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Abstract We construct cellular automaton models for the spatio-temporal pattern of
Euglena gracilis bioconvection, which is generated when a suspension of Euglena
gracilis is illuminated from the bottom with strong light intensity through a sta-
tistical construction method of cellular automata. The method of construction is
introduced by Kawaharada and lima (A. Kawaharada and M. lima, “Constructing
Cellular Automaton Models from Observation Data”, In 2013 First International
Symposium on Computing and Networking, pp. 559-562 (2013)). Some features of
the original patterns are reproduced by one dimensional deterministic CA with the
nearest three neighbors and eight possible states for a site.
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1 Introduction

Collective behavior of animals from microorganisms to birds, form various patterns,
e.g. formation flight of geese, bait ball of sardine, bacterial colonies, and biocon-
vections. Such patterns are generated by hierarchical mechanisms including self-
propelling of individuals, hydrodynamic, mechanic, or chemical interactions among
individuals, and effects from the surrounding environment generated through their
macroscopic behavior.
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In this study, we focus on the ordered patterns generated in bioconvection, a col-
lective behavior of microorganisms in fluid caused by their behavioral responses of
individuals to stimuli (taxes) (Pedley and Kessler 1992; Hill and Pedley 2005). The
microorganism used in the experiment is Euglena gracilis, a unicellular flagellate
whose body length is approximately 50 ~ 100 wm long. E. gracilis has phototaxis; it
escapes from light sources with strong light intensity (over 200 W /m?; negative pho-
totaxis) and approaches light sources with weak light intensity (below 200 W /m?;
positive phototaxis). If a suspension of E. gracilis is illuminated from the bottom
with strong light intensity, the individuals accumulate near the surface because of
negative phototaxis. Because the density of E. gracilis is heavier than water, parts of
the Euglena-rich regions fall down to drive the local flow. Such interaction between
the individuals and the flow eventually forms bioconvection patterns. Their bio-
convection patterns are peculiar because they can form spatially localized patterns
(Suematsu et al. 2011) which have been experimentally simplified to extract funda-
mental patterns (Shoji et al. 2014) similar to those observed in binary fluid convection
(Watanabe et al. 2012). However, we focus on branch-like spatio-temporal patterns
of the bioconvection covering the whole region, which is observed when the number
density is relatively large in the case of Refs. (Suematsu etal. 2011; Shoji et al. 2014).

Because the governing equation of the bioconvection of E. gracilis is not deter-
mined although hydrodynamic models incorporating lateral phototaxis have been
proposed (Iima et al. 2014), we need an alternative way to understand their pattern
formation mechanism. In some cases, constitutive models are constructed by assum-
ing the interaction functions. Such modeling method can be applied to wide range
of phenomena, however, created models are not unique in general and has fitting
parameters. As a result, such models are difficult to give qualitative prediction.

In this paper, we will choose another approach to construct the model by utilizing
cellular automaton (CA), a discrete dynamical system in which the time evolution
of the configuration is determined by local rules acting on each site in synchronous.
Compared with various formulations of the target models, CA has the following
two advantages. The first advantage is that CA has both mathematical simplicity
and the potential to describe complex phenomena even from simple rules. Because
CA can be mathematically regarded as an extension of symbolic dynamics (Bruce
Kitchens 1998; Lind and Marcus 1995) and ZP-action, which is the ergodic theory
on D-dimensional lattice (Keller 1998), the dynamics of CAs have been studied
well (e.g., Hedlund 1969; Kurka 2001; Hurley 1990; Milnor 1988; Meyerovitch
2008; Kawaharada 2013). Also, CAs have been used as mathematical models of
various phenomena, e.g., fluid dynamics (Hardy et al. 1973, 1976; Frisch et al. 1986;
McNamara and Zanetti 1988), chemical reactions (Gerhardt et al. 1990; Gerhardt
1990), pattern formations of living matters (Kusch and Markus 1996; David Young
1984).

