Chapter 2
Analytical Approximation Methods

2.1 Introduction

As we mentioned in the previous chapter, most of the nonlinear ODEs have no
explicit solutions, i.e., solutions, which are expressible in finite terms. Even if an
explicit solution can be determined, it is often too complicated to analyze the principal
features of this solution. Due to such difficulties, the study of nonlinear mathematical
problems is the most time-consuming and difficult task for researchers dealing with
nonlinear models in the natural sciences, engineering, and scientific computing. With
the increasing interest in the development of nonlinear models, a variety of analytical
asymptotic and approximation techniques have been developed in recent years to
determine approximate solutions of partial and ordinary differential equations. Some
of these techniques are the perturbation method, the variational iteration method, the
homotopy perturbation method, the energy balance method, the variational approach
method, the parameter-expansion method, the amplitude-frequency formulation, the
iteration perturbation method, and the Adomian decomposition method.

In this chapter, we present the variational iteration method and the Adomian
decomposition method since these techniques have good convergence characteristics
and can be used to treat strongly nonlinear ODEs.

2.2 The Variational Iteration Method

The variational iteration method (VIM) was first proposed by He (see e.g. [49, 50])
and systematically elucidated in [51, 54, 126]. The method treats partial and ordi-
nary differential equations without any need to postulate restrictive assumptions that
may change the physical structure of the solutions. It has been shown that the VIM
solves effectively, easily, and accurately a large class of nonlinear problems with
approximations converging rapidly to accurate solutions, see e.g. [127]. Examples
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34 2 Analytical Approximation Methods

for such problems are the Fokker—Planck equation, the Lane—Emden equation, the
Klein—Gordon equation, the Cauchy reaction—diffusion equation, and biological pop-
ulation models.

To illustrate the basic idea of the VIM, we consider, the ODE

Ly+N(y)=fx), xel, (2.1)

where L and N are linear and nonlinear differential operators, respectively, and
f(x) is an given inhomogeneous term defined for all x € /. In the VIM, a correction
functional of the Eq.(2.1) is defined in the following form

Yt1(X) = yn(x) +/0 AT (Lyn(T) 4 N (Fa(7)) = f(7))dT, 2.2

where \(7) is a general Lagrange multiplier, which can be identified using the vari-
ational theory [38]. Furthermore, y,(x) is the nth approximation of y(x) and y, (x)
is considered as a restricted variation, i.e., §y,(x) = 0.

By imposing the variation and by considering the restricted variation, Eq. (2.2) is
reduced to

5yn+l(x) = 5)’,1()6) +90 (/ )\(T)Lyn(T)dT)
0

= Gya () + [Am ( /0 Léy, (£)d5)] ) 23)

=0
_ / N ( / ’ L(syn(g)dg)dT.
0 0

Obviously, in (2.3) we have used integration by parts, which is based on the
following formula

/)\(T)y;l(T)dT: A(T) yn(T) —/X(T)yn(T)dT. 24

In the next sections, we will also use two other formulas for the integration by parts,
namely

/ ATy, (N)dT = N1)y, (T) = N (T)ya(T) + / Ny (T)dT, (2.5)

and
/)\(T)y,'l"(T)dT = A1)y, (1) = N(D)y,(7) + X'(T) ya ()
(2.6)
—/)\///(T)yn(T)dT.
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Now, by applying the stationary conditions for (2.3), the optimal value of the
Lagrange multiplier A(7) can be identified (see e.g. [50], formula (2.13) and the
next section). Once A(7) is obtained, the solution of the Eq.(2.1) can be readily
determined by calculating the successive approximations y,(x),n =0, 1, .. ., using
the formula (see Eq.(2.2))

Yt1(X) = yn(x) +/0 AT (Lya(T) 4+ N (ya(1)) = f(7))dT, 2.7)

where yo(x) is a starting function, which has to be prescribed by the user.

In the paper [50] it is shown, that the approximate solution y,(x) of the exact
solution y(x) can be achieved using any selected function yy(x). Consequently, the
approximate solution is given as the limit y(x) = lim,_  y,(x). In other words,
the correction functional (2.2) will give a sequence of approximations and the exact
solution is obtained at the limit of the successive approximations. In general, it is
difficult to calculate this limit. Consequently, an accurate solution can be obtained
by considering a large value for n. This value depends on the interval I where a good
approximation of the solution is desired.

Let us consider, the following IVP

Y@ +y(x)? =0, y0) =1. 2.8)
The corresponding exact solution is
yO) =0+ " =1—x+x2 = +xt =+ x4 (2.9)
Here, we have
Ly=y, Ny =y, fx)=0.

To determine the Lagrange multiplier, we insert these expressions into (2.2) and
obtain

yu(T)
7'

Yns1(X) = yn(x) +/O A(T) ( + Yn (T)Z)dT- (2.10)

Making the above correction functional stationary w.r.t. y,, noticing that §y, (x) = 0
and dy,(0) = 0, it follows with (2.3)

* d n
0 = + 0 ([ 202 ar)
0

d5 "
—6yn(x)+[A< ) / y (5) 5]
=0

o) d”é“)df)
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=530+ ADIUDoy — [ XD
0
=0.

