
Chapter 2
Analytical Approximation Methods

2.1 Introduction

As we mentioned in the previous chapter, most of the nonlinear ODEs have no
explicit solutions, i.e., solutions, which are expressible in finite terms. Even if an
explicit solution can be determined, it is often too complicated to analyze the principal
features of this solution. Due to such difficulties, the study of nonlinear mathematical
problems is the most time-consuming and difficult task for researchers dealing with
nonlinear models in the natural sciences, engineering, and scientific computing.With
the increasing interest in the development of nonlinear models, a variety of analytical
asymptotic and approximation techniques have been developed in recent years to
determine approximate solutions of partial and ordinary differential equations. Some
of these techniques are the perturbation method, the variational iteration method, the
homotopy perturbation method, the energy balance method, the variational approach
method, the parameter-expansion method, the amplitude-frequency formulation, the
iteration perturbation method, and the Adomian decomposition method.

In this chapter, we present the variational iteration method and the Adomian
decomposition method since these techniques have good convergence characteristics
and can be used to treat strongly nonlinear ODEs.

2.2 The Variational Iteration Method

The variational iteration method (VIM) was first proposed by He (see e.g. [49, 50])
and systematically elucidated in [51, 54, 126]. The method treats partial and ordi-
nary differential equations without any need to postulate restrictive assumptions that
may change the physical structure of the solutions. It has been shown that the VIM
solves effectively, easily, and accurately a large class of nonlinear problems with
approximations converging rapidly to accurate solutions, see e.g. [127]. Examples
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34 2 Analytical Approximation Methods

for such problems are the Fokker–Planck equation, the Lane–Emden equation, the
Klein–Gordon equation, theCauchy reaction–diffusion equation, and biological pop-
ulation models.

To illustrate the basic idea of the VIM, we consider, the ODE

Ly + N (y) = f (x), x ∈ I, (2.1)

where L and N are linear and nonlinear differential operators, respectively, and
f (x) is an given inhomogeneous term defined for all x ∈ I . In the VIM, a correction
functional of the Eq. (2.1) is defined in the following form

yn+1(x) = yn(x) +
∫ x

0
λ(τ )

(
Lyn(τ ) + N (ỹn(τ )) − f (τ )

)
dτ , (2.2)

where λ(τ ) is a general Lagrange multiplier, which can be identified using the vari-
ational theory [38]. Furthermore, yn(x) is the nth approximation of y(x) and ỹn(x)
is considered as a restricted variation, i.e., δ ỹn(x) = 0.

By imposing the variation and by considering the restricted variation, Eq. (2.2) is
reduced to

δyn+1(x) = δyn(x) + δ

(∫ x

0
λ(τ )Lyn(τ )dτ

)

= δyn(x) +
[
λ(τ )

(∫ τ

0
Lδyn(ξ)dξ

)]τ=x

τ=0

−
∫ x

0
λ′(τ )

(∫ τ

0
Lδyn(ξ)dξ

)
dτ .

(2.3)

Obviously, in (2.3) we have used integration by parts, which is based on the
following formula

∫
λ(τ )y′

n(τ )dτ = λ(τ )yn(τ ) −
∫

λ′(τ )yn(τ )dτ . (2.4)

In the next sections, we will also use two other formulas for the integration by parts,
namely

∫
λ(τ )y′′

n (τ )dτ = λ(τ )y′
n(τ ) − λ′(τ )yn(τ ) +

∫
λ′′(τ )yn(τ )dτ , (2.5)

and ∫
λ(τ )y′′′

n (τ )dτ = λ(τ )y′′
n (τ ) − λ′(τ )y′

n(τ ) + λ′′(τ )yn(τ )

−
∫

λ′′′(τ )yn(τ )dτ .

(2.6)
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Now, by applying the stationary conditions for (2.3), the optimal value of the
Lagrange multiplier λ(τ ) can be identified (see e.g. [50], formula (2.13) and the
next section). Once λ(τ ) is obtained, the solution of the Eq. (2.1) can be readily
determined by calculating the successive approximations yn(x), n = 0, 1, . . ., using
the formula (see Eq. (2.2))

yn+1(x) = yn(x) +
∫ x

0
λ(τ )

(
Lyn(τ ) + N (yn(τ )) − f (τ )

)
dτ , (2.7)

where y0(x) is a starting function, which has to be prescribed by the user.
In the paper [50] it is shown, that the approximate solution yn(x) of the exact

solution y(x) can be achieved using any selected function y0(x). Consequently, the
approximate solution is given as the limit y(x) = limn→∞ yn(x). In other words,
the correction functional (2.2) will give a sequence of approximations and the exact
solution is obtained at the limit of the successive approximations. In general, it is
difficult to calculate this limit. Consequently, an accurate solution can be obtained
by considering a large value for n. This value depends on the interval I where a good
approximation of the solution is desired.

Let us consider, the following IVP

y′(x) + y(x)2 = 0, y(0) = 1. (2.8)

The corresponding exact solution is

y(x) = (1 + x)−1 = 1 − x + x2 − x3 + x4 − x5 + x6 + · · · . (2.9)

Here, we have

Ly = y′, N (y) = y2, f (x) ≡ 0.

To determine the Lagrange multiplier, we insert these expressions into (2.2) and
obtain

yn+1(x) = yn(x) +
∫ x

0
λ(τ )

(
dyn(τ )

dτ
+ ỹn(τ )2

)
dτ . (2.10)

Making the above correction functional stationary w.r.t. yn , noticing that δ ỹn(x) = 0
and δyn(0) = 0, it follows with (2.3)

δyn+1(x) = δyn(x) + δ

(∫ x

0
λ(τ )

dyn(τ )

dτ
dτ

)

= δyn(x) +
[
λ(τ )

∫ τ

0

d δyn(ξ)

dξ
dξ

]τ=x

τ=0

−
∫ x

0
λ′(τ )

(∫ τ

0

d δyn(ξ)

dξ
dξ

)
dτ
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= δyn(x) + λ(τ )δyn(τ )|τ=x −
∫ x

0
λ′(τ )δyn(τ )dτ

.= 0.

