
Chapter 2
Quantum Chemistry of Solids

Abstract Energy band theory is introduced as an extension of the molecular orbital
theory, and applied to organic conductors. From this, we can discuss the Fermi
surface of organic conductors.
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2.1 Tight-Binding Approximation

In the last chapter, we have investigated molecular orbitals of p-conjugated rings
with the carbon number from N = 3 (cyclopropenyl cation) to N = 6 (benzene). In
this chapter, we shall investigate energy levels of p-conjugated rings for general
N [1, 2]. The solution affords energy levels of large p-systems in which the secular
equation is not easily solved. The solution also provides a general proof of the
Hückel 4n + 2 rule. Large N leads to a large p-conjugated ring (Fig. 2.1a). The
linear chain corresponds to polyacetylene (Fig. 2.1b), while linear polyacetylene
has terminal states (Fig. 2.1c). The ordinary carbon atom is bonded to one hydrogen
and two carbon atoms, whereas the terminal carbon is connected to two hydrogen
and one carbon atoms. Then, the terminal has a different electronic state. In order to
avoid such a terminal state, a ring is considered (Fig. 2.1a). When N is as large as
the Avogadro number, this leads to energy bands in a bulk solid. Hereafter, a is the
distance between the adjacent carbon atoms.

Since this is a natural extension of the Hückel approximation, we consider each
carbon atom to have one p orbital. The LCAO-MO is constructed from N orbitals.

w ¼
XN
n

cnvn ð2:1Þ
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The secular equation is obtained in the form of an N � N determinant.
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¼ 0 ð2:2Þ

It is possible to solve this equation for generalN, but wewill adopt another easier way.
The system has a periodicity of a. Then, after the translation of r ! r + a, the

resulting function w(r + a) is again the eigenfunction. The Hamiltonian also has the
periodicity, so the translation r ! r + a does not change the energy. Accordingly,
w(r) and w(r + a) are eigenfunctions with the same energy. If there is no degener-
acy,1 these two functions are related to each other like w(r + a) = c(a)w(r) using a
constant c(a). One more translation results in w(r + 2a) = c(2a)w(r), which leads to
w(r + 2a) = c(a)w(r + a) = c(a)c(a)w(r). Thus, we obtain c(2a) = c(a)c(a). When
c(a) = eika is assumed, this c(a) satisfies the above relation. As a consequence, we
obtain w(r + a) = eika w(r); this condition is known as the Bloch condition.

This is a general relation derived from the periodicity. The LCAO (Eq. 2.1)
satisfying this condition is represented as

w ¼ c0 v0 þ eikav1 þ ei2kav2 þ ei3kav3 þ ei4kav4 þ � � �� �
¼ c0

X
n

einkavn:
ð2:3Þ

Fig. 2.1 (a) A p-conjugated ring with the carbon number N, (b) a linear p-system, polyacetylene,
and (c) edge states of the polyacetylene

1This assumption is not strictly correct because the states at k and −k are generally degenerate.
Nonetheless, this assumption gives the correct conclusion if the unnecessary hybridization of the
degenerate states is appropriately avoided.
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This form of wave function will be called a crystal orbital in contrast to the
molecular orbital. Here, eika is a complex whose absolute value is one, and the
phase is nonzero. After the translation of a, the amplitude does not change, but the
phase changes. Here, k is introduced as a coefficient which determines the phase
shift ka. Since ka is dimensionless, k has a unit of inverse length. This quantity is
identical to the wave number introduced in the last chapter.

Usually, we solve the secular equation and then obtain the wave function. In
contrast, here the wave function has been mostly determined from the periodicity.
Once the wave function w is known, the energy is obtained by multiplying w* to
Hw = Ew from the left and integrating it in the whole space.

E ¼
R
w�HwdsR
w�wds

ð2:4Þ

When Eq. 2.3 is substituted in Eq. 2.4, we obtain

E ¼
R P

m e�imkav�m
� �

H
P

n e
inkavn

� �
dsR P

m e�imkav�m
� � P

n e
inkavn

� �
ds

¼
P

n

P
m eiðn�mÞka R v�mHvndsP

n

P
m eiðn�mÞka R v�mvnds : ð2:5Þ

We focus on a given n (Fig. 2.2). According to the usual definition of the Hückel
approximation,

R
v�mHvnds is a for m = n, and b for m = n ± 1, namely for the

adjacent atoms. This integral is zero for all other combinations, because they are not
directly bonded. Since the factors eika and e−ika appear for m = n ± 1, we obtain

E ¼ N eikabþ aþ e�ikab
� �

N
: ð2:6Þ

The denominator is N because the overlap integral is one for m = n and zero for
all others. Namely, for a given n, a rotation for m affords one. When added for n, this
gives N. For a given n, the numerator affords beika, a, and be−ik corresponding to
m = n − 1, n, and n + 1, respectively. When added for a rotation of n, the same
terms appear N times. Thus, N cancels with the denominator. The resulting energy is

E ¼ aþ 2b cos ka ð2:7Þ

Fig. 2.2 Integrals appearing
in the tight-bind
approximation
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where cos ka ¼ eika þe�ika

2 is used. Equation 2.7 is an important relation which rep-
resents the energy of the tight-binding approximation. This name comes from the
starting atomic orbitals, which are tightly bound to the atoms. In solid-state physics,
this name is used in contrast to the free-electron approximation, but it is practically
equivalent to the LCAO approximation. Therefore, the tight-binding approximation
is the solid state version of the molecular orbital theory. The original Hamiltonian
H includes the potential energy of N atoms. However, following the standard
Hückel approximation, the energy is represented by a simple function of a and b.
We shall investigate the meaning of this equation as follows.

Equation 2.7 affords a cosine curve as shown in Fig. 2.3a. The cosine curve is
upside down because b is negative. The energy is E = a + 2b at k = 0, where the
energy takes minimum. The maximum energy is E = a − 2b, which appears at
ka = ±p, namely at k = ±p/a. Although this is a periodical function, it is sufficient
to consider the region of −p/a < k < p/a. In Fig. 2.3, only this region is plotted.

Since the atoms form a ring (Fig. 2.1a), the atom at N + 1 is identical to the first
atom, and the N-th atom corresponds to the zero-th atom (Fig. 2.3b). The condition
to equate the phases of the N-th atom and the zero-th atom is satisfied when
eiNka = 1. This is fulfilled when Nka = 2pn, where n is an integer. This leads to
k = 2pn/Na. The restriction on k is called the periodical boundary condition.
When N is large, 2p/Na is very small, though k is restricted to the integer times of
this quantity. Figure 2.3a shows the discrete energy levels aligned with this k in-
terval. In a solid, N is as large as the Avogadro number, and k is practically
continuous. Since the energy levels are almost continuous, this is called an energy
band. Since the energy band exists in the range of a + 2b < E < a − 2b, the
bandwidth is 4|b|.

Even though the energy band is practically continuous, each energy level has the
wave function. For example, at k = 0, einka is always one, so the corresponding
wave function (Eq. 2.3) is

u ¼ v0 þ v1 þ v2 þ v3 þ � � � ð2:8Þ

(a) (b)

Fig. 2.3 (a) E(k) in the one-dimensional tight-binding approximation, and (b) the periodical
boundary condition
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This is a bonding orbital spreading over the whole solid (Fig. 2.4). For k =
±p/a, nka = np leads to einka = 1, −1, 1, −1, so the wave function is

u ¼ v0 � v1 þ v2 � v3 þ � � � ð2:9Þ

This is an antibonding orbital where a node is located on every carbon–carbon bond
(Fig. 2.4). This is the reason that this state has the highest energy. In the energy
level next to k = 0, the phase of the successive carbon increases by ei2p/N, and the
whole rotation leads to the 2p phase shift. The corresponding wave function has
two nodes during the rotation. Due to the small number of nodes, we have to
gradually increase the phase, and the coefficient of a crystal orbital has to be a
complex number. In general, a coefficient of a molecular orbital is real, whereas a
coefficient of an orbital in a solid is complex. In the succeeding energy levels, the
phase shift increases as 4p, 6p … during the rotation, and the node number
increases as 4, 6 … The final level at k = p/a has N nodes, and a node is located on
every carbon–carbon bond.

We shall investigate the number of energy levels in the energy band. Since the
interval of the energy levels is 2p/Na, the number of the energy levels existing
between k = −p/a and k = p/a is

2� p
a

2p
Na

¼ N: ð2:10Þ

The carbon number is N, and the number of the atomic orbitals is N. Therefore, it is
quite reasonable that the number of the energy levels is N in analogy with the
number of solutions obtained from a secular equation (Eq. 2.2). This justifies that
we consider only the region of −p/a < k < p/a. This region is called the first
Brillouin zone.

In polyacetylene, each carbon atom has one p electron. Thus, the total number of
the p electrons is N. The occupation of the energy band is shown in Fig. 2.5a. When
we place electrons from the lowest levels, the energy levels are occupied up to a
certain energy, above which the levels are unoccupied. The border energy is called

Fig. 2.4 Orbitals in a
one-dimensional tight-binding
band
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the Fermi energy EF, and the corresponding k is the Fermi wave number kF. Since
the N electrons enter the −kF < k < kF range, we obtain

2
2kF
2p
Na

¼ N ð2:11Þ

where two before the fraction comes from the upspin and downspin electrons
entering an energy level. Solving this relation, we obtain

kF ¼ p
2a

ð2:12Þ

so, kF is half of p/a. Therefore, the Fermi energy appears at the band center at
EF = a. This situation is called half-filled. Since the energy band is continuous
around EF, a half-filled energy band is a metallic band. However, actual poly-
acetylene is an insulator unless doped. This discrepancy will be resolved in the later
part of this chapter.

