ppOpen-HPC: Open Source Infrastructure
for Development and Execution

of Large-Scale Scientific Applications

on Post-Peta-Scale Supercomputers

with Automatic Tuning (AT)

Kengo Nakajima, Masaki Satoh, Takashi Furumura,

Hiroshi Okuda, Takeshi Iwashita, Hide Sakaguchi, Takahiro Katagiri,
Masaharu Matsumoto, Satoshi Ohshima, Hideyuki Jitsumoto,
Takashi Arakawa, Futoshi Mori, Takeshi Kitayama, Akihiro Ida

and Miki Y. Matsuo

Abstract ppOpen-HPC is an open source infrastructure for development and
execution of large-scale scientific applications on post-peta-scale (pp) supercomput-
ers with automatic tuning (AT). ppOpen-HPC focuses on parallel computers based
on many-core architectures and consists of various types of libraries covering general
procedures for scientific computations. The source code, developed on a PC with a
single processor, is linked with these libraries, and the parallel code generated is opti-
mized for post-peta-scale systems. In this article, recent achievements and progress
of the ppOpen-HPC project are summarized.

Keywords ppOpen-HPC - Post-peta-scale systems + Automatic tuning + Parallel
computing

K. Nakajima (&) - M. Satoh - T. Furumura - H. Okuda - T. Katagiri - M. Matsumoto -
S. Ohshima - F. Mori - T. Kitayama

The University of Tokyo, Tokyo, Japan

e-mail: nakajima@cc.u-tokyo.ac.jp

M. Satoh

e-mail: satoh@aori.u-tokyo.ac.jp

T. Furumura
e-mail: furumura@eri.u-tokyo.ac.jp

H. Okuda
e-mail: okuda@k.u-tokyo.ac.jp

T. Katagiri

e-mail: katagiri @cc.u-tokyo.ac.jp
M. Matsumoto

e-mail: matsumoto@cc.u-tokyo.ac.jp

S. Ohshima
e-mail: ohshima@cc.u-tokyo.ac.jp

© Springer Japan 2016 15
K. Fujisawa et al. (eds.), Optimization in the Real World,
Mathematics for Industry 13, DOI 10.1007/978-4-431-55420-2_2

16 K. Nakajima et al.

1 Overview of ppOpen-HPC

Today, high-end parallel computer systems are becoming larger and more complex.
It is very difficult for scientists and engineers to develop efficient application codes
that make use of the potential performance of these systems.

We propose an open source infrastructure for development and execution of
optimized and reliable simulation codes on large-scale parallel computers. This
infrastructure is named ppOpen-HPC [1, 2], where “pp” stands for “post-peta-scale”,
as shown in Fig. 1. The target post-peta-scale system is the Post T2K System, which
will be installed and operated by the Joint Center for Advanced High Performance
Computing (JCAHPC) [3] under collaboration between the University of Tsukuba
and the University of Tokyo. The Post T2K System, which will be installed in FY
2016, is based on many-core architectures, such as the Intel MIC/Xeon Phi. Its peak
performance is expected to be more than 30 PFLOPS.

ppOpen-HPC is a five-year project (FY 2011-2015) and a part of the “Devel-
opment of System Software Technologies for Post-Peta-Scale High Performance
Computing” funded by JST/CREST (Japan Science and Technology Agency, Core
Research for Evolutional Science and Technology) [4]. ppOpen-HPC is being devel-
oped by the University of Tokyo (Information Technology Center, Atmosphere and
Ocean Research Institute, Earthquake Research Institute, Graduate School of Frontier
Sciences), Kyoto University, Hokkaido University, and Japan Agency for Marine-
Earth Science and Technology (JAMSTEC). The expertise of the members covers

F. Mori

e-mail: f-mori@eri.u-tokyo.ac.jp

T. Kitayama

e-mail: kitayama@h.k.u-tokyo.ac.jp
T. Iwashita

Hokkaido University, Hokkaido, Japan
e-mail: iwashita@iic.hokudai.ac.jp

H. Sakaguchi - M.Y. Matsuo
JAMSTEC, Kanagawa, Japan
e-mail: sakaguchih@jamstec.go.jp

M.Y. Matsuo
e-mail: mikiy @jamstec.go.jp

H. Jitsumoto
Tokyo Institute of Technology, Tokyo, Japan
e-mail: jitumoto @gsic.titech.ac.jp

T. Arakawa
RIST, Tokyo, Japan
e-mail: arakawa@rist.jp

A.Ida
Kyoto University, Kyoto, Japan
e-mail: ida@media.kyoto-u.ac.jp

ppOpen-HPC: Open Source Infrastructure for Development ... 17

User’s Program

(- L I e
Framework
Appl. Dev. ppOpen-APPL FEM FDM FVM BEM DEM
Math
Libraries PpOpen-MATH MG GRAPH VIS MP
Automatic
Tuning (AT) ppOpen-AT STATIC DYNAMIC
gz?tt:v:e ppOpen-SYS COMM FT

ppOpen-HPC E{J@%nﬁ‘:
I

Optimized Application with
Optimized ppOpen-APPL, ppOpen-MATH

Fig.1 Overview of ppOpen-HPC

a wide range of disciplines related to scientific computing, such as system soft-
ware, numerical libraries/algorithms, computational mechanics, and earth sciences.
ppOpen-HPC includes the following four components (Fig. 1):

ppOpen-APPL
ppOpen-MATH
ppOpen-AT
ppOpen-SYS

Libraries in ppOpen-APPL, ppOpen-MATH, and ppOpen-SYS are called from
user programs written in Fortran and C/C++ with MPI and OpenMP.