Thus, we obtain the equations

1 + λ(x) = 0 and λ′(x) = 0. (2.11)

Now, we substitute the solution λ = −1 of (2.11) into (2.10). It results the successive
iteration formula

yn+1(x) = yn(x) −
∫ x

0

(
dyn(τ )

dτ
+ yn(τ )2

)
dτ . (2.12)

We have to choose a starting function y0(x), which satisfies the given initial con-
dition y(0) = 1. Starting with y0(x) ≡ 1, we compute the following successive
approximations

y0(x) = 1,

y1(x) = 1 − x,

y2(x) = 1 − x + x2 − 1

3
x3,

y3(x) = 1 − x + x2 − x3 + 2

3
x4 − 1

3
x5 + 1

9
x6 − 1

63
x7,

y4(x) = 1 − x + x2 − x3 + x4 − 13

15
x5 + · · · − 1

59535
x15,

y5(x) = 1 − x + x2 − x3 + x4 − x5 + 43

45
x6 − · · · − 1

109876902975
x31.

In Fig. 2.1 the first iterates y0(x), . . . , y4(x) are plotted.
Comparing the iterates with the Taylor series of the exact solution (see (2.9)), we

see that in y5(x) the first six terms are correct. The value of the exact solution at
x = 1 is y(1) = 1/2 = 0.5. In Table2.1, the corresponding value is given for the
iterates yi (x), i = 0, . . . , 10.

In the above example, the linear operator is L = d

dx
. More generally, let us

assume that L = dm

dxm
, m ≥ 1.

In [86], the corresponding optimal values of the Lagrange multipliers are given.
It holds
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Fig. 2.1 The first successive
iterates yi (x) for the IVP
(2.8). The solid line
represents the exact solution
y(x)

Table 2.1 The successive
iterates at the right boundary
for the IVP (2.8)

i yi (1)

0 1

1 0.0

2 0.66666667

3 0.42857143

4 0.51954733

5 0.49529971

6 0.50094000

7 0.49983557

8 0.50002547

9 0.49999645

10 0.50000045

λ = −1, for m = 1,

λ = τ − x, for m = 2,

λ = (−1)m

(m − 1)! (τ − x)m−1, for m ≥ 1.

(2.13)

Substituting (2.13) into the correction functional (2.2), we get the following iteration
formula

yn+1(x) = yn(x) +
∫ x

0

(−1)m

(m − 1)! (τ − x)m−1 (Lyn(τ ) + N (yn(τ )) − f (τ ))dτ ,

(2.14)
where y0(x) must be given by the user.
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2.3 Application of the Variational Iteration Method

In this section, we will consider some nonlinear ODEs and show how the VIM can
be used to approximate the exact solution of these problems.

Example 2.1 Solve the following IVP for the Riccati equation

y′(x) + sin(x)y(x) = cos(x) + y2, y(0) = 0.

Solution. In (2.1), we set

Ly ≡ dy

dx
, N (y) ≡ sin(x)y − y2, f (x) ≡ cos(x).

Thus, the correction functional (2.2) is

yn+1(x) = yn(x) +
∫ x

0
λ(τ )

(
dyn(τ )

dτ
+ sin(τ )ỹn(τ ) − ỹn(τ )2 − cos(τ )

)
dτ .

Since L is the first derivative, i.e.,m = 1, a look at formula (2.13) shows that λ = −1
is the optimal value of the Langrange multiplier. The resulting successive iteration
formula is

yn+1(x) = yn(x) −
∫ x

0

(
y′
n(τ ) + sin(τ )yn(τ ) − yn(τ )2 − cos(τ )

)
dτ . (2.15)

Let us choose y0(x) ≡ 0 as starting function. Notice that y0(x) satisfies the given
initial condition.Now,with (2.15)weobtain the following successive approximations

y1(x) = sin(x),

y2(x) = sin(x),

...

yn(x) = sin(x).

Obviously, it holds limn→∞ yn(x) = sin(x). The exact solution is y(x) = sin(x). �

Example 2.2 Determine with the VIM a solution of the following IVP for the second
order ODE

y′′(x) + ω2y(x) = g(y(x)), y(0) = a, y′(0) = 0. (2.16)
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This problem is the prototype of nonlinear oscillator equations (see, e.g., [30, 99]).
The real number ω is the angular frequency of the oscillator and must be determined
in advance. Moreover, g is a known discontinuous function.

Solution. To apply the VIM, we set (see formula (2.1))

Ly ≡ y′′ + ω2y, N (y) ≡ −g(y), f (x) ≡ 0.

The corresponding correction functional is

yn+1(x) = yn(x) +
∫ x

0
λ(τ , x)

(
d2yn(τ )

dτ 2
+ ω2yn(τ ) − g(ỹn(τ ))

)
dτ .

Before we identify an optimal λ, we apply the formula (2.5) for the following inte-
gration by parts

∫ x

0
λ(τ , x)y′′

n (τ )dτ = λ(τ , x)y′
n(τ ) |τ=x

τ=0 − ∂λ(τ , x)

∂τ
yn(τ )

∣∣∣∣
τ=x

τ=0

+
∫ x

0

∂2λ(τ , x)

∂τ 2
yn(τ )dτ .

Using this relation in the correction functional, imposing the variation, and making
the correction functional stationary, we obtain

δyn+1(x) = δyn(x) + λ(τ , x)δy′
n(τ ) |τ=x − ∂λ(τ , x)

∂τ
δyn(τ )

∣∣∣∣
τ=x

+
∫ x

0

(
∂2λ(τ , x)

∂τ 2
+ ω2λ(τ , x)

)
δyn(τ )dτ

.= 0.

Thus, the stationary conditions are

δyn : ∂2λ(τ , x)

∂τ 2
+ ω2λ(τ , x) = 0,

δy′
n : λ(τ , x)|τ=x = 0,

δyn : 1 − ∂λ(τ , x)

∂τ

∣∣∣∣
τ=x

= 0.