Thus, we obtain the equations

1+ Ax) =0 and N(x) =0. (2.11)
Now, we substitute the solution A = —1 of (2.11) into (2.10). It results the successive
iteration formula
T dya(T)
Ynt1(x) = yu(x) — / ( i + yu(7)* ). (2.12)
0

We have to choose a starting function yy(x), which satisfies the given initial con-
dition y(0) = 1. Starting with yg(x) = 1, we compute the following successive
approximations

Yo(x) =1,
yix)=1-x,
1
yx)=1—x+x*— §x3,
2 1 1 1

yx) =1 —x+x2—x3+§x4— §x5+§x6_ @)ﬂ’
ya(x) =1 —x+ x> —x3 +x* - Ex5+..._ ;xls

15 595357
YS(X)=1—x+x2—x3+x4—x5+ﬁx6_..._ ! ]

45 109876902975~
In Fig.2.1 the first iterates yp(x), ..., ys(x) are plotted.

Comparing the iterates with the Taylor series of the exact solution (see (2.9)), we
see that in ys(x) the first six terms are correct. The value of the exact solution at
x = lis y(1) = 1/2 = 0.5. In Table 2.1, the corresponding value is given for the
iterates y; (x),i =0, ..., 10.

d
In the above example, the linear operator is L = o More generally, let us
x
m
assume that L = ——, m > 1.
dxm

In [86], the corresponding optimal values of the Lagrange multipliers are given.
It holds
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Fig. 2.1 The first successive
iterates y; (x) for the IVP
(2.8). The solid line
represents the exact solution
y(x)
=
-
0 01 02 03 04 05 06 07 08 09 1
X
Table 2.1 The successive i yi(1)
iterates at the right boundary -
for the IVP (2.8) 0 !
1 0.0
2 0.66666667
3 0.42857143
4 0.51954733
5 0.49529971
6 0.50094000
7 0.49983557
8 0.50002547
9 0.49999645
10 0.50000045
A=—1, for m =1,
A=T—x, for m =2,
(2.13)
=n" m-1
ZW(T—)C) , for m > 1.
m— 1)!

Substituting (2.13) into the correction functional (2.2), we get the following iteration
formula

(="

1),( — )" Ly (1) + N(ya() = f(7))dT,

(2.14)

yn+1(x) - yn(x) +/ (

where yy(x) must be given by the user.
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2.3 Application of the Variational Iteration Method

In this section, we will consider some nonlinear ODEs and show how the VIM can
be used to approximate the exact solution of these problems.

Example 2.1 Solve the following IVP for the Riccati equation
Y/ (@) +sin()y(x) = cos(x) +y%, y(0) = 0.

Solution. In (2.1), we set

d
Ly = N(y) =sin(x)y — yz, f(x) =cos(x).

ay
dx’

Thus, the correction functional (2.2) is

Ynt1(xX) = yu(x) +/ A(T) ( () + SIN(7) 3 (T) = Ju () — COS(T))dT-

Since L is the first derivative, i.e., m = 1, alook at formula (2.13) shows that A\ = —1
is the optimal value of the Langrange multiplier. The resulting successive iteration
formula is

Ynr1 (%) = yp(x) —/ (v, (7) + Sin(T)y, (1) — ya(1)* — cos(r))d7.  (2.15)
0

Let us choose yg(x) = 0 as starting function. Notice that yy(x) satisfies the given
initial condition. Now, with (2.15) we obtain the following successive approximations

yi(x) = sin(x),
y2(x) = sin(x),

Va(x) = sin(x).

Obviously, it holds lim,,_, », ¥, (x) = sin(x). The exact solution is y(x) = sin(x). [

Example 2.2 Determine with the VIM a solution of the following IVP for the second
order ODE

Y'(@) + P y(x) = g(y(x), y(0) =a, y'(0)=0. (2.16)
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This problem is the prototype of nonlinear oscillator equations (see, e.g., [30, 99]).
The real number w is the angular frequency of the oscillator and must be determined
in advance. Moreover, g is a known discontinuous function.

Solution. To apply the VIM, we set (see formula (2.1))

Ly=y'+w’y, N =-g(), f&) =0.

The corresponding correction functional is

dzyn (7
dr?

Ynt1(X) = yp(x) +/0 (T, x) ( + Wy () — gGn (T)))dT-

Before we identify an optimal )\, we apply the formula (2.5) for the following inte-
gration by parts

T=X

. _ ON(T,
/ AT, )y, (T)dT = X7, X)y,(T) 1725 — %yn (1)
0 T

Y OPN(T, x)

7=0

Using this relation in the correction functional, imposing the variation, and making
the correction functional stationary, we obtain

, ON(T, x)
OYVny1(X) = 0y, (x) + A7, X)0y,(T) |,=¢ — a—Téyn(T)
X 2)\ ,
n / GAT 0 L 2a i x)) Sy (rydr
0 87’2
=0.
Thus, the stationary conditions are
PAN(r,
Oy, : # + W7, x) =0,
or
Sy, i AT, x)|— =0, (2.17)
A
by s 1= 2Dy
or

