi] = NQ[Mj] for some 1 ≤ i < j ≤ 3, then Mi ∪ Mj is a module of
G[M \ X]. Note that after they are merged, both Mi and Mj refer to the new
module. Now that the procedure has passed steps 3.2–3.4, for each 1 ≤ i < j ≤ 3,
we can find a module adjacent to only one of Mi and Mj . This justifies step 3.5,
and we may assume without loss of generality that the module M ′ is adjacent
to M2 but not M1; the other case can be dealt with a symmetric way, which is
omitted. In step 3.6, depending on the adjacency between M ′′ and M1,M

′, we
are in one of the following three cases: − if M ′′ is adjacent to neither of M1,M

′,
then there is a dart; − if M ′′ is adjacent to precisely one of M1,M

′, then there
is a gem; or − otherwise (M ′′ is adjacent to both of M1,M

′), there is a C4;
This forbidden subgraph can be constructed by taking one vertex from each

of M1,M2,M3,M
′, and M ′′. We can actually find min{|M1|, |M2|, |M3|, |M ′|,

|M ′′|} number of gems or darts, or min{|M1|, |M3|, |M ′|, |M ′′|} number of C4’s,
which we all move into X. It is similar for step 3.7.

After step 3, G might become disconnected. Then we work on its components
one by one. Steps 4.1 and 4.2 are simple. The fact that the quotient graph Q built
in step 4.3 is either a clique or is C3-free can be argued using Theorem 4. Suppose
for contradiction that Q is not a clique but contains a C3; by Proposition 1,
Q is prime. Then by Theorem 4, Q is a subgraph of ˜Q(G[M]) for some strong
module M of G. Let {M1,M2,M3} be the triangle of ˜Q(G[M]) corresponding to
a triangle in Q. But in step 3, either one of {M1,M2,M3} has been completely
put into X, or two of them have been merged (then unless Q is a clique or
an independent set, they will always be in the same maximal strong module).
Therefore, Q must be C3-free if it is not a clique.

Note that the algorithm enters at most one of steps 4.4–4.8. The correctness
of step 4.4 is clear. If Q is a clique and it passes step 4.4, then all but one maximal
strong module are trivial: Recall that each universal vertex is a maximal strong
module. A P4 of M together with a vertex in NG(M) makes a gem (4.5.1). Now
that G[M] is {P4, C4}-free, and has no universal vertex (a universal vertex of
G[M] is a universal vertex of G as well), according to Proposition 3, G[M] is
disconnected. Since step 4.2 does not apply, in step 4.5.2, at least one component
is not a clique, and has a P3, which, together with a vertex u ∈ NG(M) and any
vertex from another component of G[M], makes a dart. Otherwise (step 4.5.3),
G[M] has at least three components, and we can find a fox by taking three
vertices from different components of G[M] and two vertices from NG(M): Recall
that when it enters step 4.5, G must have at least two universal vertices. In
step 4.6, Q is not a clique, and assume that there is a module M that is not
a cluster, then it must be {P4, C4}-free since the same reason as step 4.5.1.
Now that if M is not connected, then a P3 can be found in some component,
which, together with some vertex in some other component of M and a vertex in
NG(M), forms a dart. Therefore, M is connected and contains a P3. It is sure that
NG(N [M]) is not empty since Q is not a clique, thus a dart can be found: Recall
that if there are only two modules then G[M] cannot have universal vertices.
After step 4.6, Q is always C3-free. Therefore, modules M1,M2 in step 4.7 and
modules M1,M2,M3 in step 4.8 are (pairwise) nonadjacent.

Approximate Association via Dissociation 23

If G consists of two intersecting cliques, the procedure returns at step 4.2.
Hence we may assume that it is not the case. The quotient graph ˜Q(G) is C3-
free because Theorem 4 and the algorithm has passed step 4.5. Conditions (1)
and (2) of Lemma 1 follow from the correctness argument for steps 4.6–4.8. We
now calculate the running time of the procedure. Note that the total number of
edges of the subgraphs induced the strong modules of G is upper bounded by
m. Thus, all the triangles can be listed in O(mn) time in step 2. Each iteration
of step 3 takes O(m) time, and it decreases the order of Q by at least one, and
thus step 3 takes O(mn) time in total. Each iteration of step 4 takes O(m) time,
and it decreases the order of G by at least one, and hence step 4 takes O(mn)
time in total. This concludes the proof of this lemma. 	