When the total electron number is 2N, we obtain similarly

2
2kF
2p
Na

¼ 2N: ð2:13Þ

This is reduced to kF = p/a. Here, the energy band is entirely occupied (Fig. 2.5b).
In this situation, each energy level has two electrons. This is the entirely occupied
state. Most organic compounds are closed shell molecules, and the HOMO is
occupied like this. Ordinary molecular crystals have such a state and they are
insulators.

In the above discussion, the tight-binding approximation is applied to an energy
band in a solid. However, Eq. 2.7 is also valid for small N. For example, N = 6
corresponds to benzene, where k is restricted to k ¼ 2pn

Na ¼ 2pn
6a . Then, the phase in

(a) (b)

Fig. 2.5 (a) A half-filled one-dimensional tight-binding band, and (b) an entirely filled
one-dimensional tight-binding band
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the cosine function rotates by an interval of ka = p/3. Substituting this in Eq. 2.7,
we obtain

E ¼ aþ 2b cos
2p
6
n: ð2:14Þ

As shown in Fig. 2.6, the energy for n = 0, ±1, ±2, and 3 leads to

E ¼ aþ 2b; aþ b; aþ b; a� b; a� b; a� 2b: ð2:15Þ

These results are the same as Example 1.8.
In Fig. 2.7, energy levels of p-conjugated rings are depicted for N = 4, 6, and 8.

Since a cosine function is a real part of eika, it is convenient to suppose a complex
plane of x + iy, whose real axis x is taken downwards (Fig. 2.7b). Starting from the
x direction corresponding to n = 0, the circle is equally divided by N, and the height
affords the energy levels. For N = 4, the energy levels appear at the successive p/2
positions, so two energy levels appear at E = a. These levels are half-filled, but due

Fig. 2.6 Molecular orbital levels of benzene obtained from the tight-binding approximation

(a) (b)

(c) (d)

Fig. 2.7 Energy levels of (a, b) cyclobutadiene (N = 4), (c) benzene (N = 6), and (d) cyclooc-
tatetraene (N = 8) obtained from the tight-binding approximation
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to the nonbonding character, the delocalization energy becomes zero. For N = 6, an
energy gap appears at E = a (Fig. 2.7c). Then, all electrons enter the bonding levels
below E = a, to give rise to the delocalization energy. For N = 8, the energy levels
appear at the successive p/4 positions (Fig. 2.7d), and two energy levels appear at
E = a. Therefore, the delocalization energy is zero. Zero delocalization energy
occurs at N = 4n, while the delocalization energy appears at N = 4n + 2 in the
aromatic rings. This is the most general proof of the Hückel rule.

Example 2.1 Calculate the energy levels of cyclopentadienyl anion using the
tight-binding approximation. Calculate the bonding energy and compare it
with those of the radical and the cation. The same molecule has been pre-
viously discussed in Example 1.15.

For N = 5, k is limited to k ¼ 2pn
5a , so the energy is E ¼ aþ 2b cos 2p5 n. The

values for n = 0, ±1, and ±2 are shown in Fig. 2.8.
In a radical, every carbon atom gives up one p electron, and the total number of

the p electrons is five. An anion has one additional electron, and the p electron
number is six, whereas a cation has four electrons. These four to six electrons
occupy the p levels as shown in Fig. 2.8. The bonding energy is estimated by
summing the energy of the occupied levels.

Anion 6p 2ðaþ 2bÞþ 4ðaþ 0:618bÞ � 6a ¼ 6:472b
Radical 5p 2ðaþ 2bÞþ 3ðaþ 0:618bÞ � 5a ¼ 5:854b
Cation 4p 2ðaþ 2bÞþ 2ðaþ 0:618bÞ � 4a ¼ 5:236b

ð2:16Þ

Since bonding energy of three double bonds is 6b, the anion has larger bonding
energy than this, showing large delocalization energy.

Fig. 2.8 Energy levels in the cyclopentadienyl anion, radical, and cation
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A cyclopentadienyl anion shows aromaticity owing to the six p electrons.
Actually, this is an extraordinarily stable organic anion. It forms an ionic compound
with Fe2+ with the composition of Fe(C5H5)2. This entirely air-stable orange solid is
known as ferrocene. Ferrocene is used as a standard material of electrochemistry
(Sect. 7.2). Ferrocene dissolves in organic solvents, and Fe2+ is electrochemically
oxidized to Fe3+.

The original Hückel rule tells us that p-conjugated systems with the carbon
number 4n + 2 show aromaticity. The above example shows that p-conjugated
systems with the p electron number 4n + 2 are stable in a similar way. As another
example, in azulene (Fig. 2.9), the five-membered ring tends to have six p electrons
like a cyclopentadienyl anion, and the seven-membered ring is stabilized in the
cationic 6p form. Azulene is a hydrocarbon with the formula of C10H8, which is an
isomer of naphthalene containing only carbon and hydrogen. Nonetheless, azulene
is a very polar molecule. A five-membered ring makes a stable anion with 6p
electrons, and a seven-membered ring makes a stable cation with 6p electrons.
Accordingly, we can make stable organic anions and cations. Design of organic
electron donors and acceptors based on this principle is investigated in Chap. 7.

2.2 Free-Electron Model

The one-dimensional free-electron model was discussed in Chap. 1. Here, we
investigate the three-dimensional free-electron model [3–7]. Total energy of a
three-dimensional electron is

E ¼ p2x þ p2y þ p2z
2m

þV ð2:17Þ

and the Schrödinger equation is

� �h2

2m
@2

@x2
þ @2

@y2
þ @2

@z2

� �
þV

	 

w ¼ Ew: ð2:18Þ

Electrons in solids are bound to the nucleus by the Coulomb attraction. In a metal
electron, however, the attraction is largely shielded by other core electrons. As a
result, a metal electron is approximated by a free electron in a constant potential

+ -
Fig. 2.9 Azulene

2.1 Tight-Binding Approximation 69

http://dx.doi.org/10.1007/978-4-431-55264-2_7
http://dx.doi.org/10.1007/978-4-431-55264-2_7
http://dx.doi.org/10.1007/978-4-431-55264-2_1


V. V is a negative constant, but we take the V value as energy zero, and use V = 0 in
Eq. 2.18. The eigenfunction of the free electron is

wðx; y; zÞ ¼ ei kxxþ kyyþ kzzð Þ: ð2:19Þ

The eigenvalue is

E ¼ �h2

2m
k2x þ k2y þ k2z
� �

: ð2:20Þ

As shown in Fig. 2.10, the energy is represented by a parabola along the kx, ky, and
kz axes. When we include E, we could not plot the function in the four-dimensional
space, but we imagine that the respective point (kx, ky, kz) in the three-dimensional
k-space has the characteristic energy proportional to the distance from the origin
(Eq. 2.20). This is a discussion within fundamental quantum mechanics, but con-
sideration of N electrons introduces solid-state physics.

Here, we suppose the electron is not in an infinite space, but enclosed in a box
with the length L. The boundary at x = L is not a wall but connected to x = 0 as
shown in Fig. 2.11a, b. This is the periodical boundary condition, which is nec-
essary to avoid the surface state. This condition requires w(x + L, y, z) = w(x, y, z),
which is satisfied when eikxL ¼ 1. This leads to kx ¼ 2p

L n, where n is an integer. This
is equivalent to the previous periodical boundary condition by noting L = Na. We
apply similar conditions to ky and kz, and obtain

kx ¼ 2p
L
nx; ky ¼ 2p

L
ny; and kz ¼ 2p

L
nz ð2:21Þ

using three integers, nx, ny, and nz. We assumed the same L for three directions, so
we suppose a cube with the edge L.

The periodical boundary condition in three directions is defined like this.
However, it is difficult to imagine a cube whose edges are circularly connected in
three directions. In a two-dimensional space, we can rotate a donut surface in two
different directions (Fig. 2.11c). Then, we imagine a similar surface in the

Fig. 2.10 Free electron
energy
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three-dimensional space. In general, we implicitly believe we live in a Euclidean
space spreading to infinity. However, we can trace a spherical surface along a great
circle in any directions to come back to the starting position. A spherical surface is
two dimensional, but the surface of a four-dimensional sphere is three-dimensional.
On this surface, we go to the right and return from the left, going to the front and
returning from the back, and going up and returning from underneath. Einstein
imagined such a space in his general theory of relativity.

Returning to the original subject, Eq. 2.21 implies that the k-space is restricted to
discrete points with the interval of 2p/L (Fig. 2.12a). In the three-dimensional
k-space, the energy level exists only on the lattice points (kx, ky, kz) with the interval

(a)

(b)

(c)

Fig. 2.11 Periodical boundary condition

(a) (b)

Fig. 2.12 Lattice points and the Fermi surface in the three-dimensional k-space
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of 2p/L (Fig. 2.12b). The energy of the respective point is given by Eq. 2.20, which
is proportional to the distance from the origin. When N electrons are incorporated,
starting from the origin, each level is occupied by two electrons according to the
Pauli exclusion principle. The resulting occupied states have a spherical shape. The
boundary between the occupied and unoccupied states is called the Fermi surface.
The Fermi surface of the three-dimensional free-electron model is a sphere. When

the radius of this sphere is kF, the volume is 4p
3 k

3
F. Since each

2p
L

� �3
volume contains

an energy level, the volume of the Fermi surface is related to the electron number N.