T=X

The solution of the Eqgs. in (2.17) is

AMT,x) = i sin(w(x — 7)), (2.18)
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which leads to the following iteration formula
Yr1(X) = yn(x)

x 2 2.19
+ 5/ sin(w(x — 7)) (d () Wy (T) — g(yn(T)))dT. (2-19)
0

dr?
O
Example 2.3 Let us consider the following IVP of the Emden-Lane-Fowler equation
(see e.g. [48])

2
Y+ oy A =0, v =1, y(0)=0.

This ODE is used to model the thermal behavior of a spherical cloud of gas acting
under the mutual attraction of its molecules.
Solve this equation for k = 0 and p = 5, which has a closed form solution.

Solution. For the given parameters, the IVP to be solved is
/" 2 / 5 /
y +)—Cy +y’ =0, y0)=1, y(0)=0.

Obviously, there is a singularity at x = 0. To overcome this singularity, we set
y = z/x. Then, we get

+x*=0, z(000=0, Z(©0) =1.

We set
2

Lz =—,
dx?

N@) =x%> f(x)=0.
Thus, the correction functional (2.2) is

d*z,(7)
dx?

Znp1 () = 2, (x) + / A(T) ( +77 (T))dT.
0

Looking at formula (2.13), we obtain for m = 2 the Lagrange multiplier A = 7 — x.

Therefore, the corresponding iteration formula (2.14) is

d*z, (1)
dx?

Zup1 (¥) = 2, (x) + / (T —x) ( + T“‘zZ(T))dT.
0
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Starting with zo(x) = x, we obtain the following successive approximations

Zo(x) = x,

3
Zl(x) =X — Fa

x3 XS
Zz(x)ZX—E“rﬁ,

x3 XS )C7
Z3(x)=x_€+ﬁ_ﬁ'

It is not difficult to show that

2 4 5x0 2\ —1/2
1imzn(x)zz(x)=x(1—x—+x——i+---)=x(1+%) .
n—oo

6 24 432
Thus "
o —
z(x X
y<x>=ﬁ=(1+—)
X 3
is the exact solution of the given IVP. [

Example 2.4 One of the problems that has been studied by several authors is Bratu’s
BVP (see, e.g., [18, 71, 80, 87, 100, 108]), which is given in one-dimensional planar
coordinates by

"

y'=—ae¥, y0)=0, y(l)=0, (2.20)

where o > 0 is a real parameter. This BVP plays an important role in the theory of
the electric charge around a hot wire and in certain problems of solid mechanics.
The exact solution of (2.20) is

Y = —21n (cosh(O.S(x - 0.5)0))

cosh(0.250)

where 0 satisfies
0 = v/2a cosh(0.256).

Bratu’s problem has zero, one or two solutions when a > o, & = a,, and o < «,
respectively, where the critical value a. satisfies

1 = 0.25,/2a, sinh(0.256).
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In Chap. 5, the value « is determined as
o, = 3.51383071912.

Use the VIM to solve the BVP (2.20).
Solution. Let us expand e” and use three terms of this expansion. We obtain

i

o0 2

, y y
/" Y — EERPN 1 Z ).
Yy + ae y+ozi=20i! y—i—a( +y+2)

Setting
2

d2
LyE—z, N(y)Ea(1+y+y—
dx

2), fx) =0,

the corresponding correction functional (2.2) is

d%y, _ 5, (1)>
P _y"(x)+/ AT )( o )+a(1+yn(r)+ - (27) ))dT.

Looking at formula (2.13), we obtain for m = 2 the Lagrange multiplier A = 7 — x.
Therefore, the corresponding iteration formula (2.14) is

X d2 n n §
Y1 () =yn(x)+/ (T—x)( 3 27') +a <1+yn( )+ Yn(T) ))dT-
0 T g
2.21)

Let us start with yo(x) = kx, where k is a real number. The next iterate is

x k2T2
y](x)ka—{—a/ (T_x)(l-i-kT-I-T)dT.
0

Integrating by parts leads to

_k ax?  akx®  Mx?
e THR TR T

Substituting y; (x) into the right-hand side of (2.21), we obtain the next iterate

ax?  akx®  ak®x*
Yz(x)—kx——!——— 2
ar?  20kT o« o a4 Ok
. _ar a _ X e — k275
/(7’ x)( 3 +24(3a S5k)T +24(a kT

5a2k2 6 2k3T7 a2k478
d
T T 1152) ’
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Again, integration by parts yields

$a(x) = kx — oz_x2 _ akx? _ ak? — a)x*  4a%kx®  o2(5k* = 3a)x®
- 2! 3! 41 5! 6!
+ 502k(k? = 20)x7  250°K%x®  3503K3x°  35a°k4x 10
7! 8! 9! 10! '

(2.22)
The function y; (x) must satisfy the initial conditions (see formula (2.20)). For a given
a, the equation y,(1) = 0 is a fourth degree polynomial in k. When an appropriate
k is chosen from the corresponding four roots, the function y,(x) can be accepted as
an approximation of the exact solution y(x) for x € (0, 1).
Let us consider Bratu’s problem with = 1. The polynomial in k is

35k% — 3250k + 128250k% — 3137760k + 1678320 = 0.

