
Differential Erasure Codes for Efficient Archival
of Versioned Data in Cloud Storage Systems

J. Harshan(B), Anwitaman Datta, and Frédérique Oggier

Nanyang Technological University, Singapore, Singapore
jharshan@ntu.edu.sg

Abstract. In this paper, we study the problem of storing an archive
of versioned data in a reliable and efficient manner. The proposed tech-
nique is relevant in cloud settings, where, because of the huge volume of
data to be stored, distributed (scale-out) storage systems deploying era-
sure codes for fault tolerance is typical. However existing erasure coding
techniques do not leverage redundancy of information across multiple
versions of a file. We propose a new technique called differential erasure
coding (DEC) where the differences (deltas) between subsequent versions
are stored rather than the whole objects, akin to a typical delta encod-
ing technique. However, unlike delta encoding techniques, DEC oppor-
tunistically exploits the sparsity (i.e., when the differences between two
successive versions have few non-zero entries) in the updates to store the
deltas using sparse sampling techniques applied with erasure coding. We
first show that DEC provides significant savings in the storage size for
versioned data whenever the update patterns are characterized by in-
place alterations. Subsequently, we propose a practical DEC framework
so as to reap storage size benefits against not just in-place alterations
but also real-world update patterns such as insertions and deletions that
alter the overall data sizes. We conduct experiments with several syn-
thetic and practical workloads to demonstrate that the practical variant
of DEC provides significant reductions in storage-overhead.

Keywords: Cloud storage · Backup and recovery · Fault tolerance ·
Erasure coded storage

1 Introduction

Over the last decade, cloud storage services have revolutionized the way we
store and manage our digital data. Due to massive advances in the internet-,
wireless-, and storage-technologies, plenty of file hosting services are nowadays
offering storage and/or computing facilities to store huge amounts of data that
are accessible from various locations on different devices and platforms. From
an engineering view point, developing such ubiquitous cloud storage services
necessitates in-depth understanding of, (i) reliability: how to store data across
a network by guaranteeing a certain fault tolerance against failure of storage
devices? (ii) security: how to protect data from security threats, both by a passive
c© Springer-Verlag GmbH Germany 2016
A. Hameurlain et al. (Eds.): TLDKS XXX, LNCS 10130, pp. 23–65, 2016.
DOI: 10.1007/978-3-662-54054-1 2

24 J. Harshan et al.

Fig. 1. Schematic depicting typical cloud storage application where multiple users
access data from the cloud facility. In this illustrative figure, users are accessing and
editing Wikipedia pages thereby creating a repository of multiple versions. Our work
addresses a new framework of distributed storage systems for versioned data, aiming
to lay foundations to new system architectures for cloud storage utilities supporting
multiple versions.

adversary which is interested in reading the stored data, and also by an active
one which is keen on manipulating the existing data? and (iii) availability: how
to spread data across the network so as to speed up synchronization between
client devices and the cloud. Each of the above aspects is a specialized area of
study in this field, and all have been active areas of research.

In this work, we address the reliability aspect in cloud storage wherein we are
interested in developing efficient ways of storing, accessing and modifying data in
the cloud, while at the same time guaranteeing a certain level of fault tolerance
against device (node) failures. In cloud storage networks, redundancy of the
stored data is critical to ensure fault tolerance against node failures. While data
replication remains a practical way of realizing this redundancy, the past years
have witnessed the adoption of erasure codes for data archival, e.g. in Microsoft
Azure [1], Hadoop FS [2], or Google File System [3], which offer a better trade-
off between storage-overhead and fault tolerance. Thus, design of erasure coding
techniques amenable to reliable and efficient storage has accordingly garnered a
huge attention [5,9]. Once the reliability aspect of erasure codes for standalone
objects is better understood, it is natural to question the reliability of versioned
data. The need to store multiple versions of data arises in many scenarios. For
instance, when editing and updating files, users may want to explicitly create
a version repository using a framework like SVN [6]. Cloud based document
editing or storage services also often provide the users access to older versions
of the documents, e.g., Google Docs, Microsoft’s Office 365, and Apple’s iWork.
See Fig. 1 for an illustrative example where multiple users access/modify data

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 25

on Wikipedia thereby creating a versioned repository. Another scenario is that
of system level back-up, where directories, whole file systems or databases are
archived - and versions refer to the different system snapshots. Example systems
include Dropbox which provides backup storage over which several users can
collaborate creating multiple versions of data. In either of the two file centric
settings, irrespective of whether a working copy used during editing is stored
locally or on the cloud, or in a system level back up, say using copy-on-write
[7], the back-end storage system needs to preserve the different versions reliably,
and can leverage on erasure coding for reducing the storage-overheads.

1.1 Significance and Applications

It is well known that versioning systems get rid of duplicated contents across
subsequent versions of a file. The main objective of versioning is to store only
the changes from the preceding versions so as to reduce the overall storage size,
and yet be able to accurately reconstruct any version requested by a user. In
general, versioning concept falls within a broad topic of deduplication, that works
on a plethora of files over space and time, and not only on temporal changes
of a file. Meanwhile, in distributed storage systems erasure coding has gained
enormous attention as it provides reduced storage-overhead when compared with
the replication scheme. Although erasure coding schemes and architectures have
been applied on standalone data objects in the past, the literature on erasure
coding to versioned data is scarce. One possible reason for scarcity might be the
possibility of a straightforward option to apply erasure coding on the changes
(deltas), i.e., to treat versioning and erasure coding as independent entities. In
this work, we explore a new direction to develop a close-coupled compression
and erasure coding technique that can reduce the complexity of the versioning
system and still yield high fault tolerance and significant storage gains. This work
develops on our preliminary work in [18], where an erasure coding technique was
proposed to reduce the I/O gains when retrieving multiple versions of data.

Applications for retrieving versioned archive include software development
environments wherein multiple versions of modules are developed by different
members of the project, and are often checked into the system at different time
instants, e.g. management of software files over CVS. In such applications, the
system administrator or the project/team lead would need to retrieve multi-
ple versions at once in order to perform consistency checks and/or to possibly
merge the contents based on the nature of changes. In back-up applications like
“time machine”(where there is no revision history, etc. in contrast to a SVN like
application), even if the user may eventually check out a few random versions to
locate the version they want, it is often desirable to prefetch several subsequent
versions so that the user can browse through them and also navigate consecutive
versions to identify the one that is finally needed. There, our strategy will have
a superior performance.

26 J. Harshan et al.

1.2 Related Works

Erasure codes have been extensively deployed in practical distributed storage
systems for efficient and reliable storage of data [8]. Their choice over the stan-
dard replication technique comes as a natural course of action since erasure codes
were proven to reduce the storage-overhead while maintaining a given fault toler-
ance level. However, in the recent past, with the objective of maintaining storage
systems intact despite high failure rate of devices, [4], a plethora of new erasure
code constructions have surfaced to not only reduce the storage-overhead but
also facilitate low-complexity repair process for recovering lost data [1]. Since
then most works have focused on distributed storage architectures for storing
stand-alone objects, and not many have addressed the aspect of efficiently stor-
ing multiple versions of data. The topic of erasure coding for versioned data is
loosely related to the issues of efficient updates [12–15], and of deduplication [16],
which is the process of eliminating duplicate data blocks in order to eliminate
unnecessary redundancy. Existing works on update of erasure coded data focus
on the computational and communication efficiency in carrying out the updates,
with the goal to store only the latest version of the data, and thus do not delve
into efficient storage or manipulation of the previous versions. Recently, Wang
and Cadambe [10] have addressed multi-version coding for distributed data,
where the underlying problem is to encode different versions so that certain
subsets of storage nodes can be accessed to retrieve the most common version
among them. Their strategy has been shown applicable when the updates for
the latest version do not reach all the nodes, possibly due to network problems.
More recently, in [11], the authors have considered the problem of synchroniz-
ing data in storage networks under an edit model that includes deletions and
insertions. They propose several variants of erasure codes that allow updates
on the parity check values with low-bit rates and small storage-overhead. Apart
from [10,11] that nearly touch upon the subject of storing versioned data, not
many contributions exist in the literature that explicitly address erasure coding
schemes for versioned data.

Capitalizing on the advances in erasure coding techniques for distributed
storage, a straightforward option is to apply erasure coding on deltas of a ver-
sioning scheme. One such well-known scheme is Rsync [19], which is widely used
for file transfer and synchronization across networks. The key idea behind Rsync
is the rolling checksum computation, using which only the modified/new blocks
between successive versions are transferred, thereby reducing the communication
bandwidth. When such algorithms are applied to store versioned data, signifi-
cant reduction in storage size is expected. Thus, Rsync scheme indirectly falls
in the related works section of this topic. In [18] (extended abstract available in
[17]), we have proposed erasure codes for storing multi-versioned data to ben-
efit purely in terms of I/O, and for objects of fixed size. This paper develops
on [18] to not only provide I/O benefits, but also to yield total storage savings
when storing different versions of data. Furthermore, various system-level imple-
mentation issues of this work have been discussed in [24]. So this contribution
distinguishes from [18,24] by exploring new erasure coding techniques that suit

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 27

the underlying versioning model. In the next section, we summarize the key idea
of this paper.

1.3 The Key Idea

Sparse Signal Recovery (SSR) [20] has garnered widespread applications as a
powerful signal processing technique that can extract and store sparse signals
with significantly fewer measurements than its conventional counterparts. In this
paper, we explore how SSR ideas can be adapted by the storage community to
facilitate reduced storage size for big data in cloud storage networks. In this
context, the word signal refers to a vector of real numbers (with respect to some
basis), whereas a sparse signal refers to one with fewer non-zero components
compared to the length of the vector. Some applications of SSR include audio and
video processing, medical imaging, and communication systems, where the signal
acquisition process projects the desired sparse signal into a lower-dimensional
space, and then appropriately recovers the higher-dimensional sparse signal from
the lower-dimensional signal. Although SSR techniques are widely applied to
signals over real numbers, this topic is also extendable to finite fields [21]. An
illustrative example is discussed in Fig. 2. Now, the reader may ask, how does
one obtain sparse vectors in storage systems? The answer lies in the fact that
when different versions of data object are stored, there is a possibility of a user
introducing few changes between subsequent versions, which in turn may result
in sparse difference vectors.

Fig. 2. An example to illustrate the possibility of recovering a sparse vector from a
lower-dimensional vector. In this example, input vector which is 2-sparse (only two
non-zero components irrespective of the positions) can be accurately recovered with 4
observations over the finite field F17 = {0, 1, 2, · · · , 16}, where arithmetic operations
are over modulo 17.

28 J. Harshan et al.

1.4 Contributions

The contributions of this work are summarized below:

– We propose a new differential erasure coding (DEC) framework that falls
under the umbrella of delta encoding techniques, where the differences (deltas)
between subsequent versions are stored rather than the whole objects. The
proposed technique exploits the sparsity in the differences among versions by
applying techniques from sparse sampling [20], in order to reduce the storage-
overhead (see Sects. 2 and 3). We have already proposed the idea of combining
sparse sampling with erasure coding in [18], where we studied the benefits
purely in terms of I/O, and for objects of fixed size. While retaining the
combination of sparse sampling and erasure coding, this work introduces a
different erasure coding strategy which provides storage-overhead benefits.

– We first present a simplistic layout of DEC that relies on fixed object lengths
across successive versions of the data, so as to evaluate the right choice of
erasure codes to store versioned data. We show that when all the versions are
fetched in ensemble, there is also an equivalent gain in I/O operations. This
comes at an increased I/O overhead when accessing individual versions. We
accordingly propose some heuristics to optimize the basic DEC, and demon-
strate that they ameliorate the drawbacks adequately without compromising
the gains at all. Further, we show that the combination of sparse sampling
and erasure coding yields other practical benefits such as the possibility of
employing fewer erasure codes against different sparsity levels of the update
patterns. (see Sect. 4).