In ppOpen-HPC, we are focusing on five types of discretization methods for
scientific computing: FEM, FDM, FVM, BEM, and DEM (Fig.2). ppOpen-APPL
is a set of optimized libraries covering various types of procedures for these five
methods. Source code developed on a PC with a single processor is linked with
ppOpen-APPL, and the parallel code generated will be optimized for a post-peta-scale
systems. Key issue for this type of framework like ppOpen-APPL is well-designed
data structure for scientific computing. In previous projects, such as GeoFEM [5]
and HEC-MW [6], some of the authors developed such frameworks, where typical
procedures for FEM have been optimized for certain types of supercomputers. This
type of framework provides dramatic efficiency, portability, and reliability in the
development and execution of scientific applications. It reduces both the number of
steps in the source code and the duration of time required for parallelization and

18 K. Nakajima et al.

FEM FDM
Finite Element Method Finite Difference Method

LLLLLLY

BEM DEM
Boundary Element Method Discrete Element Method

Fig. 2 Target applications of ppOpen-HPC

optimization of legacy code. In ppOpen-HPC, we extend this idea to other four
types of methods, and introduce a new feature, automatic tuning (AT). AT enables a
smooth and easy shift to further development on future architectures through the use
of ppOpen-AT, which generates optimized libraries and applications under various
types of environments automatically.

ppOpen-MATH is a set of libraries for multigrid, visualization, loose coupling,
etc., while ppOpen-SYS includes system software libraries related to node-to-node
communication and fault tolerance. ppOpen-HPC enables more than 2,000 users of
the supercomputer system in the University of Tokyo to switch from homogeneous
multicore clusters to a post-peta-scale system based on many-core architectures.
Although the final target of ppOpen-HPC is the Post T2K system, libraries for multi-
core clusters, such as K computer, and Fujitsu PRIMEHPC FX10, are also developed.

In the following sections, we describe recent achievements in the development of
each component of ppOpen-HPC, as shown in Fig. 1.

2 ppOpen-APPL

ppOpen-APPL is a set of libraries that covers various types of procedures for scien-
tific computations, such as parallel I/O of datasets, matrix formation, linear solvers
with practical and scalable preconditioners, visualization, adaptive mesh refinement
(AMR), and dynamic load balancing, in various types of models, including FEM,
FDM, FVM, BEM, and DEM, shown in Fig. 2.

ppOpen-HPC: Open Source Infrastructure for Development ... 19

Each component is based on existing practical application codes. ppOpen-APPL
provides common data structures and interfaces that support users with the easy
implementation procedures of ppOpen-HPC onto legacy codes.

2.1 Simulation of 3D Seismic Wave Propagation Using
ppOpen-APPL/FDM

ppOpen-APPL/FDM is a framework for the development of applications by the finite
difference method (FDM), as shown in Fig. 1.

In the recent trend of supercomputer architectures, the byte-per-flops ratio (B/F
ratio, ratio of memory bandwidth (BYTE/sec, B) and computational performance
(FLOPS, F)) has been dropping drastically. For example, it dropped from 4 to 0.5 for
the Earth Simulator and the K computer. The B/F ratio of next-generation computers
is expected to fall even further. Therefore, an important issue for the future high-
performance parallel computing of FDM simulations is the restriction of the memory
bandwidth relative to the CPU speed. To overcome this problem, it is necessary to
develop a new FDM simulation structure suitable for future many-core and low B/F
machines.

We proposed to effectively decrease the required B/F ratio of the FDM simulation
of seismic wave propagation. To validate our proposal, we evaluated the performance
of a parallel 3D FDM simulation of seismic wave propagation on the Intel Xeon Phi
coprocessor [7]. The original FDM simulation code first loaded velocity and stress
components from memory to processor, calculated each spatial derivative, and stored
them in memory. This requires large B/F ratios to load and store the large number of
variables. These derivatives were then used for the next kernels of update stress and
update velocity, which also require large B/F ratios of 2.7 and 1.7 for each kernel,
respectively. We modified the B/F reduction FDM code to merge the derivative
and update calculations, and thereby avoided the need to store and load variables
during the calculations. As a result, the required B/F ratios for both kernels dropped
dramatically to 0.4.

Figure3 compares the performance of the original and the modified code in
MPI/OpenMP hybrid parallel computing on the Intel Xeon Phi processor. For paral-
lel computing up to 60 physical cores, the modified code is slower than the original
code. However, with much larger thread parallel simulation using 240 logical cores,
it is confirmed that the speed of the modified code is double the speed of the original
code. This B/F reduction code is also suitable for other parallel processors, such as
Fujitsu PRIMEHPC FX-10 at the University of Tokyo [8].

[\=)
(e

K. Nakajima et al.

(a) (b)
60 60
= M Original code [Modified code —_ B Original code [Modified code
— 50 2050
g Q
£ 40 £ 40
= 3
g 30 g 30
= =
= 20 = 20
2 3
S IN 8 s N B
0 B 0 B B
gg m‘m‘aa gg ﬁﬁ‘?—fﬁ‘ﬁ%
®© ®© o o o o o = © o o o o (=3
A A [<gll<g] [<elis<e] \O o0 A Ay [sgilsgl [<ell<g] O oo
A A AA Ao AA A A AA
16 60 120 240 16 60 120 240
Cores Cores

Fig. 3 Comparison of MPI/OpenMP hybrid parallel computing based on the original code and on
the modified B/F reduction code for the a update velocity and b update stress kernels. Indexes P
and 7 indicate number of MPI processes and OpenMP threads, respectively (e.g., P30T4 means
hybrid parallel computing using 30 MPI processes and each has 4 OpenMP threads)

2.2 ppOpen-APPL/AMR-FDM with Adaptive Mesh
Refinement

We developed an adaptive mesh refinement (AMR) framework for explicit FDM
schemes in the ppOpen-APPL/AMR-FDM library [9]. To overcome the problem of
load imbalance in parallelized AMR simulations, we implemented a dynamic domain
decomposition (DDD) technique, with which the whole computational domain is
dynamically re-decomposed into new subdomains so that the computational load on
each process becomes nearly the same. Test simulations of a linear advection equation
using the AMR framework are shown in Fig. 4. The fine grids are adaptively created
where the gradient of the waveform is high.