The second advantage is that we can construct CA through data of a phenomenon
without any interpretations; this method has been recently proposed by Kawaharada
and lima (Kawaharada and Iima 2013). In this method, CA models are constructed
not by intuition but by statistical analysis, thus, we do not need to assume interac-
tion functions to construct a CA model. We assume that the target phenomenon is
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determined by local governing rules that is homogeneous in space and time. After
discretizing the data and assuming the interaction range, we can obtain their propa-
gating rules through statistical analysis of the observation data.

This method has been applied to the data generated by the diffusion equation
and the Burgers equation (Kawaharada and Iima 2014), and it has been shown that
at least qualitative behavior of the equations can be reproduced by stochastic CAs.
However, this method has never been applied to real-life phenomena, i.e., observed
data in nature.

In this paper, we have applied this CA construction method to the observation data
of spatio-temporal patterns in E. gracilis bioconvection. We show that the obtained
CA reproduces features of the bioconvection patterns. This paper is organized as
follows. In Sect.2 we give the results of the experiment. In Sect. 3 we construct CAs
from the data of E. gracilis. Finally, Sect.4 summarizes concluding remarks.

2 Spatio-Temporal Patterns in E. Gracilis Bioconvection

In this section we briefly explain the experimental set-up and the experimental results.

2.1 Experimental Set-Up

An annular container with outer radius 25mm and inner radius 20mm was used
(Fig. 1a). Both the radial width and the suspension depth d were fixed to 5mm. The
density of E. gracilis suspension is 7.5 x 10 cells/mL, which was prepared by the
same procedure used in (Suematsu et al. 2011). The surface of the suspension was not
covered. The container was illuminated from the bottom by LED light plate whose
light intensity was 15201Ix. The spatio-temporal patterns of the number density were
recorded by a digital video camera (JVC GC-PX1) from the side, and the line near
the surface (x-axis in Fig. 1b) was used to construct the spatio-temporal pattern. The
experiment was performed for 15000 s long to record the pattern formation process.

2.2 Spatio-Temporal Pattern

Typical dynamics among Euglena-rich regions consist of the creation, the merge,
and interactions between the Euglena-rich regions. The creation process is shown
by a series of pictures taken from the side in Fig.2a. In the red circle drawn in the
top of the picture, a E. gracilis-rich region is being created, which is indicated by
the following pictures showing that the E. gracilis-rich region is falling down. The
merging process is shown in Fig. 2b. In the red circle drawn in the top picture, two
bright regions are shown. In both regions, Euglena falls down. A series of pictures
show that the right region becomes weaker and eventually it is absorbed in left region.
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Fig. 1 Annular container used in the experiment

(a) (b)

Fig. 2 a Sequence of creation process of a Euglena-rich region (4580-4630s). b Sequence of
merge process of two Euglena-rich regions (4810-4890s)
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Although the elementary processes can be explained as the creation and the merge
of the E. gracilis-rich regions, the total dynamics can be understood only by the global
spatio-temporal patterns. In Fig. 3, the spatio-temporal pattern of the bioconvection
was shown. The horizontal axis corresponds to the line of Fig. 1b and the vertical
line corresponds to time evolution. Bright green parts show E. gracilis-rich regions
in which individuals of E. gracilis fall down (see also the side view in Fig. 1b). The
pattern shows up until about 2000, near which the E. gracilis-rich regions emerge.
The E. gracilis-rich regions are not stationary; they move leftward or rightward due
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to the interaction among other E. gracilis-rich regions through generated flow and/or
the number density wave of E. gracilis, although the details have not been fully
understood. The pattern looks like trees; small branches stem from main branches.
Because time evolves from top to down, the bright region representing branch actually
created, then it merges to another bright region representing another branch. The
motion of thick (brighter) regions can not be explained by the elementary process
of the local bright region, and another approach should be considered. In the next
section, we will show an alternative approach, construction of CA.