Solving this algebraic equation by a numerical method, the following approximated
roots are obtained:

k1 = 0.546936690480377, k, = 55.687874088793869,
k34 = 18.311166038934306 + 35.200557613929831 - i.

When we substitute k = k; and o = 1 into (2.22), the next iterate is determined. In
Table 2.2, y,(x) is compared with y(x) forx =0.1,0.2,...,0.9.
Next, let us consider Bratu’s problem with a = 2. The polynomial in £ is
Tk* — 290k + 5490k* — 71136k + 78624 = 0.
Solving this algebraic equation by a numerical method, the following approximated

roots are obtained:

Table 2.2 Numerical results for Bratu’s problem with o = 1; § = 1.51716459905075436852
18444212962

X y2(x) y(x) Relative error

0.1 0.049605613312791 | 0.049846791245413 | 0.004838384309118
0.2 0.088710501172383 | 0.089189934628823 | 0.005375421099202
0.3 0.116898896821669 | 0.117609095767941 | 0.006038639627618
04 0.133864761192820 | 0.134790253884190 | 0.006866169212538
0.5 0.139428101877514 | 0.140539214400472 | 0.007906067553444
0.6 0.133548005691170 | 0.134790253884190 | 0.009216157379500
0.7 0.116331618650518 | 0.117609095767941 | 0.010862060532661
0.8 0.088038206883444 | 0.089189934628823 | 0.012913203156517
0.9 0.049077324553953 | 0.049846791245413 | 0.015436634379762
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Table 2.3 Numerical results for Bratu’s problem with @ = 2; § = 2.357551053877402042593
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9799885899

X y2(x) y(x) Relative error

0.1 0.110752223723751 | 0.114410743267745 |0.031977062988159
0.2 0.199192293844683 | 0.206419116487609 | 0.035010432976831
0.3 0.263300560244860 | 0.273879311825552 | 0.038625595742077
0.4 0.301549640325367 | 0.315089364225670 | 0.042971059761337
0.5 0.313080790744633 | 0.328952421341114 | 0.048249015866102
0.6 0.297850396206136 | 0.315089364225670 | 0.054711361209852
0.7 0.256726478126018 | 0.273879311825552 | 0.062629168976661
0.8 0.191509696354622 | 0.206419116487609 | 0.072228872919732
0.9 0.104847118151250 | 0.114410743267745 |0.083590271711759

ky = 1.211500000137995, k&, = 25.631365803713045,
k34 = 7.292852812360195 £ 17.564893217135829 - i.

As before, when we substitute k = k; and @ = 2 into (2.22), the next iterate is
determined. In Table 2.3, y,(x) is compared with y(x) for x = 0.1,0.2,...,0.9.
The results in the Tables2.2 and 2.3 show that the VIM is efficient and quite
reliable. Only two iterations have lead to acceptable results. There is no doubt, if
more terms of the expansion and/or more iterates are used, the VIM will generate
far better results. [l

2.4 The Adomian Decomposition Method

The Adomian decomposition method (ADM) is a semi-analytical technique for solv-
ing ODEs and PDEs. The method was developed by the Armenian-American math-
ematician George Adomian [7, 8, 9]. The ADM is based on a decomposition of the
solution of nonlinear operator equations in appropriate function spaces into a series
of functions. The method, which accurately computes the series solution, is of great
interest to the applied sciences. The method provides the solution in a rapidly con-
vergent series with components that are computed elegantly. The convergence of this
method is studied in [1, 2, 73].
Let the general form of an ODE be

F@y) =1,

where F is the nonlinear differential operator with linear and nonlinear terms. In
the ADM, the linear term is decomposed as L + R, where L is an easily invertible
operator and R is the remainder of the linear term. For convenience L is taken as the
highest-order derivative. Thus the ODE may be written as
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Ly +Ry+N(@y) = fx), (2.23)

where N (y) corresponds to the nonlinear terms.
d
Let L be a first-order differential operator defined by L = o If L is invertible,
x

then the inverse operator L~! is given by
L7'() = / ()dr.
0

Thus,
L™ 'Ly = y(x) — y(0). (2.24)

d2
Similarly, if L?> = oL then the inverse operator L~! is regarded as a double
X

integration operator given by
L*l(.)=/ / ()dtdr.
0o Jo

L™ 'Ly = y(x) — xy'(0). (2.25)

It follows

We can use the same operations to find relations for higher-order differential
’;

d‘
operators. For example, if L= L then it is not difficult to show that
x

1
L™'Ly = y(x) = y(0) — xy'(0) — Exzy”(ol (2.26)

The basic idea of the ADM is to apply the operator L~! formally to the expression
Ly(x) = f(x) — Ry(x) = N(y(x)).