Figure 5 shows the temporal evolutions of execution time for the simulation of
512 MPI processes in the cases with and without DDD. In the case without DDD, the
profile of the execution time has large fluctuations because the waveform propagates
across boundaries of the subdomains. On the other hand, in the case with DDD, the
average execution time can be reduced. The DDD procedure succeeds in significantly
holding down the average execution time. The graph on the right in Fig. 5 shows the
execution time focused on a certain iteration count. The wave profile of the zigzag line
is attributed to the timing of DDD, which takes time to perform. The DDD performs
when the computational costs exceed a load-balance criterion. The time difference
between DDD ON and OFF constitutes the overhead of the DDD procedure.

In addition to the above, we also developed the AMR framework for implicit time-
marching schemes in which AMR and the multigrid method are used concurrently.
In this implementation, each grid layer created by the AMR method corresponds to
each layer of the V-cycle used by the multigrid method. We aim for not only explicit
but also implicit schemes that can use the framework. Although code optimizations

ppOpen-HPC: Open Source Infrastructure for Development ... 21

(a)

30

25
20

Fig. 4 Example of AMR

tJ
T ST S, —_—e DDD OFF
0 16 32 48 64 80 96 112 128 80 _ 90 95

Iteration Count Iteration Count

b T T T T T 2 DDD ON
G5 ——noDDD |, ll‘l
E 4 ’ N

Overhead

£° ! H of DDD
3 2
9]
oo

0

1 Execution Tim

Fig. 5 Effect of DDD procedures

are needed, such an AMR framework shows the value of development for multi-scale
simulations on post peta-scale systems.

2.3 ppOpen-APPL/BEM and HACApK

The ppOpen-APPL/BEM is a software tool for large-scale parallel boundary element
method (BEM) analyses. This tool consists of the BEM-BB (Back-Bone) framework,
templates, and the HACApK library. All the components are parallelized based on the
hybrid MPI+OpenMP programming model. The BEM-BB framework provides users
with parallelized program code for coefficient matrix generation and linear system
solvers. Users can easily develop a parallel BEM code for their own applications by
adding a user function describing the integral operation onto the framework. For some

22 K. Nakajima et al.

Fig. 6 Example of static
electric field analysis: The
electrical charge on surfaces
of the humanoids is

calculated
Fig. 7 Memory usage of 1000 E o)
H-matrices and original = °
dense matrices as a function = o
of the number of 100 & o o
unknowns N —_ =
m C
6] L o
>
5 10 E o
g - =]
[
S - o
1 % o O Dense matrix
- o o HACApK
)
0.1 B0l Lo Lo oL oL
10* 10° 10° 107 108

Number of unknowns

specific application domains, template programs for integral operation are provided.
By using the BEM-BB framework with a template, the user obtains complete BEM
simulation code. Currently, a template for static electric field analysis is available
(Fig.6). Moreover, we have been developing the HACApK library to realize faster
and larger-scale BEM analyses.

The HACApK library adopts hierarchical matrices (H-matrices) with adaptive
cross approximation (ACA) as the approximation technique for dense matrices occur-
ring from the integral equation method represented by BEM. The method of H-
matrices with ACA is based on the idea that submatrices corresponding to remote
interactions become numerically low-rank matrices. H-matrices with ACA reduce the
complexity from O (N 2y to O(NI 0gN), where N denotes the number of unknowns
(Fig.7).

For parallelization of H-matrices on symmetric multiprocessor (SMP) cluster sys-
tems, we proposed a set of algorithms for constructing H-matrices and performing
multiplication of an H-matrix and a vector [10]. The proposed algorithms are imple-
mented by the flat-MPI and hybrid MPI+OpenMP programming models. The perfor-
mance of these implementations is evaluated by electric field analysis (Fig. 8). In the
flat-MPI version, the speedup is limited in hierarchical matrix-vector multiplication.

ppOpen-HPC: Open Source Infrastructure for Development ... 23

8 T T T
04
6 =
=%
7
3 4
3 | —o— Flat-MPI
v —&— MPI+OMP2threads
2 —&— MPI+OMP4threads
] <©— MPI+OMPS8threads
1 1 1 —¥— MPI+OMPI16threads
0 n n n n
0 50 100 150 200

Number of cores

Fig. 8 Parallel scalability when performing a multiplication of an H-matrix and a vector on Fujitsu
PRIMEHPC FX10 at the University of Tokyo [8]

We succeeded in developing a hybrid MPI+OpenMP version to improve the parallel
scalability. In numerical experiments, the hybrid version exhibits a better parallel
speed-up for the hierarchical matrix-vector multiplication up to 256 cores of Fujitsu
PRIMEHPC FX10 at the University of Tokyo [8]. In addition to the above parallel
algorithms, we also proposed an improved method for H-matrices with ACA [11].
By using the proposed method, we can avoid the problem that ranks of approximated
matrices increase rapidly as the matrix size increases when conventional H-matrices
with ACA are employed for an integral equation whose kernel function has high-
order singularities. In particular, application of the proposed method enables us to
perform large-scale simulations, in which conventional H-matrices with ACA fail to
construct appropriate low-rank approximations.