(2.17)

The solution of the Eqs. in (2.17) is

λ(τ , x) = 1

ω
sin(ω(x − τ )), (2.18)
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which leads to the following iteration formula

yn+1(x) = yn(x)

+ 1

ω

∫ x

0
sin(ω(x − τ ))

(
d2yn(τ )

dτ 2
+ ω2yn(τ ) − g(yn(τ ))

)
dτ .

(2.19)

�

Example 2.3 Let us consider the following IVP of the Emden-Lane-Fowler equation
(see e.g. [48])

y′′ + 2

x
y′ + xk yμ = 0, y(0) = 1, y′(0) = 0.

This ODE is used to model the thermal behavior of a spherical cloud of gas acting
under the mutual attraction of its molecules.

Solve this equation for k = 0 and μ = 5, which has a closed form solution.

Solution. For the given parameters, the IVP to be solved is

y′′ + 2

x
y′ + y5 = 0, y(0) = 1, y′(0) = 0.

Obviously, there is a singularity at x = 0. To overcome this singularity, we set
y ≡ z/x . Then, we get

z′′ + x−4z5 = 0, z(0) = 0, z′(0) = 1.

We set

Lz ≡ d2z

dx2
, N (z) ≡ x−4z5, f (x) ≡ 0.

Thus, the correction functional (2.2) is

zn+1(x) = zn(x) +
∫ x

0
λ(τ )

(
d2zn(τ )

dx2
+ τ−4 z̃5n(τ )

)
dτ .

Looking at formula (2.13), we obtain for m = 2 the Lagrange multiplier λ = τ − x .
Therefore, the corresponding iteration formula (2.14) is

zn+1(x) = zn(x) +
∫ x

0
(τ − x)

(
d2zn(τ )

dx2
+ τ−4z5n(τ )

)
dτ .
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Starting with z0(x) = x , we obtain the following successive approximations

z0(x) = x,

z1(x) = x − x3

6
,

z2(x) = x − x3

6
+ x5

24
,

z3(x) = x − x3

6
+ x5

24
− x7

432
.

It is not difficult to show that

lim
n→∞ zn(x) = z(x) = x

(
1 − x2

6
+ x4

24
− 5x6

432
+ · · ·

)
= x

(
1 + x2

3

)−1/2

.

Thus

y(x) = z(x)

x
=

(
1 + x2

3

)−1/2

is the exact solution of the given IVP. �

Example 2.4 One of the problems that has been studied by several authors is Bratu’s
BVP (see, e.g., [18, 71, 80, 87, 100, 108]), which is given in one-dimensional planar
coordinates by

y′′ = −αey, y(0) = 0, y(1) = 0, (2.20)

where α > 0 is a real parameter. This BVP plays an important role in the theory of
the electric charge around a hot wire and in certain problems of solid mechanics.

The exact solution of (2.20) is

y(x) = −2 ln

(
cosh(0.5(x − 0.5)θ)

cosh(0.25θ)

)
,

where θ satisfies
θ = √

2α cosh(0.25θ).

Bratu’s problem has zero, one or two solutions when α > αc, α = αc, and α < αc,
respectively, where the critical value αc satisfies

1 = 0.25
√
2αc sinh(0.25θ).
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In Chap.5, the value αc is determined as

αc = 3.51383071912.

Use the VIM to solve the BVP (2.20).

Solution. Let us expand ey and use three terms of this expansion. We obtain

y′′ + αey = y′′ + α

∞∑
i=0

yi

i ! ≈ y′′ + α

(
1 + y + y2

2

)
.

Setting

Ly ≡ d2y

dx2
, N (y) ≡ α

(
1 + y + y2

2

)
, f (x) ≡ 0,

the corresponding correction functional (2.2) is

yn+1(x) = yn(x) +
∫ x

0
λ(τ )

(
d2yn(τ )

dτ 2
+ α

(
1 + ỹn(τ ) + ỹn(τ )2

2

))
dτ .

Looking at formula (2.13), we obtain for m = 2 the Lagrange multiplier λ = τ − x .
Therefore, the corresponding iteration formula (2.14) is

yn+1(x) = yn(x) +
∫ x

0
(τ − x)

(
d2yn(τ )

dτ 2
+ α

(
1 + yn(τ ) + yn(τ )2

2

))
dτ .

(2.21)
Let us start with y0(x) = kx , where k is a real number. The next iterate is

y1(x) = kx + α

∫ x

0
(τ − x)

(
1 + kτ + k2τ 2

2

)
dτ .

Integrating by parts leads to

y1(x) = kx − αx2

2! − αkx3

3! − λk2x4

4! .

Substituting y1(x) into the right-hand side of (2.21), we obtain the next iterate

y2(x) = kx − αx2

2! − αkx3

3! − αk2x4

4!
+

∫ x

0
(τ − x)

(
−ατ 2

2
− 2αkτ 3

3
+ α

24
(3α − 5k2)τ 4 + αk

24
(2α − k2)τ 5

+5α2k2τ 6

144
+ α2k3τ 7

144
+ α2k4τ 8

1152

)
dτ .

http://dx.doi.org/10.1007/978-81-322-2812-7_5
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Again, integration by parts yields

y2(x) = kx − αx2

2! − αkx3

3! − α(k2 − α)x4

4! + 4α2kx5

5! + α2(5k2 − 3α)x6

6!
+ 5α2k(k2 − 2α)x7

7! − 25α3k2x8

8! − 35α3k3x9

9! − 35α3k4x10

10! .

(2.22)
The function y2(x)must satisfy the initial conditions (see formula (2.20)). For a given
α, the equation y2(1) = 0 is a fourth degree polynomial in k. When an appropriate
k is chosen from the corresponding four roots, the function y2(x) can be accepted as
an approximation of the exact solution y(x) for x ∈ (0, 1).

Let us consider Bratu’s problem with α = 1. The polynomial in k is

35k4 − 3250k3 + 128250k2 − 3137760k + 1678320 = 0.