This yields
y(x) = Wo(x) + g(x) — LT'Ry(x) — L' N(y(x)), (2.27)

where the function g(x) represents the terms, which result from the integration of
f(x), and

d

¥(0), for L = o

2
y(o) + xy/(o)» fOr L2 = ﬁ’

llfo(x) = 1 d3
y(o) + xy/(o) + Exzy”(o)v fOI‘ L3 == ?7

1' 2./ 1 3. 4 d4
[ y(0) +xy'(0) + 7~ y"(0) + TR y"(0), for L* = —
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Now, we write

Y =D ) and N(y(x) =D A,x),

n=0 n=0
where

An(x) = Ap(yo(x), y1(x), ..., Yoo1(x))

are known as the Adomian polynomials. Substituting these two infinite series into
(2.27), we obtain

Do) =) +g0) — LRy () — L7 D Au(x). (228
n=0 n=0 n=0

Identifying the zeroth component yy(x) by ¥y (x) 4 g(x), the remaining components
vk (x), k > 1, can be determined by using the recurrence relation

Yo(x) = Wo(x) + g(x),

. . (2.29)
yk(x) =—-L Ryk,l(x) — L Ak,l(x), k= 1, 2, .

Obviously, when some of the components y;(x) are determined, the solution y(x)
can be approximated in form of a series. Under appropriate assumptions, it holds

y) = Tim ().
k=0

The polynomials Ay (x) are generated for each nonlinearity so that Ay depends only
on yp, A depends only on yg and y;, A, depends on yy, y1, y2, etc. [7]. An appropriate
strategy to determine the Adomian polynomials is

Ao = N(),
A1 = yiN'(n).

/ 1 "
As = »N'(yo) + Eny (o),
/ 4 1
Az = y3N'(yo) + y1y2N"(yo) + 5)’?1\7(3) (o),
/ 1 2 " 1 2 3)
Ay = yaN'(yo) + 32 + y1y3 ) N" (o) + 5y1yzN‘ (o)

1 4 4
+Iy1N( ) (¥0)s

dk
where NO(y) = ——N().
dy
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The general formula is

1 & —
Ak:EW [N(nz(‘;yn)\ )]H, k=0,1,2,... (2.30)

A MATHEMATICA program that generates the polynomials A; automatically can
be found in [16]. Moreover, in [20] a simple algorithm for calculating Adomian
polynomials is presented. According to this algorithm the following formulas for the
Adomian polynomials result:

Ao = N(yo),
Ay = yiN'(y),

/ 1 "
Ay = y2N'(yo) + Eny (),
v 7 1 3aA7(3)
Az = y3N'(yo) + y1y2N"(yo) + EYIN (o),
As— N 15\ o 1, vo 1 oy
4=y4N"(yo) + { y1y3 + 772 N"(yo) + 2ylyzN (yo) + 24le (o).
(2.31)

Before we highlight a few examples and show how the ADM can be used to solve
concrete ODEgs, let us list the Adomian polynomials for some classes of nonlinearity.

L. N(y) = exp(y):

Ap = exp()o), Ay = yrexp()o),
1, 1, (2.32)
Ay =(»n+ L exp(yo), As=(yz+yiy+ 3 exp(yo);
2. N(y) =In(y), y >0«
Ao = In(yp), A =2
Y0 (2.33)
w1y} vz, Ly '
Az_____a A3____2 PO
Yo 2y Yoo 5o 3
3. N(y) = y*
Ao = 2, Al = 2y0y1,
0 Yo 1 Yoyi (2.34)

As = 2y0y2 + )7, Az = 2yoy3 + 2y1y2;
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4. N(y) =y
Ao = ¥3, A1 =3y, (2.35)
Ar =332y, +3y0y3, Az =332y3 + 6y0y1y2 + Vi
5. N(y) =yy":
Ao = YoYy» Ay = yoyi + Yoy, (236)
Ay = yoy2 + yiyi + ¥y, Az = yoy3 + yiy2 + ¥y + 3o
6. N(y) = ()
A = / 2’ A =2 / /’
0 (yo) 1 Yoi (2.37)

A =2yvh + D% Az = 200)5 + 2] 5
7. N(y) =cos(y):
Ap = cos(yo), Ay = —y;sin(yo),
Ay = —y;sin(y) — %y% cos(yo), Az = —yssin(yo) — y1y2cos(yo)

1, .
TN sin(yo);
(2.38)
8. N(y) = sin(y):
Ap = sin(yo), Ay = yi cos(yo),
1, . .
Az = yzcos(yp) — Eyf sin(yo), Az = y3cos(yo) — y1y28in(yo) (2 39)
1 3
- 6)’1 cos(yo).

2.5 Application of the Adomian Decomposition Method

In this section, we consider some IVPs for first-order and second-order ODEs.

Example 2.5 Solve the IVP
y(x) =1-x*y(x) +yx)*, y0)=0.