– In the later part of this paper, we extend the preliminary ideas of DEC to
develop a framework for practical DEC that is robust to real-world update
patterns across versions such as insertions and deletions which may alter the
overall size of the data object. Along that direction, we acknowledge that
insertions and deletions may ripple changes across the object at the coding
granularity, and may also increase the object size. Such rippling effect could
in particular render DEC useless, and obliterate the consequent benefits. We
apply the zero-padding idea introduced in [24] to ameliorate the aforemen-
tioned problems of insertions and deletions (see Sect. 5).

– For storing versioned data, the total storage size for deltas inclusive of zero
pads (prior to erasure coding) is used as the metric to evaluate the quantum
and placement of zero pads against a wide range of workloads that include
insertions and deletions, both bursty and distributed in nature (see Sect. 6).
We compare the storage savings offered by the practical DEC technique with
the standard baselines against both synthetic and practical datasets. The
baselines include (i) a non-differential scheme, where different versions of a
data object are encoded in full without exploiting the sparsity across them,
(ii) selective encoding scheme, wherein only modified blocks between the ver-
sions are stored, (iii) Rsync, a delta encoding technique for file transfer and
synchronization across networks, and (iv) gz compression algorithm applied
on individual versions to reduce the storage size of each version. Among the

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 29

four baselines, we show that DEC outperforms (i), (ii) and (iv), in terms of
storage size, while trades-off storage size to computational complexity when
compared with (iii). We use Wikipedia datasets to showcase the impact of
DEC scheme on practical datasets.

1.5 System Model for Version Management

Any digital content to be stored, be it a file, directory, database, or a whole file
system, is divided into data chunks, shown as phase 1 in Fig. 3. The proposed
coding techniques are agnostic of the nuances of the upper levels, and all subse-
quent discussions will be at the granularity of these chunks, which we will refer
to as data objects or just objects.

Formally, we denote by x ∈ F
k
q a data object to be stored over a network,

that is, the object is seen as a vector of k blocks (phase 2) taking value in the
alphabet Fq, with Fq the finite field with q elements, q a power of 2 typically.
Encoding for archival of an object x across n nodes is done (phase 3) using an
(n, k) linear code, that is x is mapped to the codeword

c = Gx ∈ F
n
q , n > k, (1)

for G an n × k generator matrix with coefficients in Fq. We use the term sys-
tematic to refer to a codeword c whose k first components are x, that is ci = xi,
i = 1, . . . , k. This described what is a standard encoding procedure used in era-
sure coding based storage systems. We suppose next that the content mutates,
and we wish to store all the versions.

Fig. 3. An overview of the coding strategy using compressed differences

Let x1 ∈ F
k
q denote the first version of a data object to be stored. When it

is modified (phase 4), a new version x2 ∈ F
k
q of this object is created. More

30 J. Harshan et al.

generally, a new version xj+1 is obtained from xj to produce over time a sequence
{xj ∈ F

k
q , j = 1, 2, . . . , L < ∞} of L different versions of a data object, to be

stored in the network. We are not concerned with the application level semantic
of the modifications, but with the bit level changes in the object. Thus the
changes between two successive versions are captured by the relation

xj+1 = xj + zj+1, (2)

where zj+1 ∈ F
k
q denotes the modifications (in phase 5) of the jth update.

We first assume fixed object lengths across successive versions of data so as to
build an uncomplicated framework for the differential strategy. Such a framework
shields us from unnecessarily delving into system specificities, instead, serves as
a foundation to evaluate various erasure coding techniques to store multiple
versions of data. We show that the design, analysis and assessment of the coding
techniques are oblivious to the nuances of how the data object is broken down
into several chunks prior to the encoding purposes, thereby facilitating us to
segregate chunk synthesis and erasure coding blocks as two independent entities.
In the later part of this work (see Sect. 5), we discuss how to relax the fixed object
length assumption and yet develop a practical DEC scheme, that is robust to
variable object lengths across successive versions.

The key idea is that when the changes from xj to xj+1 are small (decided
by the sparsity of zj+1), it is possible to apply sparse sampling [20], which
permits to represent a k-length γ-sparse vector z (see Definition 1) with less
than k components (phase 6) through a linear transformation on z, which does
not depend on the position of the non-zero entries, in order to gain in storage
efficiency.

Definition 1. For some integer 1 ≤ γ < k, a vector z ∈ F
k
q is said to be γ-sparse

if it contains at most γ non-zero entries.

Let z ∈ F
k
q be γ-sparse such that γ < k

2 , and Φ ∈ F
2γ×k
q denote the measure-

ment matrix used for sparse sampling. The compressed representation z′ ∈ F
2γ
q

of z is obtained as
z′ = Φz. (3)

The following proposition1 gives a sufficient condition on Φ to uniquely
recover z from z′ using a syndrome decoder [21, Sect. II.B].

Proposition 1. If any 2γ columns of Φ are linearly independent, the γ-sparse
vector z can be recovered from z′.

Once sparse modifications are compressed, which reduces the I/O reads, they
are encoded into codewords of length < n (phase 7) decreasing in turn the
storage-overhead.

1 The proof for the proposition follows from the property that any 2γ columns of
a parity check matrix of a linear code with minimum distance 2γ + 1 are linearly
independent.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 31

2 Differential Erasure Encoding for Version-Control

Let {xj ∈ F
k
q , 1 ≤ j ≤ L} be the sequence of versions of a data object to be

stored. The changes from xj to xj+1 are reflected in the vector zj+1 = xj+1 −xj

in (2) which is γj+1-sparse (see Definition 1) for some 1 ≤ γj+1 ≤ k. The value
γj+1 may a priori vary across versions of one object, and across application
domains. All the versions x1, . . . ,xL need protection from node failures, and are
archived using a linear erasure code (see (1)).

2.1 Object Encoding

We describe a generic differential encoding (called Step j+1) suited for efficient
archival of versioned data, which exploits the sparsity of the updates, when
γj+1 < k

2 , to reduce the storage-overheads of archiving all the versions reliably.
We assume that one storage node is in possession of two versions, say xj and
xj+1 of one data object, j = 1, . . . , L − 1. The corresponding implementation is
discussed in Subsect. 2.2.

Step j + 1. For the two versions xj and xj+1, the difference vector zj+1 =
xj+1 − xj and the corresponding sparsity level γj+1 are computed. If γj+1 ≥ k

2 ,
the object zj+1 is encoded as cj+1 = Gzj+1. On the other hand, if γj+1 < k

2 ,
then zj+1 is first compressed (see (3)) as

z′
j+1 = Φγj+1zj+1,

where Φγj+1 ∈ F
2γj+1×k
q is a measurement matrix such that any 2γj+1 of

its columns are linearly independent (see Proposition 1). Subsequently, z′
j+1 is

encoded as
cj+1 = Gγj+1z

′
j+1,

where Gγj+1 ∈ F
nγj+1×2γj+1
q is the generator matrix of an (nγj+1 , 2γj+1) erasure

code with storage-overhead κ. The components of cj+1 are distributed across a
set Nj+1 of nγj+1 nodes, whose choice is discussed in Subsect. 2.2.

Since γj+1 is random, a total of �k
2 � erasure codes denoted by

G = {G,G1, . . . ,G� k
2 �−1},

and a total of �k
2 � − 1 measurement matrices denoted by Σ =

{Φ1, Φ2, . . . , Φ� k
2 �−1} have to be designed a priori. The erasure codes may be

taken systematic and/or MDS (that is, such that any n − k failure patterns are
tolerated), our scheme works irrespective of these choices. This encoding strat-
egy implies one extra matrix multiplication whenever a sparse difference vector
is obtained.

We give a toy example to illustrate the computations.

32 J. Harshan et al.

1: procedure Encode(X ,G, Σ)
2: FOR 0 ≤ j ≤ L − 1
3: IF j = 0
4: return c1 = Gx1;
5: ELSE (This part summarizes Step j + 1 in the text)
6: Compute zj+1 = xj+1 − xj ;
7: Compute γj+1;
8: IF γj+1 ≥ k

2

9: return cj+1 = Gzj+1;
10: ELSE
11: Compress zj+1 as zj+1 = Φγj+1zj+1;
12: return cj+1 = Gγj+1zj+1;
13: END IF
14: END IF
15: END FOR
16: end procedure

Fig. 4. Encoding procedure for DEC

Example 1. Take k = 4, suppose that the digital content is written in binary as
(100110010010) and that the linear code used for storage is a (6, 4) code over F8.
To create the first data object x1, cut the digital content into k = 4 chunks 100,
110, 010, 010, so that x1 is written over F8 as x1 = (1, 1+w,w,w) where w is the
generator of F∗

8, satisfying w3 = w +1. The next version of the digital content is
created, say (10011011001). Similarly x2 becomes x2 = (1, 1 + w, 1 + w,w), and
the difference vector z2 is given by z2 = x2−x1 = (0, 0, 1, 0), with γ2 = 1 < k/2.
Apply a measurement matrix Φγ2 = Φ1 to compress z2:

Φ1z2 =
[
1 0 w w + 1
0 1 w + 1 w

]
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ =

[
w

w + 1

]
= z′

2.

Note that every two columns of Φ1 are linearly independent (see Proposition 1),
thus allowing the compressed vector to be recovered. Encode z′

2 using a single
parity check code:

c2 =

⎡
⎣1 0

0 1
1 1

⎤
⎦

[
w

w + 1

]
=

⎡
⎣ w

w + 1
1

⎤
⎦ .

2.2 Implementation and Placement

Caching. To store xj+1 for j ≥ 1, the proposed scheme requires the calculation
of differences between the existing version xj and the new version xj+1 in (2).
However, it does not store xj , but x1 together with z2, . . . , zj . Reconstructing
xj before computing the difference and encoding the new difference is expensive

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 33

in terms of I/O operations, network bandwidth, latency as well as computations.
A practical remedy is thus to cache a full copy of the latest version xj , until a
new version xj+1 arrives. This also helps in improving the response time and
overheads of data read operations in general, and thus disentangles the system
performance from the storage efficient resilient storage of all the versions.

Considering caching as a practical method, an algorithm summarizes the
differential erasure coding (DEC) procedure in Fig. 4. The input and the output
of the algorithm are X = {xj ∈ F

k
q , 1 ≤ j ≤ L} and {cj , 1 ≤ j ≤ L},

respectively.

Placement Consideration. The choice of the sets Nj+1, j = 0, . . . , L − 1 of
nodes over which the different versions are stored needs a closer introspection.
Since x1 together with z2, . . . , zj are needed to recover xj (see also Subsect. 2.4),
if x1 is lost, xj cannot be recovered, and thus there is no gain in fault tolerance
by storing xj in a different set of nodes than N1. Furthermore, since nγj

< n,
codewords cis may have different resilience to failures. The dependency of xj

on previous versions suggests that the fault-tolerance of subsequent versions are
determined by the worst fault-tolerance achieved among cis for i < j.

Example 2. We continue Example 1, where x1 is encoded into c1 = (c11, . . . , c16)
using a (6, 4) MDS code. Allocate c1i to Ni, that is use the set N1 = {N1, . . . , N6}
of nodes. Store c2 in N2 = {N1, N2, N3} ⊂ N1 for collocated placement, and
in N2 = {N ′

1, N
′
2, N

′
3}, N2 ∩ N1 = ∅ for distributed placement. Let p be the

probability that a node fails, and failures are assumed independent. We compute
the probability to recover both x1 and x2 in case of node failures (known as static
resilience) for both distributed and collocated strategies.