Solving this algebraic equation by a numerical method, the following approximated
roots are obtained:

k1 = 0.546936690480377, k2 = 55.687874088793869,

k3,4 = 18.311166038934306 ± 35.200557613929831 · i.

When we substitute k = k1 and α = 1 into (2.22), the next iterate is determined. In
Table2.2, y2(x) is compared with y(x) for x = 0.1, 0.2, . . . , 0.9.

Next, let us consider Bratu’s problem with α = 2. The polynomial in k is

7k4 − 290k3 + 5490k2 − 71136k + 78624 = 0.

Solving this algebraic equation by a numerical method, the following approximated
roots are obtained:

Table 2.2 Numerical results for Bratu’s problem with α = 1; θ = 1.51716459905075436852
18444212962

x y2(x) y(x) Relative error

0.1 0.049605613312791 0.049846791245413 0.004838384309118

0.2 0.088710501172383 0.089189934628823 0.005375421099202

0.3 0.116898896821669 0.117609095767941 0.006038639627618

0.4 0.133864761192820 0.134790253884190 0.006866169212538

0.5 0.139428101877514 0.140539214400472 0.007906067553444

0.6 0.133548005691170 0.134790253884190 0.009216157379500

0.7 0.116331618650518 0.117609095767941 0.010862060532661

0.8 0.088038206883444 0.089189934628823 0.012913203156517

0.9 0.049077324553953 0.049846791245413 0.015436634379762
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Table 2.3 Numerical results for Bratu’s problem with α = 2; θ = 2.357551053877402042593
9799885899

x y2(x) y(x) Relative error

0.1 0.110752223723751 0.114410743267745 0.031977062988159

0.2 0.199192293844683 0.206419116487609 0.035010432976831

0.3 0.263300560244860 0.273879311825552 0.038625595742077

0.4 0.301549640325367 0.315089364225670 0.042971059761337

0.5 0.313080790744633 0.328952421341114 0.048249015866102

0.6 0.297850396206136 0.315089364225670 0.054711361209852

0.7 0.256726478126018 0.273879311825552 0.062629168976661

0.8 0.191509696354622 0.206419116487609 0.072228872919732

0.9 0.104847118151250 0.114410743267745 0.083590271711759

k1 = 1.211500000137995, k2 = 25.631365803713045,

k3,4 = 7.292852812360195 ± 17.564893217135829 · i.

As before, when we substitute k = k1 and α = 2 into (2.22), the next iterate is
determined. In Table2.3, y2(x) is compared with y(x) for x = 0.1, 0.2, . . . , 0.9.

The results in the Tables2.2 and 2.3 show that the VIM is efficient and quite
reliable. Only two iterations have lead to acceptable results. There is no doubt, if
more terms of the expansion and/or more iterates are used, the VIM will generate
far better results. �

2.4 The Adomian Decomposition Method

The Adomian decomposition method (ADM) is a semi-analytical technique for solv-
ing ODEs and PDEs. The method was developed by the Armenian-American math-
ematician George Adomian [7, 8, 9]. The ADM is based on a decomposition of the
solution of nonlinear operator equations in appropriate function spaces into a series
of functions. The method, which accurately computes the series solution, is of great
interest to the applied sciences. The method provides the solution in a rapidly con-
vergent series with components that are computed elegantly. The convergence of this
method is studied in [1, 2, 73].

Let the general form of an ODE be

F(y) = f,

where F is the nonlinear differential operator with linear and nonlinear terms. In
the ADM, the linear term is decomposed as L + R, where L is an easily invertible
operator and R is the remainder of the linear term. For convenience L is taken as the
highest-order derivative. Thus the ODE may be written as
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Ly + Ry + N (y) = f (x), (2.23)

where N (y) corresponds to the nonlinear terms.

Let L be a first-order differential operator defined by L ≡ d

dx
. If L is invertible,

then the inverse operator L−1 is given by

L−1(·) =
∫ x

0
(·)dτ .

Thus,
L−1Ly = y(x) − y(0). (2.24)

Similarly, if L2 ≡ d2

dx2
, then the inverse operator L−1 is regarded as a double

integration operator given by

L−1(·) =
∫ x

0

∫ τ

0
(·)dt dτ .

It follows
L−1Ly = y(x) − xy′(0). (2.25)

We can use the same operations to find relations for higher-order differential

operators. For example, if L3 ≡ d3

dx3
, then it is not difficult to show that

L−1Ly = y(x) − y(0) − xy′(0) − 1

2! x
2y′′(0). (2.26)

The basic idea of the ADM is to apply the operator L−1 formally to the expression

Ly(x) = f (x) − Ry(x) − N (y(x)).

This yields
y(x) = Ψ0(x) + g(x) − L−1Ry(x) − L−1N (y(x)), (2.27)

where the function g(x) represents the terms, which result from the integration of
f (x), and

Ψ0(x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0), for L = d

dx
,

y(0) + xy′(0), for L2 = d2

dx2
,

y(0) + xy′(0) + 1

2! x
2y′′(0), for L3 = d3

dx3
,

y(0) + xy′(0) + 1

2! x
2y′′(0) + 1

3! x
3y′′′(0), for L4 = d4

dx4
.
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Now, we write

y(x) =
∞∑
n=0

yn(x) and N (y(x)) =
∞∑
n=0

An(x),

where

An(x) ≡ An(y0(x), y1(x), . . . , yn−1(x))

are known as the Adomian polynomials. Substituting these two infinite series into
(2.27), we obtain

∞∑
n=0

yn(x) = Ψ0(x) + g(x) − L−1R
∞∑
n=0

yn(x) − L−1
∞∑
n=0

An(x). (2.28)

Identifying the zeroth component y0(x) byΨ0(x)+g(x), the remaining components
yk(x), k ≥ 1, can be determined by using the recurrence relation

y0(x) = Ψ0(x) + g(x),

yk(x) = −L−1Ryk−1(x) − L−1Ak−1(x), k = 1, 2, . . .
(2.29)

Obviously, when some of the components yk(x) are determined, the solution y(x)
can be approximated in form of a series. Under appropriate assumptions, it holds

y(x) = lim
n→∞

n∑
k=0

yk(x).