Solution. This is Abel’s equation and its exact solution is y(x) = x. We apply the
ADM to solve it. First, let us look at formula (2.23). We have

Ly=y, Ry=x’y, Ny)=-y., fo=L
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Using (2.27), we obtain
y(x) = ¥(x) + g(x) — L7 Ry(x) — L™'N(y(x))

=y(0) +x - / 2y (r)dT +/X y(r)dr.
0 0

Now, applying formula (2.28), we get
00 X 00 X o
Z yu(x) = x — / (T2 Zyn(T))dT - / (Z An(T))dT.
n=0 0 n=0 0 \n=0
The Adomian polynomials, which belong to the nonlinearity N (y) = y?, are given
in (2.35). Setting
Yo(x) = Wo(x) + g(x) = y(0) +x = x,

the recurrence relation (2.29) yields

yi(x) = —/ T3d7'—/ Ao(T)dT = —/ T3dT+/ dT =0,
0 0 0 0

ya(x) = — / 2y (r)dT +3 / Yo(m)?y1(1)dT = 0,
0 0

Hence

oo
YO =D ) =x+0+4-- 404 =x.
k=0

Example 2.6 Solve the IVP
V(x)+xe?® =0, y0)=0.
Solution. Here, we have
Ly=y, Ry=0, Ny)=xe', f(x)=0.
Using (2.27), we obtain

y(x) = Wo(x) + g(x) — LT'Ry(x) — L' N(y(x))

X X
= y(0) —/ e’ Ddr = —/ e Vdr.
0 0
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Now, applying formula (2.28), we get

D ) = - /x T (Z A, (T))d’r.
n=0 0 n=0

The Adomian polynomials, which belong to the nonlinearity exp(y), are given in
(2.32). Setting

Yo(x) = Wy(x) + g(x) = y(0) =0,
the recurrence relation (2.29) yields
x 2
yi(x) = —/ T-ldr = —x—,
0 2

x 2 x 3 4
ya(x) = / T- T—dT = T—dT = x—,
0 2

2 0 8
x 4 1 722 xS
=— e e ldr = — —d
y3(x) /07' 8+2( 2) T 047’
24’

Thus,
x 1 )C2 n
Yu(x) = — TAp_1(T)dT = — | ——= , n=1,2, ,
0 n 2
and it holds
(x) = Z =ty b Lo n(1+2
X n (X ——X X — —x n
Y Y 24 2

Example 2.7 Solve the IVP

Y'() +2y(x)y'(x) =0, y©0)=0, y(0) =1

Solution. Here, we have

Ly=y", Ry=0, Ny =2y, fx)=0.
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Using (2.27), we obtain
y(x) = ¥(x) + g(x) — L7 Ry(x) — L™'N(y(x))

— $(0) + xy/(0) — 2 / / YOy (tydrdr.
0 0

Now, applying formula (2.28), we get

n =x—-2 An dtdT.
;y@ x /O/O(Z(‘; <t>)m

The Adomian polynomials, which belong to the nonlinearity yy’, are given in (2.36).

Setting
yo(x) = Yo(x) + g(x) = y(0) + xy'(0) = x,

the recurrence relation (2.29) yields

yi(x) = -2 /X /T (o) yo(0))dtdT = —Z/X /Ttdth
o Jo 0o Jo
x 2 X 3
=—2/ 7——de—/ 72d7'=—x—,
0o 2 0 3
»nx) = —2/ / (o @y1(0) + yo(0)yi (1)) drdT
_2//( —~|—tt)dtd7'——//tdtd7'

:—/ 4d7——x5
3 Jo 15

y3(x) = —2/0 /0 (Yo @y2(6) + Y1 (Oy1(1) + Y5 @) yo(1))drdT

X T 2 t3 2
://(1~—t5+t2~§+§t4't)dtdr

2 17 17 * 17
= / / SdldT = ——15 3 7‘6d7— = —E)ﬂ_
: 0

Obviously, it holds

2 5 17
yx) = Zyn(x) x——-q—E — 3t T

51
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Example 2.8 Solve the IVP
V') =Y () +y)P =", y(0) =y'(0) =1.

Solution. Here, we have

Ly=)", Ry=0, N»=-0"+)y" fl)=e"
We write

N =N +NG), M) =-07 M0) =y
Using (2.27), we obtain

y(x) = Y (x) + g(x) — L7'Ni(y(x)) — L' Na(y(x))

=y(0)+xy’(0)+/ / e’dth—i—/ / y'()*dtdT
o Jo o Jo

—/x /T y(t)*dtdr
0 0

Now, applying formula (2.28), we get

0 x p7r f O©

Zyn(x) —l4xte —x—1 +/ / (ZAn(t))dth
o Jo U5

n=0
_ / ' / T(Z Bn(t))dth.
0 0 n=0

The Adomian polynomials A,, which belong to the nonlinearity (y’)?, are given in
(2.37), and for the nonlinearity y2, the Adomian polynomials B, are given in (2.34).
Setting

yo(x) = ¥ (x) + g(x) = e,

the recurrence relation (2.29) yields

y1(x) =/X / Ao(t)dth—/x / Bo(t)dtdr
0 0 0 0
- / / (¢') dtdT — / / (¢')’dtdr =0.
0 0 0 0
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This implies y,(x) =0,n =1, 2, ..., and we obtain the exact solution of the given
problem:
yx)=e*4+0+0+---=¢".