For distributed placement, the set of error events for losing x1 is E1 =
{3 or more nodes fail in N1}. Hence, the probability Prob(E1) of losing x1 is
given by

p6 + C6
5p5(1 − p) + C6

4p4(1 − p)2 + C6
3p3(1 − p)3, (4)

where Cm
r denotes the m choose r operation. The set of error events for losing

z2 stored with a (3,2) MDS code is E2 = {2 or 3 nodes fail in N2}. Thus, z2 is
lost with probability

Prob(E2) = p3 + C3
2p2(1 − p). (5)

From (4) and (5), the probability of retaining both versions is

Probd(x1,x2) � (1 − Prob(E1))(1 − Prob(E2)). (6)

The set of error events for losing x1 or z2 is

E1 ∪ E2 = {3 or more nodes fail} ∪ {specific 2 nodes failure}
for collocated placement. Out of C6

2 possible 2 node failure patterns, 3 patterns
contribute to the loss of the object z2. Therefore, Prob(E1 ∪ E2) is

p6 + C6
5p5(1 − p) + C6

4p4(1 − p)2 + C6
3p3(1 − p)3 + 3p2(1 − p)4

34 J. Harshan et al.

from which, the probability of retaining both the versions is

Probc(x1,x2) � 1 − Prob(E1 ∪ E2). (7)

In Fig. 5, we compare (6) and (7) for different values of p from 0.001 to 0.05.
The plot shows that collocated allocation results in better resilience than the
distributed case.

Optimized Step j +1. Based on these insights, a practical change of Step j is:
if γj+1 ≥ k

2 , zj+1 is discarded and xj+1 is encoded as cj+1 = Gxj+1, to ensure
that a whole version is again encoded. Since many contiguous sparse versions
may be created, we put as a heuristic an iteration threshold ι, after which even
if all differences from one version to another stay very sparse, a whole version is
used for coding and storage.

2.3 On the Storage-Overhead

Since employed erasure codes depend on the sparsity level, the storage-overhead
of the above differential encoding improves upon that of encoding different ver-
sions independently. The average gains in storage-overhead are discussed in Sub-
sect. 3.3. Formally, the total storage size till the l-th version is

δ(x1,x2, . . . ,xl) = n +
l∑

j=2

min(2κγj , n) ≤ ln,

for 2 ≤ l ≤ L. The storage-overhead for the Optimized Step j + 1 is the same
as that of Step j + 1 since for γj+1 ≥ k

2 , the coded objects Gxj+1 and Gzj+1

have the same size.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

p (probability of a node failure)

Pr
ob

ab
ili

ty
 th

at
 b

ot
h

ve
rs

io
ns

 a
re

 a
va

ila
bl

e

Distributed
Colocated

Fig. 5. Placement consideration: comparing probability that both versions are available

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 35

2.4 Object Retrieval

Suppose that L versions of a data object are archived using Step j + 1, j ≤
L − 1 and the user needs to retrieve some xl, 1 < l ≤ L. Assuming that there
are enough encoded blocks for each ci (i ≤ l) available, relevant nodes in the
sets N1, . . . ,Nl are accessed to fetch and decode the ci to obtain x1, and the
l − 1 compressed differences z′

2, z
′
3, . . . , z

′
l. See Subsect. 2.2 for a discussion on

placement and an illustration that reusing the same set of nodes gives the best
availability with MDS codes, hence bounding the number of accessed nodes by
|N1|. All compressed differences sharing the same sparsity can be added first,
and then decompressed, since

∑
i∈Jγ

z′
i = Φγ

∑
i∈Jγ

zi

for Jγ = {j|γj = γ}. The cost of recovering
∑

i∈Jγ
zi is only one decompression

instead of |Jγ |, with which xl is given by

xl = x1 +
l∑

j=2

zj .

A minimum of k I/O reads is needed to retrieve x1. For zj (2 ≤ j ≤ l), the
number of I/O reads may be lower than k, depending on the update sparsity.
If γj < k

2 , then z′
j is retrieved with 2γj I/O reads, while if γj ≥ k

2 , then zj is
recovered with k I/O reads, so that min(2γj , k) I/O reads are needed for zj . The
total number of I/O reads to retrieve xl is

η(xl) = k +
l∑

j=2

min(2γj , k) (8)

and so is the total number of I/O reads to retrieve the first l versions:
η(x1,x2, . . . ,xl) = η(xl).

To retrieve xl for 1 ≤ l ≤ L, when archival was done using Optimized
Step j + 1, j ≤ L − 1, look for the most recent version xl′ such that l′ ≤ l
and γl′ ≥ k

2 . Then, using {xl′ , zl′+1, . . . , zl}, the object xl is reconstructed as
xl = xl′ +

∑l
j=l′+1 zj . Hence, the total number of I/O reads is

η(xl) = k +
l∑

j=l′+1

min(2γj , k). (9)

The number of I/O reads to retrieve the first l versions is the same as for Step
j + 1.

Example 3. Assume that L = 20 versions of an object of size k = 10 are differ-
entially encoded, with sparsity profile

{γj , 2 ≤ j ≤ L} = {3, 8, 3, 6, 7, 9, 10, 6, 2, 2, 3, 9, 3, 9, 3, 10, 4, 2, 3}.

36 J. Harshan et al.

The storage pattern is {x1, z2, z3, . . . , z20}. Assuming x1 is not sparse, the I/O
read numbers to access {x1, z2, z3, . . . , z20} are

{10, 6, 10, 6, 10, 10, 10, 10, 10, 4, 4, 6, 10, 6, 10, 6, 10, 8, 4, 6}.

The total I/O reads to recover all the 20 versions is 156 (instead of 200 for the
non-differential method). The total storage space for all the 20 versions assuming
a storage-overhead of 2 is 312 (instead of 400 otherwise). The I/O read numbers
to recover {x1,x2,x3, . . . ,x20} are

{10, 16, 26, 32, 42, 52, 62, 72, 82, 86, 90, 96, 106, 112, 122, 128, 138, 146, 150, 156},

while for the optimized step, we get {10, 16, 10, 16, 10, 10, 10, 10, 10, 14,
18, 24, 10, 16, 10, 16, 10, 18, 22, 28}.

3 Reverse Differential Erasure Coding

In Table 1, we summarize the total storage size and the number of I/O reads
required by the (forward) differential method. If some γj , 1 ≤ j ≤ l, are smaller
than k

2 , then the number of I/O reads for joint retrieval of all the versions
{x1,x2, . . . ,xl} is lower than that of the traditional method. However, this
advantage comes at the cost of higher number of I/O reads for accessing the
l-th version xl alone. Therefore, for applications where the latest archived ver-
sions are more frequently accessed than the joint versions, the overhead for
reading the latest version dominates the advantage of reading multiple versions.
For such applications, we apply a variant of the differential method called the
reverse DEC, wherein the order of storing the difference vectors is reversed [6].

Table 1. I/O access metrics for the traditional and the differential schemes to store
{x1,x2, . . . ,xl}

Parameter Traditional Forward differential Reverse differential

I/O reads to
read the l-th
version

k k +
∑l

j=2 min(2γj , k) k

I/O reads to
read the first
l-th versions

lk k +
∑l

j=2 min(2γj , k) k +
∑l

j=2 min(2γj , k)

Number of
Encoding oper-
ations

1 (on the version) 1 (on the latest ver-
sion)

2 (on the latest and the
preceding version)

Total Storage
Size till the l-th
version

ln n+
∑l

j=2 min(2κγj , n) n +
∑l

j=2 min(2κγj , n)

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 37

3.1 Object Encoding

As in Subsect. 2.1, we assume that one node stores the latest version xj and the
new version xj+1 of a data object. Since xj is readily obtained, caching is less
critical here.

Step j + 1. Compute the difference vector zj+1 = xj+1 − xj and its sparsity
level γj+1. The object xj+1 is encoded as cj+1 = Gxj+1 and stored in Nj+1.
Furthermore, if γj+1 < k

2 , then zj+1 is first compressed as z′
j+1 = Φγj+1zj+1,

and then encoded as c = Gγj+1z
′
j+1, where Gγj+1 is the generator matrix of an

(nγj+1 , 2γj+1) erasure code. Finally, the preceding version cj is overwritten as
cj = c.

A key feature is that in addition to encoding the latest version xj+1, the pre-
ceding version is also re-encoded depending on the sparsity level γj+1, resulting
in two encoding operations (instead of one for the method in Subsect. 2.1).

A summary of the encoding is provided in Fig. 6. The storage-overhead for
this method is the same as the one in Sect. 2. The considerations on data place-
ment and static resilience of cj in the set Nj of nodes are analogous as well,
and an optimized version is obtained similarly as for the forward differential
encoding.

3.2 Object Retrieval

Suppose that l versions of a data object have been archived, and the user needs
to retrieve the latest version xl. In the reverse DEC, unlike Subsect. 2.1, the
latest version xl is encoded as Gxl. Hence, the user must access a minimum of k
nodes from the set Nl to recover xl. To retrieve all the l versions {x1,x2, . . . ,xl},
the user accesses the nodes in the sets N1,N2, . . . ,Nl to retrieve z′

2, z
′
3, . . . , z

′
l,xl,

1: procedure Encode(X ,G, Σ)
2: FOR 0 ≤ j ≤ L − 1
3: IF j = 0
4: return c1 = Gx1;
5: ELSE (This part summarizes Step j + 1 in the text)
6: cj+1 = Gxj+1;
7: Compute zj+1 = xj+1 − xj ;
8: Compute γj+1;
9: IF γj+1 < k

2

10: Compress zj+1 as zj+1 = Φγj+1zj+1;
11: return cj = Gγj+1zj+1;
12: END IF
13: END IF
14: END FOR
15: end procedure

Fig. 6. Encoding procedure for the reverse DEC

38 J. Harshan et al.

respectively. The objects z2, z3, . . . , zl are recovered from z′
2, z

′
3, . . . , z

′
l, respec-

tively through a sparse-reconstruction procedure, and xj , 1 ≤ j ≤ l − 1, is
recursively reconstructed as

xj = xl −
⎛
⎝ l∑

t=j

zt

⎞
⎠ .

It is clear that a total of k +
∑l

j=2 min(2γj , k) reads are needed for accessing all
the l versions and only k reads for the latest version. The performance metrics
of the reverse DEC scheme are also summarized in Table 1 (the last column).

Example 4. For the sparsity profile of Example 3, the storage pattern using reverse
DEC is {z2, z3, . . . , z20,x20}. The I/O read numbers to access {z2, . . . ,x20} are
{6, 10, 6, 10, 10, 10, 10, 10, 4, 4, 6, 10, 6, 10, 6, 10, 8, 4, 6, 10}. The total storage size
and the I/O reads to recover all the 20 versions are the same as that of the
forward differential method. The I/O numbers to recover {x1,x2,x3, . . . ,x20}
are {156, 150, 144, 134, 124, 114, 104, 94, 84, 80, 76, 70, 60, 54, 44, 38, 28, 20, 16, 10}.
Note that I/O number to access the latest version (in this case 20th version) is
lower than that of the forward differential scheme. For the optimized step, the
corresponding I/O numbers are {16, 10, 16, 10, 10, 10, 10, 10, 24, 20, 16, 10, 16, 10,
16, 10, 28, 20, 16, 10}.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Support of Γ {1, 2, ..., 19, 20 }

B
in

om
ia

l t
yp

e
PM

F

p = 0.1
p = 0.3
p = 0.5
p = 0.7

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Support of Γ {1, 2, ..., 9, 10 }

ex
po

ne
nt

ia
l P

M
F

α = 1.6
α = 1.1
α = 0.6
α = 0.1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Support of Γ {1, 2, ..., 11, 12 }

Po
is

so
n

PM
F

λ = 1
λ = 3
λ = 5
λ = 7

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Support of Γ {1, 2, ..., k−1, k }

U
ni

fo
rm

 P
M

F

k = 10
k = 30
k = 50
k = 100

Fig. 7. From top left, clock-wise: Binomial type PMF in p (for k = 20), Truncated
exponential PMF in α (for k = 10), Truncated Poisson PMF in λ (for k = 12) and
the uniform PMF for different object lengths k. The x-axis of these plots represent the
support {1, 2, . . . , k} of the random variable Γ .