The polynomials Ak(x) are generated for each nonlinearity so that A0 depends only
on y0, A1 depends only on y0 and y1, A2 depends on y0, y1, y2, etc. [7]. An appropriate
strategy to determine the Adomian polynomials is

A0 = N (y0),

A1 = y1N
′(y0),

A2 = y2N
′(y0) + 1

2! y
2
1N

′′(y0),

A3 = y3N
′(y0) + y1y2N

′′(y0) + 1

3! y
3
1N

(3)(y0),

A4 = y4N
′(y0) +

(
1

2! y
2
2 + y1y3

)
N ′′(y0) + 1

2! y
2
1 y2N

(3)(y0)

+ 1

4! y
4
1N

(4)(y0),

...

where N (k)(y) ≡ dk

dyk
N (y).
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The general formula is

Ak = 1

k!
∂k

∂λk

[
N

( ∞∑
n=0

ynλ
n

)]

λ=0

, k = 0, 1, 2, . . . (2.30)

A Mathematica program that generates the polynomials Ak automatically can
be found in [16]. Moreover, in [20] a simple algorithm for calculating Adomian
polynomials is presented. According to this algorithm the following formulas for the
Adomian polynomials result:

A0 = N (y0),

A1 = y1N
′(y0),

A2 = y2N
′(y0) + 1

2
y21N

′′(y0),

A3 = y3N
′(y0) + y1y2N

′′(y0) + 1

6
y31N

(3)(y0),

A4 = y4N
′(y0) +

(
y1y3 + 1

2
y22

)
N ′′(y0) + 1

2
y21 y2N

(3)(y0) + 1

24
y41N

(4)(y0).

(2.31)

Before we highlight a few examples and show how the ADM can be used to solve
concrete ODEs, let us list the Adomian polynomials for some classes of nonlinearity.

1. N (y) = exp(y):

A0 = exp(y0), A1 = y1 exp(y0),

A2 =
(
y2 + 1

2! y
2
1

)
exp(y0), A3 =

(
y3 + y1y2 + 1

3! y
3
1

)
exp(y0);

(2.32)

2. N (y) = ln(y), y > 0:

A0 = ln(y0), A1 = y1
y0

,

A2 = y2
y0

− 1

2

y21
y20

, A3 = y3
y0

− y1y2
y20

+ 1

3

y31
y20

;
(2.33)

3. N (y) = y2:

A0 = y20 , A1 = 2y0y1,

A2 = 2y0y2 + y21 , A3 = 2y0y3 + 2y1y2;
(2.34)
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4. N (y) = y3:

A0 = y30 , A1 = 3y20 y1,

A2 = 3y20 y2 + 3y0y
2
1 , A3 = 3y20 y3 + 6y0y1y2 + y31 ;

(2.35)

5. N (y) = yy′:

A0 = y0y
′
0, A1 = y′

0y1 + y0y
′
1,

A2 = y′
0y2 + y′

1y1 + y′
2y0, A3 = y′

0y3 + y′
1y2 + y′

2y1 + y′
3y0;

(2.36)

6. N (y) = (y′)2:

A0 = (y′
0)

2, A1 = 2y′
0y

′
1,

A2 = 2y′
0y

′
2 + (y′

1)
2, A3 = 2y′

0y
′
3 + 2y′

1y
′
2;

(2.37)

7. N (y) = cos(y):

A0 = cos(y0), A1 = −y1 sin(y0),

A2 = −y2 sin(y0) − 1

2
y21 cos(y0), A3 = −y3 sin(y0) − y1y2 cos(y0)

+ 1

6
y31 sin(y0);

(2.38)
8. N (y) = sin(y):

A0 = sin(y0), A1 = y1 cos(y0),

A2 = y2 cos(y0) − 1

2
y21 sin(y0), A3 = y3 cos(y0) − y1y2 sin(y0)

− 1

6
y31 cos(y0).

(2.39)

2.5 Application of the Adomian Decomposition Method

In this section, we consider some IVPs for first-order and second-order ODEs.

Example 2.5 Solve the IVP

y′(x) = 1 − x2y(x) + y(x)3, y(0) = 0.

Solution. This is Abel’s equation and its exact solution is y(x) = x . We apply the
ADM to solve it. First, let us look at formula (2.23). We have

Ly ≡ y′, Ry ≡ x2y, N (y) ≡ −y3, f (x) ≡ 1.
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Using (2.27), we obtain

y(x) = Ψ0(x) + g(x) − L−1Ry(x) − L−1N (y(x))

= y(0) + x −
∫ x

0
τ 2y(τ )dτ +

∫ x

0
y(τ )3dτ .

Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = x −
∫ x

0

(
τ 2

∞∑
n=0

yn(τ )

)
dτ −

∫ x

0

( ∞∑
n=0

An(τ )

)
dτ .

The Adomian polynomials, which belong to the nonlinearity N (y) = y3, are given
in (2.35). Setting

y0(x) = Ψ0(x) + g(x) = y(0) + x = x,

the recurrence relation (2.29) yields

y1(x) = −
∫ x

0
τ 3dτ −

∫ x

0
A0(τ )dτ = −

∫ x

0
τ 3dτ +

∫ x

0
τ 3dτ = 0,

y2(x) = −
∫ x

0
τ 2y1(τ )dτ + 3

∫ x

0
y0(τ )2y1(τ )dτ = 0,

...

Hence

y(x) =
∞∑
k=0

yk(x) = x + 0 + · · · + 0 + · · · = x .

�

Example 2.6 Solve the IVP

y′(x) + x ey(x) = 0, y(0) = 0.

Solution. Here, we have

Ly ≡ y′, Ry ≡ 0, N (y) ≡ x ey, f (x) ≡ 0.