O

The convergence of the ADM can be accelerated if the so-called noise terms
phenomenon occurs in the given problem (see, e.g., [9, 10]). The noise terms are
the identical terms with opposite sign that appear within the components yy(x) and
v1(x). They only exist in specific types of nonhomogeneous equations. If noise terms
indeed exist in the yo(x) and y; (x) components, then, in general, the solution can be
obtained after two successive iterations.

By canceling the noise terms in yy(x) and y;(x), the remaining non-canceled
terms of yo(x) give the exact solution. It has been proved that a necessary condition
for the existence of noise terms is that the exact solution is part of yg(x).

Example 2.9 Solve the IVP
Y@ =y @ +yw)?* =1, yO0) =1 y'(©0 =0.
Solution. As in the Example 2.8, we set
Ly=y". Ry=0. M) =-0)" M) =y, f@=1

Using (2.27), we obtain

xZ X T X T
yx) =1+ — +/ / y'()*dtdT —/ / y(t)*dtdr
2 o Jo o Jo

Now, applying formula (2.28), we get
OO x2 x o1 f
Zyn(x)=1+—+/ / > A,0) Jdrdr
e 2 Jo Jo \Z

_ /0 ' /0 ' (i B,,(t))dth.

n=0

The Adomian polynomials A,, which belong to the nonlinearity (y’)?, are given in
(2.37), and for the nonlinearity y?, the Adomian polynomials B, are given in (2.34).
Setting

L,
yo(x):1+§x,
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the recurrence relation (2.29) yields

X T X T l2 2
yl(x)z/ / tzdth—/ / (1+—) drdr
o Jo o Jo 2
X 13 T X 1 1 T
=/ [—] dr—/ |:—t5+—t3+t:| dr
o L3 o 20 3 0

x 3 X 1 1
= T—dT—/ — 7+ - 47 )dr
o 3 o \20 3

(I D R

= —x"— —x"— —x"— =x
12 120 12 2
1 1
622
120 2

1
Comparing yo(x) with y; (x), we see that there is the noise term —x2. Therefore, we
can conclude that the solution of the given IVP is y(x) = 1. O

Several authors have proposed a variety of modifications of the AMD (see, e.g.,
[12]) by which the convergence of the iteration (2.29) can be accelerated. Wazwaz
[124,126] suggests the following reliable modification which is based on the assump-
tion that the function h(x) = Yy(x) + g(x) in formula (2.27) can be divided into
two parts, i.e.,

h(x) = %(x) + g(x) = ho(x) + h1(x).

The idea is that only the part ho(x) is assigned to the component y,(x), whereas

the remaining part 4, (x) is combined with other terms given in (2.29). It results the
modified recurrence relation

Yo(x) = ho(x),
y1(x) = hy(x) — L' Ryo(x) — L™ Ap(x), (2.40)
() = —L7'Ryr1(x) — L' Ap (x), k=2,3,...

Example 2.10 Solve the IVP
V' (x) —y(x)?=2—x* y(0)=y'(0)=0.
Solution. Here, we have

Ly=y", Ry=0, N(y)E—yz, f(x)EZ—x4,
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Using (2.27), we obtain

y(x) = Wo(x) + g(x) = L' Ry(x) = L™ N (y(x))

=x? ——x +/ / y(t)?dtdr.

Now, applying formula (2.28), we get

iyn(x)zx ——x +/ / (ZA (t))dth
n=0

The Adomian polynomials, which belong to the nonlinearity y?, are given in (2.34).
Dividing
1
hix) = x2 — — x5
x)=x 3Ox

1
into ho(x) = x2 and by (x) = —%xﬁ, and starting with yy(x) = x2, the recurrence

relation (2.29) yields
yi(x )———x —|—/ / dth

= 35 +/ Tar

This implies
wx)=0, k=1,2,...

Thus, we can conclude that the exact solution of the given IVP is y(x) = x?.
Let us compare the modified ADM with the standard method. The ADM is based
on the recurrence relation (2.29). Here, we have to set

(x) = Lo
Yo(x x? 3Ox

Now, the recurrence relation (2.29) yields

i) = // t——t didr / SELINE RN SRR Y PPN
] o \11700° 135 5

L 10 14
_30x 1350 +163800
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X T 1 1 l l
Y (x) =2 / 12— —1° x4 = x4+ —x°)dtdr
o Jo 30" ) \ 163800 1350 30
! 1 21 227 17 1 13 1 9
- B )d
/0 ( 51597000° 62653500 35107 135" )7
1o, 1 27 1 N

—_—x — X x° = X
1350 49140 1127763000 1135134000

14

Since

y(x) = yo(x) + y1(x) + ya(x) + -+,

we see that the terms in x°® and x'° cancel each other. The cancelation of terms is
continued when further components y;, k > 3, are added.

This is an impressive example of how fast the modified ADM generates the exact
solution y(x) = x2, compared with the standard method. (I

Many problems in the mathematical physics can be formulated as ODEs of Emden-
Fowler type (see, e.g., [26, 30]) defined in the form

4 a /
y'(x) + s @) +B8fx)g(y) =0, a=0,
y(0)=a, y(0) =0,

(2.41)

where f and g are given functions of x and y, respectively. The standard Emden-
Lane-Fowler ODE results when we set f(x) = 1 and g(y) = y".