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 39

3.3 Exploring DEC Benefits with Synthetic Workloads

In this section, we quantify the storage savings offered by the DEC against
update patterns that are characterized by in-place alterations. For this study,
the update model follows (2), and the in-place alterations are generated from
synthetic workloads from a wide-rage of distributions. This exercise showcases
the best-case storage savings of DEC as fewer in-place alterations guarantee
corresponding sparsity levels in the difference objects, unlike the case of fewer
insertions and deletions that totally disturb the sparsity profile.

We present experimental results on the storage size and the number of I/O
reads for the different differential encoding schemes. We assume that {Γj , 2 ≤
j ≤ L} is a set of random variables and its realizations {γj , 2 ≤ j ≤ L} are
known. First we consider a version-control system with L = 2, which is the
worst-case choice of L as more versions could reveal more storage savings. This
setting both (i) serves as a proof of concept, and (ii) already shows the storage
savings for this simple case. Later, we also present experimental results for a
setup with L > 2 versions.

System with L = 2 Versions. For L = 2, there is one random variable denoted
henceforth as Γ , with realization γ. Since Γ is a discrete random variable with
finite support, we test the following finite support distributions for our experi-
mental results on the average number of I/O reads for the two versions and the
average storage size.

Binomial Type PMF: This is a variation of the standard Binomial distribution
given by

PΓ (γ) = c
k!

γ!(k − γ)!
pγ(1 − p)k−γ , γ = 1, 2, . . . , k, (10)

where c = 1
1−(1−p)k is the normalizing constant. The change is necessary since

γ = 0 is not a valid event.

Truncated Exponential PMF: This is a finite support version of the expo-
nential distribution in parameter α > 0:

PΓ (γ) = ce−αγ . (11)

The constant c is chosen such that
∑k

γ=1 PΓ (γ) = 1.

Truncated Poisson PMF: This is a finite support version of the Poisson
distribution in parameter λ given by

PΓ (γ) = c
λγe−λ

γ!
, (12)

where the constant c is chosen such that
∑k

γ=1 PΓ (γ) = 1

Uniform PMF: This is the standard uniform distribution:

PΓ (γ) =
1
k

. (13)

40 J. Harshan et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

p (parameter for Binomial type PMF)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

0 0.5 1 1.5 2
10

15

20

25

30

35

40

α (parameter for truncated exponential PMF)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

k = 10, n = 20

1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

λ (parameter for truncated Poisson PMF)

R
ed

uc
tio

n
in

 s
tr

or
ag

e
an

d
I/

O

k = 12, n = 24

0 20 40 60 80 100
10

10.5

11

11.5

12

12.5

k (object length)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

n = 2k

k = 20, n = 40

Fig. 8. Average percentage reduction in the I/O reads and storage size for PMFs in
Fig. 7 when L = 2. The experimental results are presented in the same order as that
of the PMFs in Fig. 7.

In Fig. 7, we plot the PMFs in (10), (11), (12) and (13) for various parame-
ters. These PMFs are chosen to represent a wide range of real-world data update
scenarios, in the absence of any standard benchmarking dataset (see [16]). The
truncated exponential PMFs generate thick concentration for lower sparsity lev-
els, yielding best cases for the differential encodings. The uniform distributions
illustrate the benefits of the proposed methods for update patterns with no bias
on sparse values. The Binomial distributions provide narrow and bell shaped
mass functions concentrated around different sparsity levels. The Poisson PMFs
model sparse updates spread over the entire support and concentrated around
the center.

For a given PMF PΓ (γ), the average storage size for storing the first two
versions is E[δ(x1,x2)] = n +

∑k
γ=1 PΓ (γ)min(2γκ, n) where n = κk. Similarly,

the average number of I/O reads to access the first two versions is E[η(x1,x2)] =
k +

∑k
γ=1 PΓ (γ)min(2γ, k). When compared to the non-differential method, the

average percentage reduction in the I/O reads and the average percentage reduc-
tion in the storage size are respectively computed as

2k − E[η(x1,x2)]
2k

× 100 and
2n − E[δ(x1,x2)]

2n
× 100. (14)

Since δ(x1,x2) = κη(x1,x2) and κ is a constant, the numbers in (14) are iden-
tical. In Fig. 8, we plot the percentage reduction in the above quantities for the
PMFs displayed in Fig. 7. The plots show a significant reduction in the I/O reads
(and the storage size) when the distributions are skewed towards smaller γ. How-
ever, as expected, the reduction is marginal otherwise. For uniform distribution

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 41

on Γ , the plot shows that the advantage with the differential technique saturates
for large values of k.

We have discussed how the differential technique reduces the storage space
at the cost of increased number of I/O reads for the latest version (here the
2nd version) when compared to the non-differential method. For the basic dif-
ferential encoding, the average number of I/O reads to retrieve the 2nd version
is E[η(x2)] = E[η(x1,x2)]. However, for the optimized encoding, E[η(x2)] =∑k

γ=1 PΓ (γ)f(γ) where f(γ) = k + 2γ when γ < k
2 , and f(γ) = k, otherwise.

When compared to the non-differential method, we compute the average per-
centage increase in the I/O reads for retrieving the 2nd version for both the
basic and the optimized methods. Numbers for

E[η(x2)] − k

k
× 100, (15)

are shown in Fig. 9, which shows that the optimized method reduces the excess
number of I/O reads for the 2nd version.

Experimental Results for L > 2. We present the average reduction in the
total storage size for a differential system with L = 10, assuming identical PMFs
on the sparsity levels for every version, i.e., PΓj

(γj) = PΓ (γ) for each 2 ≤ j ≤ 10.
The average percentage reduction in the total storage size and total I/O reads
number are computed similarly to (14), and are illustrated in Fig. 10. The plots
show further increase in storage savings compared to L = 2 case. In reality, the
PMFs across different versions may be different and possibly correlated. These
results are thus only indicative of the saving magnitude for storing many versions
differentially.

To get better insights for L > 2, in Fig. 11, we plot the I/O numbers of
Examples 3 and 4 for L = 20. More than 20% storage space is saved with respect
to the non-differential scheme, for only slightly higher I/O for the optimized
DEC.

4 Two-Level Differential Erasure Coding

The differential encoding (both forward and the reverse DEC) exploits the sparse
nature of the updates to reduce the storage size and the number of I/O reads.
Such advantages stem from the application of �k

2 � erasure codes matching the
different levels of sparsity (�k

2 �− 1 erasure codes for each γ < k
2 and one for γ ≥

k
2). If k is large, then the system needs a large number of erasure codes, resulting
in an impractical strategy. In this section, we employ only two erasure codes,
termed two-level differential erasure coding, for the sake of easier implementation,
and refer to the earlier differential schemes in Subsects. 2 and 3 as k

2 -level DEC
schemes. We need the following ingredients for the two-level DEC scheme:

(1) An (n, k) erasure code with generator matrix G ∈ F
n×k
q to store the original

data object.

42 J. Harshan et al.

0 20 40 60 80 100
20

30

40

50

60

70

80

k (object length)

In
cr

ea
se

 in
 I

/O
 f

or
 th

e
2n

d
ve

rs
io

n

1 2 3 4 5 6 7
20

30

40

50

60

70

80

90

λ (parameter for truncated Poisson PMF)

In
cr

ea
se

 in
 I

/O
 f

or
 th

e
2n

d
ve

rs
io

n

0 0.5 1 1.5 2
20

30

40

50

60

70

80

α (parameter for truncated exponential PMF)

In
cr

ea
se

 in
 I

/O
 f

or
 th

e
2n

d
ve

rs
io

n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

p (parameter for Binomial type PMF)

In
cr

ea
se

 in
 I

/O
 f

or
 th

e
2n

d
ve

rs
io

n

Optimized method
Basic method

Optimized method
Basic method

Optimized method
Basic method

Optimized method
Basic method

Fig. 9. Average percentage increase in the I/O reads to retrieve the 2nd version for
the PMFs (in the same order) in Fig. 7 when L = 2. The corresponding values of n
and k are same as that of Fig. 8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

p (parameter for Binomial type PMF)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

0 0.5 1 1.5 2
20

30

40

50

60

70

α (parameter for truncated exponential PMF)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

k = 10, n = 20

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

λ (parameter for truncated Poisson PMF)

R
ed

uc
tio

n
in

 s
tr

or
ag

e
an

d
I/

O

k = 12, n = 24

0 20 40 60 80 100
18

19

20

21

22

23

k (object length)

R
ed

uc
tio

n
in

 s
to

ra
ge

 a
nd

 I
/O

n = 2k

k = 20, n = 40

Fig. 10. Average percentage reduction in the I/O reads and total storage size for PMFs
in Fig. 7 when L = 10. The experimental results are presented in the same order as that
of the PMFs in Fig. 7. Identical PMFs are used for the random variable {Γj , 2 ≤ j ≤ 10}
to obtain the results.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 43

Fig. 11. I/O and storage for Examples 3 and 4. The left plots provide the number of
I/O reads to retrieve only the l-th version for 1 ≤ l ≤ 20. The right plots show the
total storage size till the l-th version for 1 ≤ l ≤ 20. Results are for forward and reverse
differential methods, with basic and optimized encoding.

(2) A measurement matrix ΦT ∈ F
2T×k
q to compress sparse updates, where T ∈

{1, 2, . . . , �k
2
} is a chosen threshold.

(3) An (nT , 2T) erasure code with generator matrix GT ∈ F
nT ×2T
q to store the

compressed data object. The number nT is chosen such that κ � n
k = nT

2T .

We discuss only the two-level forward DEC scheme. The two-level reverse
DEC scheme is a straightforward variation.

4.1 Object Encoding

The key point of this encoding is that the number of erasure codes (and the
corresponding measurement matrices) to store the γ-sparse vectors for 1 ≤ γ < k

2

is reduced from �k
2 �−1 to 1. Thus, based on the sparsity level, the update vector

is either compressed and then archived, or archived as it. Formally:

Step j + 1. Once the version xj+1 is created, using xj in the cache, the dif-
ference vector zj+1 = xj+1 − xj and the corresponding sparsity level γj+1 are
computed. If γj+1 > T , the object zj+1 is encoded as cj+1 = Gzj+1, else zj+1

is first compressed (see (3)) as z′
j+1 = ΦT zj+1, where the measurement matrix

ΦT ∈ F
2T×k
q is such that any 2T of its columns are linearly independent (see

Proposition 1). Then, z′
j+1 is encoded as cj+1 = GT z′

j+1, where GT ∈ F
nT ×2T
q

is the generator matrix of an (nT , 2T) erasure code. The components of cj+1 are
stored across the set Nj+1 of nodes.

A summary of the encoding method is provided in Fig. 12.