3 Constructing Cellular Automata from Data of E. Gracilis

In this section we introduce the statistical method of constructing CA models from
the observation data introduced in (Kawaharada and lima 2013, 2014) and apply
this method to the data of the dynamics of E. gracilis. We also compare the patterns
created by the obtained CA with the original spatio-temporal pattern in E. gracilis
bioconvection.

3.1 The Constructing Method of CAs Directly
Jrom Observation Data

First, we present definitions on CAs. A discrete dynamical systemis defined by (X, T)
consisting of a space X and a transformation 7 : X — X.Let A ={0, ...,k — 1}
(k > 1) be a finite state set and Z be a set of integers. A configuration space is
defined by AZ and each element of AZ is called a configuration. For a configuration
x € AZ the shift transformation o is defined by (ox); = x;41 foreach [ € Z.

Definition 1 Let T be a shift-commuting transformation on AZ, i.e., Too = ooT.
A discrete dynamical system (AZ, T) is a cellular automaton (CA), if T is given by
for x € AZ and each coordinate [ € Z and l,....l,eZ

(Tx)1 = fXiatys ey Xitdy)s )

where f is a map from A™ to A, called a local rule.

Next, we briefly summarize the construction method of CAs from data. The
detailed procedure and applications to some partial differential equations are in
(Kawaharada and Iima 2013, 2014). A CA rule needs to be defined locally, but
in many cases we only observe the macroscopic spatio-temporal behavior of a phe-
nomenon (e.g. recorded movie), even though a local rule actually governs the phe-
nomenon. To extract the CA rule, the following procedure is proposed. First, we
predetermine the number of the states of a site k, and discretize the observation
data accordingly. Next, based on the predetermined the number of neighbors m, we
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calculate the frequency of appearance of the states (7Tx); for each combination of
possible states of neighbors {x;4/,, ..., x4, }. We define local rules of CA using
the frequency of appearance of the states. If we need a deterministic rule, the rule is
defined by the state which gives maximum appearance of the state. Another choice is
to define a stochastic rule, in which each rule is selected according to the frequency
of the appearance of the state. The definition of the stochastic CA and applications
are discussed in Refs. (Kawaharada and Iima 2013, 2014).

This method implies that we can extract the hidden mechanism of a phenomena
even if the macroscopic behavior is much complicated, as far as the mechanism
is determined locally. A demonstration of reconstruction of CA rule from noise-
contaminated CAs (Rule 90 and Rule 150) are discussed in (Kawaharada and lima
2013, 2014).

3.2 CA of the Bioconvection of E. Gracilis Obtained from
Spatio-temporal Data

The construction method was applied to the spatio-temporal data of E. gracilis bio-
convection (Fig. 3). Here, we report the deterministic CA for the case k = 8, m = 3,
and {l1, I, [z} = {—1, 0, 1}. The detailed procedure to discretize the spatio-temporal
data was as follows.

1. Figure3 was converted to the gray scale image, then external noise (unnecessary
vertical lines) was removed before the contrast was adjusted. Central part of the
image was extracted (Fig.4). The image size is L, x L; pixels(L, = 362, L, =
3936).

2. The filtered image (Fig.4) was discretized by the local averaging; the average
was performed in the region [cy Ny, cx(Ny + 1)) X [¢;Nt, ¢ (Nt + 1)) (Ny =
0,1,..,L, —1,N; =0,1, ..., L, — 1), where ¢, and ¢, are integer parameters
which define the spacial scale and the temporal scale of interest, respectively, and
L. = |Ly/cxl, L, = | Ls/c;]. The averaged value at each site, u, was discretized
to give the state of CA,a € A = {0, 1,...,7}, such that u#/(#max — Umin) €
[a/k, (a + 1)/ k) where umax is the max value of u and up;, is the minimum in
the whole data. In this paper, we show the case ¢, = 9 and ¢; = 17 (Fig.5).
The image size is L, x L} pixels(L,, = 40, L; = 231). Because of the scales
we chose, the major structure of the image is now straight lines or inclined lines
which are white, and fine branches stemming from the major branch is not very
clear.