Using (2.27), we obtain

y(x) = Ψ0(x) + g(x) − L−1Ry(x) − L−1N (y(x))

= y(0) −
∫ x

0
τey(τ )dτ = −

∫ x

0
τey(τ )dτ .
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Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = −
∫ x

0
τ

( ∞∑
n=0

An(τ )

)
dτ .

The Adomian polynomials, which belong to the nonlinearity exp(y), are given in
(2.32). Setting

y0(x) = Ψ0(x) + g(x) = y(0) = 0,

the recurrence relation (2.29) yields

y1(x) = −
∫ x

0
τ · 1 dτ = − x2

2
,

y2(x) =
∫ x

0
τ · τ 2

2
dτ =

∫ x

0

τ 3

2
dτ = x4

8
,

y3(x) = −
∫ x

0
τ

(
τ 4

8
+ 1

2

(
−τ 2

2

)2
)

· 1 dτ = −
∫ x

0

τ 5

4
dτ

= − x6

24
,

...

Thus,

yn(x) = −
∫ x

0
τ An−1(τ )dτ = 1

n

(
− x2

2

)n

, n = 1, 2, . . . ,

and it holds

y(x) =
∞∑
n=0

yn(x) = −1

2
x2 + 1

8
x4 − 1

24
x6 + · · · = − ln

(
1 + x2

2

)
.

�

Example 2.7 Solve the IVP

y′′(x) + 2y(x)y′(x) = 0, y(0) = 0, y′(0) = 1.

Solution. Here, we have

Ly ≡ y′′, Ry ≡ 0, N (y) ≡ 2yy′, f (x) ≡ 0.
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Using (2.27), we obtain

y(x) = Ψ0(x) + g(x) − L−1Ry(x) − L−1N (y(x))

= y(0) + xy′(0) − 2
∫ x

0

∫ τ

0
y(t)y′(t)dtdτ .

Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = x − 2
∫ x

0

∫ τ

0

( ∞∑
n=0

An(t)

)
dtdτ .

The Adomian polynomials, which belong to the nonlinearity yy′, are given in (2.36).
Setting

y0(x) = Ψ0(x) + g(x) = y(0) + xy′(0) = x,

the recurrence relation (2.29) yields

y1(x) = −2
∫ x

0

∫ τ

0

(
y0(t)y

′
0(t)

)
dtdτ = −2

∫ x

0

∫ τ

0
t dtdτ

= −2
∫ x

0

τ 2

2
dτ = −

∫ x

0
τ 2 dτ = − x3

3
,

y2(x) = −2
∫ x

0

∫ τ

0

(
y′
0(t)y1(t) + y0(t)y

′
1(t)

)
dtdτ

= 2
∫ x

0

∫ τ

0

(
1 · t

3

3
+ t · t2

)
dtdτ = 4 · 2

3

∫ x

0

∫ τ

0
t3dtdτ

= 2

3

∫ x

0
τ 4dτ = 2

15
x5,

y3(x) = −2
∫ x

0

∫ τ

0

(
y′
0(t)y2(t) + y′

1(t)y1(t) + y′
2(t)y0(t)

)
dtdτ

=
∫ x

0

∫ τ

0

(
1 · 2

15
t5 + t2 · t

3

3
+ 2

3
t4 · t

)
dtdτ

= −2 · 17
15

∫ x

0

∫ τ

0
t5dtdτ = − 17

15 · 3
∫ x

0
τ 6dτ = − 17

315
x7.

Obviously, it holds

y(x) =
∞∑
n=0

yn(x) = x − x3

3
+ 2

15
x5 − 17

315
x7 + · · ·

�
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Example 2.8 Solve the IVP

y′′(x) − y′(x)2 + y(x)2 = ex , y(0) = y′(0) = 1.

Solution. Here, we have

Ly ≡ y′′, Ry ≡ 0, N (y) ≡ −(y′)2 + y2, f (x) ≡ ex .

We write

N (y) = N1(y) + N2(y), N1(y) ≡ −(y′)2, N2(y) ≡ y2.

Using (2.27), we obtain

y(x) = Ψ0(x) + g(x) − L−1N1(y(x)) − L−1N2(y(x))

= y(0) + xy′(0) +
∫ x

0

∫ τ

0
etdtdτ +

∫ x

0

∫ τ

0
y′(t)2dtdτ

−
∫ x

0

∫ τ

0
y(t)2dtdτ

Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = 1 + x + ex − x − 1 +
∫ x

0

∫ τ

0

( ∞∑
n=0

An(t)

)
dtdτ

−
∫ x

0

∫ τ

0

( ∞∑
n=0

Bn(t)

)
dtdτ .

The Adomian polynomials An , which belong to the nonlinearity (y′)2, are given in
(2.37), and for the nonlinearity y2, the Adomian polynomials Bn are given in (2.34).
Setting

y0(x) = Ψ0(x) + g(x) = ex ,

the recurrence relation (2.29) yields

y1(x) =
∫ x

0

∫ τ

0
A0(t)dtdτ −

∫ x

0

∫ τ

0
B0(t)dtdτ

=
∫ x

0

∫ τ

0

(
et

)2
dtdτ −

∫ x

0

∫ τ

0

(
et

)2
dtdτ = 0.



2.5 Application of the Adomian Decomposition Method 53

This implies yn(x) ≡ 0, n = 1, 2, . . ., and we obtain the exact solution of the given
problem:

y(x) = ex + 0 + 0 + · · · = ex .

�

The convergence of the ADM can be accelerated if the so-called noise terms
phenomenon occurs in the given problem (see, e.g., [9, 10]). The noise terms are
the identical terms with opposite sign that appear within the components y0(x) and
y1(x). They only exist in specific types of nonhomogeneous equations. If noise terms
indeed exist in the y0(x) and y1(x) components, then, in general, the solution can be
obtained after two successive iterations.

By canceling the noise terms in y0(x) and y1(x), the remaining non-canceled
terms of y0(x) give the exact solution. It has been proved that a necessary condition
for the existence of noise terms is that the exact solution is part of y0(x).