44 J. Harshan et al.

1: procedure Encode(X ,G,GT , ΦT)
2: FOR 0 ≤ j ≤ L − 1
3: IF j = 0
4: return c1 = Gx1;
5: ELSE (This part summarizes Step j + 1 in the text)
6: Compute zj+1 = xj+1 − xj ;
7: Compute γj+1;
8: IF γj+1 > T
9: return cj+1 = Gzj+1;

10: ELSE
11: Compress zj+1 as zj+1 = ΦT zj+1;
12: return cj+1 = GT zj+1;
13: END IF
14: END IF
15: END FOR
16: end procedure

Fig. 12. Encoding procedure for two-level DEC

4.2 On the Storage-Overhead

The total storage size for the two-level DEC is δ(x1,x2, . . . ,xl) = n +
∑l

j=2 nj ,
where

nj =
{

n, if γj > T
κ2T, otherwise. (16)

4.3 Data Retrieval

Similarly to the k
2 -level DEC scheme, the object xl for some 1 ≤ l ≤ L is recon-

structed as xl = x1+
∑l

j=2 zj , by accessing the nodes in the sets N1,N2, . . . ,Nl.
To retrieve x1, a minimum of k I/O reads is needed. If zj is γj-sparse and γj ≤ T ,
then z′

j is first retrieved with 2T I/O reads, second, zj is decoded from z′
j and

ΦT through a sparse-reconstruction procedure. On the other hand, if γj > T ,
then zj is recovered with k I/O reads. Overall, the total number of I/O reads
for xl in the differential set up is η(xl) = k +

∑l
j=2 ηj , where

ηj =
{

2T, if γj ≤ T
k, otherwise. (17)

Similarly, the total number of I/O reads to retrieve the first l versions is also
η(x1, . . . ,xl) = k +

∑l
j=2 ηj .

Example 5. We apply the threshold T = 3 to the sparsity profile in Example 3.
The object z18 (with γ18 = 4) is then archived without compression whereas all
objects with sparsity lower than or equal to 3 are compressed using a 6 × 10
measurement matrix. The I/O read numbers to access {x1, z2, z3, . . . , z20} are

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 45

{10, 6, 10, 6, 10, 10, 10, 10, 10, 6, 6, 6, 10, 6, 10, 6, 10, 10, 6, 6}. The total number of
I/O reads to access all the versions is 164 and the corresponding storage size
is 328. Thus, with just two levels of compression, the storage-overhead is more
than the 5-level DEC scheme but still lower than 400.

4.4 Threshold Design Problem

For the two-level DEC, the total number of I/O reads and the storage size are
random variables that are respectively given by η = k +

∑L
j=2 ηj , where ηj is

given in (17) and δ = n +
∑L

j=2 nj , where nj is given in (16). Note that η and
δ are also dependent on the threshold T . The threshold T that minimizes the
average values of η and δ is given by:

Topt = arg min
T∈{1,2,...,� k

2 	}
wE[δ(x1,x2)] + (1 − w)E[η(x1,x2)], (18)

where 0 ≤ w ≤ 1 is a parameter that appropriately weighs the importance of
storage-overhead and I/O reads overhead, and E[·] is the expectation operator
over the random variables {Γ2, Γ3, . . . , ΓL}. This optimization depends on the
underlying probability mass functions (PMFs) on {Γj}, so we discuss the choice
of the parameter 1 ≤ T ≤ �k

2
 in Subsect. 4.6.

4.5 Cauchy Matrices for Two-Level DEC

Suppose that ΦT ∈ F
2T×k
q is carved from a Cauchy matrix [22]. A Cauchy matrix

is such that any square submatrix is full rank [23]. Thus, there exists a 2γj × k
submatrix ΦT (I2γj

, :) of ΦT , where I2γj
⊂ {1, 2, . . . , 2T} represents the indices

of 2γj rows, for which any 2γj columns are linearly independent, implying that
the observations r = ΦT (I2γj

, :)zj , can be retrieved from Nj with 2γj I/O reads.
Also, using r and ΦT (I2γj

, :), the sparse update zj can be decoded through a
sparse-reconstruction procedure. Thus, the number of I/O reads to get zj is
reduced from 2T to 2γj when γj ≤ T . This procedure is applicable for any
γj < T . Therefore, a γj-sparse vector with γj ≤ T can be recovered with 2γj

I/O reads. The total number of I/O reads for xl in the two-level DEC with
Cauchy matrix is finally η(xl) = k +

∑l
j=2 ηj , where

ηj =
{

2γj , if γj ≤ T
k, otherwise. (19)

Since the number of I/O reads is potentially different compared to the case
without Cauchy matrices, the threshold design problem in (18) can result in dif-
ferent answers for this case. We discuss this optimization problem in Subsect. 4.6.

Example 6. With Cauchy matrix for ΦT in Example 5, the I/O numbers to access
{z2, z3, . . . , z20,x20} are {10, 6, 10, 6, 10, 10, 10, 10, 10, 4, 4, 6, 10, 6, 10, 6, 10, 10, 4,
6}, which makes the total I/O reads 158. However, the total storage size with
Cauchy matrix continues to be 328.

46 J. Harshan et al.

4.6 Code Design Exploration for Two-Level DEC with Synethetic
Workloads

In this section, we explore the right choice of threshold T for the two-level DEC
scheme. A wide rage of synthetic workloads for the two-level DEC help us identify
update patterns where the two-level scheme could be applicable as a substitute
to k

2 -level DEC.
We now present simulation results to choose the threshold parameter 1 ≤ T ≤

�k
2
 for the two-level DEC scheme in Subsect. 4.4. The optimization problem is

given in (18) where

E[η(x1,x2)] = k + PΓ (γ ≤ T)2T + PΓ (γ > T)k,

E[δ(x1,x2)] = κE[η(x1,x2)] and 0 ≤ w ≤ 1. Since E[δ(x1,x2)] and E[η(x1,x2)]
are proportional, solving (18) is equivalent to solving instead

Topt = arg min1≤T≤� k
2 	E[δ(x1,x2)]. (20)

In Table 2, we list the values of Topt, obtained via exhaustive search over 1 ≤ T ≤
�k
2
, the average number of I/O reads, the average storage size for the optimized

two-level DEC scheme and the k
2 -level DEC scheme. We denote E[η(x1,x2)] and

E[δ(x1,x2)] by E[η] and E[δ], respectively. To compute the average storage size,

Table 2. Optimal threshold value for various PMFs with k = 10.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 47

we use κ = 2. We see that switching to just two levels of compression incurs
negligible loss in the I/O reads (or storage size) when compared to the k

2 -level
DEC scheme. Thus the two-level DEC scheme is a practical solution to reap the
benefits of the differential erasure coding strategy.

When Cauchy matrices are used for ΦT , (18) has to be solved for both

E[η(x1,x2)] = k +
T∑

γ=1

PΓ (γ ≤ γ)2γ + PΓ (γ > T)k

E[δ(x1,x2)] = n + PΓ (γ ≤ T)2Tκ + PΓ (γ > T)kκ.

Unlike the non-Cauchy case, E[η(x1,x2)] and E[δ(x1,x2)] are no more propor-
tional and Topt depends on w, 0 ≤ w ≤ 1.

5 10 15 20
12

13

14

15

16

17

18

19

Average storage size

A
ve

ra
ge

 n
um

be
r

of
 I

/O
 r

ea
ds

α = 0.1
α = 0.6
α = 1.1
α = 1.6

Fig. 13. Average storage size E[δ(x1,x2)] versus average number of I/O reads
E[η(x1,x2)], 1 ≤ T ≤ � k

2
� = 5 with truncated exponential distribution. For each

curve, points from left to right tip correspond to T = {1, . . . , � k
2
� = 5}.

To capture the dependency on w, we study the relation between E[η(x1,x2)]
and E[δ(x1,x2)] for 1 ≤ T ≤ �k

2
. In Fig. 13, we plot

{(E[δ(x1,x2)],E[η(x1,x2)]), 1 ≤ T ≤ k

2
}

for the exponential PMFs from Subsect. 3.3. For each curve there are k
2 = 5

points corresponding to T ∈ {1, 2, . . . , 5} in that sequence from left tip to the
right one. The plots indicate the value of Topt(w) for the two extreme values of
w, i.e., w = 0 and w = 1. We further study the curve corresponding to α = 0.6.
If minimizing E[η(x1,x2)] is most important with no constraint on E[δ(x1,x2)]
(i.e., w = 1), then choose Topt(1) = k

2 . This option results in E[η(x1,x2)] which
is as low as for the k

2 -level DEC scheme. While if minimizing E[δ(x1,x2)] is
most important with no constraint on E[η(x1,x2)] (i.e., w = 0), then Topt(0) = 2

48 J. Harshan et al.

results in E[δ(x1,x2)] which is the same as for the 2-level DEC scheme with non-
Cauchy matrix. For other values of w, the optimal value depends on whether
w > 0.5. It can be found via exhaustive search over 1 ≤ T ≤ �k

2
. In summary,
using Cauchy matrix for ΦT reduces the average number of I/O reads to that of
the k

2 -level DEC with just two levels of compression.

5 Practical Differential Erasure Coding

So far, we developed a theoretical framework for the DEC scheme under a fixed
object length assumption across successive versions of the data object (see (2)).
This assumption typically does not hold in practice because of insertions and
deletions, which impact the length of the updated object. In this section, we
explain how to control zero pads in the file structure so as to support insertions
and deletions in a file, while marginally impacting the storage-overheads.

To exemplify the use of zero pads, consider storing a digital object of size
3781 units through a (12, 8) erasure code of symbol size 500 units, as shown
in Fig. 14. Since the object is encoded blockwise, 219 zero pads are added to
extend the object size to 4000 units. The zero pads naturally absorb insertions
made anywhere in the file, as long as the total size is less than 219 units, thus
retaining the length of the updated version to 4000 units. However, since the
zero pads are placed at the end, insertions made at the beginning of the file
propagate changes across the rest of the file. The difference object is thus unlikely
to exhibit sparsity. Alternatively, one could distribute zero pads across the file at
different places as shown in the bottom figure of Fig. 14. Here 160 zero pads are
distributed at 8 patches with each patch containing 20 zero pads. This strategy
arrests propagation of changes when (small size) insertions are made either at
the beginning or middle of the file.

Despite zero padding looking like a natural way to handle insertions, it is
already clear from this example that the optimization of the size and placements
of zero pads is not immediate. We defer this analysis to Sect. 6, and firstly
emphasize the functioning of the variable size DEC scheme.

5.1 DEC Step 1 for Variable Size Length Object

Let F1 be the first version of a file of size V units. The system distributes the
file contents into several chunks, each of size Δ units. Within each chunk, δ < Δ
units of zero pads are allocated at the end while the rest of it are dedicated for
the file content. Thus, the V units of the file are spread across

M =
⌈

V

Δ − δ

⌉
(21)

chunks {C1, C2, . . . , CM}, where �·� denotes the ceiling operator. The zero pads
added at the end of every chunk promote sparsity in the difference between two
successive versions.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 49

Fig. 14. File structure with different placements of zero pads (ZP) - (i) ZP-End where
the zero pads are concentrated at the end (middle figure), and (ii) ZP-Intermediate
where the zero pads are distributed across the file (bottom figure).

Once the file contents are divided into M chunks, they are stored across
different servers, using an (n, k) erasure code: the code is applied on a block of k
data chunks to output n(> k) chunks which includes the data chunks and n − k
encoded chunks that are generated to provide fault tolerance against potential
failures. The parameter k is optimized for the architecture with respect to M ,
which is file dependent:

Case 1: When M < k, additional M − k chunks containing zeros are
appended to create a block of k chunks. Henceforth, these additional chunks
are referred to as zero chunks. Then, the k chunks are encoded using an (n, k)
erasure code.

Case 2: When M ≥ k, the M chunks are divided into G = �M
k � groups

G1,G2, . . . ,GG. The last group GG if found short of k chunks is appended with
zero-chunks. The k chunks in each group are encoded using an (n, k) erasure
code.