2
4p
3 k

3
F

2p
L

� �3 ¼ N ð2:22Þ

The factor two before the fraction comes from the upspin and downspin electrons
entering into an energy level. This relation is reduced to

V
3p2

k3F ¼ N ð2:23Þ

where V = L3 is the volume of the solid. Equation 2.20 affords EF ¼ �h2

2m k
2
F. Through

the use of this relation, kF is eliminated.

EF ¼ �h2

2m
3p2N
V

� �2
3

ð2:24Þ

This relation implies that EF is determined by the electron density N/V. This
equation is solved for N, and we obtain

N ¼ V
3p2

� 2mEF

�h2

� �3
2

: ð2:25Þ

When E is slightly increased by dE (Fig. 2.13), the electron number N increases by
dN. The change is obtained by differentiating N by E.

DðEÞ ¼ dN
dE

¼ V
2p2

2m

�h2

� �3
2

E
1
2 ð2:26Þ

Fromnowon, the subscript F is omitted fromEF and kF because the following relations
hold more generally.D(E) is the number of energy levels existing between E and dE,
and called the density of states. Density of states in the three-dimensional
free-electron model is proportional to

ffiffiffiffi
E

p
(Fig. 2.13b). This plot looks like the

parabola of E(k) (Fig. 2.13a), but the horizontal axis represents a different quantity.
The shaded region in Fig. 2.13b corresponds to the occupied region. In Fig. 2.13a,
however, we cannot shade the region below EF, because the occupied energy levels
exist only on the energy band.
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We shall extract the density of states in a different way. When the energy
changes from E to E + dE (Fig. 2.14), the spherical surface is 4pk2, and the volume

of the spherical shell is 4pk2dk. This is divided by 2p
L

� �3
to give

2
4pk2dk

2p
L

� �3 ¼ dN: ð2:27Þ

E ¼ �h2k2

2m gives dE ¼ �h2k
m dk. These dN and dE are substituted in the definition ofD(E)

DðEÞ ¼ dN
dE

¼ 2
4pk2

2p
L

� �3 dk
�h2k
m dk

¼ V
2p2

2m

�h2
k ¼ V

2p2
2m

�h2

� �3
2

E
1
2 ð2:28Þ

where k ¼ 2mE
�h2

� �1
2
is used. This relation is identical to Eq. 2.26.

Fig. 2.14 Density of states at
the Fermi spherical shell

(a) (b)

Fig. 2.13 Density of states D(E) at the Fermi level
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Since the energy is represented by a parabola (Fig. 2.13a), the slope dE/dk in-
creases with increasing E. Then, the number of states per energy decreases.
However, the spherical surface increases in proportion to k2, and these two factors
make D(E) increase proportionally to

ffiffiffiffi
E

p
. We will see that many important

properties of metals such as specific heat (Sect. 2.3), conductivity (Sect. 3.1.3), and
magnetic susceptibility (Sect. 4.4) increase in proportion to the density of states.

Example 2.2 Energy in a two-dimensional metal is given by E ¼ �h2

2m ðk2x þ k2y Þ.
Describe the shape of the Fermi surface. Calculate the density of states.

The Fermi surface of a two-dimensional metal is obtained by kx
2 + ky

2 =
kF
2 = constant, which gives a circle in the kx-ky plane. In the three-dimensional k-
space, this gives an infinitely elongated cylinder (Fig. 2.15a). The number of the
energy levels is calculated from the area of the circle pk2.

2
pk2

2p
L

� �2 ¼ N ð2:29Þ

This is reduced to

N ¼ L2

2p
k2 ¼ mL2

�h2p
E: ð2:30Þ

This is differentiated by E to give the density of states.

DðEÞ ¼ dN
dE

¼ mL2

�h2p
ð2:31Þ

(a)

(b)

Fig. 2.15 (a) Fermi surface
and (b) density of states in a
two-dimensional metal
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The density of states of a two-dimensional metal does not depend on
E (Fig. 2.15b).

Example 2.3 Energy in a one-dimensional metal is given by E ¼ �h2

2m k
2
x .

Describe the shape of the Fermi surface. Calculate the density of states.

The Fermi surface of a one-dimensional metal is obtained by kx
2 = kF

2 = constant,
which gives kx = ±kF. In the three-dimensional k-space, this is a couple of planes
(Fig. 2.15a), in which the −kF < k < kF region is occupied, and the outside is
unoccupied. The number of the energy levels is calculated from the length of the
segment 2kF.

2
2k
2p
L

¼ N ð2:32Þ

Since E ¼ �h2k2
2m leads to k ¼

ffiffiffiffiffiffiffi
2mE

p
�h , k is deleted to give

N ¼ 2L
ffiffiffiffiffiffiffiffiffi
2mE

p

p�h
ð2:33Þ

which is differentiated by E to afford the density of states.

DðEÞ ¼ dN
dE

¼ L
ffiffiffiffiffiffi
2m

p

p�h
ffiffiffiffi
E

p ð2:34Þ

As shown in Fig. 2.16b, the density of states in a one-dimensional metal is pro-
portional to E−1/2, which diverges at the band edge (E = 0).

(a)
(b)

Fig. 2.16 (a) Fermi surface
and (b) density of states in a
one-dimensional metal
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2.3 Fermi Distribution

An isolated molecule has discrete energy levels, whereas a solid has continuous
energy bands. A solid consisting of a large number of atoms (N) has many energy
levels, which are densely distributed with the energy interval proportional to 1/N. In
a molecule, energy levels below the HOMO are occupied, and those above the
LUMO are unoccupied. In a solid, the energy bands below the Fermi energy are
occupied. However, since the energy band is continuous, some energy levels are
located only slightly above the Fermi energy, and some electrons are thermally
excited to these energy levels (Fig. 2.17). This happens because the energy interval
in the energy band is smaller than the thermal energy. Therefore, we have to
consider a distribution function f(E) representing the probability of the occupancy.
f(E) is one when 100 % occupied, and zero when entirely vacant. The distribution
of metallic electrons is represented by the Fermi-Dirac distribution function.
Here, we shall extract the Fermi-Dirac distribution function from statistical
mechanics.

Suppose the number of energy levels with the same energy E is Ci. In the
three-dimensional free-electron model, the Ci levels are located on the same
spherical Fermi surface. Here, the states with different energies are labeled by the
subscript i. Suppose Ni electrons are incorporated in these levels (Fig. 2.17). Since
an electron is a Fermi particle, we cannot distinguish these Ni electrons. Then, Ni

occupied states are chosen from the Ci states, and the statistical weight is

Wi ¼ Ci!

Ni!ðCi � NiÞ! : ð2:35Þ

The entropy is obtained from the definition in statistical mechanics.

S ¼ kB lnW ¼ kB ln
Y
i

Wi ¼ kB
X
i

lnWi ¼ kB
X
i

ln
Ci!

Ni!ðCi � NiÞ! ð2:36Þ

This is simplified by using Stirling’s approximation lnN! ¼ N lnN � N.

S ¼ kB
X
i

Ci lnCi � Ni lnNi � ðCi � NiÞ lnðCi � NiÞð Þ: ð2:37Þ

Fig. 2.17 Fermi-Dirac
distribution function
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The Gibbs free energy is represented by F = E − TS − lN, where l is the
chemical potential. Note that the total energy is E = RNiEi and the total electron
number is N = RNi. Here, the distribution of Ni which minimizes F is realized. This
is obtained by placing the Ni derivative of F to be zero.

@F
@Ni

¼ Ei þ kBTðlnNi � lnðCi � NiÞÞ � l ¼ 0 ð2:38Þ

This leads to

Ci � Ni

Ni
¼ e

Ei�l
kBT : ð2:39Þ

As shown in Fig. 2.18, the distribution function corresponds to f(E) = Ni/Ci. This is
obtained from the above equation.

f ðEiÞ ¼ Ni

Ci
¼ 1

e
Ei�l
kBT þ 1

ð2:40Þ

This is the Fermi distribution function. In this notation, the density of states is
D(E) = Ci, and the distribution function is f(E) = Ni/Ci. Then, as shown in
Fig. 2.18, D(E) � f(E) gives the electron number Ni.

The Fermi distribution function is depicted in Fig. 2.19. At T = 0 K, Eq. 2.40
gives

f ðEÞ ¼ 1
e�1 þ 1

¼ 1 for E\l

f ðEÞ ¼ 1
eþ1 þ 1

¼ 0 for E[ l
ð2:41Þ

which affords a step function (Fig. 2.19). At a finite temperature, e
E�l
kBT changes

gradually, and f(E) drops smoothly (Fig. 2.19). At E = l, f(E) is always 1/2. Since

Fig. 2.18 Density of states � Distribution function = Number of electrons
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e
E�l
kBT changes only around the E * l ± kBT region, f(E) is mostly either one or zero
except for the very neighbor of E * l. l of an inorganic metal is in the same order
as the bandwidth, which is as large as 5 eV * 50,000 K. At 300 K, the step is
smoothed in the small region of 300 K/50,000 K * 0.6 %, and the excited elec-
trons are less than 1 % of the total electrons.

In order to demonstrate this point more clearly, we shall calculate the specific
heat of metallic electrons. Since the electron number is represented by D(E)
f(E) (Fig. 2.18), the internal energy is obtained by multiplying E to the electron
number.

UðTÞ ¼
Z1
0

ðE � EFÞDðEÞf ðEÞdE ð2:42Þ

Here, E − EF instead of E is multiplied in order to adopt EF as the standard. The
specific heat at constant volume is obtained by differentiating the internal energy by
temperature.