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), (Article 23) 1–27 (2008). doi:10.1145/1411509.
1411513. A preliminary version appeared in STOC 2005

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1),
89–113 (2004). doi:10.1023/B:MACH.0000033116.57574.95. A preliminary version
appeared in FOCS 2002

3. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Com-
put. Biol. 6(3/4), 281–297 (1999). doi:10.1089/106652799318274

4. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016). doi:10.
1007/s00224-015-9631-7

5. Bruhn, H., Chopin, M., Joos, F., Schaudt, O.: Structural parameterizations for
boxicity. Algorithmica 74(4), 1453–1472 (2016). doi:10.1007/s00453-015-0011-0.
A preliminary version appeared in WG 2014

6. Cai, L.: Fixed-parameter tractability of graph modification problems for
hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996). doi:10.1016/
0020-0190(96)00050-6

7. Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica
64(1), 152–169 (2012). doi:10.1007/s00453-011-9595-1

8. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005). doi:10.1016/j.jcss.2004.10.012. A pre-
liminary version appeared in FOCS 2003

9. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014).
doi:10.1007/s00224-013-9499-3

10. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012)

11. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting
3-vertex paths. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682,
pp. 238–249. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33461-5 20

12. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scien-
tiarum Hungaricae 18, 25–66 (1967). (Trans: Maffray, F., Preissmann, M.: Perfect
Graphs. In: Ramı́rez-Alfonśın, J.L., Reed, B.A. (eds.), pp. 25–66. Wiley (2001).
doi:10.1007/BF02020961

http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://dx.doi.org/10.1089/106652799318274
http://dx.doi.org/10.1007/s00224-015-9631-7
http://dx.doi.org/10.1007/s00224-015-9631-7
http://dx.doi.org/10.1007/s00453-015-0011-0
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1007/s00453-011-9595-1
http://dx.doi.org/10.1016/j.jcss.2004.10.012
http://dx.doi.org/10.1007/s00224-013-9499-3
http://dx.doi.org/10.1007/978-3-319-33461-5_20
http://dx.doi.org/10.1007/BF02020961

24 J. You et al.

13. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010). doi:10.1016/j.cosrev.2010.01.001

14. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)

15. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010).
doi:10.1007/s00224-008-9150-x

16. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary proper-
ties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). doi:10.1016/
0022-0000(80)90060-4. Preliminary versions independently presented in STOC
1978

17. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: branching
facilitated by modular decomposition. Theoret. Comput. Sci. 573, 63–70 (2015).
doi:10.1016/j.tcs.2015.01.049

18. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In:
Lingas, A., Karlsson, R.G., Carlsson, S. (eds.) Automata, Languages, Programming
(ICALP). LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993). doi:10.1007/
3-540-56939-1 60

19. McConnell, R.M., Spinrad, J.P.: Modular decomposition, transitive orientation.
Discrete Math. 201(1–3), 189–241 (1999). doi:10.1016/S0012-365X(98)00319-7.
Preliminary versions appeared in SODA 1994 and SODA 1997

20. Sumner, D.P.: Graphs indecomposable with respect to the X-join. Discrete Math.
6(3), 281–298 (1973). doi:10.1016/0012-365X(73)90100-3

21. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover P3

problem. Inf. Process. Lett. 111(14), 683–686 (2011). doi:10.1016/j.ipl.2011.04.
009

22. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover
P3 problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011). doi:10.1016/j.tcs.
2011.09.013

23. Wolk, E.S.: The comparability graph of a tree. Proc. Am. Math. Soc. 13, 789–795
(1962). doi:10.1090/S0002-9939-1962-0172273-0

24. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math.
69(3), 247–255 (1996). doi:10.1016/0166-218X(96)00094-7

25. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981). doi:10.1137/0210022

http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1007/s00224-008-9150-x
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/j.tcs.2015.01.049
http://dx.doi.org/10.1007/3-540-56939-1_60
http://dx.doi.org/10.1007/3-540-56939-1_60
http://dx.doi.org/10.1016/S0012-365X(98)00319-7
http://dx.doi.org/10.1016/0012-365X(73)90100-3
http://dx.doi.org/10.1016/j.ipl.2011.04.009
http://dx.doi.org/10.1016/j.ipl.2011.04.009
http://dx.doi.org/10.1016/j.tcs.2011.09.013
http://dx.doi.org/10.1016/j.tcs.2011.09.013
http://dx.doi.org/10.1090/S0002-9939-1962-0172273-0
http://dx.doi.org/10.1016/0166-218X(96)00094-7
http://dx.doi.org/10.1137/0210022

http://www.springer.com/978-3-662-53535-6

	Approximate Association via Dissociation
	1 Introduction
	2 Preliminaries
	3 The Approximation Algorithm
	4 An Efficient Implementation
	References