For the first version F1, the G groups of chunks together have δM + NΔ
units of zero pads, where 1 ≤ N < k, represents the number of zero-chunks
added to make GG contain k chunks. In addition, the M -th chunk may have
extra padding due to the rounding operation in (21). The δM units of zero
pads that are distributed across the chunks shield propagation of changes across
chunks when an insertion is made in subsequent file versions. This object can
now withstand a total of δM units of insertion (anywhere in the file if δM < NΔ)
by retaining G groups for the second version.

We next discuss the use of zero pads while storing the (j +1)-th version Fj+1

of the file, j ≥ 1.

5.2 DEC Step j + 1 Under Insertions and Deletions

For the (j + 1)-th version, the DEC system is designed to identify the difference
in the file content size in every chunk. Then the changes in the file contents are

50 J. Harshan et al.

carefully updated in the chunks, in the increasing order of the indices 1, 2, . . . ,M ,
so as to minimize the number of chunks modified due to changes in one chunk.
For 1 ≤ i ≤ M , if the content of Ci grows in size by at most δ units, then some
zero pads are removed to make space for the expansion. This Ci will have fewer
zero pads than the first version. On the other hand, if the content of Ci grows in
size by more than δ units, then the first Δ units of the file content are written to
Ci while the remaining units are shifted to Ci+1. The existing content of Ci+1 is
in turn shifted, and hence, it will have fewer zero pads than δ. The propagation
of changes in the chunks continue until all the changes in the file are reflected.
If the insertion size is large enough, then new chunks (or even new groups) have
to be added to the existing chunks (or groups), thus changing the object size of
the (j + 1)-th version.

When file contents are deleted, the zero pads continue to block propagation,
this time in the reverse direction. Since deletion results in reduced size of the
file contents in chunks, this is equivalent to having additional zero pads (of the
same size as that of the deleted patch) in the chunks along with the existing
zero pads. After this process, the metadata should reflect the total size of the
file contents (potentially less than Δ−δ) in the modified chunk. Thus, deletion of
file contents boosts the capacity of the data structure to shield larger insertions
in the next versions.

5.3 Encoding Difference Objects

Note that the differential encoding strategy requires two successive versions to
have the same object size to compute the difference. In reverse DEC, once the
contents of the (j + 1)-th version is updated to the chunks, we compute the
difference between the chunks of the j-th and the (j + 1)-th version. Then we
declare a difference chunk to be non-zero if it contains at least one non-zero
element. Within a group, if the number of non-zero chunks, say γ of them, is
smaller than k

2 then the difference object is compressed to contain 2γ chunks.
We continue this procedure of storing the difference objects until the modified
object size is at most kG chunks.

A set of consecutive versions of the file that maintains the same number of
groups is referred to as a batch of versions, while the number of such versions
within the batch is called the depth of the batch. The case when insertions
change the group size is addressed next as a source for resetting the differential
encoding strategy.

5.4 Criteria to Reset DEC

Criterion 1: Starting from the second version, the process of storing the dif-
ference objects continues until G remains constant. When the changes require
more than G groups, i.e., the updates require more than kG chunks, the system
terminates the current batch, and then stores the object in full by redistributing
the file contents into a new set of chunks. To illustrate this, let the j-th version
of the file (for some j > 1) be distributed across Mj chunks, where �Mj

k � ≤ G.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 51

Now, let the changes made to the (j + 1)-th version occupy Mj+1 chunks where
�Mj

k � > G. At this juncture, we reorganize the file contents across several chunks
with δ units for zero pads (as done for the first version). After re-initialization,
this file has G′ = �Mj+1

k � groups.

Criterion 2: Another criterion to reset is when the number of non-zero chunks
is at least k

2 within every group. Due to insufficient sparsity in each group, there
would be no saving in storage size in this case, and as a result, a new batch has
to be started. However, a key difference from criterion 1 is that the contents of
the chunks are not reorganized since the group size has not changed.

6 Experiment Results: Performance of Practical DEC

In this section, we present the performance of the practical DEC technique
against a wide spectrum of realistic (but synthetically generated) workloads —
that include insertions and deletions, which may lead to change in the overall
file size, and so on. We also experiment with real world workloads, specifically,
we consider multiple versions of Wikipedia documents to drive our experiments
with real data.

Its worth reemphasizing at this juncture, that for these experiments, the
update model thus doesn’t follow Eq. (2), instead it is as per its practical variant
which includes zero pads in the file structure. We showcase experiment results
with several workloads capturing wide spectrum of realistic loads to demonstrate
the efficacy of our scheme. The main objectives are:

1. to determine the right strategy to place the zero pads in order to promote suf-
ficient sparsity in the difference object for different classes of workloads. This
objective is achieved using synthetic workloads of insertions and deletions
(see Subsects. 6.1 and 6.2).

2. to present the performance of practical DEC with online datasets such as
different versions of Wikipedia pages (see Subsect. 6.3).

3. to compare the storage savings of practical DEC against four baselines,
namely (i) a naive technique where each version is fully coded and treated as
distinct objects, referred to as non-differential scheme, (ii) selective encoding
scheme, a system setup which is fundamentally a delta encoding technique
where only the modified chunks are erasure coded and then stored, (iii) Rsync,
a well known delta encodng technique for file transfer and synchronization
across networks, and finally (iv) gz compresssion, which is applied on indi-
vidual versions to reduce the storage size (see Subsect. 6.4).

Throughout this section, we use the reverse differential method where the
order of storing the difference vectors is reversed as {z2, z3, . . . , zL,xL}. Also,
DEC scheme refers not to the primitive form discussed in Sect. 2, but instead it
refers to its variant which was discussed in Sect. 5. Unless specified otherwise, we
showcase only the best case storage benefits that come with the application of
k
2 -level DEC scheme, wherein the k

2 erasure codes are assumed to have identical

52 J. Harshan et al.

storage-overhead of κ = 2. For the DEC scheme storing two versions, i.e., L = 2,
the average storage size for the second version is given by

E[δ(z2)] = κE[min(2γj , k)], (22)

which is the average size of the data object after erasure coding. When the
storage-overhead κ is held constant for all the k

2 erasure codes, we note that the
quantity

E[δ(z2)]
κ

= E[min(2γj , k)], (23)

which is the average storage size prior to erasure coding, is a sufficient statistic to
evaluate the placement of zero pads. Henceforth, we use (23) as the yardstick in
our analysis. However, in general, when storage-overheads are different, E[δ(z2)]
in (22) is a relevant metric for the analysis. Notice that unlike the quantities
in Subsect. 3.3, the quantity in (23) includes raw data as well as zero pads, and
this is attributed to a more realistic model of erasure coded versioning system
in Sect. 5, where the zero pads facilitate block encoding of arbitrary sized data
objects in addition to shielding the rippling effect from insertions and deletions.

6.1 Comparing Different Placements of Zero Pads

We conduct several experiments to compare the storage savings from the zero
pads placements highlighted in Fig. 14. The parameters for the experiment are

Fig. 15. Comparing different placements of zero pads against insertions: average stor-
age size (as given in (23)) for the 2nd version against workloads comprising random
insertions. For the top figures, workloads are bursty insertions whose size is uniformly
distributed in the interval [1, D] for D ∈ {5, 10, 30, 60}. For the bottom figures, work-
loads are several single unit insertions whose quantity is distributed uniformly in the
interval [1, P], where P ∈ {5, 10, 30, 60}.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 53

Fig. 16. Comparing different placements of zero pads against deletions: average stor-
age size (as given in (23)) for the second version against workloads comprising random
deletions. For the top figures, workloads are single bursty deletions whose size is uni-
formly distributed in the interval [1, E] for E ∈ {60, 200, 600}. For the bottom figures,
workloads are several single unit deletions whose quantity is distributed uniformly in
the interval [1, Q], where Q ∈ {5, 10, 30}.

V = 3781, Δ = 500, δ = 20 and k = 8. The two schemes under comparison
are ZP-End and ZP-Intermediate (discussed in Fig. 14), where the zero pads
are allocated at the end and at intermediate positions, respectively. Like ZP-
Intermediate scheme, the ZP-End scheme also contains k = 8 chunks (each of
size Δ), however in this case, 219 zero pads appear at the end in the 8-th chunk.
In general, appending zero pads at the end of the data object is a necessity
to employ erasure codes of fixed block length. Thus, for the parameters of our
experiment, both the ZP-End and ZP-Intermediate schemes initially have equal
number of zero pads (but at different positions), and hence, the comparison is
fair.

From our experiments, we compute the average numbers in (23) when two
classes of random insertions are made to the first version, namely: (i) single
bursty insertion whose size is uniformly distributed in the interval [1,D], for
D = 5, 10, 30, 60, and (ii) several single unit insertions uniformly distributed
across the object, where the number of insertions is uniformly distributed in
the interval [1, P], where P = 5, 10, 30, 60. We repeat the experiments 1000
times by generating random insertions and then compute the average storage
size of the compressed object z′

2 (as given in (23)). In Fig. 15 we plot the average
storage size with the ZP-End and ZP-Intermediate schemes. Similar plots are
also presented in Fig. 15 (on the right) with parameters Δ = 200, δ = 20 and
k = 20 for the same object. The plots highlight the advantage of distributing
the zero pads as it can arrest the propagation of changes through intermediate
zero pads. We conduct more experiments for several classes of random deletions

54 J. Harshan et al.

Fig. 17. Bit striping method to generate striped chunks. Top figure depicts bit-level
writing of data into the chunks. Bottom figure depicts bit-level reading of data. This
technique is suitable for uniformly distributed sparse insertions.

and the results are presented in Fig. 16, which highlight the savings in storage
size for the ZP-Intermediate scheme.

6.2 Chunks with Bit Striping Strategy

In this section, we analyze the right strategy to synthesize chunks for workloads
that involve several single insertions with sufficient spacing. We first explain the
motivation for this special case using the following toy example. Consider storing
a data object of size V = 3871 units using the parameters Δ = 500, δ = 20, k =
8. Assume that 3 units of insertions are made to the object at the positions
1, 481 and 961, which translates to modifications of the chunks C1, C2 and C3,
respectively. Thus, due to just 3 single unit insertions, three chunks are modified
because of which the difference object after compression will be of size 3000
units. Instead, imagine striping every chunk into k partitions at the bit level
such that the δ zero pads are equally distributed across the partitions (see the
top figure in Fig. 17). Then, create a new set of k chunks as follows: create the
t-th chunk for 1 ≤ t ≤ k by concatenating the contents in the t-th partition
of all the original chunks (see the bottom figure in Fig. 17). By applying this
striping method to the toy example, we see that only one chunk (after striping)
is modified, hence, this strategy would need only 1000 units for storage after
compression.

For the above example, the insertions are spaced exactly at intra-distance
Δ − δ units to highlight the benefits, although in practice, the insertions can as
well be approximately around that distance to reap the benefits. We conduct
experiments by introducing 3 random insertions into the file, where the first
position is chosen at random while the second and the third are chosen with intra-
distance (with respect to the previous insertion) that is uniformly distributed in
the interval [Δ − δ − R,Δ − δ + R] when R ∈ {40, 80, 120}. For this experiment,
the average storage size for the second version (i.e., the size of the compressed

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 55

40 60 80 100 120
1600

1800

2000

2200

2400

2600

2800

3000

Parameter R

St
or

ag
e

si
ze

 2
nd

 v
er

si
on

V = 3781, k = 8, Δ = 500, δ = 20

DEC Conventional
DEC with Bit Striping

Fig. 18. Comparison of DEC schemes with and without bit striping. Average storage
size (given in (23)) for the second version against workload that has 3 single unit
insertions with intra-distance uniformly distributed in the interval [Δ−δ−R, Δ−δ+R],
where R ∈ {40, 80, 120}. For the experiments, we use Δ = 500 and δ = 20.

object z′
2 given in (23)) is presented in Fig. 18, which shows significant reduction

in storage for the striping method when compared to the conventional method.
Notice that as R increases, there is higher chance for the neighboring insertions
to not fall in the same partition number of different chunks, thus diminishing
the gains.