CV ¼ @U
@T

¼
Z1
0

ðE � EFÞDðEÞ @f ðEÞ
@T

dE ð2:43Þ

Note that T appears only in f(E). The T derivative of f(E) is obtained by using
x ¼ E�l

kBT
in

f ðEiÞ ¼ 1

e
Ei�l
kBT þ 1

¼ 1
ex þ 1

: ð2:44Þ

This affords

@f
@T

¼ E � l
kBT2

ex

ðex þ 1Þ2 : ð2:45Þ

Since f(E) is either one or zero except for the neighbor of E * l, the derivative is
mostly zero. This function is only non zero around the neighbor of EF (Fig. 2.20b).

Fig. 2.19 Fermi distribution
functions at finite
temperatures
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The integral in Eq. 2.43 is finite only around EF, and D(E) is approximated by
D(EF). Then, D(EF) is taken out of the integral to afford

CV ¼ DðEFÞ
Z1
0

ðE � EFÞ @f ðEÞ
@T

dE ¼ DðEFÞ
Z1
0

ðkBTxÞ xT
ex

ðex þ 1Þ2 kBTdx

¼ k2BTDðEFÞ
Z1
0

x2
ex

ðex þ 1Þ2 dx:
ð2:46Þ

Since this integral is p2/3, the specific heat is

CV ¼ p2

3
DðEFÞk2BT : ð2:47Þ

The specific heat is proportional to T, and represented as Cv = cT. The coefficient
c ¼ p2

3 DðEFÞk2B contains only D(EF) as a characteristic property of a material. As
another notation, the density of states in a three-dimensional metal is obtained from
Eq. 2.25 as

DðEFÞ ¼ 3
2
N
EF

¼ 3
2

N
kBTF

ð2:48Þ

so the specific heat is

Cv ¼ p2

3
3
2

N
kBTF

k2BT ¼ p2

2
NkB

T
TF

¼ p2

2
nR

T
TF

: ð2:49Þ

Here, the Fermi temperature TF is defined by EF = kBTF. This is in the order of
50,000 K, implying only T/TF * 300 K/50,000 K * 0.6 % electrons are ther-
mally excited. If electrons follow the classical distribution instead of the Fermi
distribution, the electron specific heat should be Cv * 3R according to Dulong–
Petit’s law, where R is the gas constant and the number three appears from the x, y,

(a)

(b)

Fig. 2.20 (a) Fermi
distribution function and
(b) the derivative
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and z directions. Equation 2.49 becomes less than 1 % of this value because the
electrons are Fermi particles, reflecting the quantum mechanical nature of the metal
electrons. The states below EF are occupied and those above EF are unoccupied, and
this situation is practically unchanged at a finite temperature. Then, the Fermi
surface is obscured only very slightly by the thermal excitation. Even the metal
electrons are occupied similarly to the ordinary molecular orbitals, where the states
below the HOMO are occupied, and those above the LUMO are unoccupied.

When the electron-specific heat is added to the lattice-specific heat from the
thermal vibration following T3 (Fig. 2.21a), we obtain

Cv ¼ cT þ bT3: ð2:50Þ

This is divided by T to lead to

Cv=T ¼ cþ bT2 ð2:51Þ

so the plot of Cv/T versus T2 gives a straight line (Fig. 2.21b). The intercept of this
plot affords c. The second term bT3 is overwhelming at high temperatures, but
becomes small at liquid helium temperatures, where the cT term is more important.
Then, low-temperature specific heat measurement below liquid helium temperatures
gives c from the plot like Fig. 2.21b. Since c is determined only from D(EF)
(Eq. 2.47), this affords an estimation of D(EF). In an insulator having no metallic
electrons, a similar plot affords a straight line passing zero.

Example 2.4 In Bose–Einstein statistics, each state can be occupied by more
than two particles. In this condition, we shall consider a case where Ni par-
ticles enter the Ci states with the same energy. Figure 2.22 represents an
example in which these states are occupied by 3, 1, 2, 0, 2 … particles.
Suppose the white balls represent the boarders between the states, and the
black balls are particles incorporated as 3, 1, 2, 0, 2 … The statistical weight
is given by the orders of Ni black balls and Ci − 1 white balls.

(a) (b)

Fig. 2.21 Temperature dependence of low-temperature specific heat at low temperatures
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Wi ¼ ðCi þNi � 1Þ!
Ni!ðCi � 1Þ! ð2:52Þ

From this relation, calculate the Bose–Einstein distribution by minimizing the
free energy. For simplicity, replace Ci − 1 with Ci.

Assuming Ci − 1 ! Ci, and using Stirling’s approximation, we obtain

lnWi ¼ ðCi þNiÞ lnðCi þNiÞ � Ni lnNi � Ci lnCi: ð2:53Þ

This is substituted in F = E − TS − lN, and differentiated by Ni to give

@F
@Ni

¼ Ei þ kBTðlnðNi þCiÞ � lnNiÞ � l ¼ 0: ð2:54Þ

This gives

Ci þNi

Ni
¼ exp

Ei � l
kBT

� �
: ð2:55Þ

The distribution function is

f ðEiÞ ¼ Ni

Ci
¼ 1

exp Ei�l
kBT

� �
� 1

: ð2:56Þ

At T = 0 K, this equation leads to

f ðEÞ ¼ 1
eþ1 � 1

¼ 0 for E[ lZ

e0 ¼ 1 affords f Eð Þ ! 1 for E ¼ l ð2:57Þ

and all particles fall into the lowest state (Fig. 2.23). This situation is called the
Bose–Einstein condensation.

Fig. 2.22 Bose distribution
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When Ei − l is replaced by �hx in Eq. 2.56, the Planck distribution

f ðxÞ ¼ 1

exp �hx
kBT

� �
� 1

ð2:58Þ

is obtained. Since a photon is a Bose particle, the black body radiation (Sect. 1.1)
follows the Planck distribution. A phonon is a representation of the lattice vibration,
which is another Bose particle. The lattice vibration also follows this relation.

In quantum statistical mechanics, the Fermi particles are particles with
half-integer spins. The examples are electrons, protons, neutrons, and 3He. These
particles follow the Fermi distribution. The Bose particles are particles with integer
spins. The examples are photons, phonons, and 4He. These particles follow the
Bose distribution. These distributions are generally represented by

f ðEiÞ ¼ 1

exp Ei�l
kBT

� �
� 1

ð2:59Þ

where the + sign gives the Fermi distribution, and the – sign gives the Bose dis-
tribution. In the large energy limit (E − l � kBT), the exponential is larger than
one, and ±1 is neglected to give the classical Boltzmann distribution.

f ðEiÞ ¼ exp �Ei � l
kBT

� �
ð2:60Þ

Example 2.5 In the classical Boltzmann distribution, ni particles of the total
N = Rni particles are distributed into the i-th state. The statistical weight is
(Fig. 2.24)

W ¼ N!
n1!n2!n3! � � � : ð2:61Þ

From this relation, calculate the Boltzmann distribution by minimizing the
free energy.

Fig. 2.23 Bose-Einstein
condensation at T = 0 K
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Stirling’s approximation affords

lnW ¼ ln
N!

n1!n2!n3! � � � ¼ N lnN �
X
i

ni ln ni: ð2:62Þ

This is placed in F = E − TS − lN to give

F ¼
X
i

Eini � kBT N lnN �
X
i

ni lnni

 !
� l

X
i

ni: ð2:63Þ

This is differentiated by ni and equated zero to afford

@F
@ni

¼ Ei þ kBTðln ni þ 1Þ � l ¼ 0: ð2:64Þ

This gives the Boltzmann distribution.

f ðEiÞ ¼ ni ¼ exp �Ei � l
kBT

� �
ð2:65Þ

The Fermi, Bose, and Boltzmann distributions are summarized in Fig. 2.25. At
T = 0 K, the Fermi distribution is step-like, and in the Bose distribution all particles
condense into the E = l state. These ground states appear, respectively, when a
state is occupied only by a single particle, and by multiple particles. At
E − l � kBT, the exponential becomes much larger than one, and all distributions
converge to the classical Boltzmann distribution.

Fig. 2.24 Boltzmann
distribution
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2.4 Relation Between the Tight-Binding Approximation
and the Free-Electron Model

The tight-binding and the free-electron models are two different views of solid
electrons. We can expand the tight-binding energy band (Eq. 2.7) around k = 0.

E kð Þ ¼ E 0ð Þþ bk2 þ � � � ð2:66Þ

Here, the k-linear term for the cosine function is zero. When bk2 is regarded as �h2k2
2m�,

the free-electron model is an approximation of the tight-binding band (Fig. 2.26).

Therefore, the effective mass 1
m� ¼ 1

�h2
@2EðkÞ
@k2 is not equal to the electron mass.

Fig. 2.25 Various kinds of
distributions

Fig. 2.26 Relation between
the tight-binding and free
electron models
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Example 2.6 Calculate the relation of the effective mass m* in the
free-electron model to b in the tight-binding approximation.

Equation 2.7 is differentiated by k twice.

@E
@k

¼ �2ba sin ka

@2E
@k2

¼ �2ba2 cos ka:
ð2:67Þ

This is substituted in the definition of the effective mass 1
m� ¼ 1

�h2
@2EðkÞ
@k2 , and k is

assumed to be zero.

m� ¼ � �h2

2ba2 cos ka
! � �h2

2ba2
ð2:68Þ

The resonance integral b in the molecular orbital theory is called a transfer integral
in solid-state physics, and represented by t. Then, Eq. 2.7 is rewritten as

E ¼ aþ 2t cos ka: ð2:69Þ

As shown in Fig. 2.26, the difference between the tight-binding band and the
free-electron model increases at large k. In particular, the free-electron band
increases without a limit, whereas the tight-binding band reaches to a limit at
k = p/a. A free-electron band does not have a bandwidth. However, we can expand
the tight-binding band at k = p/a, and a downward parabola is obtained (Fig. 2.26).
Here, b < 0 leads to m* < 0, indicating the existence of holes with positive charges.
Accordingly, the lower half band is approximated by electrons, while the upper half
band has holes (Fig. 2.27).