2.4 ppOpen-APPL/DEM: Open Library for Discrete Element
Method

Particle methods are among the more commonly used approaches for numerical
simulations of physical problems. Particle methods, e.g., the discrete element method
(DEM), are applied in various fields such as molecular bioscience, material science,
civil engineering, oceanography, and astrophysics. However, millions or billions of
particles are necessary to simulate physical problems with sufficient accuracy, and
this level of refinement is indeed important in applications of industrial problems.
Thus, further evolution of both the infrastructure and the performance development of
particle simulation is needed. ppOpen-APPL/DEM is a library designed to enable the
easy implementation of particle simulation code with the interactions of short-range
particles such as DEM for parallel computers.

The ppOpen-APPL/DEM main library provides fundamental subroutines and
functions that organize the particle simulation coded with OpenMP/MPI hybrid pro-
graming [12]. The code using the library performs parallel computation on a PC

24 K. Nakajima et al.

Fig. 9 Particle simulation
by ppOpen-APPL/DEM:
The dynamic load balance is
achieved with the slice-grid
method

cluster and a supercomputer. Although simulating the motions of interacting parti-
cles is easy, moving particles make it difficult to balance the computational load. To
realize the dynamic load balance over the computational nodes, we implemented the
DDD technique that decomposes the computational domain into several subdomains,
each of which is associated with a distinct computational node (Fig.9), which shows
our implementation of the slice-grid method. Other protocols, such as orthogonal
recursive bisection, will be implemented in the future. Furthermore, to reduce the dif-
ficulty of programing complex initial and boundary conditions, ppOpen-APPL/DEM
provides a utility library named ppOpen-APPL/DEM-Util. This utility includes sub-
routines that combine a stereolithography (STL) data file into particle simulations.
For example, input STL data are used to design the initial coordination of particles;
the initial coordination enables the user to easily prepare a complex configuration
of particle positions (Fig. 10). As another example, the input STL data are used as a
boundary condition of the particle simulation. Those implementations are useful for
the design of large-scale simulations.

Fig. 10 Particle simulation
using
ppOpen-APPL/DEM-Util:
The utility enables us to use
stereolithography (STL) data
as the initial condition

ppOpen-HPC: Open Source Infrastructure for Development ... 25

3 ppOpen-MATH

ppOpen-MATH consists of common numerical libraries, such as multigrid solvers
(ppOpen-MATH/MG) (Fig.4), parallel graph libraries (ppOpen-MATH/GRAPH),
parallel visualization (ppOpen-MATH/VIS), and a library for coupled multi-physics
simulations (ppOpen-MATH/MP).

3.1 ppOpen-MATH/MP and NICAM-COCO Coupling

ppOpen-MATH/MP is a coupling software applicable to the models employing var-
ious discretization methods such as FDM, finite volume method (FVM) and finite
element method (FEM) [13]. To demonstrate the applicability of ppOpen-MATH/MP,
we used it for an atmospheric model and ocean model coupling. The atmospheric
model selected for this purpose is the Nonhydrostatic ICosahedral Atmospheric
Model (NICAM), which is a nonhydrostatic global model employing an icosahe-
dral grid system and an FVM discretization method [14]. The CCSR Ocean Com-
ponent Model (COCO) is used as an ocean model coupled with NICAM. COCO
adopts a tri-polar grid, in which the northern polar region grid points do not follow
a latitude-longitude grid, and the discretization method is FDM [15]. For realiz-
ing wide applicability, ppOpen-MATH/MP is designed so that users can implement
their own interpolation code. The interpolation code is based on the first-order con-
servative remapping scheme in [16]. Physical quantities exchanged from NICAM
to COCO are 13 variables, including wind speed, heat flux, and precipitation. The
quantities exchanged from COCO to NICAM are 6 variables, including SST and sea
ice thickness.

In addition to NICAM-COCO coupling, we implemented NICAM and IO com-
ponent coupling. The reason for this coupling is that the icosahedral grid employed
by NICAM is not suitable for analyzing the results. For example, the calculation
of zonal mean values is not straightforward and the visualization tools assume a
latitude-longitude grid (lat-lon grid) in many cases. So, we developed an IO program
that converts the icosahedral grid to the lat-lon grid and is executed in parallel with
NICAM. The implemented conversion schemes are a bilinear interpolation, a control
volume weighted average, and the nearest-neighbor method.

Figure 11 is a schematic of the coupling system described above. The coupling
system is designed so that NICAM automatically detects the coupling pattern at
runtime without any other configuration. For example, when COCO is executed in
parallel with NICAM, subroutines for NICAM-COCO coupling are used, and if not,
subroutines of the mixed layer ocean model are called. IO is also the same as the
case of COCO, in which NICAM automatically sends output data to IO only when
the IO component is executed.

For utilizing ppOpen-MATH/MP, a correspondence table of a grid point index
between the models is required as input data. Therefore, we developed a calculation

26 K. Nakajima et al.

- @ 10 component
Icosahedral
rid ppopen -

MATH/MP |:>
coco | @ Latitude -Longitude
- = f grid
£ ¥
“—l
Tri-Polar

grid

Fig. 11 Schematic of the coupling system

tool named ppOpen-MATH/MP-PP, which targets two-dimensional meshes on a
sphere surface. For calculating the correspondence, a new search algorithm, for
which efficiency O (n) was developed, requires O (n%) calculation through the brute-
force method. Figure 12 shows the result of the performance measurement of the new
algorithm. Here, two mesh types, the NICAM icosahedral grid and the I/O lat-lon
grid, were selected as a test case. The numbers of grid points are listed in Table 1.
As shown in the figure, execution time versus the number of grid points increases at
arate of O(n), and the effectiveness of the new algorithm is confirmed.