We also test the striping method against two types of workloads, namely, the
bursty insertion (with parameter D ∈ {5, 10, 30, 60}) and the randomly distrib-
uted single insertions with parameter P ∈ {5, 10, 30, 60}. For the workloads with
single insertions, the spacing between the insertions is uniformly distributed and
not necessarily at intra-distance Δ−δ. In Fig. 19, we present the average storage
size for the second version (given in (23)) against such workloads. The plots show
significant loss for the striping method against the former workload (as they are
not designed for such patterns), whereas the storage savings are approximately
close to the conventional method against the latter workload. In summary, if
the insertion pattern is known to be distributed a priori, then we advocate the
use of the striping method as it provides similar performance as that of the con-
ventional method with a potential to provide reduced storage savings for some
special distributed insertions.

6.3 Performance of DEC with Online Datasets

We have conducted experiments based on 5 versions of Wikipedia data on
the main article on United States [26], where versions with time stamp
“06:21, 15 August 2015” and “00:22, 17th August 2015”are treated as the first

56 J. Harshan et al.

0 10 20 30 40 50 60
1000

1500

2000

2500

3000

3500

4000

Parameter D

St
or

ag
e

si
ze

 2
nd

 v
er

si
on

V = 3781, k = 8, Δ = 500, δ = 20

DEC Conventional
DEC with Bit Striping

0 10 20 30 40 50 60
2500

3000

3500

4000

Parameter P

St
or

ag
e

si
ze

 2
nd

 v
er

si
on

V = 3781, k = 8, Δ = 500, δ = 20

DEC Conventional
DEC with Bit Striping

Fig. 19. Comparing DEC schemes with and without bit striping against bursty (the
left plot) and randomly distributed single insertions (the right plot) with parameters
D, P ∈ {5, 10, 30, 60}.

and the fifth versions, respectively. The system parameters for this experiment
were

– chunk size (Δ) - 500 bytes
– zero pads in every chunk (δ) - 20 bytes
– number of encoding blocks for erasure coding (k) - 8 chunks

With the above parameters, raw data of 330075 bytes for the first version is
expanded to a total of 344000 bytes (by zero pads) and then spread across 86
groups of encoding blocks, where each encoding block contains 8 chunks. For the
subsequent versions of the object, changes in different chunks are appropriately
identified before storing the difference object as per the DEC scheme. From
Version 1 to Version 5, the nature of changes on the chunks are captured in
Table 3. For the experiments, we use the reverse differential encoding of Sect. 3
wherein the latest version is encoded in full whereas the preceding versions are
stored as difference objects.

Before we proceed to present the storage savings of DEC, the reader may
quickly want to know some relevant alternatives for comparison. For cloud stor-
age applications, one straightforward option is to store different versions as

Table 3. Nature of changes at the chunk-level on Wikipedia dataset. The first version
has 86 groups of chunks with parameters Δ = 500, δ = 20 and k = 8.

Version number Changes Affected chunks Affected groups

1 - - -

2 162 bytes removed 5 and 6 1

3 162 bytes added 5 and 6 1

4 102 bytes added 119–124 15 and 16

5 123 bytes added 109–115 14 and 15

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 57

1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

Version number

St
or

ag
e

si
ze

in
by

te
s

to
st

or
e

l-
th

di
ffe

re
nc

e
ob

je
ct

Non−differential encoding
k/2−level DEC
2−level DEC T

opt
 = 1

2−level DEC T
opt

 = 2

2−level DEC T
opt

 = 3

Fig. 20. Performance of DEC on 5 versions of Wikipedia dataset: Storage size (in
bytes) needed to store the l-th version, for 1 ≤ l ≤ 4 at the end of 5th version, for
the following schemes (i) non-differential encoding, (ii) k

2
-level DEC, (iii) 2-level DEC,

with Topt = 1(iv) 2-level DEC with Topt = 2 and (v) 2-level DEC with Topt = 3. Note
that the 5th version being the latest is encoded in full, and hence is not presented in
the plot.

Various storage schemes

320

330

340

350

360

370

380

T
ot

al
 S

to
ra

ge
 s

iz
e

in
 K

B

Total storage size to store 5 versions of Wikipedia dataset

Non−differential encoding
k/2−level DEC
2−level DEC T

opt
 = 1

2−level DEC T
opt

 = 2

2−level DEC T
opt

 = 3

Fig. 21. Performance of DEC on 5 versions of Wikipedia dataset: Total storage size
(in KB) needed to store all the 5 versions. The plots indicate that the 2-level DEC
scheme with Topt = 2 provides storage savings close to the k

2
-level DEC.

58 J. Harshan et al.

1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

Version number

I/
O

re
ad

s
in

by
te

s
to

ac
ce

ss
th

e
l-
th

di
ffe

re
nc

e
ob

je
ct

Non−differential encoding
k/2−level DEC
2−level DEC T

opt
 = 1

2−level DEC T
opt

 = 2

2−level DEC T
opt

 = 3

Fig. 22. Performance of DEC on 5 versions of Wikipedia dataset: I/O reads (in bytes)
needed to retrieve the l-th version, for 1 ≤ l ≤ 4 at the end of 5th version. Although
the schemes under comparison provide different storage savings (as shown in Fig. 21),
their I/O capabilities are the same due to the use of Cauchy matrices as discussed in
Sect. 4.

standalone objects without capitalizing on the correlation between successive
versions. Since each version is encoded independently, zero pads are needed at
the end of the object only to generate the required number of chunks (to be mul-
tiple of k = 8) for erasure coding. Evidently this method requires around 5 times
the size of the first version. Thus, independent encoding of versions along with
the insertion of zero pads at the end of the object performs poorly in storage
savings, and hence we do not present these numbers. To improve upon this naive
scheme, an alternative is to place some zero pads at the end of every encoding
group (in the k-th chunk), and then apply non-differential encoding on every
modified block. We refer this as the non-differential method in this section.

In Fig. 20, we compare the storage size needed to store the difference objects
of the l-th version for 1 ≤ l ≤ 4, at the end of 5 versions for the non-differential
and the DEC methods. Under the DEC methods, performance of 2-level schemes
of Sect. 4 are also presented in Fig. 20, which shows that Topt = 2 provides
storage savings close to that of the k

2 -level DEC scheme. Note that since there
are no single-chunk changes, the 2-level DEC scheme with Topt = 1 is as sub-
optimal as the non-differential scheme. In Fig. 21, we present the total storage
size offered by these schemes to store the 5 versions of Wikipedia dataset. Also,
in Fig. 22, we present the I/O performance of the DEC schemes in order to
retrieve the difference objects. The figure shows that although the 2-level DEC
schemes are not efficient in storage size, their I/O performance is as good as the
k
2 -level DEC. This observation is consistent with the theory that erasure codes
from Cauchy matrices (discussed in Subsect. 4.5) help reduce I/O reads when
retrieving a sparse data object. Overall, Figs. 20, 21 and 22 confirm that DEC

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 59

Fig. 23. DEC vs. Selective Encoding with respect to insertions: average storage size
for the 2nd version against workloads comprising random insertions. The parameters
D and P are as defined for Fig. 15. The k

2
-level DEC scheme applies an erasure code

for each sparsity level, whereas the two-level DEC applies only two erasure codes based
on the threshold Topt. The left and the right plots are for bursty and distributed single
insertions, respectively.

provides significant reduction in storage size for storing the difference objects
without having to look for the modified chunks in every group.

6.4 Comparison with Standard Baselines

Selective Encoding. An important baseline for comparison is a system setup
called Selective Encoding (SE), which is a delta encoding technique where only
the modified chunks between the successive versions are erasure coded and saved,
i.e., visualize the two versions as arrays of numbers, then zero pad the shorter
version to make their length equal, and finally store only the changed numbers
after component-wise comparison. Observe that the SE scheme is effective if the
updated version retains its size, and has few in-place modifications. However, if
the object size changes due to insertions or deletions, or when changes propagate
at bit level, then dividing the updated version into fixed size chunks need not
result in sufficient sparsity in the difference object across versions. For the SE
scheme, although there are no preallocated zero pads, they indirectly appear
at the end to generate k (or its multiple) number of chunks. We conduct more
experiments to compare the storage savings offered by DEC and SE. This time
the parameters of the experiment are V = 3871, Δ = 500, δ = 20, k = 8,
and the workload includes random insertions with the same parameters as that
for Fig. 15. Similar to the preceding experiments, in this section the storage size
of the second version includes raw data and zero pads. For the SE based method,
zero pads appear at the end to generate k = 8 number of chunks from V = 3871

60 J. Harshan et al.

units of data. Since, for this experiment, the total number of zero pads is held
constant for the two schemes, the comparison is fair. In addition to showcasing
the savings of DEC, we present in Fig. 23 the savings of the two-level DEC
scheme where only two erasure codes are employed to cater different levels of
sparsity. For such a case, the threshold Topt is empirically computed based on
the insertion distribution. The plots presented in Fig. 23 highlight the storage
savings of both the k

2 -level DEC and two-level DEC with respect to SE, against
bursty insertions (with parameter D). However, for distributed single insertions
(with parameter P), only the k

2 -level DEC outperforms SE, but not the two-level
DEC.

Rsync. An advanced version of SE is a storage scheme with concepts from Rsync
[19], a delta encoding technique for file transfer and synchronization across net-
works. The key idea behind Rsync is the rolling checksum computation, using
which only the modified/new blocks between successive versions are transferred,
thereby reducing the communication bandwidth. With the application of Rsync
idea to store versioned data, checksums (or signatures) would have to be com-
puted on every chunk of the j-th version before communicating them to the
server containing the (j+1)-th version. Subsequently, the server containing latest
version rolls over the entire file at fine granularity in search of existing chunks by
comparing their checksums, akin to sliding window concept. Finally, the offsets
of the found chunks (w.r.t to their position indices in the new file) are returned

5 10 30 60
0

500

1000

1500

2000

St
or

ag
e

si
ze

Parameter D

Storage size against single bursty−insertion

DEC
Rsync

5 10 30 60
0

5000

10000

St
or

ag
e

si
ze

Parameter P

Storage size against multiple single−insertions

DEC
Rsync

Fig. 24. DEC vs. Rsync with respect to insertions: average storage size for the 2nd
version against workloads comprising random insertions. The parameters D and P
are as defined for Fig. 15. The plots indicate that Rsync outperfoms DEC in terms of
storage savings against both single bursty-insertions and multiple single-insertions.

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 61

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

10
1

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Parameter D (or P)

Average time to extract the difference object

DEC against single bursty−insertion
Rsync against single bursty−insertion
DEC against multiple single−insertions
Rsync against multiple single−insertions

Fig. 25. DEC vs. Rsync with respect to insertions: average time (in seconds) to extract
the difference object from the second version in experiments against workloads com-
prising random insertions. The Rsync scheme consumes substantial time to extract the
difference object as it has to apply the sliding-window algorithm at the byte-level in
order to look for duplicated chunks in the second version. However, the DEC scheme
is computationally efficient due to one-time subtraction of the two versions of data
object.

along with the new file contents and corresponding offsets. We note that the
rolling checksum computation, which works at unit-level granularity across the
file, can be thought as a replacement to the low-complexity subtraction opera-
tion in DEC. However, the advantage of reduced computational complexity of
DEC comes at the cost of additional storage size for zero pads. Also, since inser-
tions and deletions appear at arbitrary positions in the file, metadata for Rsync
should harbor offsets (a.k.a positions of new contents in the file) at unit-level
granularity. However, such information is stored at the chunk-level granularity
in DEC, thus making it relatively simple in terms of metadata management.