(a)

(b)

Fig. 2.27 (a) Electron band
and (b) hole band

2.4 Relation Between the Tight-Binding … 85



Example 2.7 Calculate the density of states at the band center (in the
half-filled case) of a one-dimensional tight-binding band with the bandwidth
1 eV.

Equation 2.67 leads to

DðEÞ ¼ @N
@E

¼ @N
@k

@k
@E

¼ � a
2p

1
2ba sin ka

¼ � 1
4bp sin ka

:

Here, sin ka is one at the band center, so 4b = 1 eV affords D(E) = 1/p = 0.318
states/eV. This is minimum in the band, and D(E) increases and diverges towards
the band edge similarly to the one-dimensional free-electron band (Example 2.3).

2.5 Two-Dimensional Energy Band

Next, we shall investigate the two-dimensional tight-binding band. As shown in
Fig. 2.28, consider a square lattice with a transfer integral b between the neigh-
boring atoms. Similarly to Eq. 2.3, a crystal orbital that satisfies the Bloch condition
is represented by

w ¼
X
n

X
m

einkxaeimkyavnm: ð2:70Þ

This is substituted in Eq. 2.4 to give the energy.

E /
X
n

X
m

X
p

X
q

eiðn�pÞkxaeiðm�qÞkya
Z

v�npHvmqds ð2:71Þ

For a given (n, m), nonzero integrals are beikxa for (p, q) = (n − 1, m), a for (n, m),
be−ikxa for (n + 1, m), beikya for (n, m − 1), and be−ikya for (n, m + 1). These terms
are collected to

E / eikxabþ aþ e�ikxabþ eikyabþ e�ikyab: ð2:72Þ

Fig. 2.28 Two-dimensional
square lattice
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This affords

E ¼ aþ 2b cos kxaþ 2b cos kya: ð2:73Þ

We consider the range of k to be −p/a < kx < p/a and −p/a < ky < p/a, so the first
Brillouin zone is represented by a square shown in Fig. 2.29a. Energy given by
Eq. 2.73 is depicted in Fig. 2.29b. Energy at the representative points in the k space
is

kx; ky
� � ¼ 0; 0ð Þ aþ 4b

p=a; 0ð Þ a
0; p=að Þ a
p=a; p=að Þ a� 4b:

The minimum energy is a + 4b, and the maximum energy is a − 4b, so the
bandwidth is 8|b|. The bandwidth is generally given as 2z|b|, where z is the number
of the neighboring atoms (coordination number). In a one-dimensional band, z = 2
affords 4|b|. In the present two-dimensional square lattice, z = 4 affords 8|b|.
Similarly, the tight-binding energy of a three-dimensional cubic lattice is

E ¼ aþ 2b cos kxaþ 2b cos kyaþ 2b cos kza: ð2:74Þ

This affords the bandwidth 12|b|.
Suppose the two-dimensional square band is half-filled. The Fermi energy is

EF = a, and the Fermi surface is a square shown in Fig. 2.30. It seems surprising
that the Fermi surface is surrounded by straight lines, but applying the sum equation
of cosine functions to Eq. 2.73, we obtain the straight lines because the sine
becomes zero at ±kx ± ky = p/a. Inside of the square is occupied, whereas the
outside squares are unoccupied. The outside squares in Fig. 2.30b are regarded as
hole pockets.

Copper-oxide high-temperature superconductors have a CuO square lattice
(Fig. 2.31a). The copper atoms are octahedrally coordinated, and oxygen atoms
exist in between the Cu atoms. The axial interaction is less important, so the CuO
network is regarded as a square lattice. The Fermi energy is located in the Cu dx2�y2

(a) (b)

Fig. 2.29 (a) First Brillouin zone and (b) energy band in the two-dimensional square lattice
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band represented by Eq. 2.73. The non superconducting parent compound
La2CuO4 has Cu2+ and the Cu dx2�y2 band is half-filled. The Fermi surface is
represented by Fig. 2.30, and this compound is a Mott insulator (Chap. 5).
Superconductors have such compositions as (La1−xSrx)2CuO4; because Sr2+ has a
smaller charge than La3+, Cu2+ is partly converted to Cu3+. This compound has less
electrons than the parent compound, and the CuO network is hole doped. The
resulting superconducting material has smaller (electron) Fermi surface than that of
the parent compound (Fig. 2.31b), and shows metallic conductivity.

Example 2.8 Calculate the energy band of a triangular lattice, in which the
three directions have different transfers, ba, bb, and bp. Calculate the
bandwidth.

The atomic orbital in a unit cell is one, and the transfers are ba for ±a, bb
for ±b, and bp for ±(a + b). Since the neighboring atoms are six, the energy band
is obtained similarly to Eq. 2.72.

(a) (b)

Fig. 2.30 Fermi surface in the half-filled two-dimensional square lattice

(a) (b)
Fig. 2.31 (a) Structure and
(b) Fermi surface of a cupper
oxide superconductor
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E ¼ aþ bae
ikaa þ bae

�ikaa þ bbe
ikbb þ bbe

�ikbb þ bpe
iðkaaþ kbbÞ þ bbe

�iðkaaþ kbbÞ

¼ aþ 2ba cos kaaþ 2bb cos kbbþ 2bp cosðkaaþ kbbÞ

Since each cosine function changes over the ±1 range, the bandwidth is
4|ba| + 4|bb| + 4|bp|.

2.6 Tight-Binding Approximation for General Crystals

We shall consider a unit cell which contains more than two atoms. For example, a
unit cell in Fig. 2.32 involves two atoms, 1 and 2. In analogy with the LCAO in the
molecular orbital theory, the whole orbital is represented by using the atomic
orbitals v1 and v2

w ¼
X2
i¼1

civi ð2:75Þ

where i = 1 and 2. In order to take account of vi involved in different cells, vi is
replaced by the crystal orbital.

vi !
XN
n

einkaviðnÞ: ð2:76Þ

Combining Eqs. 2.75 and 2.76, we obtain

w ¼
X2
i¼1

XN
n

cieinkaviðnÞ: ð2:77Þ

In general, i is a sum for orbitals in a unit cell, and n is a sum for different cells.
Similarly, to the usual molecular orbital theory, the energy is obtained by using

this equation in Eq. 2.4. The resulting equation contains c1 and c2, so we calculate
@E
@ci

¼ 0, leading to the secular equation.

a11ðkÞ � E b12ðkÞ
b21ðkÞ a22ðkÞ � E

����
���� ¼ 0 ð2:78Þ

Fig. 2.32 Two atoms in a
unit cell
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The diagonal term aii(k) is an integral where the Hamiltonian is sandwiched by
the same crystal orbital

P
einkaviðnÞ

aiiðkÞ ¼
Z X

m

e�imkav�i ðmÞ
 !

H
X
n

einkaviðnÞ
 !

ds

¼ ai þ
X
n0

biiðn0Þein
0ka:

ð2:79Þ

which includes not only ai coming from the same vi in the same unit cell, but also
bii(k) coming from different vi belonging to the neighboring cells. The latter is
k dependent. For example, atom 1 in Fig. 2.32 includes b1 to the neighboring cells.

a11 ¼ a1 þ b1e
ika þ b1e

�ika ¼ a1 þ 2b1 cos ka ð2:80Þ

The nondiagonal term is similarly obtained.

bijðkÞ ¼
Z X

m

e�imkav�i ðmÞ
 !

H
X
n

einkavjðnÞ
 !

ds

¼
X
n

bijðn0Þein
0ka

ð2:81Þ

For example, the term 12 in Fig. 2.31 is

b12 ¼ b2 þ b3e
�ika: ð2:82Þ

This consists of the intra-cell b2 and the inter-cell b3 multiplied by e−ika. In general,
when the transfer b exists in the r direction between the atoms 1 and 2, the matrix
element is obtained by summing beikr. The following example illustrates a practical
case.

Example 2.9 Calculate the energy band of a one-dimensional alternating
chain, where b is alternately b1 and b2 as shown in Fig. 2.33. Estimate the
overall bandwidth and the energy gap.

A unit cell contains two atoms (1 and 2), so the secular equation is 2 � 2,
where the diagonal terms are ∫v1

*Hv1ds = ∫v2
*Hv2ds = a and the nondiag-

onal terms are b1 + b2 e
i2ka and b1 + b2 e

−i2ka.

Fig. 2.33 One-dimensional
alternating chain
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The secular equation is

a� E b1 þ b2e
i2ka

b1 þ b2e
�i2ka a� E

����
���� ¼ 0: ð2:83Þ

This is reduced to

ða� EÞ2 ¼ b1 þ b2e
i2ka� �

b1 þ b2e
�i2ka� � ð2:84Þ

which gives

E ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ 2b1b2 cos 2ka

q
: ð2:85Þ

This is depicted in Fig. 2.34. Since the energy at k = 0 is E = ±|b1 + b2|, the
overall bandwidth is W = 2 |b1 + b2|. The energy at k = p/a is E = ±|b1 − b2|, so
the energy gap is Eg = 2|b1 − b2|.