100
y = 1E-05x1-0107

10
°
3 y = 5E-06x1:022
3 1
£ ¢ NICAMto 10
- = 10 to NICAM

0.1

0.01
10000 100000 1000000 10000000

Number of grid points

Fig. 12 Search time on NICAM grid versus lat-lon grid

ppOpen-HPC: Open Source Infrastructure for Development ... 27

Table 1 The number of grid points

The number of 10,585 166,753 2,657,665
Lat-Lon grid
The number of 20,480 327,680 5,242,880
NICAM grid

3.2 Integrated Earthquake Simulations Using
ppOpen-MATH/MP

Simulations including multi-scale or varied physical phenomena are difficult because
such kinds of modeling and implementation by a specific application are difficult.
For example, to simulate the earthquake shock coming from earthquake sources and
building damage, both a seismic wave that propagates over a wide region several
hundred kilometers square and a shaking building that occurs in a small region of
several tens of meters square must be resolved concurrently. In this case, if the FDM
application using ppOpen-APPL/FDM is suitable for the analysis of elastic (seismic)
wave propagations and the FEM application using ppOpen-APPL/FEM is suitable for
the analysis of dynamic solid mechanics (the building) can be used in combination,
the multi-scale and multi-physics coupling simulation is easy to use. Our final goal
is to develop the application coupler (ppOpen-MATH/MP) [11] by using ppOpen-
APPL libraries in various combinations. Figure 13 shows an example of a multi-scale
and multi-physics coupling simulation by using ppOpen-MATH/MP. In this case, the
seismic wave calculated by the FDM model is transferred to the FEM model and is
interpolated in the FEM model mesh through ppOpen-MATH/MP. The number of
nodes and processes in the FDM model and FEM model, respectively, are different,
but they are automatically interpolated and are arranged by the coupler. Application

= Basement-| Bulding
A {engineering
x Sedlmeqt = /' classification)
\3__: =
Sedimentary Rock ‘- N
e : FEM-mesh 5
Bedrotk &1/ pasemih Selilrnent (1| 10-50m
- _— f-.“/’ (seism_cllo_gil:}k\ = Basemdnt 4
| ; ‘\ o e ‘\\ classification) f Coupler_|
| Earthquake “TeRi ey
Source ™~ Sedimentary Rock
10- (FDM-mesh)
20 km }

Fig. 13 Example of a multi-scale and multi-physics coupling simulation: seismic wave propagation
(ppOpen-APPL/FDM), dynamic solid mechanics (ppOpen-APPL/FEM), and application coupler
(ppOpen-MATH/MP)

28 K. Nakajima et al.

developers need not consider the structure of the FDM and FEM applications, and
they can develop a coupling simulation by using ppOpen-MATH/MP.

A practical simulation is executed on the large-scale computational resources of
Fujitsu PRIMEHPC FX10 at the University of Tokyo [8]. The simulation target is
the earthquake that occurred at Awaji Island on 13 April 2013. The seismic source
was located on the central part of Awaji Island, Hyogo prefecture, Japan. The com-
putational domain of Seism3D+, which is composed by the ppOpen-APPL/FDM
library, is 60km square from Awaji Island and the domain of FrontISTR++, which
is composed by the ppOpen-APPL/FEM library, is an actual building of the RIKEN
Advanced Institute for Computational Science (AICS), Port Island, Kobe, as mod-
eled by an unstructured mesh. This building mesh is placed on two locations of
Port Island and the Kobe stadium, where ground conditions differ from each other.
The total computational nodes on the FX10 used in the simulation are 4560 nodes
(16 cores/1 node): 2560 nodes for Seism3D+ and 1000 nodes/1 place = total 2000
nodes for FrontISTR++. In the simulation, seismic wave propagations (Seism3D+)
for the simulation time of 90s were calculated in the computational time of about
6h, and building vibrations originated from the seismic wave (FrontISTR++) for
the simulation time of 20 s were calculated in the computational time of about 16h.
However, it was revealed that the way to allocate memory of the coupler has some
problems when such a large-scale simulation is performed. This is because a part of
the initialization routine in ppOpen-MATH/MP includes the centralized procedure
of all MPI processes. Optimization of the code will be carried out as a future plan.

3.3 ppOpen-MATH/MG: Multigrid Solver

Optimization of both serial and parallel communications is a critical issue for the
development of scalable algorithms in next-generation applications. Serial commu-
nication is the data transfer through memory hierarchies of each processor, whereas
parallel communication is the message passing between computing nodes through
the network by MPI. A multigrid is a scalable method for solving linear equations and
preconditioning Krylov iterative linear solvers, and is especially suitable for large-
scale problems. The parallel multigrid method is expected to be one of the powerful
tools on post-peta/exa-scale systems. Recently, the High Performance Conjugate
Gradient (HPCG) [17] was proposed as a new benchmark for evaluation of the prac-
tical performance of supercomputer systems. HPCG solves sparse matrices derived
from finite element applications by using a conjugate gradient (CG) linear solver
preconditioned with the multigrid method (MGCG).

The parallel multigrid method and MGCG include both serial and parallel com-
munication processes that are generally expensive. This article summarizes recent
efforts of the optimization of serial and parallel communications in parallel MGCG
solvers with geometric multigrid procedures using up to 4,096 nodes (65,536 cores) of
the Fujitsu PRIMEHPC FX10 at the University of Tokyo [8]. The target application,
pGW3D-FVM, is a 3D finite-volume simulation code, which solves groundwater

ppOpen-HPC: Open Source Infrastructure for Development ... 29

Boundary Meshes
AUnew6 (6, N)

Pure Internal
Meshes
AUnew3 (3,N)

Fig. 14 Idea of sliced ELL format [19] with two slices in the present work

flow problems through heterogeneous porous media by the parallel MGCG method
[18]. The performance of both flat MPI and OpenMP/MPI hybrid parallel program-
ming model (HB MxN (M: number of threads on each MPI process, N: number of
MPI processes on each node)) has been evaluated.