Obviously, a difficulty in the analysis of (2.41) is the singularity behavior that
occurs at x = 0. Before the ADM can be applied, a slight change of the problem
is necessary to overcome this difficulty. The strategy is to define the differential
operator L in terms of the two derivatives, y” + («/x)y’, which are contained in the
ODE. First, the ODE (2.41) is rewritten as

Ly(x) = —Bf(x)g®1), (2.42)

with

The corresponding inverse operator L~ is

L7'() = / T / 1°()dtdr.
0 0
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Applying L™! to the first two terms of (2.41), we obtain
—1 " a
L7 (0 + =y )

/ / “(r)+ y(t)) drdr
=/ [ Oy (1) — / ! ’(t)dt+/T ar®! ’(t)dt]
0 0

= / Y/(ndr = y(x) = y(0) = y(x) —a.
0
Now, operating with L~! on (2.41), we find

Y@ =a—= LN (f)g)). (2.43)

Itis interesting, that only the firstinitial condition is sufficient to represent the solution
y(x) in this form. The second initial condition can be used to show that the obtained
solution satisfies this condition.

Let us come back to the Adomian decomposition method. As before, the solution
y(x) is represented by an infinite series of components

Y =D (). (2.44)

In addition, the given nonlinear function g(y) is represented by an infinite series of
Adomian polynomials (as we have done it for N (y))

gy(0)) =D A (), (2.45)
n=0

where
Ap(x) = Ap(o(x), y1(x), ..., Yu—1(x)).

Substituting (2.44) and (2.45) into (2.43) gives
> yu) =a - pL™! (f(x) >4, (x)). (2.46)
n=0 n=0

Now, the components y, (x) are determined recursively. The corresponding recur-
rence relation is

Yo(x) =a
w(x) = =BLTN(f() A1 (x), k=1,2,...,
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or equivalently

Yo(x) = a,

o (2.47)
yk(x):—ﬁ(/o T a/o ta(f(t)Ak_l(x))dth), k=1,2,...

Example 2.11 Solve the IVP
" 2 4 y(x) /
yo(x)+ Pl (x)+e™ =0, y0)=y(0) =0.

Solution. This problem is a special case of (2.41), wherea« =2, 5 =1, f(x) =1,
g(y) = exp(y) and a = 0. A particular solution of the ODE is

2
y(x) =1In (;) .

Obviously, this solution does not satisfy the initial conditions. We will see that the
ADM can be used to determine a solution which satisfies the ODE as well as the
initial conditions.

For the nonlinearity g(y) = exp(y), the Adomian polynomials are given in
Eq.(2.32). Using the recurrence relation (2.47), we obtain

yo(x) =0,

3 X
yi(x) = / ‘2/ 1? ldtdr_—/ T—ZT_de_/ Tdar
3 o 3

X T 44
»nx) = / 72/ ( )dth—/ T2 t—dtdr
0 o 6
=/ —dT—/ —dT
0

= — x*,
120
X T [4 f4 X T l6
yi(x) = —/ 7'72/ 2. ( )dth = —/ 2 —dtdr
0 0 120 0 o 45
X 7 T 5
=_/ AR A
0 315 o 315
1 6
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1 1 1 1
2 2 4 6
X ——t RN S — dtdr
() = / / ( 890" 6 120 6 216 )

61 T 6l
_ -2 9 _ 7
_/0 i (2041207)”17_/0 204120" 47
61
=———x
1632960

Thus, we have

x8+...

el L 1o, 6l
YO =76% T120" ~ 1890 " T 1632960

In [125] further variants of the general Emden-Fowler equation are discussed, and
solved by the ADM. (]

2.6 Exercises

Exercise 2.1 Solve following ODEs by VIM or ADM:
1) Y@ =y =—yx)? (0) =1,

, (x) x)
@ yw=1 +y—+(yi ) . y(0) =0,

5
3) y'(x) + y "(x) + exp(y(x)) + 2 exp (y(z x) =0, y0)=y(©0)=0,

@ Y'x)+ 2y(x)y (x) — y(x) = sinh(2x), y(0)7r= 0, ¥(0) =1,

5)  Y'(x)4cos(y(x)) =0, y0)=0, y(0) = PR
8

6 Y+ ;y’(x) +2y(x) = —4y(x) In(y(x)), y(0) =1, y'(0)=0,

(M Y@ +y'(x)?+yx)?=1-cos(x), y(0)=y"0)=0, y(0)=1.

Exercise 2.2 Given the following IVP for the Emden-Fowler ODE

2
¥ () + ;y’(X) +oax" y(x)" =0, y0)=1, y'(0)=0.

Approximate the solution of this IVP by the VIM and the ADM.
Exercise 2.3 Given the following IVP for the Emden-Fowler ODE

" 2 ’ m ,y(x) ’
y (x)—}—;y x)+ax"e’™ =0, y0)=y(0)=0.

Approximate the solution of this IVP by the VIM and the ADM.
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