When we assume b1 = b2 = b in Eq. 2.85, we obtain

E ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ b2 þ 2b2 cos 2ka

q
¼ a� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos 2kaÞ

p
¼ aþ 2b cos ka:

ð2:86Þ

Here, we used the double-angle formula, 1þ cos 2x ¼ 2 cos2 x. This is identical to
Eq. 2.7. When b1 = b2, the energy gap 2|b1 − b2| is zero, and the upper and the
lower bands are connected (Fig. 2.35a). We have defined the unit cell as
2a (Fig. 2.33), so the uniform chain has a periodicity of a. When the upper band is
moved to the k > p/2a region, the band is depicted in the −p/a < k < p/a region
(Fig. 2.25b). This is the original cosine band. The band scheme like (a) is called a
reduced zone, and the scheme (b) is called an extended zone. These two represent
the same band. The energy band at b1 6¼ b2 is depicted (c) in the reduced zone and
(d) in the extended zone. If this band is half-filled, the lower band is fully occupied,
but the upper band is empty. Figure 2.35a is equivalent to Fig. 2.5a, where poly-
acetylene is a metal. In the actual polyacetylene, the single and double bonds have
different b1 6¼ b2 (bond alternation), and an energy gap emerges as shown in
Fig. 2.35c, d. Note the lattice periodicity is doubled in this case.

Fig. 2.34 Energy band in a
one-dimensional alternating
chain
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Similarly, when the periodicity of the chain is 3a (Fig. 2.35e), energy gaps
appear at k = p/3a as show in Fig. 2.35f. Figure 2.35e has only two kinds of b1 and
b2, but the periodicity b1b1b2 is three-fold. In general, when the lattice periodicity is
n times the original lattice, the repeating unit in the k space becomes 1/n, and an
energy gap emerges at p/na. When kF is located at p/na, the material becomes an
insulator. Consequently, a 1/n-filled one-dimensional band becomes insulating
when the lattice periodicity becomes na. This is called the Peierls transition.
Polyacetylene is regarded as a Peierls insulator. Bond alternation in antiaromatic
cyclobutadiene (Example 1.12) is also regarded as a Peierls insulator. In Chap. 7,
we discuss organic conductors with noninteger periodicity such as 3.39 molecules
(Fig. 7.14) and 2.29 molecules (Fig. 7.43). Even in these cases, a gap appears at kF
corresponding to the inverse of the periodicity.

In general, when a unit cell contains N atomic orbitals, the LCAO of the crystal
orbital leads to a secular equation

a11ðkÞ � E b12ðkÞ . . .
b21ðkÞ a22ðkÞ � E . . .

..

. ..
. ..

.

�������
������� ¼ 0: ð2:87Þ

The matrix elements depend on k = (kx, ky, kz). At a certain k, however, the matrix
elements are complex numbers, and the solution gives N energy levels. Note the
solutions are real numbers because the matrix is a Hermetian. When we use a
slightly different k, we obtain slightly different matrix elements. The energy levels
are slightly different. By connecting these energy levels, we obtain the energy bands
(Fig. 2.36). Even when N is very large, the number of the energy bands is the same
as the number of the starting orbitals N.

Figure 2.36 is the energy bands of germanium. Germanium forms a diamond
lattice from the Ge-Ge covalent bonds, where the original 4s4p3 atomic orbitals
construct the bonding and antibonding orbitals. The occupied bonding orbitals form

(a) (c) (e)

(b) (d) (f)

Fig. 2.35 (a, b) Uniform one-dimensional band and (c, d) alternating one-dimensional band. (e)
Three-fold chain and (f) the energy band
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the valence band, and the unoccupied antibonding orbitals form the conduction
band. An energy gap emerges between the valence and conduction bands, so
germanium is a semiconductor. The energy gap is 0.66 eV for germanium, which
increases to 1.12 eV in silicon and 5.47 eV in diamond.

2.7 Brillouin Zone

The unit cell in the k space is called the Brillouin zone. The Brillouin zone of the
two-dimensional square lattice (Sect. 2.5) is shown in Fig. 2.37. In crystallography,
lattice points in the inverse space are located on the points such as (1, 0) and (0, 1).
In solid-state physics, these points are on 2p/a, and regarded as equivalent to the
origin C, when we discuss the electronic state. In solid-state physics, the Fourier
transform is defined by eikr, so the lattice point appears at 2p/a. In contrast, the

Fig. 2.37 The first Brillouin
zone (dashed) and the
crystallographical cell
(dotted) in the
two-dimensional square
lattice

Fig. 2.36 An example of a three-dimensional energy band: chemical bonds and energy bands in
germanium
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Fourier transform in crystallography is defined by e2pikr, and the lattice point is
located on k = 1/a. Note the definition of the k space is different by 2p.

The boundary of the Brillouin zone is defined by the midpoint to the adjacent
lattice point. Therefore, the boundary appears at p/a. In general, the zone boundary
is obtained by the perpendicular bisector between the original and adjacent lattice
points. The resulting Brillouin zone is a square (Fig. 2.37). A crystallographical
unit cell is surrounded by the lattice points, which is different from the Brillouin
zone (Fig. 2.37). However, these two squares have the same area, and represent the
equivalent unit cell. The origin of the Brillouin zone (0, 0) is conventionally called
the C point, and the crossing points of the kx and ky axes to the zone boundary are,
respectively, called the X and Y points.

Since the Brillouin zone is surrounded by perpendicular bisectors to the adjacent
lattice points, the perpendicular bisector to the (1, 1) point defines an oblique
boarder (Fig. 2.38). Accordingly, shaded regions surrounded by the new perpen-
dicular bisectors are generated out of the first Brillouin zone. The right triangle is
located left of the (1, 0) point, so moved to the left of the (0, 0) point. Similarly, the
left triangle is moved to the right and so on to generate a new square that is identical
to the first Brillouin zone. This square is a region originally located out of the first
Brillouin zone, and called the second Brillouin zone. In the same way, perpen-
dicular bisectors to more distant lattice points define the third and fourth Brillouin
zones.

Next, we investigate non orthogonal lattices. As shown in Fig. 2.39, the per-
pendicular bisectors define an irregular hexagon, which is the first Brillouin zone. In
an oblique lattice, perpendicular bisectors to diagonal lattice points constitute the
boarder. In crystallography, a unit cell is a parallelogram, but for example, the

(a) (b)

Fig. 2.38 The second Brillouin zone in the two-dimensional square lattice
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shaded regions in Fig. 2.39 are equivalent to each other. We can construct the first
Brillouin zone by moving four separate panels from the parallelogram.

Examples of three-dimensional Brillouin zones are shown in Fig. 2.40. Brillouin
zones of primitive cubic and orthorhombic lattices are again primitive cubic and
orthorhombic lattices (Fig. 2.40b), because the lattice is orthogonal. However,
similar to Fig. 2.39, a C-center orthogonal system leads to a hexagonal face
(Fig. 2.40c). The reciprocal cell of a body-center cubic lattice is a face-center cubic,
and that of a face-center cubic lattice is a body-center cubic. The corresponding
Brillouin zones are shown in Fig. 2.40d, e. The polyhedron in Fig. 2.40d is sur-
rounded by rhombuses with equivalent edges. This modified polyhedron is called a
rhombus dodecahedron [8]. The polyhedron in Fig. 2.40e is produced by cutting
corners of a cube (Fig. 2.40f) or an octahedron (Fig. 2.40g), and called a truncated
cube or truncated octahedron. This polyhedron is surrounded by squares and
hexagons with equivalent edges. Note that we can fill the whole three-dimensional
space by stacking these polyhedra attaching a hexagon face to a hexagon and a
square face to a square. Not only this polyhedron but also all Brillouin zones fulfill
this condition. The Brillouin zone of a triclinic system has a complicated shape
(Fig. 2.40a), but can fill the whole three-dimensional space. This is obvious because
these polyhedra are surrounded by perpendicular bisectors of lattice points. The
body-center and face-center cubic lattices involve more than two lattice points, but
the Brillouin zone contains only a single C point. In general, the Brillouin zone is a
minimal repeating unit centered at the C point.

Example 2.10 Identify the point groups of Fig. 2.40d, e.

Both are Oh.

Fig. 2.39 The Brillouin zone
for a non orthogonal lattice
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2.8 Fermi Surface of Metals

Next, we discuss the Fermi surface of metals [9]. Alkali metals such as sodium and
potassium have a body-center lattice, and the Brillouin zone is represented by
Fig. 2.40d. When one electron enters the energy band, the volume of the Fermi
surface is half the first Brillouin zone, because the s band receives up to two
electrons. So the Fermi surface is a sphere and does not touch the zone boundary

(a)

(d)

(f) (g)

(b)

(e)

(c)

(h)

Fig. 2.40 Three-dimensional Brillouin zones. a Triclinic. b Orthorhombic P. c Orthorhombic C.
d Body-center cubic. e Face-center cubic. f Truncated cubic. g Truncated octahedron.
h Face-center cubic
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(Fig. 2.41). Experimental methods described in Sect. 3.4 have proved the deviation
from the perfect sphere is less than 1 %.

Alkali earth metals such as magnesium and calcium have two valence electrons,
and the volume of the Fermi surface is equal to the Brillouin zone. Accordingly, the
Fermi surface spread out of the first Brillouin zone (Fig. 2.42). These metals have a
hexagonal or body-center lattice, but a square lattice is schematically depicted in
Fig. 2.42. In the first Brillouin zone, the shaded region is occupied as shown in
Fig. 2.42c. Holes exist in the white region to make a star-like hole pocket at the
corner. In the second Brillouin zone, the shaded region in Fig. 2.42d is occupied to
make an elliptical electron pocket. Like this, starting from a naive free-electron
model, we can predict fairly complicated electron and hole pockets. Such a Fermi
surface has been proved by actual experiments. The group 3 and 4 elements have a
similar Fermi surface.