We have conducted experiments to compare the performance of Rsync
and DEC. The system parameters for the experiments were V = 8740 units,
Δ = 500, δ = 20 and k = 8. The experiments were conducted against work-
loads comprising random insertions characterized by single bursty-insertions
with parameter D ∈ {5, 10, 30, 60}, and multiple single-insertions with para-
meter P ∈ {5, 10, 30, 60}. The average storage size of the difference objects for
the two methods are presented in Fig. 24, which shows that Rsync outperforms
DEC. This observation can be attributed to the fact that the rolling checksum
algorithm of Rsync is powerful enough to search for duplicated chunks in the

62 J. Harshan et al.

2000 4000 6000 8000 10000 12000 14000 16000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

File size in Bytes

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Average time to extract the difference object

DEC
Rsync

Fig. 26. DEC vs. Rsync with respect to insertions: average time (in seconds) to extract
the difference object from the second version in experiments against insertion workloads
of different file sizes.

second version, except for those where the insertions were made. Specifically,
the initial file of size V = 8740 units is first broken into 18 chunks each of size
500 units. Subsequently, each one of the 18 chunks is searched for duplication
in the second version by a sliding window comparison that involves 18 × 8240
chunk-level subtractions in the worst-case. On the other hand, the DEC scheme
involves only 24 chunk-level subtractions to obtain the difference object. Thus,
the Rsync scheme provides reduced storage size than DEC by trading-off com-
putational complexity. In general, if the file size is V units and the number of
chunks is C, then the total number of chunk-level subtractions for Rysnc is of
the order O((V + I)C), with I being the insertion size. whereas the correspond-
ing number in DEC is O(C), assuming I is less than that the total number of
zero pads. To capture the difference in the computation time between the two
schemes, we measure the average time to extract the difference objects against
random insertions. The software routines for extracting difference objects (for
both Rsync and DEC) were implemented on 64 bit Intel(R) Core(TM) processor
@2.13 GHz. The measured average time duration are presented in Figs. 25 and
26, which show a significant difference in the processing time of the two schemes.
Overall, we summarize the differences between Rsync and DEC in Table 4. Other
than the storage size and computational complexity features, we have also listed
erasure coding management as a distinguishing feature. Note that DEC has pro-
vision for using just two erasure codes to cater to different sparsity levels, and
so, erasure coding management is easy. On the other hand, since Rsync extracts

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 63

Table 4. Summary of comparison between Rsync and DEC

Feature DEC Rsync

Storage size Low Lower than DEC

Computational complexity Low High

Erasure coding management Easy Complex

only the modified blocks (that are of arbitrary size), it explicitly requires an
erasure code for every sparsity level especially when the symbol-size for erasure
coding is fixed.

Compression Techniques. One more baseline for comparison is from the set of
standard file compression algorithms that are employed to store different versions
of a data object. Typically, a file compression algorithm exploits redundancy
within the file to generate a compressed file of considerably smaller size. In
contrast to such compression schemes, DEC scheme exploits redundancy across
versions instead of redundancy within a single version. In order to compare
the two schemes, we use the Wikipedia dataset of Subsect. 6.3 to compute the
storage savings of the two schemes. We use {V1, V2, . . . , V5} to denote those
5 raw versions. Then, we use the gz compression available online at [25] to
first generate the compressed counterparts of the 5 versions of Wikipedia pages,
namely {W1,W2, . . . , W5}. The file sizes of the 5 versions before and after gz
compression are given in the 2nd and 3rd columns of Table 5, respectively, which
show that compressed versions are close to 50% of the original size. Subsequently,
we compute the sparsity across subsequent versions of the compressed objects,
i.e., sparsity of {W1−W2,W2−W3,W3−W4,W4−W5}, and then compare those

Table 5. Sparsity across successive versions of the Wikipedia dataset in Subsect. 6.3.
Compressed versions of the raw data are obtained using [25]. Although the changes
on raw data are fewer, compression of individual versions does not promote sparsity
across compressed versions. Observe that the % of non-zeros is higher across subsequent
compressed versions. Here, low % of non-zero entries implies high sparsity.

Version
number

Size of
raw data
in Bytes

Size of com-
pressed data in
Bytes

% of non-zeros across
successive versions of
raw data of (high
sparsity)

% of non-zeros across
successive versions com-
pressed data (low spar-
sity)

1 330593 157068 - -

2 330429 157060 0.30% 98.41%

3 330593 157068 0.302% 98.41%

4 330701 157096 0.9% 98.21%

5 330824 157148 1.05% 81.45%

64 J. Harshan et al.

values with that obtained from the raw Wikipedia data. For the compressed
objects, sparsity values are computed by suitably zero padding the shorter of
the two versions. For instance, W2 is appended with 8 bytes of zero pads to
compute the sparsity w.r.t W1. Although the gz compression algorithm reduces
the size of each version, it mixes the contents within each version in such a
way that subsequent versions differ at majority of positions despite few in-place
alterations on raw data. Thus, % of zeros across subsequent compressed versions
are expected to be high, and therefore, applying DEC on the compressed objects
may not bring any more reductions in the storage size. On the other hand,
we have already shown that DEC enables to store the raw versions at lower
storage-size due to high sparsity across raw versions. In Table 5, we present the
% of non-zero entries in the difference objects of both raw and compressed data,
and the numbers indicate that DEC schemes are effective on raw data than on
compressed versions. Thus, the total storage size offered by DEC is substantially
smaller than that by individual compression.

7 Concluding Remarks

This paper proposes differential erasure coding techniques for improving storage
efficiency and I/O reads while archiving multiple versions of data. Our evalu-
ations demonstrate tremendous savings in storage. Moreover, in comparison to
a system storing every version individually, the optimized reverse DEC retains
the same I/O performance for reading the latest version (which is most typical),
while reducing significantly the I/O overheads when all versions are accessed,
in lieu of minor deterioration for fetching specific older versions (an infrequent
event). Future works aim at integrating the proposed framework to full-fledged
version management systems.

Acknowledgements. This work was supported by the MoE Tier-2 grant “eCode:
erasure codes for data center environments” (MOE2013-T2-1-068).

References

1. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin,
S.: Erasure coding in windows azure storage. In: The Proceedings of the USENIX
Annual Technical Conference (ATC) (2012)

2. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy,
R., Liu, H.: Data warehousing and analytics infrastructure at Facebook. In: The
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data (2010)

3. Ford, D., Labelle, F., Popovici, F.I., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in globally distributed storage systems. In: The 9th
USENIX Conference on Operating Systems Designand Implementation (OSDI)
(2010)

4. Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A survey on network codes for
distributed storage. Proc. IEEE 99, 476–489 (2011)

DEC for Efficient Archival of Versioned Data in Cloud Storage Systems 65

5. Oggier, F., Datta, A.: Coding techniques for repairability in networked distributed
storage systems. In: Foundations and Trends in Communications and Information
Theory, vol. 9, no. 4, pp. 383–466. Now Publishers, June 2013

6. http://subversion.apache.org/
7. http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
8. Borthakur, D.: HDFS and Erasure Codes (HDFS-RAID), August 2009. http://

hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
9. The Coding for Distributed Storage wiki. http://storagewiki.ece.utexas.edu/

10. Wang, Z., Cadambe, V.: Multi-version Coding for Distributed Storage. In: Pro-
ceedings of IEEE ISIT 2014, Honalulu, USA (2014)

11. Rouayheb, S., Goparaju, S., Kiah, H., Milenkovic, O.: Synchronising edits in dis-
tributed storage networks. In: The Proceedings of the IEEE International Sympo-
sium on Information Theory, Hong Kong (2015)

12. Rawat, A., Vishwanath, S., Bhowmick, A., Soljanin, E.: Update efficient codes
for distributed storage. In: IEEE International Symposium on Information Theory
(2011)

13. Han, Y., Pai, H.-T., Zheng, R., Varshney, P.K.: Update-efficient regenerating codes
with minimum per-node storage. In: Proceedings of IEEE International Symposium
on Information Theory (ISIT 2013), Istanbul (2013)

14. Mazumdar, A., Wornell, G.W., Chandar, V.: Update efficient codes for error correc-
tion. In: The Proceedings of IEEE IEEE International Symposium on Information
Theory, Cambridge, MA, pp. 1558–1562, July 2012

15. Esmaili, K.S., Chiniah, A., Datta, A.: Efficient updates in cross-object erasure-
coded storage systems. In: IEEE International Conference on Big Data, Silicon
Valley, CA, October 2013

16. Tarasov, V., Mudrankit, A., Buik, W., Shilane, P., Kuenning, G., Zadok, E.: Gen-
erating realistic datasets for deduplication analysis. In: The Proceedings of the
2012 USENIX Conference on Annual Technical Conference (2012)

17. Harshan, J., Oggier, F., Datta, A.: Sparsity exploiting erasure coding for resilient
storage and efficient I, O access in delta based versioning systems. In: The Pro-
ceedings of IEEE ICDCS, Columbus, Ohio, USA (2015)

18. Harshan, J., Oggier, F., Datta, A.: Sparsity exploiting erasure coding for distrib-
uted storage of versioned data. Computing 98, 1305–1329 (2016). Springer

19. http://rsync.samba.org/
20. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306

(2006)
21. Zhang, F., Pfister, H.D.: Compressed sensing and linear codes over real numbers.

In: Information Theory and Applications Workshop (ITA) (2008)
22. McWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North

Holland, Amsterdam (1977)
23. Lacan, J., Fimes, J.: A construction of matrices with no singular square submatri-

ces. In: The Proceedings of International Conference on Finite Fields and Appli-
cations, pp. 145–147 (2003)

24. Harshan, J., Datta, A., Oggier, F.: DiVers: an erasure code based storage archi-
tecture for versioning exploiting sparsity. Future Gener. Comput. Syst. 59, 47–62
(2016). Elsevier

25. http://www.txtwizard.net/compression
26. https://en.wikipedia.org/wiki/United States

http://subversion.apache.org/
http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
http://storagewiki.ece.utexas.edu/
http://rsync.samba.org/
http://www.txtwizard.net/compression
https://en.wikipedia.org/wiki/United_States

http://www.springer.com/978-3-662-54053-4

	Differential Erasure Codes for Efficient Archival of Versioned Data in Cloud Storage Systems
	1 Introduction
	1.1 Significance and Applications
	1.2 Related Works
	1.3 The Key Idea
	1.4 Contributions
	1.5 System Model for Version Management

	2 Differential Erasure Encoding for Version-Control
	2.1 Object Encoding
	2.2 Implementation and Placement
	2.3 On the Storage-Overhead
	2.4 Object Retrieval

	3 Reverse Differential Erasure Coding
	3.1 Object Encoding
	3.2 Object Retrieval
	3.3 Exploring DEC Benefits with Synthetic Workloads

	4 Two-Level Differential Erasure Coding
	4.1 Object Encoding
	4.2 On the Storage-Overhead
	4.3 Data Retrieval
	4.4 Threshold Design Problem
	4.5 Cauchy Matrices for Two-Level DEC
	4.6 Code Design Exploration for Two-Level DEC with Synethetic Workloads

	5 Practical Differential Erasure Coding
	5.1 DEC Step 1 for Variable Size Length Object
	5.2 DEC Step j+1 Under Insertions and Deletions
	5.3 Encoding Difference Objects
	5.4 Criteria to Reset DEC

	6 Experiment Results: Performance of Practical DEC
	6.1 Comparing Different Placements of Zero Pads
	6.2 Chunks with Bit Striping Strategy
	6.3 Performance of DEC with Online Datasets
	6.4 Comparison with Standard Baselines

	7 Concluding Remarks
	References