In the present work, a new format for sparse matrix storage based on sliced ELL
[19] (Fig. 14), which has been well utilized for the optimization of sparse matrix-
vector multiplication (SpMV), is proposed for optimization of serial communication
on memories. In addition, hierarchical coarse grid aggregation (hCGA) (Fig. 15)
is introduced for optimization of parallel communication by message passing. The
proposed methods are implemented for pPGW3D-FVM, and the robustness and per-
formance of the code was evaluated by using up to 4,096 nodes (65,536 cores) of
the Fujistu FX10 system. The parallel MGCG solver using the sliced ELL format

o [HHBHEEEEEERR
w2 NN EEEEEERR
H ° H H H H H H H H H H

Level=m-3

L l IR B | I R B | (I
Level=m-3 . . .
Level=m-2 . .

! | '

i Coarse grid solver on a

single MPI process (multi-
threaded, further multigrid)

Coarse

Fig. 15 Procedures of hierarchical CGA (hCGA), where the number of MPI processes is reduced
before the final coarse grid solver of CGA on a single MPI process

30 K. Nakajima et al.

a b
()20.0 ()20.0
Z:E gxggllj_s ® Flat MPI: New ELL+CGA
X2 .
15.0 1l 4B BrELLsCaA 15, Lot MPL: Now ELL+hGGA
A HB 8x2:New ELL+CGA P)
o ® L . ..
o 10.0 oo ® NN @ 10.0 °
o 0 4 L 4 3 A A AA ® o ®
A A L LA AAam o ® M
50[A 4 502
0.0 0.0 . x
100 1000 10000 100000 100 1000 10000 100000
CORE# CORE#

Fig. 16 Performance of MGCG solver on Fujitsu FX10 using up to 4,096 nodes (65,536 cores),
weak scaling (elapsed time for MGCG): 262,144 (=643%) meshes/core, max. total problem size:
17,179,869,184 meshes

provided performance improvement in both weak scaling (25-31 %) and strong scal-
ing (9-22 %) compared to the code using the original ELL format. Moreover, tCGA
provided excellent performance improvement in both weak scaling (1.61 times) and
strong scaling (6.27 times) for the flat MPI parallel programming model. ZCGA was
also effective for improvement of parallel communications (Fig. 16a, b).

The effect of sliced ELL on serial communication was significant, while that
of hCGA on parallel communication was not so impressive except for flat MPI
cases. Because hCGA proved to be very effective for reducing the overhead of the
coarse grid solver, it will also provide a more significant effect on hybrid parallel
programming models with a larger number of nodes. The computational amount of
the coarse grid solver for each core of flat MPI is 256 (=16 x 16) times as large as
that of HB 16 x 1. Therefore, hCGA is expected to be really effective for HB 16x 1
with more than 2.50 x 10° nodes (4.00 x 10° cores) of the Fujitsu FX10, where the
peak performance is more than 60 PFLOPS.

CGA and hCGA include various types of parameters, and the optimum values
of those were derived through empirical studies in the present work. Development
of methods for automatic selection of these parameters [20] is also an interesting
technical issue for future work.

4 ppOpen-AT

Computer architectures are becoming more and more complex due to
non-standardized memory accesses and hierarchical caches. The AT capability is
an important and critical technology for further development of new architectures,
and maintenance of the overall framework to establish high productivity for perfor-
mance tuning. Generally speaking, keeping high performance with a legacy code

ppOpen-HPC: Open Source Infrastructure for Development ... 31

User @ ppOpen-APPL /* .Before ;
- Knowledge Release-time

ppOpen -A Automatic !
Directives Code
Generatlon

Auto-tuned t @ @ Execution Time
Kernel |© @ Library Call

Execution ‘Target
m [‘ m T

Library UseN"=4~ Computers

Fig. 17 Procedures for generation of optimized code by using ppOpen-AT

on different computer environments, described as “performance portability”, is a
challenging issue. In this section, we show the current results of research on the AT
function to establish performance portability.

ppOpen-AT automatically and adaptively generates optimum implementations
for efficient memory accesses in the processes of methods for scientific computing
in each component of ppOpen-APPL. Example processes are explicit time march-
ing procedures, matrix assembling procedures, and implicit linear solvers. These
are achieved under various environmental constraints, such as the architecture of
the supercomputer system, available resources, problem size, etc. ppOpen-AT also
optimizes widely used open source applications and numerical libraries, such as
OpenFOAM and PETSc. With the focus on optimum memory access, directive-
based special AT languages for specific procedures in scientific computing are being
developed.

Figure 17 describes procedures for the generation of optimized code using ppOpen-
AT.

We applied ppOpen-AT to simulation code based on FDM, which was provided
as ppOpen-APPL/FDM in ppOpen-HPC. The framework utilizes well-known loop
transformation techniques, such as loop fusion and loop split. In addition, we looked
at the AT function to support compiler optimizations with a re-ordering of state-
ments. Processes of data packing and unpacking for communication with MPI are
targets for AT. The components of AT are carefully designed to minimize the use of
software stacks to satisfy the requirements of the many-core architectures currently
in operation. The FIBER framework [19] is utilized to implement an auto-tuner and
timings of invocation of the AT function. In particular, execution of the AT with
dedicated problem sizes and numbers of threads is crucial. The timing called Before
execute-time AT on FIBER is used to optimize the target codes of ppOpen-HPC.