Using the discretized data, we can define both deterministic and stochastic CA
by the procedure in Sect.3.1. In this paper, we show the results of deterministic CA,
because the stochastic CA gave bleary spatio-temporal patterns which did not include
the macroscopic characteristic structures.

When the observed data is not sufficiently long, some local rule can be indetermi-
nate because no combination of {x_j, xg, x1} is observed under the given data, which



22 A. Kawaharada et al.

Fig. 4 Filtered data

Fig. 5 Discretized data with
cy =9,¢, =17

will be referred to as “empty rule”. Although there can be several choices to define
the rule of the empty rule, we defined the rule of such cases to give the discretized
state k — 1 for the sites. This principle gives a nucleation of Euglena-rich region.
The spatio-temporal pattern obtained from the constructed CA is shown in Fig. 6a.
The initial configuration is given by a random number in A for each site. In this
example, the straight lines and inclined lines in Fig. 5 are not perfectly reproduced.
However, the patterns generated in Fig. 6a have the following properties; Straight
lines are generated after initial transient (« in Fig.6a). The patterns in the middle
part arises from a complex combination of some triangle-like structures (/3 in Fig. 6a).
We can see upward left side branches in the original pattern (+y in Fig. 6a). There are
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Fig. 6 Spatio-temporal patterns of the obtained CA

no right side branches because deterministic CA rule chosen here forces the pattern
to grow either leftward or rightward.

The frequency that the empty rule occurs during generating the spatio-temporal
pattern becomes much smaller very quickly. Actually, the number of the empty
rules was 348 out of 512(= 83) local rules in the determined CA. Thus, only
(512-348)/512~ 32 % of the local rules was determined in the CA. At a glance,
the ratio of the empty rules looks too large to determine the spatio-temporal pattern
of the original data. However, the ratio of the empty rules becomes significantly lower
after initial transient. Figure 6b is the same spatial-temporal pattern as Fig. 6a with
the same initial configuration except for the red dots, the cells which was determined
by the empty rule. Figure 6b clearly shows that the appearance frequency of the red
dots becomes significantly lower very quickly; in fact the frequency of the empty
rule becomes 125/14800~ 0.8 % when the first two rows are removed. This result
shows that the most part of the spatio-temporal pattern by the CA is determined by
only about 32 % or less local rules after initial transients. Further, the number of
local rules necessary to reproduce typical patterns is much smaller compared with
the total number of local rules. Actually, the patterns « and  do not include any
empty rules, which means that these patterns are reproduced by the rule generated
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from the observation data alone. The pattern (3, however, contains several red dots
after initial transient. Thus, the pattern 5 may depend on our definition for the empty
rule.

4 Concluding Remarks

In this paper, we have constructed CA models for the spatio-temporal patterns in
E. gracilis bioconvection. Because the rules of CA are determined statistically, we
need no knowledge of bioconvection; we simply discretize the data and counting the
number of observed rules among all the possible rules. In this method, the modeling
parameters are the time width and the spatial width to discretize the data, number of
states at each site, and number of neighbors. As a result, we have many CAs from
even single spatio-temporal data. Among such CAs, we can obtain some CA rules
that produce patterns which share some similarities in common with the observation
data.

Here we simply demonstrated that we can produce interesting patterns from the
observation data. In this method, our knowledge of the phenomena is not prerequisite
for the model construction. However, if we want to reproduce the features of the
original phenomena, it is easy to modify the CA rule according to our knowledge of
the phenomena. For example, in the case of bioconvection, generation of branch is
hard to give the deterministic CA rule because a nucleation process is stochastic. If
we want, it is easy to include this effect by a perturbation term. Further application
of this method will be reported elsewhere.
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