Example 2.9 Solve the IVP

y′′(x) − y′(x)2 + y(x)2 = 1, y(0) = 1, y′(0) = 0.

Solution. As in the Example 2.8, we set

Ly ≡ y′′, Ry ≡ 0, N1(y) ≡ −(y′)2, N2(y) ≡ y2, f (x) ≡ 1.

Using (2.27), we obtain

y(x) = 1 + x2

2
+

∫ x

0

∫ τ

0
y′(t)2dtdτ −

∫ x

0

∫ τ

0
y(t)2dtdτ

Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = 1 + x2

2
+

∫ x

0

∫ τ

0

( ∞∑
n=0

An(t)

)
dtdτ

−
∫ x

0

∫ τ

0

( ∞∑
n=0

Bn(t)

)
dtdτ .

The Adomian polynomials An , which belong to the nonlinearity (y′)2, are given in
(2.37), and for the nonlinearity y2, the Adomian polynomials Bn are given in (2.34).
Setting

y0(x) = 1 + 1

2
x2,
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the recurrence relation (2.29) yields

y1(x) =
∫ x

0

∫ τ

0
t2 dtdτ −

∫ x

0

∫ τ

0

(
1 + t2

2

)2

dtdτ

=
∫ x

0

[
t3

3

]τ

0

dτ −
∫ x

0

[
1

20
t5 + 1

3
t3 + t

]τ

0

dτ

=
∫ x

0

τ 3

3
dτ −

∫ x

0

(
1

20
τ 5 + 1

3
τ 3 + τ

)
dτ

= 1

12
x4 − 1

120
x6 − 1

12
x4 − 1

2
x2

= − 1

120
x6 − 1

2
x2.

Comparing y0(x) with y1(x), we see that there is the noise term
1

2
x2. Therefore, we

can conclude that the solution of the given IVP is y(x) = 1. �

Several authors have proposed a variety of modifications of the AMD (see, e.g.,
[12]) by which the convergence of the iteration (2.29) can be accelerated. Wazwaz
[124, 126] suggests the following reliablemodificationwhich is based on the assump-
tion that the function h(x) ≡ Ψ0(x) + g(x) in formula (2.27) can be divided into
two parts, i.e.,

h(x) ≡ Ψ0(x) + g(x) = h0(x) + h1(x).

The idea is that only the part h0(x) is assigned to the component y0(x), whereas
the remaining part h1(x) is combined with other terms given in (2.29). It results the
modified recurrence relation

y0(x) = h0(x),

y1(x) = h1(x) − L−1Ry0(x) − L−1A0(x),

yk(x) = −L−1Ryk−1(x) − L−1Ak−1(x), k = 2, 3, . . .

(2.40)

Example 2.10 Solve the IVP

y′′(x) − y(x)2 = 2 − x4, y(0) = y′(0) = 0.

Solution. Here, we have

Ly ≡ y′′, Ry ≡ 0, N (y) ≡ −y2, f (x) ≡ 2 − x4.
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Using (2.27), we obtain

y(x) = Ψ0(x) + g(x) − L−1Ry(x) − L−1N (y(x))

= x2 − 1

30
x6 +

∫ x

0

∫ τ

0
y(t)2dtdτ .

Now, applying formula (2.28), we get

∞∑
n=0

yn(x) = x2 − 1

30
x6 +

∫ x

0

∫ τ

0

( ∞∑
n=0

An(t)

)
dtdτ .

The Adomian polynomials, which belong to the nonlinearity y2, are given in (2.34).
Dividing

h(x) = x2 − 1

30
x6

into h0(x) ≡ x2 and h1(x) ≡ − 1

30
x6, and starting with y0(x) = x2, the recurrence

relation (2.29) yields

y1(x) = − 1

30
x6 +

∫ x

0

∫ τ

0

(
t2

)2
dtdτ

= − 1

30
x6 +

∫ x

0

τ 5

5
dτ

= − 1

30
x6 + 1

30
x6 = 0.

This implies
yk(x) = 0, k = 1, 2, . . .

Thus, we can conclude that the exact solution of the given IVP is y(x) = x2.
Let us compare the modified ADMwith the standard method. The ADM is based

on the recurrence relation (2.29). Here, we have to set

y0(x) = x2 − 1

30
x6.

Now, the recurrence relation (2.29) yields

y1(x) =
∫ x

0

∫ τ

0

(
t2 − 1

30
t6

)2

dtdτ =
∫ x

0

(
1

11700
τ 13 − 1

135
τ 9 − 1

5
τ 5

)
dτ

= 1

30
x6 − 1

1350
x10 + 1

163800
x14.
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y2(x) = 2
∫ x

0

∫ τ

0

(
t2 − 1

30
t6

) (
1

163800
x14 − 1

1350
x10 + 1

30
x6

)
dtdτ

=
∫ x

0

(
− 1

51597000
τ 21 + 227

62653500
τ 17 − 1

3510
τ 13 + 1

135
τ 9

)
dτ

= 1

1350
x10 − 1

49140
x14 + 227

1127763000
x18 − 1

1135134000
x22.

Since

y(x) = y0(x) + y1(x) + y2(x) + · · · ,

we see that the terms in x6 and x10 cancel each other. The cancelation of terms is
continued when further components yk , k ≥ 3, are added.

This is an impressive example of how fast the modified ADM generates the exact
solution y(x) = x2, compared with the standard method. �

Manyproblems in themathematical physics canbe formulated asODEsofEmden-
Fowler type (see, e.g., [26, 30]) defined in the form

y′′(x) + α

x
y′(x) + β f (x)g(y) = 0, α ≥ 0,

y(0) = a, y′(0) = 0,
(2.41)

where f and g are given functions of x and y, respectively. The standard Emden-
Lane-Fowler ODE results when we set f (x) ≡ 1 and g(y) ≡ yn .