32 K. Nakajima et al.

Fig. 18 Effect of AT by
ppOpen-AT on the
performance of
ppOpen-APPL/FDM

W Speedup [%]

The results of evaluations conducted using ppOpen-AT indicate that maximum
speedup factors greater than 550% are obtained when ppOpen-AT is applied in
eight nodes of the Intel Xeon Phi [21] (Fig. 18). To show performance portability, an
additional evaluation with the Intel Ivy Bridge and the Sparc64 IX-fx was performed.
Different parameters were set by the AT. For execution with auto-tuned parameters,
the Intel Xeon Phi is faster than the other two architectures, while the Xeon Phi is the
slowest if we do not apply the AT. This shows that AT is a crucial factor to establish
performance portability.

5 ppOpen-SYS/FT: Application-Level Checkpoint/Restart
(CP/RS) Framework with Runtime Optimization

The application-level checkpoint/restart technique is periodically makes snapshots
of application and stores them for recovery later by application programming. And
it is frequently implemented within the application which has time stepping. How-
ever, optimizations of some parameters require the runtime information. In this case,
the parameters described in the program source tend to depend on the application
programmer’s ad hoc decision.

For reducing the cost of checkpoint/restart (CP/RS) at the application level, the
framework focused on a time-stepping model application and asynchronous coor-
dination on the checkpoint with an applied optimized parameter. The scenario is as
follows: (1) Processes send runtime information to the optimizing daemon. (2) The
daemon optimizes the runtime with information of the processes and the environment,
and returns the result to the processes. (3) The processes make a checkpoint with
the newly optimized information. (4) The daemon deletes a waste checkpoint with
appropriate information, such as the core-loop stepping count included on the check-
point ppOpen-SYS/FT framework that has a reference implementation for checkpoint
interval optimization.

ppOpen-HPC: Open Source Infrastructure for Development ... 33

ppOpen-SYS/FT is the directive-based application-level checkpoint/restart frame-
work and its implementation with runtime optimization [22—-24]. The implementation
of ppOpen-SYS/FT adapts to large-scale systems managed with a job scheduler. This
implementation optimizes the interval with the count of stepping, the execution time
of stepping, and checkpointing. The optimization daemon returns the appropriate
interval as an offset or stride format. Then, if the process passes the offset, it ignores
the offset and the checkpoint on the next timing. This implementation is used with the
directive-based method. In addition, we are considering the partial message logging
(PML) method by the ppOpen-SYS/FT framework. This method partitions applica-
tion processes as a group and uses a different checkpoint method on the intra-group
and the inter-group. The partitioning depends on the communication amount and the
frequency between processes. ppOpen-SYS/FT optimizes this partitioning with the
topological method that we also proposed (Fig. 19).

Moreover, we are considering cooperation with ppOpen-MATH/MP. By focusing
communication between the coupler and applications that construct coupling soft-
ware, each application can perform checkpointing individually with our asynchro-
nous coordination. However, because of the coupler keeping state, the consistency
of the coupling software is broken. Consequently, ppOpen-SYS/FT supplies an API
that informs whether the application will be a checkpoint until the next communica-
tion with the coupler. On each communication of coupled applications, the coupler
calls the API for the decision of the checkpoint itself (Fig. 20). An additional API is
also defined for AMR applications with ppOpen-APPL/FVM. The AMR application
changes the checkpoint time drastically by re-partitioning. Then, ppOpen-SYS/FT
supplies the optimized checkpoint timing and receives the checkpoint timing from
the application decision.

P1 = I - S
P2 N l -
P3 o . [i
Garbage
Fault Resilient Collection
Backbone Auto tuning
Srv calculation

Time for loop
Il Time for ckpt.

Environmental
information

-—

Fig. 19 Framework of ppOpen-SYS/FT

34

K. Nakajima et al.

Coupler App- B appli_A(){ coupsend(){ appli_B(){

state for(i){ data_renew(); || for(i){

- calc_A(); if(checkCP()){ calc_B();

®? if(i%x == 0) cp(); if(i%y == 0)
coupsend(); } couprecv();
cp_cand(); } cp_cand();

} }
a» L CP 4 } }

Fig. 20 Procedures for checkpointing of couplers

6 Summary

In this article, recent achievements and progress of the ppOpen-HPC project have
been presented. The libraries developed for ppOpen-HPC are open for public use
under MIT license and can be downloaded at the website of the project [1]. ppOpen-
HPC has been installed on various types of supercomputers, and is utilized for
research and development that requires large-scale supercomputer systems. More-
over, ppOpen-HPC is introduced in graduate and undergraduate classes at universi-
ties.

Currently, we are focusing on development and optimization of ppOpen-HPC
for Intel Xeon/Phi architecture, and preparing for further research and development
towards exascale systems.

Acknowledgments This work is supported by Core Research for Evolutional Science and Tech-
nology (CREST), the Japan Science and Technology Agency (JST), Japan.