The Fermi surface of a transition metal is similarly composed of many electron
and hole pockets. However, we shall investigate the global feature (Fig. 2.43a). For
example, electron configuration of a titanium atom is 4s23d2. In the solid metal, the
s band is larger than the d band, and the s band spreads over the d band. Then, it is
appropriate to approximate that the s band has one electron, and other electrons
enter the d band like 4s13d3. In elemental metals, the electron configuration is
generally represented by s1dn−1. Since the five d orbitals can receive up to ten
electrons, six-electron systems such as chromium, molybdenum, and tungsten have

(a) (b) (c)

(d)

Fig. 2.42 Fermi surface of an alkali earth metal

(a)

(b)

Fig. 2.41 Spherical Fermi
surface of an alkali metal
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s1d5 configuration, and the Fermi energy is located at the center of the d band. The d
band is composed of many energy bands, but the density of states is maximum at
the band center. Since the metal electrons constitute a kind of covalent bonds, these
metals form strong chemical bonds with the surrounding atoms. This is the reason
that these metals exhibit the highest melting points among all elements.

Iron metal has 4s13d7 configuration, and the d band is mostly occupied up to the
upper end. Copper metal has 4s13d10 configuration, and the d band is entirely
occupied. Since the s band has one electron, the Fermi surface is almost spherical
similarly to alkali metals (Fig. 2.43b), where the volume of the Fermi sphere is half
the Brillouin zone. Copper has a face-center cubic lattice, and the Brillouin zone is
represented by Fig. 2.40e. However, the Fermi surface of copper touches the zone
boundary, and is connected to the adjacent Fermi sphere (Fig. 2.43b). The presence
of such a connected Fermi surface has been proved experimentally (Sect. 3.5).

2.9 Fermi Surface of Low-Dimensional Metals

There are examples of one- and two-dimensional metals. A platinum complex with
the composition of K2[Pt(CN)4]Br0.3xH2O forms a one-dimensional conductor
called KCP (Fig. 2.44a). Platinum forms a square-planar complex like [Pt(CN)4]

2−,
which is stacked to form a one-dimensional Pt–Pt chain (//c). When partially oxi-
dized with bromine, the one-dimensional band composed of the Pt dz2 orbitals is
partially filled. This complex shows metallic conductivity around room tempera-
ture, but undergoes a Peierls transition at 250 K, below which the platinum chain is
distorted according to the 2kF = 0.30 c* periodicity.

One-dimensional columns of NbSe3 are composed of trigonal prisms
(Fig. 2.44b). Since a unit cell contains three different columns, there are three
different sheets of the Fermi surface. Therefore, NbSe3 undergo the Peierls tran-
sitions twice at 143 and 53 K. However, the interchain interaction is too large to
make the columns entirely insulating. Then, after the resistance once goes up, a
metallic decrease is restored again.

(a) (b)

Fig. 2.43 a Energy bands of transition metals. b Fermi surface of copper
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Many organic conductors consist of planar molecules with an extended
p-electron system, and tend to form one-dimensional conductors (Sect. 7.4).
Figure 2.44c shows a typical one-dimensional organic charge-transfer complex
composed of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ). The
conductivity is highest along the stacking (b) axis.

Organic conductors are usually one-dimensional. Therefore, ordinary organic
conductors undergo a Peierls transition and become insulating at low temperatures.

(a)

(b)
(c)

Fig. 2.44 One-dimensional metals: (a) KCP, (b) structure and resistivity of NbSe3, and (c) (TTF)
(TCNQ)
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In order to make organic superconductors, it is necessary to suppress the Peierls
transition and to maintain the metallic conductivity down to low temperatures. For
this purpose, two-dimensional organic conductors have been explored. Figure 2.45
shows the crystal structure of the first organic superconductor, (TMTSF)2PF6
(TMTSF: tetramethyltetraselenafulvalene in Fig. 7.16). TMTSF has many molec-
ular orbitals, but to investigate the electronic properties, it is sufficient to consider
the molecular orbital in which the Fermi energy is located. From the composition,
TMTSF has 1/2+ charge, so we only consider the partially filled HOMO. A unit cell
contains two molecules designated as 1 and 2 (Fig. 2.45a), and the secular equation
is derived similar to Eqs. 2.80 and 2.82.

b11 � E b12
b21 b22 � E

����
���� ¼ 0

b11 ¼ b22 ¼ bbe
ikbb þ bbe

�ikbb ¼ 2bb cos kbb

b12 ¼ b�21 ¼ ba1 þ ba2e
�ikaa þ bp1e

�ikbb þ bp2e
�iðkaa�kbbÞ ð2:88Þ

Here, a is omitted. Molecule 1 is sandwiched by two Molecules 1 located at ±b, to
which the central molecule is connected by bb. This forms b11. Molecule 2 is
similarly related to Molecules 2 in the adjacent ±b cells, and b22 has the same form.
The interaction between Molecule 1 and Molecule 2 (b12) consists of ba1 and ba2 in
the ±a directions, in addition to bp1 and bp2 in the oblique direction. The secular
equation is reduced to

ðb11 � EÞ2 ¼ b12b
�
12: ð2:89Þ

Fig. 2.45 (a) Crystal structure and (b) energy band of (TMTSF)2PF6. The transfer integrals are
ba1 = 200, ba2 = 230, bb = 35, bp1 = 20, and ba1 = 7 meV
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The insertion of bij affords the solutions. However, it is more convenient to multiply
eikaa=2 to b12.

b12e
ikaa=2 ¼ ba1e

ikaa=2 þ ba2e
�ikaa=2 þ bp1e

iðkaa=2�kbbÞ þ bp2e
�iðkaa=2�kbbÞ ð2:90Þ

and e�ikaa=2 is multiplied to b12*. It is generally possible to multiply this kind of an
arbitrary phase. Equation 2.88 is written assuming both Molecules 1 and 2 are
located in the same cell, but Eq. 2.90 is obtained supposing Molecule 2 is placed at
a/2. The energy band is represented by using D = b12 b12

* .

EðkÞ ¼ 2bb cosðkbbÞ �
ffiffiffiffi
D

p

D ¼ ðba1 þ ba2Þ cos
kaa
2

� �
þðbp1 þ bp2Þ cos

kaa
2

� kbb

� �	 
2

þ ðba1 � ba2Þ sin
kaa
2

� �
þðbp1 � bp2Þ sin

kaa
2

� kbb

� �	 
2
:

ð2:91Þ

The transfer integrals are estimated from the molecular orbital calculation as listed
in the caption of Fig. 2.45. Through use of these values, the energy band is cal-
culated as shown in Fig. 2.45b. The Brillouin zone is represented by a hexagon
because the unit cell is triclinic (Figs. 2.39 and 2.40a). The energy bands are plotted
starting from the C point to the upper right C point, followed by the anticlockwise
rotation to V, Y, C, and X, to go to another V point. Since a unit cell contains two
molecules, Eq. 2.89 is a quadratic equation and affords two energy bands. The 1/2+
charge of the TMTSF molecule implies the HOMO band is 3/4-filled, and the upper
1/4 is empty. The hole part corresponds to the shaded region in the Brillouin zone.
The shaded parts are chosen from the top of the energy band until the shaded area
becomes half the Brillouin zone. The boarder of the shaded region is a winding
curve extending in the b* direction, so the warping Fermi surface extending in the
b*c* direction indicates a one-dimensional metal band along the a axis. This is
associated with ba1 and ba2, which are ten times larger than the other transfers. The
interchain transfers, however, make the Fermi surface considerably warping. As a

(a) (b)Fig. 2.46 p orbitals of
(TMTSF)2PF6
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result, this complex maintains the metallic conductivity down to 12 K and exhibits
superconductivity at 0.9 K under pressure.

All transfer values are positive (Fig. 2.45 caption), but this is accidental. If the p
orbitals are defined as Fig. 2.46a, the overlap integrals are negative, and the transfer
integrals are positive. However, if the sign of the molecular orbital on Molecule 2 is
taken opposite (Fig. 2.46b), the overlap integrals are positive, and the transfer
integrals are negative. It is always possible to chose the signs of the basis functions
arbitrarily. Since the transfer bb connects the same kind of molecules, the sign is
uniquely defined. In Eq. 2.91, all transfers except for bb appear as the squares, so
even if all these transfers are taken negative, the resulting energy band is
unchanged. Like this, the signs of the transfer integrals are changeable as far as the
signs are chosen systematically according to the basis functions.

Example 2.11 Figure 2.47 is a popular structure of organic crystals, known
as the h-phase or a herringbone structure. Obtain the equation of the energy
band.

For simplicity, we assume a = 0. A unit cell contains two shaded mole-
cules, where ba connects the same molecules (1-1 or 2-2) in the ±a direction,
and bp connects the different molecules (1-2) in the diagonal directions (±a/2,
±b/2). Obtain the element b11 and b12, and calculate the formula of the
energy band E(ka, kb).

1. Viewed from the shaded Molecule 1, Molecules 1 in the adjacent +a and
−a cells are connected by the transfer integral ba. Then, we obtain the diagonal
element.

b11 ¼ bae
ikaa þ bae

�ikaa ¼ 2ba cos kaa ð2:92Þ

Note that b22 has the same form.