Obviously, a difficulty in the analysis of (2.41) is the singularity behavior that
occurs at x = 0. Before the ADM can be applied, a slight change of the problem
is necessary to overcome this difficulty. The strategy is to define the differential
operator L in terms of the two derivatives, y′′ + (α/x)y′, which are contained in the
ODE. First, the ODE (2.41) is rewritten as

Ly(x) = −β f (x)g(y), (2.42)

with

L ≡ x−α d

dx

(
xα d

dx

)
.

The corresponding inverse operator L−1 is

L−1(·) =
∫ x

0
τ−α

∫ τ

0
tα(·)dtdτ .
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Applying L−1 to the first two terms of (2.41), we obtain

L−1
(
y′′(x) + α

x
y′(x)

)

=
∫ x

0
τ−α

∫ τ

0
tα

(
y′′(t) + α

t
y′(t)

)
dtdτ

=
∫ x

0

[
ταy′(τ ) −

∫ τ

0
αtα−1y′(t)dt +

∫ τ

0
αtα−1y′(t)dt

]
dτ

=
∫ x

0
y′(τ )dτ = y(x) − y(0) = y(x) − a.

Now, operating with L−1 on (2.41), we find

y(x) = a − βL−1( f (x)g(y)). (2.43)

It is interesting, that only the first initial condition is sufficient to represent the solution
y(x) in this form. The second initial condition can be used to show that the obtained
solution satisfies this condition.

Let us come back to the Adomian decomposition method. As before, the solution
y(x) is represented by an infinite series of components

y(x) =
∞∑
n=0

yn(x). (2.44)

In addition, the given nonlinear function g(y) is represented by an infinite series of
Adomian polynomials (as we have done it for N (y))

g(y(x)) =
∞∑
n=0

An(x), (2.45)

where
An(x) ≡ An(y0(x), y1(x), . . . , yn−1(x)).

Substituting (2.44) and (2.45) into (2.43) gives

∞∑
n=0

yn(x) = a − βL−1

(
f (x)

∞∑
n=0

An(x)

)
. (2.46)

Now, the components yn(x) are determined recursively. The corresponding recur-
rence relation is

y0(x) = a,

yk(x) = −βL−1( f (x)Ak−1(x)), k = 1, 2, . . . ,
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or equivalently

y0(x) = a,

yk(x) = −β

(∫ x

0
τ−α

∫ τ

0
tα( f (t)Ak−1(x))dtdτ

)
, k = 1, 2, . . .

(2.47)

Example 2.11 Solve the IVP

y′′(x) + 2

x
y′(x) + ey(x) = 0, y(0) = y′(0) = 0.

Solution. This problem is a special case of (2.41), where α = 2, β = 1, f (x) ≡ 1,
g(y) = exp(y) and a = 0. A particular solution of the ODE is

y(x) = ln

(
2

x2

)
.

Obviously, this solution does not satisfy the initial conditions. We will see that the
ADM can be used to determine a solution which satisfies the ODE as well as the
initial conditions.

For the nonlinearity g(y) = exp(y), the Adomian polynomials are given in
Eq. (2.32). Using the recurrence relation (2.47), we obtain

y0(x) = 0,

y1(x) = −
∫ x

0
τ−2

∫ τ

0
t2 · 1 dtdτ = −

∫ x

0
τ−2 τ 3

3
dτ = −

∫ x

0

τ

3
dτ

= −1

6
x2,

y2(x) = −
∫ x

0
τ−2

∫ τ

0
t2 ·

(−t2

6

)
dtdτ =

∫ x

0
τ−2

∫ τ

0

t4

6
dtdτ

=
∫ x

0
τ−2 τ 5

30
dτ =

∫ x

0

τ 3

30
dτ

= 1

120
x4,

y3(x) = −
∫ x

0
τ−2

∫ τ

0
t2 ·

(
t4

120
+ t4

72

)
dtdτ = −

∫ x

0
τ−2

∫ τ

0

t6

45
dtdτ

= −
∫ x

0
τ−2 τ 7

315
dτ = −

∫ τ

0

τ 5

315
dτ

= − 1

1890
x6,
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y4(x) = −
∫ x

0
τ−2

∫ τ

0
t2

(
− 1

1890
t6 − 1

6
t2 · 1

120
t4 − 1

6
· 1

216
t6

)
dtdτ

=
∫ x

0
τ−2

(
61

204120
τ 9

)
dτ =

∫ x

0

61

204120
τ 7dτ

= 61

1632960
x8.

Thus, we have

y(x) = −1

6
x2 + 1

120
x4 − 1

1890
x6 + 61

1632960
x8 + · · ·

In [125] further variants of the general Emden-Fowler equation are discussed, and
solved by the ADM. �

2.6 Exercises

Exercise 2.1 Solve following ODEs by VIM or ADM:

(1) y′(x) − y(x) = −y(x)2, y(0) = 1,

(2) y′(x) = 1 + y(x)

x
+

(
y(x)

x

)2

, y(0) = 0,

(3) y′′(x) + 5

x
y′(x) + exp(y(x)) + 2 exp

(
y(x)

2

)
= 0, y(0) = y′(0) = 0,

(4) y′′(x) + 2y(x)y′(x) − y(x) = sinh(2x), y(0) = 0, y′(0) = 1,

(5) y′′(x) + cos(y(x)) = 0, y(0) = 0, y′(0) = π

2
,

(6) y′′(x) + 8

x
y′(x) + 2y(x) = −4y(x) ln(y(x)), y(0) = 1, y′(0) = 0,

(7) y′′′(x) + y′′(x)2 + y′(x)2 = 1 − cos(x), y(0) = y′′(0) = 0, y′(0) = 1.

Exercise 2.2 Given the following IVP for the Emden-Fowler ODE

y′′(x) + 2

x
y′(x) + αxm y(x)μ = 0, y(0) = 1, y′(0) = 0.

Approximate the solution of this IVP by the VIM and the ADM.

Exercise 2.3 Given the following IVP for the Emden-Fowler ODE

y′′(x) + 2

x
y′(x) + αxmey(x) = 0, y(0) = y′(0) = 0.

Approximate the solution of this IVP by the VIM and the ADM.
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