References

1. ppOpen-HPC: http://ppopenhpc.cc.u-tokyo.ac.jp/

2. Nakajima, K.: ppOpen-HPC: open source infrastructure for development and execution of

large-scale scientific applications on post-peta-scale supercomputers with automatic tuning

(AT). In: ATIP ’12 Proceedings of the ATIP/A*CRC Workshop on Accelerator Technologies

for High-Performance Computing: Does Asia Lead the Way?, ACM Digital Library (ISBN:

978-1-4503-1644-6) (2012)

Joint Center for Advanced High Performance Computing (JCAHPC): http://jcahpc.jp/

Post-Peta CREST: http://postpeta.jst.go.jp/en/

GeoFEM: http://geofem.tokyo.rist.or.jp/

HEC-MW: http://www.multi.k.u-tokyo.ac.jp/FrontISTR/

Mori, F., Matsumoto, M., Furumura, T.: Performance optimization of the 3D FDM simulation

of seismic wave propagation on the intel Xeon Phi coprocessor using the ppOpen-APPL/FDM

library. In: Lecture Notes in Computer Science (LNCS) (in press)

Information Technology Center, The University of Tokyo: http://www.cc.u-tokyo.ac.jp

9. Matsumoto, M., Mori, F., Ohshima, S., Jitsumoto, H., Katagiri, T., Nakajima, K.: Implemen-
tation and evaluation of an AMR framework for FDM applications. Procedia Comput. Sci. 29,
936-946 (2014)

NownkWw

e

http://ppopenhpc.cc.u-tokyo.ac.jp/
http://jcahpc.jp/
http://postpeta.jst.go.jp/en/
http://geofem.tokyo.rist.or.jp/
http://www.multi.k.u-tokyo.ac.jp/FrontISTR/
http://www.cc.u-tokyo.ac.jp

ppOpen-HPC: Open Source Infrastructure for Development ... 35

10.

11.

12.

13.

14.

20.

21.

22.

23.

24.

25.

Ida, A., Iwashita, T., Mifune, T., Takahashi, Y.: Parallel hierarchical matrices with adaptive
cross approximation on symmetric multiprocessing clusters. J. Inf. Process. 22(4), 642-650
(2014)

Ida, A., Iwashita, T., Ohtani, M., Hirahara, K.: Improvement of hierarchical matrices with
adaptive cross approximation for large-scale simulation. IPSJ Trans. Adv. Comput. Syst. 49
(in press)

Nishiura, D., Matsuo, M.Y., Sakaguchi, H.: ppohDEM: computational performance for open
source code of the discrete element method. Comput. Phys. Commun. 185, 1486-1495 (2014)
Arakawa, T., Inoue, T., Satoh, M.: Performance evaluation and case study of a coupling software
Ppopen-MATH/MP. Procedia Comput. Sci. 29, 924-935 (2014)

Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A.T., Yamada,
Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T,
Inoue, T., Kubokawa, H.: The non-hydrostatic icosahedral atmospheric model: description and
development. In: Progress in Earth and Planetary Science, pp. 1-18 (2014)

. Hasumi, H.: Documentaion for CCSR Ocean Component Model (COCO) Version 4.0s. Center

for Climate System Research, April (2007)

. Jones, P.H.: First- and second-order conservative remapping schemes for grids in spherical

coordi-nates. Mon. Weather Rev. 127, 2204-2210 (1999)

. HPCG: High Performance Conjugate Gradients: https://software.sandia.gov/hpcg/
. Nakajima, K.: Optimization of serial and parallel communications for parallel geometric multi-

grid method. In: Proceedings of the 20th IEEE International Conference for Parallel and Dis-
tributed Systems (ICPADS 2014), pp. 25-32 (2014)

. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector mul-

tiplication for GPU architectures. Lect. Notes Comput. Sci. §952, 112-125 (2010)

Nakajima, K.: Automatic tuning of parallel multigrid solvers using OpenMP/MPI hybrid par-
allel programming models. Lect. Notes Comput. Sci. 7851, 435-450 (2013)

Katagiri, T., Ohshima, S., Matsumoto, M.: Auto-tuning of computation kernels from an FDM
Code with ppOpen-AT. In: Proceedings of IEEE MCS0C2014, pp. 91-98 (2014). doi:10.1109/
MCSo0C.2014.22

Jitsumoto, H., Todoroki, Y., Ishikawa, Y., Sato, M.: Grid-oriented process clustering system
for partial message logging. In: Proceedings of the 4th Fault Tolerance for HPC at eXtreme
Scale (FTXS) 2014, in conjunction with DSN2014 (2014)

Jitsumoto, H., Todoroki, Y., Sato, M.: Design and evaluations of application based fault toler-
ance framework with stencil model. In: G8 ESC Workshop at Kobe (2014)

Jitsumoto, H., Kamoshida, Y.: Application-level checkpoint/restart framework with optimal
checkpoint interval. In: HPC in Asia Workshop Poster Session at ISC*13 (2013)

Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: a general framework for auto-tuning
software. Proc. ISHPC-V, Lect. Notes Comput. Sci. 2858, 146—159 (2003)

https://software.sandia.gov/hpcg/
http://dx.doi.org/10.1109/MCSoC.2014.22
http://dx.doi.org/10.1109/MCSoC.2014.22

2 Springer
http://www.springer.com/978-4-431-55419-6

Optimization in the Real World

Toward Solving Real-World Optimization Problems
Fujisawa, K.; Shinano, ¥.; Waki, H. (Eds.)

2016, XlI, 194 p. 69 illus., 28 illus. in color., Hardcowver
ISBEN: 978-4-431-55419-6

	ppOpen-HPC: Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with Automatic Tuning (AT)
	1 Overview of ppOpen-HPC
	2 ppOpen-APPL
	2.1 Simulation of 3D Seismic Wave Propagation Using ppOpen-APPL/FDM
	2.2 ppOpen-APPL/AMR-FDM with Adaptive Mesh Refinement
	2.3 ppOpen-APPL/BEM and HACApK
	2.4 ppOpen-APPL/DEM: Open Library for Discrete Element Method

	3 ppOpen-MATH
	3.1 ppOpen-MATH/MP and NICAM-COCO Coupling
	3.2 Integrated Earthquake Simulations Using ppOpen-MATH/MP
	3.3 ppOpen-MATH/MG: Multigrid Solver

	4 ppOpen-AT
	5 ppOpen-SYS/FT: Application-Level Checkpoint/Restart (CP/RS) Framework with Runtime Optimization
	6 Summary
	References