(a) (b)

Fig. 2.47 Structure of the h-phase. The transfer integrals are ba = 25 and bp = 101 meV
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2. Viewed from the central shadedMolecule 1, four Molecules 2 in the (±a/2,±b/2)
directions are connected by the transfer integral bp. Then, we obtain the non
diagonal element.

b12 ¼ bpe
i
kaaþ kbb

2 þ bpe
�i

kaaþ kbb
2 þ bpe

i
kaa�kbb

2 þ bpe
�i

kaa�kbb
2

¼ 2bp cos
kaaþ kbb

2
þ cos

kaa� kbb
2

� � ð2:93Þ

3.
b11 � E b12
b12 b11 � E

����
���� ¼ 0 leads to E = b11 ± b12. The results of (1) and (2) are

substituted in this formula.

E ¼ 2ba cos kaa� 2bp cos
kaaþ kbb

2
þ cos

kaa� kbb
2

� �

¼ 2ba cos kaa� 4bp cos
kaa
2

cos
kbb
2

ð2:94Þ

When the transfer integrals obtained from the molecular orbital calculation
(Fig. 2.47 caption) are placed in this equation, the energy band is obtained as
shown in Fig. 2.48. The two-dimensional network affords the elliptical Fermi
surface.

Since a unit cell contains two molecules, there are two energy bands in Fig. 2.48.
However, on the CX and CY zone boundaries, the energy bands are degenerate to
one. This is due to the two-fold screw axis along the a axis and the glide plane
along the b axis (Fig. 2.47a). A molecule has symmetry elements such as rotation,
inversion, and mirror, but a space group in a crystal has additional symmetry
elements such as a screw axis and a glide plane, in which translation is combined

Fig. 2.48 Energy band in the h-phase
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with rotation and mirror, respectively. A two-fold screw axis is a combination of
two-fold rotation and translation, where after the 180° rotation, the atom is trans-
lated by a/2 (Fig. 2.49a). The symbols + and − represent an atom located above
and below the sheet. Then, the atom (1) moves to (2). One more operation moves
(2) to (3), which corresponds to a one-unit-cell (a) translation of (1). In a glide
plane (b), the original atom (1) is reflected, and translated by a/2 to (2). The comma
implies, if the original atom has right-hand chirality, the atom with comma has
left-hand chirality. One more operation moves (2) to (3), which is again the
a translation.

The transfer integral between (1) and (2) is equivalent to the transfer integral
between (2) and (3), because they are generated by the same symmetry operation
applied to the crystallographically equivalent molecules. Accordingly, although the
periodicity of the crystal is a, the periodicity of b is a/2. This is the origin of the
degenerate zone boundary in Fig. 2.48. This is just opposite to the Peierls transition
(Fig. 2.35a), where at b1 = b2, the energy band is similarly degenerated at 2p/
a. Space groups including symmetry operations with translation such as a screw axis
and a glide plane are called non-symmorphic [10]. In general, energy bands of
non-symmorphic space groups are degenerate at the zone boundary in the direction
of the translation. The band structure of the h-phase (Fig. 2.48) is degenerate both
along the a and b axes, respectively, owing to the screw axis and the glide plane. This
is obvious because two bp are repeated in the unit cell both along the a and b axes.

In a molecule, the secular equation is reduced to separate blocks according to the
symmetry, and energy levels belonging to different symmetry are independently
obtained. In a crystal, such block diagonalization does not work because the
symmetry disappears at the general k point even when the crystal has symmetry.
Then, the degeneracy at the zone boundary in a non-symmorphic space group is an
important conclusion derived from the symmetry. Even in a triclinic lattice, special
points such as C, X, Y, and C have inversion symmetry. At these points, all
elements in the secular equation become real, and the energy levels are classified to
symmetrical (gerade) and antisymmetrical (ungerade). These special points are
important to discuss the electronic structure of graphene.

C-center cells have two lattice points in a unit cell. For the band calculation, the
C-center cell is transformed to a primitive cell (Fig. 2.50). The resulting cell has
oblique axes, where a monoclinic cell is transformed to a triclinic cell, and
orthorhombic turns to monoclinic. The resulting cell contains a single lattice point,
and the volume is half of the original cell. The volume of the Brillouin zone

(a) (b)

Fig. 2.49 (a) A screw axis, and (b) a glide plane
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corresponding to the primitive cell is twice of the volume assuming the C-center
cell. Then, the energy bands are represented in the extended zone scheme. When we
use the Brillouin zone of the C-center cell, the energy bands are folded into the
reduce zone, and the number of the energy bands are twice larger, corresponding to
the original two lattice points.

The transfer integrals are calculated on the basis of molecular orbitals of the
single molecule. For an electron donor, we calculate the transfer integrals between
the HOMO. According to the spirit of the extended Hückel approximation, the
transfer integrals are obtained from Eq. 1.28.

bkl �
Z

wkHwlds ¼ ESkl

Then, the transfer integrals bkl are estimated from the overlap integrals Skl by
multiplying the HOMO energy E. In general, E = −10 eV is used because this
value affords good agreement with the experiments. Since the HOMO is repre-
sented by LCAO (Eq. 1.23) of the atomic orbitals vi, the overlap integral Skl is

Skl ¼
X
i

X
j

cicj

Z
vivjds:

First, we evaluate the overlap integrals between vi and vj. Then, ci and cj are
multiplied, and Skl is obtained. The values of ci and cj are taken from the molecular
orbital calculation. The transfer integrals listed in the captions of Figs. 2.45 and
2.48 are obtained like this.

The overlap integral Skl between two BEDT-TTF molecules is plotted in
Fig. 2.51 as a function of the angle u between the molecular plane and the inter-
molecular vector. Along the stack u ¼ 90	ð Þ, Skl is about −20 � 10−3. By multi-
plying E = −10 eV, the corresponding transfer integral is 0.2 eV. Then, the
one-dimensional stack gives the bandwidth of 4b = 0.8 eV. The overlap integral
has additional peaks at 60°, 30°, and 0°. The sign of the overlap integral is
unimportant when the energy band is formed. Between these peaks, the overlap

Fig. 2.50 Transformation
from a C-center lattice to a
primitive lattice
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integral crosses zero. It is not certain whether the b zero coming from the HOMO
phase is related to some physical properties. However, the angle dependence of the
overlap integral is sometimes very important in determining the systematic change
of the properties of organic conductors (Sect. 7.7.4). Instead of the direct calcula-
tion of the overlap integrals, molecular orbital calculation is sometimes carried out
for two molecules. The HOMO splitting corresponds to the bonding and anti-
bonding combinations, and gives 2b. Since the molecular orbitals change
depending on the dimer geometry, this method does not afford b = 0.

Bandwidths of the representative organic conductors are listed in Table 2.1 [12–
18]. It is obvious from Eq. 2.92 that the bandwidth of the h-phase is 4|ba| + 8|bp|.

Fig. 2.51 Orientation dependence of the overlap integral between the HOMO of two BEDT-TTF
molecules [11]

Table 2.1 Bandwidths of the
representative organic
conductors

Compound Bandwidth/eV References

(TMTSF)2X 1.0

(BEDT-TTF)2X 1.0

Pentacene HOMO 0.2 [12, 13]

Rubrene HOMO 0.34 [14]

Picene HOMO 0.27 [13]

Sexithiophene HOMO 0.2 [13]

M(TCNQ) 1.0

C60 LUMO 0.5 [15, 16]

La2-xSrxCuO4 2 [17]

Graphene 10 [18]
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Note that in organic charge-transfer complexes like (BEDT-TTF)2X, the energy
band is quarter-filled, but in organic semiconductors like pentacene and thiophene,
the HOMO is entirely occupied. Bandwidths of TTF family charge-transfer com-
plexes are usually about 1.0 eV.

The bandwidths are determined by the overlap of the atomic orbitals. The
exponent is f = 1.625 for C 2p, whereas f = 1.817 for S 3p (Appendix 2). As
shown in Fig. 1.5, the smaller is f, the larger is the orbital. For the same f, however,
3p is larger than 2p. The van der Waals distance is 1.70 Å for C, while 1.85 Å for S
[19]. Therefore, the atomic orbital of S affords much larger overlap than C. 1 eV
bandwidth of the TTF family mainly comes from this S-S overlap.

Molecular orbitals of the representative organic conductors are shown in
Fig. 2.52. Four sulfur atoms in TTF have the same sign; this is advantageous to
give a large overlap without largely depending on the orientation [11, 13]. In
pentacene, the HOMO is mostly located on the carbon atoms, and the side hydrogen
atoms prohibit the transverse interaction. However, the herringbone structure
realizes the two-dimensional band. The HOMO of thiophene has nodes on the
sulfur atoms, and the coefficients are zero. Then, the S-S overlap does not contribute
to the bandwidth. The calculated bandwidth of oligothiophene is as small as that of
pentacene (0.2 eV). However, the next HOMO has a finite coefficient on sulfur, and
this contribution enlarges the bandwidth as large as 0.4 eV. TCNQ does not contain
sulfur atoms, but forms an energy band as large as 1 eV along the stack.
The LUMO bandwidth of C60 is around 0.4 * 0.5 eV, and the density of states is
enhanced due to the three-fold degeneracy. Bandwidth of inorganic compounds
with connected chemical bonds is large; for example, 2 eV for the dx2�y2 band in the
CuO plane of the cupper oxide superconductors (Fig. 2.31) [11]. The bandwidth of
graphite and graphene comes from the C = C covalent bonds, which is as large as
10 eV.

(a)

(c) (d)

(b)

Fig. 2.52 Molecular orbitals of the representative organic conducting molecules. The shaded
regions depend on the molecular orbital signs. a Pentacene HOMO. b BEDT-TTF HOMO.
c Sexithiophene HOMO. d TCNQ LUMO
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